freebsd-dev/sys/kern/kern_rwlock.c
Ed Schouten c90c9021e9 Remove even more unneeded variable assignments.
kern_time.c:
- Unused variable `p'.

kern_thr.c:
- Variable `error' is always caught immediately, so no reason to
  initialize it. There is no way that error != 0 at the end of
  create_thread().

kern_sig.c:
- Unused variable `code'.

kern_synch.c:
- `rval' is always assigned in all different cases.

kern_rwlock.c:
- `v' is always overwritten with RW_UNLOCKED further on.

kern_malloc.c:
- `size' is always initialized with the proper value before being used.

kern_exit.c:
- `error' is always caught and returned immediately. abort2() never
  returns a non-zero value.

kern_exec.c:
- `len' is always assigned inside the if-statement right below it.

tty_info.c:
- `td' is always overwritten by FOREACH_THREAD_IN_PROC().

Found by:	LLVM's scan-build
2009-02-26 15:51:54 +00:00

1038 lines
28 KiB
C

/*-
* Copyright (c) 2006 John Baldwin <jhb@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Machine independent bits of reader/writer lock implementation.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_ddb.h"
#include "opt_no_adaptive_rwlocks.h"
#include <sys/param.h>
#include <sys/ktr.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/rwlock.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/turnstile.h>
#include <machine/cpu.h>
CTASSERT((RW_RECURSE & LO_CLASSFLAGS) == RW_RECURSE);
#if defined(SMP) && !defined(NO_ADAPTIVE_RWLOCKS)
#define ADAPTIVE_RWLOCKS
#endif
#ifdef ADAPTIVE_RWLOCKS
static int rowner_retries = 10;
static int rowner_loops = 10000;
SYSCTL_NODE(_debug, OID_AUTO, rwlock, CTLFLAG_RD, NULL, "rwlock debugging");
SYSCTL_INT(_debug_rwlock, OID_AUTO, retry, CTLFLAG_RW, &rowner_retries, 0, "");
SYSCTL_INT(_debug_rwlock, OID_AUTO, loops, CTLFLAG_RW, &rowner_loops, 0, "");
#endif
#ifdef DDB
#include <ddb/ddb.h>
static void db_show_rwlock(struct lock_object *lock);
#endif
static void assert_rw(struct lock_object *lock, int what);
static void lock_rw(struct lock_object *lock, int how);
static int unlock_rw(struct lock_object *lock);
struct lock_class lock_class_rw = {
.lc_name = "rw",
.lc_flags = LC_SLEEPLOCK | LC_RECURSABLE | LC_UPGRADABLE,
.lc_assert = assert_rw,
#ifdef DDB
.lc_ddb_show = db_show_rwlock,
#endif
.lc_lock = lock_rw,
.lc_unlock = unlock_rw,
};
/*
* Return a pointer to the owning thread if the lock is write-locked or
* NULL if the lock is unlocked or read-locked.
*/
#define rw_wowner(rw) \
((rw)->rw_lock & RW_LOCK_READ ? NULL : \
(struct thread *)RW_OWNER((rw)->rw_lock))
/*
* Returns if a write owner is recursed. Write ownership is not assured
* here and should be previously checked.
*/
#define rw_recursed(rw) ((rw)->rw_recurse != 0)
/*
* Return true if curthread helds the lock.
*/
#define rw_wlocked(rw) (rw_wowner((rw)) == curthread)
/*
* Return a pointer to the owning thread for this lock who should receive
* any priority lent by threads that block on this lock. Currently this
* is identical to rw_wowner().
