freebsd-dev/sys/dev/advansys/advansys.c
2006-04-30 16:44:41 +00:00

1430 lines
40 KiB
C

/*-
* Generic driver for the Advanced Systems Inc. SCSI controllers
* Product specific probe and attach routines can be found in:
*
* i386/isa/adv_isa.c ABP5140, ABP542, ABP5150, ABP842, ABP852
* i386/eisa/adv_eisa.c ABP742, ABP752
* pci/adv_pci.c ABP920, ABP930, ABP930U, ABP930UA, ABP940, ABP940U,
* ABP940UA, ABP950, ABP960, ABP960U, ABP960UA,
* ABP970, ABP970U
*
* Copyright (c) 1996-2000 Justin Gibbs.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*-
* Ported from:
* advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
*
* Copyright (c) 1995-1997 Advanced System Products, Inc.
* All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that redistributions of source
* code retain the above copyright notice and this comment without
* modification.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_sim.h>
#include <cam/cam_xpt_sim.h>
#include <cam/cam_debug.h>
#include <cam/scsi/scsi_all.h>
#include <cam/scsi/scsi_message.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <dev/advansys/advansys.h>
static void adv_action(struct cam_sim *sim, union ccb *ccb);
static void adv_execute_ccb(void *arg, bus_dma_segment_t *dm_segs,
int nsegments, int error);
static void adv_poll(struct cam_sim *sim);
static void adv_run_doneq(struct adv_softc *adv);
static struct adv_ccb_info *
adv_alloc_ccb_info(struct adv_softc *adv);
static void adv_destroy_ccb_info(struct adv_softc *adv,
struct adv_ccb_info *cinfo);
static __inline struct adv_ccb_info *
adv_get_ccb_info(struct adv_softc *adv);
static __inline void adv_free_ccb_info(struct adv_softc *adv,
struct adv_ccb_info *cinfo);
static __inline void adv_set_state(struct adv_softc *adv, adv_state state);
static __inline void adv_clear_state(struct adv_softc *adv, union ccb* ccb);
static void adv_clear_state_really(struct adv_softc *adv, union ccb* ccb);
static __inline struct adv_ccb_info *
adv_get_ccb_info(struct adv_softc *adv)
{
struct adv_ccb_info *cinfo;
int opri;
opri = splcam();
if ((cinfo = SLIST_FIRST(&adv->free_ccb_infos)) != NULL) {
SLIST_REMOVE_HEAD(&adv->free_ccb_infos, links);
} else {
cinfo = adv_alloc_ccb_info(adv);
}
splx(opri);
return (cinfo);
}
static __inline void
adv_free_ccb_info(struct adv_softc *adv, struct adv_ccb_info *cinfo)
{
int opri;
opri = splcam();
cinfo->state = ACCB_FREE;
SLIST_INSERT_HEAD(&adv->free_ccb_infos, cinfo, links);
splx(opri);
}
static __inline void
adv_set_state(struct adv_softc *adv, adv_state state)
{
if (adv->state == 0)
xpt_freeze_simq(adv->sim, /*count*/1);
adv->state |= state;
}
static __inline void
adv_clear_state(struct adv_softc *adv, union ccb* ccb)
{
if (adv->state != 0)
adv_clear_state_really(adv, ccb);
}
static void
adv_clear_state_really(struct adv_softc *adv, union ccb* ccb)
{
if ((adv->state & ADV_BUSDMA_BLOCK_CLEARED) != 0)
adv->state &= ~(ADV_BUSDMA_BLOCK_CLEARED|ADV_BUSDMA_BLOCK);
if ((adv->state & ADV_RESOURCE_SHORTAGE) != 0) {
int openings;
openings = adv->max_openings - adv->cur_active - ADV_MIN_FREE_Q;
if (openings >= adv->openings_needed) {
adv->state &= ~ADV_RESOURCE_SHORTAGE;
adv->openings_needed = 0;
}
}
if ((adv->state & ADV_IN_TIMEOUT) != 0) {
struct adv_ccb_info *cinfo;
cinfo = (struct adv_ccb_info *)ccb->ccb_h.ccb_cinfo_ptr;
if ((cinfo->state & ACCB_RECOVERY_CCB) != 0) {
struct ccb_hdr *ccb_h;
/*
* We now traverse our list of pending CCBs
* and reinstate their timeouts.
*/
ccb_h = LIST_FIRST(&adv->pending_ccbs);
while (ccb_h != NULL) {
ccb_h->timeout_ch =
timeout(adv_timeout, (caddr_t)ccb_h,
(ccb_h->timeout * hz) / 1000);
ccb_h = LIST_NEXT(ccb_h, sim_links.le);
}
adv->state &= ~ADV_IN_TIMEOUT;
printf("%s: No longer in timeout\n", adv_name(adv));
}
}
if (adv->state == 0)
ccb->ccb_h.status |= CAM_RELEASE_SIMQ;
}
void
adv_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
bus_addr_t* physaddr;
physaddr = (bus_addr_t*)arg;
*physaddr = segs->ds_addr;
}
char *
adv_name(struct adv_softc *adv)
{
static char name[10];
snprintf(name, sizeof(name), "adv%d", adv->unit);
return (name);
}
static void
adv_action(struct cam_sim *sim, union ccb *ccb)
{
struct adv_softc *adv;
CAM_DEBUG(ccb->ccb_h.path, CAM_DEBUG_TRACE, ("adv_action\n"));
adv = (struct adv_softc *)cam_sim_softc(sim);
switch (ccb->ccb_h.func_code) {
/* Common cases first */
case XPT_SCSI_IO: /* Execute the requested I/O operation */
{
struct ccb_hdr *ccb_h;
struct ccb_scsiio *csio;
struct adv_ccb_info *cinfo;
ccb_h = &ccb->ccb_h;
csio = &ccb->csio;
cinfo = adv_get_ccb_info(adv);
if (cinfo == NULL)
panic("XXX Handle CCB info error!!!");
ccb_h->ccb_cinfo_ptr = cinfo;
cinfo->ccb = ccb;
/* Only use S/G if there is a transfer */
if ((ccb_h->flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
if ((ccb_h->flags & CAM_SCATTER_VALID) == 0) {
/*
* We've been given a pointer
* to a single buffer
*/
if ((ccb_h->flags & CAM_DATA_PHYS) == 0) {
int s;
int error;
s = splsoftvm();
error =
bus_dmamap_load(adv->buffer_dmat,
cinfo->dmamap,
csio->data_ptr,
csio->dxfer_len,
adv_execute_ccb,
csio, /*flags*/0);
if (error == EINPROGRESS) {
/*
* So as to maintain ordering,
* freeze the controller queue
* until our mapping is
* returned.