*/
#define rw_owner(rw) rw_wowner(rw)
#ifndef INVARIANTS
#define _rw_assert(rw, what, file, line)
#endif
void
assert_rw(struct lock_object *lock, int what)
{
rw_assert((struct rwlock *)lock, what);
}
void
lock_rw(struct lock_object *lock, int how)
{
struct rwlock *rw;
rw = (struct rwlock *)lock;
if (how)
rw_wlock(rw);
else
rw_rlock(rw);
}
int
unlock_rw(struct lock_object *lock)
{
struct rwlock *rw;
rw = (struct rwlock *)lock;
rw_assert(rw, RA_LOCKED | LA_NOTRECURSED);
if (rw->rw_lock & RW_LOCK_READ) {
rw_runlock(rw);
return (0);
} else {
rw_wunlock(rw);
return (1);
}
}
void
rw_init_flags(struct rwlock *rw, const char *name, int opts)
{
int flags;
MPASS((opts & ~(RW_DUPOK | RW_NOPROFILE | RW_NOWITNESS | RW_QUIET |
RW_RECURSE)) == 0);
flags = LO_UPGRADABLE | LO_RECURSABLE;
if (opts & RW_DUPOK)
flags |= LO_DUPOK;
if (opts & RW_NOPROFILE)
flags |= LO_NOPROFILE;
if (!(opts & RW_NOWITNESS))
flags |= LO_WITNESS;
if (opts & RW_QUIET)
flags |= LO_QUIET;
flags |= opts & RW_RECURSE;
rw->rw_lock = RW_UNLOCKED;
rw->rw_recurse = 0;
lock_init(&rw->lock_object, &lock_class_rw, name, NULL, flags);
}
void
rw_destroy(struct rwlock *rw)
{
KASSERT(rw->rw_lock == RW_UNLOCKED, ("rw lock not unlocked"));
KASSERT(rw->rw_recurse == 0, ("rw lock still recursed"));
rw->rw_lock = RW_DESTROYED;
lock_destroy(&rw->lock_object);
}
void
rw_sysinit(void *arg)
{
struct rw_args *args = arg;
rw_init(args->ra_rw, args->ra_desc);
}
void
rw_sysinit_flags(void *arg)
{
struct rw_args_flags *args = arg;
rw_init_flags(args->ra_rw, args->ra_desc, args->ra_flags);
}
int
rw_wowned(struct rwlock *rw)
{
return (rw_wowner(rw) == curthread);
}
void
_rw_wlock(struct rwlock *rw, const char *file, int line)
{
MPASS(curthread != NULL);
KASSERT(rw->rw_lock != RW_DESTROYED,
("rw_wlock() of destroyed rwlock @ %s:%d", file, line));
WITNESS_CHECKORDER(&rw->lock_object, LOP_NEWORDER | LOP_EXCLUSIVE, file,
line, NULL);
__rw_wlock(rw, curthread, file, line);
LOCK_LOG_LOCK("WLOCK", &rw->lock_object, 0, rw->rw_recurse, file, line);
WITNESS_LOCK(&rw->lock_object, LOP_EXCLUSIVE, file, line);
curthread->td_locks++;
}
int
_rw_try_wlock(struct rwlock *rw, const char *file, int line)
{
int rval;
KASSERT(rw->rw_lock != RW_DESTROYED,
("rw_try_wlock() of destroyed rwlock @ %s:%d", file, line));
if (rw_wlocked(rw) && (rw->lock_object.lo_flags & RW_RECURSE) != 0) {
rw->rw_recurse++;
rval = 1;
} else
rval = atomic_cmpset_acq_ptr(&rw->rw_lock, RW_UNLOCKED,
(uintptr_t)curthread);
LOCK_LOG_TRY("WLOCK", &rw->lock_object, 0, rval, file, line);
if (rval) {
WITNESS_LOCK(&rw->lock_object, LOP_EXCLUSIVE | LOP_TRYLOCK,
file, line);
curthread->td_locks++;
}
return (rval);
}
void
_rw_wunlock(struct rwlock *rw, const char *file, int line)
{
MPASS(curthread != NULL);
KASSERT(rw->rw_lock != RW_DESTROYED,
("rw_wunlock() of destroyed rwlock @ %s:%d", file, line));
_rw_assert(rw, RA_WLOCKED, file, line);
curthread->td_locks--;
WITNESS_UNLOCK(&rw->lock_object, LOP_EXCLUSIVE, file, line);
LOCK_LOG_LOCK("WUNLOCK", &rw->lock_object, 0, rw->rw_recurse, file,
line);
if (!rw_recursed(rw))
lock_profile_release_lock(&rw->lock_object);
__rw_wunlock(rw, curthread, file, line);
}
/*
* Determines whether a new reader can acquire a lock. Succeeds if the
* reader already owns a read lock and the lock is locked for read to
* prevent deadlock from reader recursion. Also succeeds if the lock
* is unlocked and has no writer waiters or spinners. Failing otherwise
* prioritizes writers before readers.
*/
#define RW_CAN_READ(_rw) \
((curthread->td_rw_rlocks && (_rw) & RW_LOCK_READ) || ((_rw) & \
(RW_LOCK_READ | RW_LOCK_WRITE_WAITERS | RW_LOCK_WRITE_SPINNER)) == \
RW_LOCK_READ)
void
_rw_rlock(struct rwlock *rw, const char *file, int line)
{
struct turnstile *ts;
#ifdef ADAPTIVE_RWLOCKS
volatile struct thread *owner;
int spintries = 0;
int i;
#endif
uint64_t waittime = 0;
int contested = 0;
uintptr_t v;
KASSERT(rw->rw_lock != RW_DESTROYED,
("rw_rlock() of destroyed rwlock @ %s:%d", file, line));
KASSERT(rw_wowner(rw) != curthread,
("%s (%s): wlock already held @ %s:%d", __func__,
rw->lock_object.lo_name, file, line));
WITNESS_CHECKORDER(&rw->lock_object, LOP_NEWORDER, file, line, NULL);
for (;;) {
/*
* Handle the easy case. If no other thread has a write
* lock, then try to bump up the count of read locks. Note
* that we have to preserve the current state of the
* RW_LOCK_WRITE_WAITERS flag. If we fail to acquire a
* read lock, then rw_lock must have changed, so restart
* the loop. Note that this handles the case of a
* completely unlocked rwlock since such a lock is encoded
* as a read lock with no waiters.
*/
v = rw->rw_lock;
if (RW_CAN_READ(v)) {
/*
* The RW_LOCK_READ_WAITERS flag should only be set
* if the lock has been unlocked and write waiters
* were present.
*/
if (atomic_cmpset_acq_ptr(&rw->rw_lock, v,
v + RW_ONE_READER)) {
if (LOCK_LOG_TEST(&rw->lock_object, 0))
CTR4(KTR_LOCK,
"%s: %p succeed %p -> %p", __func__,
rw, (void *)v,
(void *)(v + RW_ONE_READER));
break;
}
cpu_spinwait();
continue;
}
lock_profile_obtain_lock_failed(&rw->lock_object,
&contested, &waittime);
#ifdef ADAPTIVE_RWLOCKS
/*
* If the owner is running on another CPU, spin until
* the owner stops running or the state of the lock
* changes.
*/
if ((v & RW_LOCK_READ) == 0) {
owner = (struct thread *)RW_OWNER(v);
if (TD_IS_RUNNING(owner)) {
if (LOCK_LOG_TEST(&rw->lock_object, 0))
CTR3(KTR_LOCK,
"%s: spinning on %p held by %p",
__func__, rw, owner);
while ((struct thread*)RW_OWNER(rw->rw_lock) ==
owner && TD_IS_RUNNING(owner))
cpu_spinwait();
continue;
}
} else if (spintries < rowner_retries) {
spintries++;
for (i = 0; i < rowner_loops; i++) {
v = rw->rw_lock;
if ((v & RW_LOCK_READ) == 0 || RW_CAN_READ(v))
break;
cpu_spinwait();
}
if (i != rowner_loops)
continue;
}
#endif
/*
* Okay, now it's the hard case. Some other thread already
* has a write lock or there are write waiters present,
* acquire the turnstile lock so we can begin the process
* of blocking.
*/
ts = turnstile_trywait(&rw->lock_object);
/*
* The lock might have been released while we spun, so
* recheck its state and restart the loop if needed.
*/
v = rw->rw_lock;
if (RW_CAN_READ(v)) {
turnstile_cancel(ts);
cpu_spinwait();
continue;
}
#ifdef ADAPTIVE_RWLOCKS
/*
* If the current owner of the lock is executing on another
* CPU quit the hard path and try to spin.
*/
if ((v & RW_LOCK_READ) == 0) {
owner = (struct thread *)RW_OWNER(v);
if (TD_IS_RUNNING(owner)) {
turnstile_cancel(ts);
cpu_spinwait();
continue;
}
}
#endif
/*
* The lock is held in write mode or it already has waiters.
*/
MPASS(!RW_CAN_READ(v));
/*
* If the RW_LOCK_READ_WAITERS flag is already set, then
* we can go ahead and block. If it is not set then try
* to set it. If we fail to set it drop the turnstile
* lock and restart the loop.