*/
adv_set_state(adv,
ADV_BUSDMA_BLOCK);
}
splx(s);
} else {
struct bus_dma_segment seg;
/* Pointer to physical buffer */
seg.ds_addr =
(bus_addr_t)csio->data_ptr;
seg.ds_len = csio->dxfer_len;
adv_execute_ccb(csio, &seg, 1, 0);
}
} else {
struct bus_dma_segment *segs;
if ((ccb_h->flags & CAM_DATA_PHYS) != 0)
panic("adv_setup_data - Physical "
"segment pointers unsupported");
if ((ccb_h->flags & CAM_SG_LIST_PHYS) == 0)
panic("adv_setup_data - Virtual "
"segment addresses unsupported");
/* Just use the segments provided */
segs = (struct bus_dma_segment *)csio->data_ptr;
adv_execute_ccb(ccb, segs, csio->sglist_cnt, 0);
}
} else {
adv_execute_ccb(ccb, NULL, 0, 0);
}
break;
}
case XPT_RESET_DEV: /* Bus Device Reset the specified SCSI device */
case XPT_TARGET_IO: /* Execute target I/O request */
case XPT_ACCEPT_TARGET_IO: /* Accept Host Target Mode CDB */
case XPT_CONT_TARGET_IO: /* Continue Host Target I/O Connection*/
case XPT_EN_LUN: /* Enable LUN as a target */
case XPT_ABORT: /* Abort the specified CCB */
/* XXX Implement */
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
case XPT_SET_TRAN_SETTINGS:
{
struct ccb_trans_settings *cts;
target_bit_vector targ_mask;
struct adv_transinfo *tconf;
u_int update_type;
int s;
cts = &ccb->cts;
targ_mask = ADV_TID_TO_TARGET_MASK(cts->ccb_h.target_id);
update_type = 0;
/*
* The user must specify which type of settings he wishes
* to change.
*/
if (((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0)
&& ((cts->flags & CCB_TRANS_USER_SETTINGS) == 0)) {
tconf = &adv->tinfo[cts->ccb_h.target_id].current;
update_type |= ADV_TRANS_GOAL;
} else if (((cts->flags & CCB_TRANS_USER_SETTINGS) != 0)
&& ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) == 0)) {
tconf = &adv->tinfo[cts->ccb_h.target_id].user;
update_type |= ADV_TRANS_USER;
} else {
ccb->ccb_h.status = CAM_REQ_INVALID;
break;
}
s = splcam();
if ((update_type & ADV_TRANS_GOAL) != 0) {
if ((cts->valid & CCB_TRANS_DISC_VALID) != 0) {
if ((cts->flags & CCB_TRANS_DISC_ENB) != 0)
adv->disc_enable |= targ_mask;
else
adv->disc_enable &= ~targ_mask;
adv_write_lram_8(adv, ADVV_DISC_ENABLE_B,
adv->disc_enable);
}
if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) {
if ((cts->flags & CCB_TRANS_TAG_ENB) != 0)
adv->cmd_qng_enabled |= targ_mask;
else
adv->cmd_qng_enabled &= ~targ_mask;
}
}
if ((update_type & ADV_TRANS_USER) != 0) {
if ((cts->valid & CCB_TRANS_DISC_VALID) != 0) {
if ((cts->flags & CCB_TRANS_DISC_ENB) != 0)
adv->user_disc_enable |= targ_mask;
else
adv->user_disc_enable &= ~targ_mask;
}
if ((cts->valid & CCB_TRANS_TQ_VALID) != 0) {
if ((cts->flags & CCB_TRANS_TAG_ENB) != 0)
adv->user_cmd_qng_enabled |= targ_mask;
else
adv->user_cmd_qng_enabled &= ~targ_mask;
}
}
/*
* If the user specifies either the sync rate, or offset,
* but not both, the unspecified parameter defaults to its
* current value in transfer negotiations.
*/
if (((cts->valid & CCB_TRANS_SYNC_RATE_VALID) != 0)
|| ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) != 0)) {
/*
* If the user provided a sync rate but no offset,
* use the current offset.
*/
if ((cts->valid & CCB_TRANS_SYNC_OFFSET_VALID) == 0)
cts->sync_offset = tconf->offset;
/*
* If the user provided an offset but no sync rate,
* use the current sync rate.
*/
if ((cts->valid & CCB_TRANS_SYNC_RATE_VALID) == 0)
cts->sync_period = tconf->period;
adv_period_offset_to_sdtr(adv, &cts->sync_period,
&cts->sync_offset,
cts->ccb_h.target_id);
adv_set_syncrate(adv, /*struct cam_path */NULL,
cts->ccb_h.target_id, cts->sync_period,
cts->sync_offset, update_type);
}
splx(s);
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_GET_TRAN_SETTINGS:
/* Get default/user set transfer settings for the target */
{
struct ccb_trans_settings *cts;
struct adv_transinfo *tconf;
target_bit_vector target_mask;
int s;
cts = &ccb->cts;
target_mask = ADV_TID_TO_TARGET_MASK(cts->ccb_h.target_id);
cts->flags &= ~(CCB_TRANS_DISC_ENB|CCB_TRANS_TAG_ENB);
s = splcam();
if ((cts->flags & CCB_TRANS_CURRENT_SETTINGS) != 0) {
tconf = &adv->tinfo[cts->ccb_h.target_id].current;
if ((adv->disc_enable & target_mask) != 0)
cts->flags |= CCB_TRANS_DISC_ENB;
if ((adv->cmd_qng_enabled & target_mask) != 0)
cts->flags |= CCB_TRANS_TAG_ENB;
} else {
tconf = &adv->tinfo[cts->ccb_h.target_id].user;
if ((adv->user_disc_enable & target_mask) != 0)
cts->flags |= CCB_TRANS_DISC_ENB;
if ((adv->user_cmd_qng_enabled & target_mask) != 0)
cts->flags |= CCB_TRANS_TAG_ENB;
}
cts->sync_period = tconf->period;
cts->sync_offset = tconf->offset;
splx(s);
cts->bus_width = MSG_EXT_WDTR_BUS_8_BIT;
cts->valid = CCB_TRANS_SYNC_RATE_VALID
| CCB_TRANS_SYNC_OFFSET_VALID
| CCB_TRANS_BUS_WIDTH_VALID
| CCB_TRANS_DISC_VALID
| CCB_TRANS_TQ_VALID;
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_CALC_GEOMETRY:
{
int extended;
extended = (adv->control & ADV_CNTL_BIOS_GT_1GB) != 0;
cam_calc_geometry(&ccb->ccg, extended);
xpt_done(ccb);
break;
}
case XPT_RESET_BUS: /* Reset the specified SCSI bus */
{
int s;
s = splcam();
adv_stop_execution(adv);
adv_reset_bus(adv, /*initiate_reset*/TRUE);
adv_start_execution(adv);
splx(s);
ccb->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
case XPT_TERM_IO: /* Terminate the I/O process */
/* XXX Implement */
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
case XPT_PATH_INQ: /* Path routing inquiry */
{
struct ccb_pathinq *cpi = &ccb->cpi;
cpi->version_num = 1; /* XXX??? */
cpi->hba_inquiry = PI_SDTR_ABLE|PI_TAG_ABLE;
cpi->target_sprt = 0;
cpi->hba_misc = 0;
cpi->hba_eng_cnt = 0;
cpi->max_target = 7;
cpi->max_lun = 7;
cpi->initiator_id = adv->scsi_id;
cpi->bus_id = cam_sim_bus(sim);
cpi->base_transfer_speed = 3300;
strncpy(cpi->sim_vid, "FreeBSD", SIM_IDLEN);
strncpy(cpi->hba_vid, "Advansys", HBA_IDLEN);
strncpy(cpi->dev_name, cam_sim_name(sim), DEV_IDLEN);
cpi->unit_number = cam_sim_unit(sim);
cpi->ccb_h.status = CAM_REQ_CMP;
xpt_done(ccb);
break;
}
default:
ccb->ccb_h.status = CAM_REQ_INVALID;
xpt_done(ccb);
break;
}
}
/*
* Currently, the output of bus_dmammap_load suits our needs just
* fine, but should it change, we'd need to do something here.
*/
#define adv_fixup_dmasegs(adv, dm_segs) (struct adv_sg_entry *)(dm_segs)
static void
adv_execute_ccb(void *arg, bus_dma_segment_t *dm_segs,
int nsegments, int error)
{
struct ccb_scsiio *csio;
struct ccb_hdr *ccb_h;
struct cam_sim *sim;
struct adv_softc *adv;
struct adv_ccb_info *cinfo;
struct adv_scsi_q scsiq;
struct adv_sg_head sghead;
int s;
csio = (struct ccb_scsiio *)arg;
ccb_h = &csio->ccb_h;
sim = xpt_path_sim(ccb_h->path);
adv = (struct adv_softc *)cam_sim_softc(sim);
cinfo = (struct adv_ccb_info *)csio->ccb_h.ccb_cinfo_ptr;
/*
* Setup our done routine to release the simq on
* the next ccb that completes.
*/
if ((adv->state & ADV_BUSDMA_BLOCK) != 0)
adv->state |= ADV_BUSDMA_BLOCK_CLEARED;
if ((ccb_h->flags & CAM_CDB_POINTER) != 0) {
if ((ccb_h->flags & CAM_CDB_PHYS) == 0) {
/* XXX Need phystovirt!!!! */
/* How about pmap_kenter??? */
scsiq.cdbptr = csio->cdb_io.cdb_ptr;
} else {
scsiq.cdbptr = csio->cdb_io.cdb_ptr;
}
} else {
scsiq.cdbptr = csio->cdb_io.cdb_bytes;
}
/*
* Build up the request
*/
scsiq.q1.status = 0;
scsiq.q1.q_no = 0;
scsiq.q1.cntl = 0;
scsiq.q1.sg_queue_cnt = 0;
scsiq.q1.target_id = ADV_TID_TO_TARGET_MASK(ccb_h->target_id);
scsiq.q1.target_lun = ccb_h->target_lun;
scsiq.q1.sense_len = csio->sense_len;
scsiq.q1.extra_bytes = 0;
scsiq.q2.ccb_index = cinfo - adv->ccb_infos;
scsiq.q2.target_ix = ADV_TIDLUN_TO_IX(ccb_h->target_id,
ccb_h->target_lun);
scsiq.q2.flag = 0;
scsiq.q2.cdb_len = csio->cdb_len;
if ((ccb_h->flags & CAM_TAG_ACTION_VALID) != 0)
scsiq.q2.tag_code = csio->tag_action;
else
scsiq.q2.tag_code = 0;
scsiq.q2.vm_id = 0;
if (nsegments != 0) {
bus_dmasync_op_t op;
scsiq.q1.data_addr = dm_segs->ds_addr;
scsiq.q1.data_cnt = dm_segs->ds_len;
if (nsegments > 1) {
scsiq.q1.cntl |= QC_SG_HEAD;
sghead.entry_cnt
= sghead.entry_to_copy
= nsegments;
sghead.res = 0;
sghead.sg_list = adv_fixup_dmasegs(adv, dm_segs);
scsiq.sg_head = &sghead;
} else {
scsiq.sg_head = NULL;
}
if ((ccb_h->flags & CAM_DIR_MASK) == CAM_DIR_IN)
op = BUS_DMASYNC_PREREAD;
else
op = BUS_DMASYNC_PREWRITE;
bus_dmamap_sync(adv->buffer_dmat, cinfo->dmamap, op);
} else {
scsiq.q1.data_addr = 0;
scsiq.q1.data_cnt = 0;
scsiq.sg_head = NULL;
}
s = splcam();
/*
* Last time we need to check if this SCB needs to
* be aborted.