*/
if (!(v & RW_LOCK_READ_WAITERS)) {
if (!atomic_cmpset_ptr(&rw->rw_lock, v,
v | RW_LOCK_READ_WAITERS)) {
turnstile_cancel(ts);
cpu_spinwait();
continue;
}
if (LOCK_LOG_TEST(&rw->lock_object, 0))
CTR2(KTR_LOCK, "%s: %p set read waiters flag",
__func__, rw);
}
/*
* We were unable to acquire the lock and the read waiters
* flag is set, so we must block on the turnstile.
*/
if (LOCK_LOG_TEST(&rw->lock_object, 0))
CTR2(KTR_LOCK, "%s: %p blocking on turnstile", __func__,
rw);
turnstile_wait(ts, rw_owner(rw), TS_SHARED_QUEUE);
if (LOCK_LOG_TEST(&rw->lock_object, 0))
CTR2(KTR_LOCK, "%s: %p resuming from turnstile",
__func__, rw);
}
/*
* TODO: acquire "owner of record" here. Here be turnstile dragons
* however. turnstiles don't like owners changing between calls to
* turnstile_wait() currently.
*/
lock_profile_obtain_lock_success( &rw->lock_object, contested,
waittime, file, line);
LOCK_LOG_LOCK("RLOCK", &rw->lock_object, 0, 0, file, line);
WITNESS_LOCK(&rw->lock_object, 0, file, line);
curthread->td_locks++;
curthread->td_rw_rlocks++;
}
int
_rw_try_rlock(struct rwlock *rw, const char *file, int line)
{
uintptr_t x;
for (;;) {
x = rw->rw_lock;
KASSERT(rw->rw_lock != RW_DESTROYED,
("rw_try_rlock() of destroyed rwlock @ %s:%d", file, line));
if (!(x & RW_LOCK_READ))
break;
if (atomic_cmpset_acq_ptr(&rw->rw_lock, x, x + RW_ONE_READER)) {
LOCK_LOG_TRY("RLOCK", &rw->lock_object, 0, 1, file,
line);
WITNESS_LOCK(&rw->lock_object, LOP_TRYLOCK, file, line);
curthread->td_locks++;
curthread->td_rw_rlocks++;
return (1);
}
}
LOCK_LOG_TRY("RLOCK", &rw->lock_object, 0, 0, file, line);
return (0);
}
void
_rw_runlock(struct rwlock *rw, const char *file, int line)
{
struct turnstile *ts;
uintptr_t x, v, queue;
KASSERT(rw->rw_lock != RW_DESTROYED,
("rw_runlock() of destroyed rwlock @ %s:%d", file, line));
_rw_assert(rw, RA_RLOCKED, file, line);
curthread->td_locks--;
curthread->td_rw_rlocks--;
WITNESS_UNLOCK(&rw->lock_object, 0, file, line);
LOCK_LOG_LOCK("RUNLOCK", &rw->lock_object, 0, 0, file, line);
/* TODO: drop "owner of record" here. */
for (;;) {
/*
* See if there is more than one read lock held. If so,
* just drop one and return.
*/
x = rw->rw_lock;
if (RW_READERS(x) > 1) {
if (atomic_cmpset_ptr(&rw->rw_lock, x,
x - RW_ONE_READER)) {
if (LOCK_LOG_TEST(&rw->lock_object, 0))
CTR4(KTR_LOCK,
"%s: %p succeeded %p -> %p",
__func__, rw, (void *)x,
(void *)(x - RW_ONE_READER));
break;
}
continue;
}
/*
* If there aren't any waiters for a write lock, then try
* to drop it quickly.
*/
if (!(x & RW_LOCK_WAITERS)) {
MPASS((x & ~RW_LOCK_WRITE_SPINNER) ==
RW_READERS_LOCK(1));
if (atomic_cmpset_ptr(&rw->rw_lock, x, RW_UNLOCKED)) {
if (LOCK_LOG_TEST(&rw->lock_object, 0))
CTR2(KTR_LOCK, "%s: %p last succeeded",
__func__, rw);
break;
}
continue;
}
/*
* Ok, we know we have waiters and we think we are the
* last reader, so grab the turnstile lock.