*/
if (ccb_h->status != CAM_REQ_INPROG) {
if (nsegments != 0)
bus_dmamap_unload(adv->buffer_dmat, cinfo->dmamap);
adv_clear_state(adv, (union ccb *)csio);
adv_free_ccb_info(adv, cinfo);
xpt_done((union ccb *)csio);
splx(s);
return;
}
if (adv_execute_scsi_queue(adv, &scsiq, csio->dxfer_len) != 0) {
/* Temporary resource shortage */
adv_set_state(adv, ADV_RESOURCE_SHORTAGE);
if (nsegments != 0)
bus_dmamap_unload(adv->buffer_dmat, cinfo->dmamap);
csio->ccb_h.status = CAM_REQUEUE_REQ;
adv_clear_state(adv, (union ccb *)csio);
adv_free_ccb_info(adv, cinfo);
xpt_done((union ccb *)csio);
splx(s);
return;
}
cinfo->state |= ACCB_ACTIVE;
ccb_h->status |= CAM_SIM_QUEUED;
LIST_INSERT_HEAD(&adv->pending_ccbs, ccb_h, sim_links.le);
/* Schedule our timeout */
ccb_h->timeout_ch =
timeout(adv_timeout, csio, (ccb_h->timeout * hz)/1000);
splx(s);
}
static struct adv_ccb_info *
adv_alloc_ccb_info(struct adv_softc *adv)
{
int error;
struct adv_ccb_info *cinfo;
cinfo = &adv->ccb_infos[adv->ccb_infos_allocated];
cinfo->state = ACCB_FREE;
error = bus_dmamap_create(adv->buffer_dmat, /*flags*/0,
&cinfo->dmamap);
if (error != 0) {
printf("%s: Unable to allocate CCB info "
"dmamap - error %d\n", adv_name(adv), error);
return (NULL);
}
adv->ccb_infos_allocated++;
return (cinfo);
}
static void
adv_destroy_ccb_info(struct adv_softc *adv, struct adv_ccb_info *cinfo)
{
bus_dmamap_destroy(adv->buffer_dmat, cinfo->dmamap);
}
void
adv_timeout(void *arg)
{
int s;
union ccb *ccb;
struct adv_softc *adv;
struct adv_ccb_info *cinfo;
ccb = (union ccb *)arg;
adv = (struct adv_softc *)xpt_path_sim(ccb->ccb_h.path)->softc;
cinfo = (struct adv_ccb_info *)ccb->ccb_h.ccb_cinfo_ptr;
xpt_print_path(ccb->ccb_h.path);
printf("Timed out\n");
s = splcam();
/* Have we been taken care of already?? */
if (cinfo == NULL || cinfo->state == ACCB_FREE) {
splx(s);
return;
}
adv_stop_execution(adv);
if ((cinfo->state & ACCB_ABORT_QUEUED) == 0) {
struct ccb_hdr *ccb_h;
/*
* In order to simplify the recovery process, we ask the XPT
* layer to halt the queue of new transactions and we traverse
* the list of pending CCBs and remove their timeouts. This
* means that the driver attempts to clear only one error
* condition at a time. In general, timeouts that occur
* close together are related anyway, so there is no benefit
* in attempting to handle errors in parrallel. Timeouts will
* be reinstated when the recovery process ends.
*/
adv_set_state(adv, ADV_IN_TIMEOUT);
/* This CCB is the CCB representing our recovery actions */
cinfo->state |= ACCB_RECOVERY_CCB|ACCB_ABORT_QUEUED;
ccb_h = LIST_FIRST(&adv->pending_ccbs);
while (ccb_h != NULL) {
untimeout(adv_timeout, ccb_h, ccb_h->timeout_ch);
ccb_h = LIST_NEXT(ccb_h, sim_links.le);
}
/* XXX Should send a BDR */
/* Attempt an abort as our first tact */
xpt_print_path(ccb->ccb_h.path);
printf("Attempting abort\n");
adv_abort_ccb(adv, ccb->ccb_h.target_id,
ccb->ccb_h.target_lun, ccb,
CAM_CMD_TIMEOUT, /*queued_only*/FALSE);
ccb->ccb_h.timeout_ch =
timeout(adv_timeout, ccb, 2 * hz);
} else {
/* Our attempt to perform an abort failed, go for a reset */
xpt_print_path(ccb->ccb_h.path);
printf("Resetting bus\n");
ccb->ccb_h.status &= ~CAM_STATUS_MASK;
ccb->ccb_h.status |= CAM_CMD_TIMEOUT;
adv_reset_bus(adv, /*initiate_reset*/TRUE);
}
adv_start_execution(adv);
splx(s);
}
struct adv_softc *
adv_alloc(device_t dev, bus_space_tag_t tag, bus_space_handle_t bsh)
{
struct adv_softc *adv = device_get_softc(dev);
/*
* Allocate a storage area for us
*/
LIST_INIT(&adv->pending_ccbs);
SLIST_INIT(&adv->free_ccb_infos);
adv->dev = dev;
adv->unit = device_get_unit(dev);
adv->tag = tag;
adv->bsh = bsh;
return(adv);
}
void
adv_free(struct adv_softc *adv)
{
switch (adv->init_level) {
case 6:
{
struct adv_ccb_info *cinfo;
while ((cinfo = SLIST_FIRST(&adv->free_ccb_infos)) != NULL) {
SLIST_REMOVE_HEAD(&adv->free_ccb_infos, links);
adv_destroy_ccb_info(adv, cinfo);
}
bus_dmamap_unload(adv->sense_dmat, adv->sense_dmamap);
}
case 5:
bus_dmamem_free(adv->sense_dmat, adv->sense_buffers,
adv->sense_dmamap);
case 4:
bus_dma_tag_destroy(adv->sense_dmat);
case 3:
bus_dma_tag_destroy(adv->buffer_dmat);
case 2:
bus_dma_tag_destroy(adv->parent_dmat);
case 1:
if (adv->ccb_infos != NULL)
free(adv->ccb_infos, M_DEVBUF);
case 0:
break;
}
}
int
adv_init(struct adv_softc *adv)
{
struct adv_eeprom_config eeprom_config;
int checksum, i;
int max_sync;
u_int16_t config_lsw;
u_int16_t config_msw;
adv_lib_init(adv);
/*
* Stop script execution.
*/
adv_write_lram_16(adv, ADV_HALTCODE_W, 0x00FE);
adv_stop_execution(adv);
if (adv_stop_chip(adv) == 0 || adv_is_chip_halted(adv) == 0) {
printf("adv%d: Unable to halt adapter. Initialization"
"failed\n", adv->unit);
return (1);
}
ADV_OUTW(adv, ADV_REG_PROG_COUNTER, ADV_MCODE_START_ADDR);
if (ADV_INW(adv, ADV_REG_PROG_COUNTER) != ADV_MCODE_START_ADDR) {
printf("adv%d: Unable to set program counter. Initialization"
"failed\n", adv->unit);
return (1);
}
config_msw = ADV_INW(adv, ADV_CONFIG_MSW);
config_lsw = ADV_INW(adv, ADV_CONFIG_LSW);
if ((config_msw & ADV_CFG_MSW_CLR_MASK) != 0) {
config_msw &= ~ADV_CFG_MSW_CLR_MASK;
/*
* XXX The Linux code flags this as an error,
* but what should we report to the user???