*/
turnstile_chain_lock(&rw->lock_object);
v = rw->rw_lock & (RW_LOCK_WAITERS | RW_LOCK_WRITE_SPINNER);
MPASS(v & RW_LOCK_WAITERS);
/*
* Try to drop our lock leaving the lock in a unlocked
* state.
*
* If you wanted to do explicit lock handoff you'd have to
* do it here. You'd also want to use turnstile_signal()
* and you'd have to handle the race where a higher
* priority thread blocks on the write lock before the
* thread you wakeup actually runs and have the new thread
* "steal" the lock. For now it's a lot simpler to just
* wakeup all of the waiters.
*
* As above, if we fail, then another thread might have
* acquired a read lock, so drop the turnstile lock and
* restart.
*/
x = RW_UNLOCKED;
if (v & RW_LOCK_WRITE_WAITERS) {
queue = TS_EXCLUSIVE_QUEUE;
x |= (v & RW_LOCK_READ_WAITERS);
} else
queue = TS_SHARED_QUEUE;
if (!atomic_cmpset_ptr(&rw->rw_lock, RW_READERS_LOCK(1) | v,
x)) {
turnstile_chain_unlock(&rw->lock_object);
continue;
}
if (LOCK_LOG_TEST(&rw->lock_object, 0))
CTR2(KTR_LOCK, "%s: %p last succeeded with waiters",
__func__, rw);
/*
* Ok. The lock is released and all that's left is to
* wake up the waiters. Note that the lock might not be
* free anymore, but in that case the writers will just
* block again if they run before the new lock holder(s)
* release the lock.
*/
ts = turnstile_lookup(&rw->lock_object);
MPASS(ts != NULL);
turnstile_broadcast(ts, queue);
turnstile_unpend(ts, TS_SHARED_LOCK);
turnstile_chain_unlock(&rw->lock_object);
break;
}
lock_profile_release_lock(&rw->lock_object);
}
/*
* This function is called when we are unable to obtain a write lock on the
* first try. This means that at least one other thread holds either a
* read or write lock.
*/
void
_rw_wlock_hard(struct rwlock *rw, uintptr_t tid, const char *file, int line)
{
struct turnstile *ts;
#ifdef ADAPTIVE_RWLOCKS
volatile struct thread *owner;
int spintries = 0;
int i;
#endif
uint64_t waittime = 0;
uintptr_t v, x;
int contested = 0;
if (rw_wlocked(rw)) {
KASSERT(rw->lock_object.lo_flags & RW_RECURSE,
("%s: recursing but non-recursive rw %s @ %s:%d\n",
__func__, rw->lock_object.lo_name, file, line));
rw->rw_recurse++;
if (LOCK_LOG_TEST(&rw->lock_object, 0))
CTR2(KTR_LOCK, "%s: %p recursing", __func__, rw);
return;
}
if (LOCK_LOG_TEST(&rw->lock_object, 0))
CTR5(KTR_LOCK, "%s: %s contested (lock=%p) at %s:%d", __func__,
rw->lock_object.lo_name, (void *)rw->rw_lock, file, line);
while (!_rw_write_lock(rw, tid)) {
lock_profile_obtain_lock_failed(&rw->lock_object,
&contested, &waittime);
#ifdef ADAPTIVE_RWLOCKS
/*
* If the lock is write locked and the owner is
* running on another CPU, spin until the owner stops
* running or the state of the lock changes.
*/
v = rw->rw_lock;
owner = (struct thread *)RW_OWNER(v);
if (!(v & RW_LOCK_READ) && TD_IS_RUNNING(owner)) {
if (LOCK_LOG_TEST(&rw->lock_object, 0))
CTR3(KTR_LOCK, "%s: spinning on %p held by %p",
__func__, rw, owner);
while ((struct thread*)RW_OWNER(rw->rw_lock) == owner &&
TD_IS_RUNNING(owner))
cpu_spinwait();
continue;
}
if ((v & RW_LOCK_READ) && RW_READERS(v) &&
spintries < rowner_retries) {
if (!(v & RW_LOCK_WRITE_SPINNER)) {
if (!atomic_cmpset_ptr(&rw->rw_lock, v,
v | RW_LOCK_WRITE_SPINNER)) {
cpu_spinwait();
continue;
}
}
spintries++;
for (i = 0; i < rowner_loops; i++) {
if ((rw->rw_lock & RW_LOCK_WRITE_SPINNER) == 0)
break;
cpu_spinwait();
}
if (i != rowner_loops)
continue;
}
#endif
ts = turnstile_trywait(&rw->lock_object);
v = rw->rw_lock;
#ifdef ADAPTIVE_RWLOCKS
/*
* If the current owner of the lock is executing on another
* CPU quit the hard path and try to spin.