* It seems that clearing the config register
* makes this error recoverable.
*/
ADV_OUTW(adv, ADV_CONFIG_MSW, config_msw);
}
/* Suck in the configuration from the EEProm */
checksum = adv_get_eeprom_config(adv, &eeprom_config);
if (ADV_INW(adv, ADV_CHIP_STATUS) & ADV_CSW_AUTO_CONFIG) {
/*
* XXX The Linux code sets a warning level for this
* condition, yet nothing of meaning is printed to
* the user. What does this mean???
*/
if (adv->chip_version == 3) {
if (eeprom_config.cfg_lsw != config_lsw)
eeprom_config.cfg_lsw = config_lsw;
if (eeprom_config.cfg_msw != config_msw) {
eeprom_config.cfg_msw = config_msw;
}
}
}
if (checksum == eeprom_config.chksum) {
/* Range/Sanity checking */
if (eeprom_config.max_total_qng < ADV_MIN_TOTAL_QNG) {
eeprom_config.max_total_qng = ADV_MIN_TOTAL_QNG;
}
if (eeprom_config.max_total_qng > ADV_MAX_TOTAL_QNG) {
eeprom_config.max_total_qng = ADV_MAX_TOTAL_QNG;
}
if (eeprom_config.max_tag_qng > eeprom_config.max_total_qng) {
eeprom_config.max_tag_qng = eeprom_config.max_total_qng;
}
if (eeprom_config.max_tag_qng < ADV_MIN_TAG_Q_PER_DVC) {
eeprom_config.max_tag_qng = ADV_MIN_TAG_Q_PER_DVC;
}
adv->max_openings = eeprom_config.max_total_qng;
adv->user_disc_enable = eeprom_config.disc_enable;
adv->user_cmd_qng_enabled = eeprom_config.use_cmd_qng;
adv->isa_dma_speed = EEPROM_DMA_SPEED(eeprom_config);
adv->scsi_id = EEPROM_SCSIID(eeprom_config) & ADV_MAX_TID;
EEPROM_SET_SCSIID(eeprom_config, adv->scsi_id);
adv->control = eeprom_config.cntl;
for (i = 0; i <= ADV_MAX_TID; i++) {
u_int8_t sync_data;
if ((eeprom_config.init_sdtr & (0x1 << i)) == 0)
sync_data = 0;
else
sync_data = eeprom_config.sdtr_data[i];
adv_sdtr_to_period_offset(adv,
sync_data,
&adv->tinfo[i].user.period,
&adv->tinfo[i].user.offset,
i);
}
config_lsw = eeprom_config.cfg_lsw;
eeprom_config.cfg_msw = config_msw;
} else {
u_int8_t sync_data;
printf("adv%d: Warning EEPROM Checksum mismatch. "
"Using default device parameters\n", adv->unit);
/* Set reasonable defaults since we can't read the EEPROM */
adv->isa_dma_speed = /*ADV_DEF_ISA_DMA_SPEED*/1;
adv->max_openings = ADV_DEF_MAX_TOTAL_QNG;
adv->disc_enable = TARGET_BIT_VECTOR_SET;
adv->user_disc_enable = TARGET_BIT_VECTOR_SET;
adv->cmd_qng_enabled = TARGET_BIT_VECTOR_SET;
adv->user_cmd_qng_enabled = TARGET_BIT_VECTOR_SET;
adv->scsi_id = 7;
adv->control = 0xFFFF;
if (adv->chip_version == ADV_CHIP_VER_PCI_ULTRA_3050)
/* Default to no Ultra to support the 3030 */
adv->control &= ~ADV_CNTL_SDTR_ENABLE_ULTRA;
sync_data = ADV_DEF_SDTR_OFFSET | (ADV_DEF_SDTR_INDEX << 4);
for (i = 0; i <= ADV_MAX_TID; i++) {
adv_sdtr_to_period_offset(adv, sync_data,
&adv->tinfo[i].user.period,
&adv->tinfo[i].user.offset,
i);
}
config_lsw |= ADV_CFG_LSW_SCSI_PARITY_ON;
}
config_msw &= ~ADV_CFG_MSW_CLR_MASK;
config_lsw |= ADV_CFG_LSW_HOST_INT_ON;
if ((adv->type & (ADV_PCI|ADV_ULTRA)) == (ADV_PCI|ADV_ULTRA)
&& (adv->control & ADV_CNTL_SDTR_ENABLE_ULTRA) == 0)
/* 25ns or 10MHz */
max_sync = 25;
else
/* Unlimited */
max_sync = 0;
for (i = 0; i <= ADV_MAX_TID; i++) {
if (adv->tinfo[i].user.period < max_sync)
adv->tinfo[i].user.period = max_sync;
}
if (adv_test_external_lram(adv) == 0) {
if ((adv->type & (ADV_PCI|ADV_ULTRA)) == (ADV_PCI|ADV_ULTRA)) {
eeprom_config.max_total_qng =
ADV_MAX_PCI_ULTRA_INRAM_TOTAL_QNG;
eeprom_config.max_tag_qng =
ADV_MAX_PCI_ULTRA_INRAM_TAG_QNG;
} else {
eeprom_config.cfg_msw |= 0x0800;
config_msw |= 0x0800;
eeprom_config.max_total_qng =
ADV_MAX_PCI_INRAM_TOTAL_QNG;
eeprom_config.max_tag_qng = ADV_MAX_INRAM_TAG_QNG;
}
adv->max_openings = eeprom_config.max_total_qng;
}
ADV_OUTW(adv, ADV_CONFIG_MSW, config_msw);
ADV_OUTW(adv, ADV_CONFIG_LSW, config_lsw);
#if 0
/*
* Don't write the eeprom data back for now.
* I'd rather not mess up the user's card. We also don't
* fully sanitize the eeprom settings above for the write-back
* to be 100% correct.
*/
if (adv_set_eeprom_config(adv, &eeprom_config) != 0)
printf("%s: WARNING! Failure writing to EEPROM.\n",
adv_name(adv));
#endif
adv_set_chip_scsiid(adv, adv->scsi_id);
if (adv_init_lram_and_mcode(adv))
return (1);
adv->disc_enable = adv->user_disc_enable;
adv_write_lram_8(adv, ADVV_DISC_ENABLE_B, adv->disc_enable);
for (i = 0; i <= ADV_MAX_TID; i++) {
/*
* Start off in async mode.
*/
adv_set_syncrate(adv, /*struct cam_path */NULL,
i, /*period*/0, /*offset*/0,
ADV_TRANS_CUR);
/*
* Enable the use of tagged commands on all targets.
* This allows the kernel driver to make up it's own mind
* as it sees fit to tag queue instead of having the
* firmware try and second guess the tag_code settins.
*/
adv_write_lram_8(adv, ADVV_MAX_DVC_QNG_BEG + i,
adv->max_openings);
}
adv_write_lram_8(adv, ADVV_USE_TAGGED_QNG_B, TARGET_BIT_VECTOR_SET);
adv_write_lram_8(adv, ADVV_CAN_TAGGED_QNG_B, TARGET_BIT_VECTOR_SET);
printf("adv%d: AdvanSys %s Host Adapter, SCSI ID %d, queue depth %d\n",
adv->unit, (adv->type & ADV_ULTRA) && (max_sync == 0)
? "Ultra SCSI" : "SCSI",
adv->scsi_id, adv->max_openings);
return (0);
}
void
adv_intr(void *arg)
{
struct adv_softc *adv;
u_int16_t chipstat;
u_int16_t saved_ram_addr;
u_int8_t ctrl_reg;
u_int8_t saved_ctrl_reg;
u_int8_t host_flag;
adv = (struct adv_softc *)arg;
chipstat = ADV_INW(adv, ADV_CHIP_STATUS);
/* Is it for us? */
if ((chipstat & (ADV_CSW_INT_PENDING|ADV_CSW_SCSI_RESET_LATCH)) == 0)
return;
ctrl_reg = ADV_INB(adv, ADV_CHIP_CTRL);
saved_ctrl_reg = ctrl_reg & (~(ADV_CC_SCSI_RESET | ADV_CC_CHIP_RESET |
ADV_CC_SINGLE_STEP | ADV_CC_DIAG |
ADV_CC_TEST));
if ((chipstat & (ADV_CSW_SCSI_RESET_LATCH|ADV_CSW_SCSI_RESET_ACTIVE))) {
printf("Detected Bus Reset\n");
adv_reset_bus(adv, /*initiate_reset*/FALSE);
return;
}
if ((chipstat & ADV_CSW_INT_PENDING) != 0) {
saved_ram_addr = ADV_INW(adv, ADV_LRAM_ADDR);
host_flag = adv_read_lram_8(adv, ADVV_HOST_FLAG_B);
adv_write_lram_8(adv, ADVV_HOST_FLAG_B,
host_flag | ADV_HOST_FLAG_IN_ISR);
adv_ack_interrupt(adv);
if ((chipstat & ADV_CSW_HALTED) != 0
&& (ctrl_reg & ADV_CC_SINGLE_STEP) != 0) {
adv_isr_chip_halted(adv);
saved_ctrl_reg &= ~ADV_CC_HALT;
} else {
adv_run_doneq(adv);
}
ADV_OUTW(adv, ADV_LRAM_ADDR, saved_ram_addr);
#ifdef DIAGNOSTIC
if (ADV_INW(adv, ADV_LRAM_ADDR) != saved_ram_addr)
panic("adv_intr: Unable to set LRAM addr");
#endif
adv_write_lram_8(adv, ADVV_HOST_FLAG_B, host_flag);
}
ADV_OUTB(adv, ADV_CHIP_CTRL, saved_ctrl_reg);
}
static void
adv_run_doneq(struct adv_softc *adv)
{
struct adv_q_done_info scsiq;
u_int doneq_head;
u_int done_qno;
doneq_head = adv_read_lram_16(adv, ADVV_DONE_Q_TAIL_W) & 0xFF;
done_qno = adv_read_lram_8(adv, ADV_QNO_TO_QADDR(doneq_head)
+ ADV_SCSIQ_B_FWD);
while (done_qno != ADV_QLINK_END) {
union ccb* ccb;
struct adv_ccb_info *cinfo;
u_int done_qaddr;
u_int sg_queue_cnt;
int aborted;
done_qaddr = ADV_QNO_TO_QADDR(done_qno);
/* Pull status from this request */
sg_queue_cnt = adv_copy_lram_doneq(adv, done_qaddr, &scsiq,
adv->max_dma_count);
/* Mark it as free */
adv_write_lram_8(adv, done_qaddr + ADV_SCSIQ_B_STATUS,
scsiq.q_status & ~(QS_READY|QS_ABORTED));
/* Process request based on retrieved info */
if ((scsiq.cntl & QC_SG_HEAD) != 0) {
u_int i;
/*
* S/G based request. Free all of the queue
* structures that contained S/G information.