*/
if (!(v & RW_LOCK_READ)) {
owner = (struct thread *)RW_OWNER(v);
if (TD_IS_RUNNING(owner)) {
turnstile_cancel(ts);
cpu_spinwait();
continue;
}
}
#endif
/*
* Check for the waiters flags about this rwlock.
* If the lock was released, without maintain any pending
* waiters queue, simply try to acquire it.
* If a pending waiters queue is present, claim the lock
* ownership and maintain the pending queue.
*/
x = v & (RW_LOCK_WAITERS | RW_LOCK_WRITE_SPINNER);
if ((v & ~x) == RW_UNLOCKED) {
x &= ~RW_LOCK_WRITE_SPINNER;
if (atomic_cmpset_acq_ptr(&rw->rw_lock, v, tid | x)) {
if (x)
turnstile_claim(ts);
else
turnstile_cancel(ts);
break;
}
turnstile_cancel(ts);
cpu_spinwait();
continue;
}
/*
* If the RW_LOCK_WRITE_WAITERS flag isn't set, then try to
* set it. If we fail to set it, then loop back and try
* again.
*/
if (!(v & RW_LOCK_WRITE_WAITERS)) {
if (!atomic_cmpset_ptr(&rw->rw_lock, v,
v | RW_LOCK_WRITE_WAITERS)) {
turnstile_cancel(ts);
cpu_spinwait();
continue;
}
if (LOCK_LOG_TEST(&rw->lock_object, 0))
CTR2(KTR_LOCK, "%s: %p set write waiters flag",
__func__, rw);
}
/*
* We were unable to acquire the lock and the write waiters
* flag is set, so we must block on the turnstile.
*/
if (LOCK_LOG_TEST(&rw->lock_object, 0))
CTR2(KTR_LOCK, "%s: %p blocking on turnstile", __func__,
rw);
turnstile_wait(ts, rw_owner(rw), TS_EXCLUSIVE_QUEUE);
if (LOCK_LOG_TEST(&rw->lock_object, 0))
CTR2(KTR_LOCK, "%s: %p resuming from turnstile",
__func__, rw);
#ifdef ADAPTIVE_RWLOCKS
spintries = 0;
#endif
}
lock_profile_obtain_lock_success(&rw->lock_object, contested, waittime,
file, line);
}
/*
* This function is called if the first try at releasing a write lock failed.
* This means that one of the 2 waiter bits must be set indicating that at
* least one thread is waiting on this lock.
*/
void
_rw_wunlock_hard(struct rwlock *rw, uintptr_t tid, const char *file, int line)
{
struct turnstile *ts;
uintptr_t v;
int queue;
if (rw_wlocked(rw) && rw_recursed(rw)) {
rw->rw_recurse--;
if (LOCK_LOG_TEST(&rw->lock_object, 0))
CTR2(KTR_LOCK, "%s: %p unrecursing", __func__, rw);
return;
}
KASSERT(rw->rw_lock & (RW_LOCK_READ_WAITERS | RW_LOCK_WRITE_WAITERS),
("%s: neither of the waiter flags are set", __func__));
if (LOCK_LOG_TEST(&rw->lock_object, 0))
CTR2(KTR_LOCK, "%s: %p contested", __func__, rw);
turnstile_chain_lock(&rw->lock_object);
ts = turnstile_lookup(&rw->lock_object);
MPASS(ts != NULL);
/*
* Use the same algo as sx locks for now. Prefer waking up shared
* waiters if we have any over writers. This is probably not ideal.
*
* 'v' is the value we are going to write back to rw_lock. If we
* have waiters on both queues, we need to preserve the state of
* the waiter flag for the queue we don't wake up. For now this is
* hardcoded for the algorithm mentioned above.
*
* In the case of both readers and writers waiting we wakeup the
* readers but leave the RW_LOCK_WRITE_WAITERS flag set. If a
* new writer comes in before a reader it will claim the lock up
* above. There is probably a potential priority inversion in
* there that could be worked around either by waking both queues
* of waiters or doing some complicated lock handoff gymnastics.