*/
for (i = 0; i < sg_queue_cnt; i++) {
done_qno = adv_read_lram_8(adv, done_qaddr
+ ADV_SCSIQ_B_FWD);
#ifdef DIAGNOSTIC
if (done_qno == ADV_QLINK_END) {
panic("adv_qdone: Corrupted SG "
"list encountered");
}
#endif
done_qaddr = ADV_QNO_TO_QADDR(done_qno);
/* Mark SG queue as free */
adv_write_lram_8(adv, done_qaddr
+ ADV_SCSIQ_B_STATUS, QS_FREE);
}
} else
sg_queue_cnt = 0;
#ifdef DIAGNOSTIC
if (adv->cur_active < (sg_queue_cnt + 1))
panic("adv_qdone: Attempting to free more "
"queues than are active");
#endif
adv->cur_active -= sg_queue_cnt + 1;
aborted = (scsiq.q_status & QS_ABORTED) != 0;
if ((scsiq.q_status != QS_DONE)
&& (scsiq.q_status & QS_ABORTED) == 0)
panic("adv_qdone: completed scsiq with unknown status");
scsiq.remain_bytes += scsiq.extra_bytes;
if ((scsiq.d3.done_stat == QD_WITH_ERROR) &&
(scsiq.d3.host_stat == QHSTA_M_DATA_OVER_RUN)) {
if ((scsiq.cntl & (QC_DATA_IN|QC_DATA_OUT)) == 0) {
scsiq.d3.done_stat = QD_NO_ERROR;
scsiq.d3.host_stat = QHSTA_NO_ERROR;
}
}
cinfo = &adv->ccb_infos[scsiq.d2.ccb_index];
ccb = cinfo->ccb;
ccb->csio.resid = scsiq.remain_bytes;
adv_done(adv, ccb,
scsiq.d3.done_stat, scsiq.d3.host_stat,
scsiq.d3.scsi_stat, scsiq.q_no);
doneq_head = done_qno;
done_qno = adv_read_lram_8(adv, done_qaddr + ADV_SCSIQ_B_FWD);
}
adv_write_lram_16(adv, ADVV_DONE_Q_TAIL_W, doneq_head);
}
void
adv_done(struct adv_softc *adv, union ccb *ccb, u_int done_stat,
u_int host_stat, u_int scsi_status, u_int q_no)
{
struct adv_ccb_info *cinfo;
cinfo = (struct adv_ccb_info *)ccb->ccb_h.ccb_cinfo_ptr;
LIST_REMOVE(&ccb->ccb_h, sim_links.le);
untimeout(adv_timeout, ccb, ccb->ccb_h.timeout_ch);
if ((ccb->ccb_h.flags & CAM_DIR_MASK) != CAM_DIR_NONE) {
bus_dmasync_op_t op;
if ((ccb->ccb_h.flags & CAM_DIR_MASK) == CAM_DIR_IN)
op = BUS_DMASYNC_POSTREAD;
else
op = BUS_DMASYNC_POSTWRITE;
bus_dmamap_sync(adv->buffer_dmat, cinfo->dmamap, op);
bus_dmamap_unload(adv->buffer_dmat, cinfo->dmamap);
}
switch (done_stat) {
case QD_NO_ERROR:
if (host_stat == QHSTA_NO_ERROR) {
ccb->ccb_h.status = CAM_REQ_CMP;
break;
}
xpt_print_path(ccb->ccb_h.path);
printf("adv_done - queue done without error, "
"but host status non-zero(%x)\n", host_stat);
/*FALLTHROUGH*/
case QD_WITH_ERROR:
switch (host_stat) {
case QHSTA_M_TARGET_STATUS_BUSY:
case QHSTA_M_BAD_QUEUE_FULL_OR_BUSY:
/*
* Assume that if we were a tagged transaction
* the target reported queue full. Otherwise,
* report busy. The firmware really should just
* pass the original status back up to us even
* if it thinks the target was in error for
* returning this status as no other transactions
* from this initiator are in effect, but this
* ignores multi-initiator setups and there is
* evidence that the firmware gets its per-device
* transaction counts screwed up occassionally.
*/
ccb->ccb_h.status |= CAM_SCSI_STATUS_ERROR;
if ((ccb->ccb_h.flags & CAM_TAG_ACTION_VALID) != 0
&& host_stat != QHSTA_M_TARGET_STATUS_BUSY)
scsi_status = SCSI_STATUS_QUEUE_FULL;
else
scsi_status = SCSI_STATUS_BUSY;
adv_abort_ccb(adv, ccb->ccb_h.target_id,
ccb->ccb_h.target_lun,
/*ccb*/NULL, CAM_REQUEUE_REQ,
/*queued_only*/TRUE);
/*FALLTHROUGH*/
case QHSTA_M_NO_AUTO_REQ_SENSE:
case QHSTA_NO_ERROR:
ccb->csio.scsi_status = scsi_status;
switch (scsi_status) {
case SCSI_STATUS_CHECK_COND:
case SCSI_STATUS_CMD_TERMINATED:
ccb->ccb_h.status |= CAM_AUTOSNS_VALID;
/* Structure copy */
ccb->csio.sense_data =
adv->sense_buffers[q_no - 1];
/* FALLTHROUGH */
case SCSI_STATUS_BUSY:
case SCSI_STATUS_RESERV_CONFLICT:
case SCSI_STATUS_QUEUE_FULL:
case SCSI_STATUS_COND_MET:
case SCSI_STATUS_INTERMED:
case SCSI_STATUS_INTERMED_COND_MET:
ccb->ccb_h.status |= CAM_SCSI_STATUS_ERROR;
break;
case SCSI_STATUS_OK:
ccb->ccb_h.status |= CAM_REQ_CMP;
break;
}
break;
case QHSTA_M_SEL_TIMEOUT:
ccb->ccb_h.status = CAM_SEL_TIMEOUT;
break;
case QHSTA_M_DATA_OVER_RUN:
ccb->ccb_h.status = CAM_DATA_RUN_ERR;
break;
case QHSTA_M_UNEXPECTED_BUS_FREE:
ccb->ccb_h.status = CAM_UNEXP_BUSFREE;
break;
case QHSTA_M_BAD_BUS_PHASE_SEQ:
ccb->ccb_h.status = CAM_SEQUENCE_FAIL;
break;
case QHSTA_M_BAD_CMPL_STATUS_IN:
/* No command complete after a status message */
ccb->ccb_h.status = CAM_SEQUENCE_FAIL;
break;
case QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT:
case QHSTA_M_WTM_TIMEOUT:
case QHSTA_M_HUNG_REQ_SCSI_BUS_RESET:
/* The SCSI bus hung in a phase */
ccb->ccb_h.status = CAM_SEQUENCE_FAIL;
adv_reset_bus(adv, /*initiate_reset*/TRUE);
break;
case QHSTA_M_AUTO_REQ_SENSE_FAIL:
ccb->ccb_h.status = CAM_AUTOSENSE_FAIL;
break;
case QHSTA_D_QDONE_SG_LIST_CORRUPTED:
case QHSTA_D_ASC_DVC_ERROR_CODE_SET:
case QHSTA_D_HOST_ABORT_FAILED:
case QHSTA_D_EXE_SCSI_Q_FAILED:
case QHSTA_D_ASPI_NO_BUF_POOL:
case QHSTA_M_BAD_TAG_CODE:
case QHSTA_D_LRAM_CMP_ERROR:
case QHSTA_M_MICRO_CODE_ERROR_HALT:
default:
panic("%s: Unhandled Host status error %x",
adv_name(adv), host_stat);
/* NOTREACHED */
}
break;
case QD_ABORTED_BY_HOST:
/* Don't clobber any, more explicit, error codes we've set */
if ((ccb->ccb_h.status & CAM_STATUS_MASK) == CAM_REQ_INPROG)
ccb->ccb_h.status = CAM_REQ_ABORTED;
break;
default:
xpt_print_path(ccb->ccb_h.path);
printf("adv_done - queue done with unknown status %x:%x\n",
done_stat, host_stat);
ccb->ccb_h.status = CAM_REQ_CMP_ERR;
break;
}
adv_clear_state(adv, ccb);
if ((ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_REQ_CMP
&& (ccb->ccb_h.status & CAM_DEV_QFRZN) == 0) {
xpt_freeze_devq(ccb->ccb_h.path, /*count*/1);
ccb->ccb_h.status |= CAM_DEV_QFRZN;
}
adv_free_ccb_info(adv, cinfo);
/*
* Null this out so that we catch driver bugs that cause a
* ccb to be completed twice.