*/
v = RW_UNLOCKED;
if (rw->rw_lock & RW_LOCK_WRITE_WAITERS) {
queue = TS_EXCLUSIVE_QUEUE;
v |= (rw->rw_lock & RW_LOCK_READ_WAITERS);
} else
queue = TS_SHARED_QUEUE;
/* Wake up all waiters for the specific queue. */
if (LOCK_LOG_TEST(&rw->lock_object, 0))
CTR3(KTR_LOCK, "%s: %p waking up %s waiters", __func__, rw,
queue == TS_SHARED_QUEUE ? "read" : "write");
turnstile_broadcast(ts, queue);
atomic_store_rel_ptr(&rw->rw_lock, v);
turnstile_unpend(ts, TS_EXCLUSIVE_LOCK);
turnstile_chain_unlock(&rw->lock_object);
}
/*
* Attempt to do a non-blocking upgrade from a read lock to a write
* lock. This will only succeed if this thread holds a single read
* lock. Returns true if the upgrade succeeded and false otherwise.
*/
int
_rw_try_upgrade(struct rwlock *rw, const char *file, int line)
{
uintptr_t v, x, tid;
struct turnstile *ts;
int success;
KASSERT(rw->rw_lock != RW_DESTROYED,
("rw_try_upgrade() of destroyed rwlock @ %s:%d", file, line));
_rw_assert(rw, RA_RLOCKED, file, line);
/*
* Attempt to switch from one reader to a writer. If there
* are any write waiters, then we will have to lock the
* turnstile first to prevent races with another writer
* calling turnstile_wait() before we have claimed this
* turnstile. So, do the simple case of no waiters first.
*/
tid = (uintptr_t)curthread;
success = 0;
for (;;) {
v = rw->rw_lock;
if (RW_READERS(v) > 1)
break;
if (!(v & RW_LOCK_WAITERS)) {
success = atomic_cmpset_ptr(&rw->rw_lock, v, tid);
if (!success)
continue;
break;
}
/*
* Ok, we think we have waiters, so lock the turnstile.
*/
ts = turnstile_trywait(&rw->lock_object);
v = rw->rw_lock;
if (RW_READERS(v) > 1) {
turnstile_cancel(ts);
break;
}
/*
* Try to switch from one reader to a writer again. This time
* we honor the current state of the waiters flags.
* If we obtain the lock with the flags set, then claim
* ownership of the turnstile.
*/
x = rw->rw_lock & RW_LOCK_WAITERS;
success = atomic_cmpset_ptr(&rw->rw_lock, v, tid | x);
if (success) {
if (x)
turnstile_claim(ts);
else
turnstile_cancel(ts);
break;
}
turnstile_cancel(ts);
}
LOCK_LOG_TRY("WUPGRADE", &rw->lock_object, 0, success, file, line);
if (success) {
curthread->td_rw_rlocks--;
WITNESS_UPGRADE(&rw->lock_object, LOP_EXCLUSIVE | LOP_TRYLOCK,
file, line);
}
return (success);
}
/*
* Downgrade a write lock into a single read lock.
*/
void
_rw_downgrade(struct rwlock *rw, const char *file, int line)
{
struct turnstile *ts;
uintptr_t tid, v;
int rwait, wwait;
KASSERT(rw->rw_lock != RW_DESTROYED,
("rw_downgrade() of destroyed rwlock @ %s:%d", file, line));
_rw_assert(rw, RA_WLOCKED | RA_NOTRECURSED, file, line);
#ifndef INVARIANTS
if (rw_recursed(rw))
panic("downgrade of a recursed lock");
#endif
WITNESS_DOWNGRADE(&rw->lock_object, 0, file, line);
/*
* Convert from a writer to a single reader. First we handle
* the easy case with no waiters. If there are any waiters, we
* lock the turnstile and "disown" the lock.
*/
tid = (uintptr_t)curthread;
if (atomic_cmpset_rel_ptr(&rw->rw_lock, tid, RW_READERS_LOCK(1)))
goto out;
/*
* Ok, we think we have waiters, so lock the turnstile so we can
* read the waiter flags without any races.