*/
ccb->ccb_h.ccb_cinfo_ptr = NULL;
ccb->ccb_h.status &= ~CAM_SIM_QUEUED;
xpt_done(ccb);
}
/*
* Function to poll for command completion when
* interrupts are disabled (crash dumps)
*/
static void
adv_poll(struct cam_sim *sim)
{
adv_intr(cam_sim_softc(sim));
}
/*
* Attach all the sub-devices we can find
*/
int
adv_attach(adv)
struct adv_softc *adv;
{
struct ccb_setasync csa;
struct cam_devq *devq;
int max_sg;
/*
* Allocate an array of ccb mapping structures. We put the
* index of the ccb_info structure into the queue representing
* a transaction and use it for mapping the queue to the
* upper level SCSI transaction it represents.
*/
adv->ccb_infos = malloc(sizeof(*adv->ccb_infos) * adv->max_openings,
M_DEVBUF, M_NOWAIT);
if (adv->ccb_infos == NULL)
return (ENOMEM);
adv->init_level++;
/*
* Create our DMA tags. These tags define the kinds of device
* accessible memory allocations and memory mappings we will
* need to perform during normal operation.
*
* Unless we need to further restrict the allocation, we rely
* on the restrictions of the parent dmat, hence the common
* use of MAXADDR and MAXSIZE.
*
* The ASC boards use chains of "queues" (the transactional
* resources on the board) to represent long S/G lists.
* The first queue represents the command and holds a
* single address and data pair. The queues that follow
* can each hold ADV_SG_LIST_PER_Q entries. Given the
* total number of queues, we can express the largest
* transaction we can map. We reserve a few queues for
* error recovery. Take those into account as well.
*
* There is a way to take an interrupt to download the
* next batch of S/G entries if there are more than 255
* of them (the counter in the queue structure is a u_int8_t).
* We don't use this feature, so limit the S/G list size
* accordingly.
*/
max_sg = (adv->max_openings - ADV_MIN_FREE_Q - 1) * ADV_SG_LIST_PER_Q;
if (max_sg > 255)
max_sg = 255;
/* DMA tag for mapping buffers into device visible space. */
if (bus_dma_tag_create(
/* parent */ adv->parent_dmat,
/* alignment */ 1,
/* boundary */ 0,
/* lowaddr */ BUS_SPACE_MAXADDR,
/* highaddr */ BUS_SPACE_MAXADDR,
/* filter */ NULL,
/* filterarg */ NULL,
/* maxsize */ MAXPHYS,
/* nsegments */ max_sg,
/* maxsegsz */ BUS_SPACE_MAXSIZE_32BIT,
/* flags */ BUS_DMA_ALLOCNOW,
/* lockfunc */ busdma_lock_mutex,
/* lockarg */ &Giant,
&adv->buffer_dmat) != 0) {
return (ENXIO);
}
adv->init_level++;
/* DMA tag for our sense buffers */
if (bus_dma_tag_create(
/* parent */ adv->parent_dmat,
/* alignment */ 1,
/* boundary */ 0,
/* lowaddr */ BUS_SPACE_MAXADDR,
/* highaddr */ BUS_SPACE_MAXADDR,
/* filter */ NULL,
/* filterarg */ NULL,
/* maxsize */ sizeof(struct scsi_sense_data) *
adv->max_openings,
/* nsegments */ 1,
/* maxsegsz */ BUS_SPACE_MAXSIZE_32BIT,
/* flags */ 0,
/* lockfunc */ busdma_lock_mutex,
/* lockarg */ &Giant,
&adv->sense_dmat) != 0) {
return (ENXIO);
}
adv->init_level++;
/* Allocation for our sense buffers */
if (bus_dmamem_alloc(adv->sense_dmat, (void **)&adv->sense_buffers,
BUS_DMA_NOWAIT, &adv->sense_dmamap) != 0) {
return (ENOMEM);
}
adv->init_level++;
/* And permanently map them */
bus_dmamap_load(adv->sense_dmat, adv->sense_dmamap,
adv->sense_buffers,
sizeof(struct scsi_sense_data)*adv->max_openings,
adv_map, &adv->sense_physbase, /*flags*/0);
adv->init_level++;
/*
* Fire up the chip
*/
if (adv_start_chip(adv) != 1) {
printf("adv%d: Unable to start on board processor. Aborting.\n",
adv->unit);
return (ENXIO);
}
/*
* Create the device queue for our SIM.
*/
devq = cam_simq_alloc(adv->max_openings);
if (devq == NULL)
return (ENOMEM);
/*
* Construct our SIM entry.
*/
adv->sim = cam_sim_alloc(adv_action, adv_poll, "adv", adv, adv->unit,
1, adv->max_openings, devq);
if (adv->sim == NULL)
return (ENOMEM);
/*
* Register the bus.
*
* XXX Twin Channel EISA Cards???
*/
if (xpt_bus_register(adv->sim, 0) != CAM_SUCCESS) {
cam_sim_free(adv->sim, /*free devq*/TRUE);
return (ENXIO);
}
if (xpt_create_path(&adv->path, /*periph*/NULL, cam_sim_path(adv->sim),
CAM_TARGET_WILDCARD, CAM_LUN_WILDCARD)
!= CAM_REQ_CMP) {
xpt_bus_deregister(cam_sim_path(adv->sim));
cam_sim_free(adv->sim, /*free devq*/TRUE);
return (ENXIO);
}
xpt_setup_ccb(&csa.ccb_h, adv->path, /*priority*/5);
csa.ccb_h.func_code = XPT_SASYNC_CB;
csa.event_enable = AC_FOUND_DEVICE|AC_LOST_DEVICE;
csa.callback = advasync;
csa.callback_arg = adv;
xpt_action((union ccb *)&csa);
return (0);
}