*/
turnstile_chain_lock(&rw->lock_object);
v = rw->rw_lock & RW_LOCK_WAITERS;
rwait = v & RW_LOCK_READ_WAITERS;
wwait = v & RW_LOCK_WRITE_WAITERS;
MPASS(rwait | wwait);
/*
* Downgrade from a write lock while preserving waiters flag
* and give up ownership of the turnstile.
*/
ts = turnstile_lookup(&rw->lock_object);
MPASS(ts != NULL);
if (!wwait)
v &= ~RW_LOCK_READ_WAITERS;
atomic_store_rel_ptr(&rw->rw_lock, RW_READERS_LOCK(1) | v);
/*
* Wake other readers if there are no writers pending. Otherwise they
* won't be able to acquire the lock anyway.
*/
if (rwait && !wwait) {
turnstile_broadcast(ts, TS_SHARED_QUEUE);
turnstile_unpend(ts, TS_EXCLUSIVE_LOCK);
} else
turnstile_disown(ts);
turnstile_chain_unlock(&rw->lock_object);
out:
curthread->td_rw_rlocks++;
LOCK_LOG_LOCK("WDOWNGRADE", &rw->lock_object, 0, 0, file, line);
}
#ifdef INVARIANT_SUPPORT
#ifndef INVARIANTS
#undef _rw_assert
#endif
/*
* In the non-WITNESS case, rw_assert() can only detect that at least
* *some* thread owns an rlock, but it cannot guarantee that *this*
* thread owns an rlock.
*/
void
_rw_assert(struct rwlock *rw, int what, const char *file, int line)
{
if (panicstr != NULL)
return;
switch (what) {
case RA_LOCKED:
case RA_LOCKED | RA_RECURSED:
case RA_LOCKED | RA_NOTRECURSED:
case RA_RLOCKED:
#ifdef WITNESS
witness_assert(&rw->lock_object, what, file, line);
#else
/*
* If some other thread has a write lock or we have one
* and are asserting a read lock, fail. Also, if no one
* has a lock at all, fail.
*/
if (rw->rw_lock == RW_UNLOCKED ||
(!(rw->rw_lock & RW_LOCK_READ) && (what == RA_RLOCKED ||
rw_wowner(rw) != curthread)))
panic("Lock %s not %slocked @ %s:%d\n",
rw->lock_object.lo_name, (what == RA_RLOCKED) ?
"read " : "", file, line);
if (!(rw->rw_lock & RW_LOCK_READ)) {
if (rw_recursed(rw)) {
if (what & RA_NOTRECURSED)
panic("Lock %s recursed @ %s:%d\n",
rw->lock_object.lo_name, file,
line);
} else if (what & RA_RECURSED)
panic("Lock %s not recursed @ %s:%d\n",
rw->lock_object.lo_name, file, line);
}
#endif
break;
case RA_WLOCKED:
case RA_WLOCKED | RA_RECURSED:
case RA_WLOCKED | RA_NOTRECURSED:
if (rw_wowner(rw) != curthread)
panic("Lock %s not exclusively locked @ %s:%d\n",
rw->lock_object.lo_name, file, line);
if (rw_recursed(rw)) {
if (what & RA_NOTRECURSED)
panic("Lock %s recursed @ %s:%d\n",
rw->lock_object.lo_name, file, line);
} else if (what & RA_RECURSED)
panic("Lock %s not recursed @ %s:%d\n",
rw->lock_object.lo_name, file, line);
break;
case RA_UNLOCKED:
#ifdef WITNESS
witness_assert(&rw->lock_object, what, file, line);
#else
/*
* If we hold a write lock fail. We can't reliably check
* to see if we hold a read lock or not.
*/
if (rw_wowner(rw) == curthread)
panic("Lock %s exclusively locked @ %s:%d\n",
rw->lock_object.lo_name, file, line);
#endif
break;
default:
panic("Unknown rw lock assertion: %d @ %s:%d", what, file,
line);
}
}
#endif /* INVARIANT_SUPPORT */
#ifdef DDB
void
db_show_rwlock(struct lock_object *lock)
{
struct rwlock *rw;
struct thread *td;
rw = (struct rwlock *)lock;
db_printf(" state: ");
if (rw->rw_lock == RW_UNLOCKED)
db_printf("UNLOCKED\n");
else if (rw->rw_lock == RW_DESTROYED) {
db_printf("DESTROYED\n");
return;
} else if (rw->rw_lock & RW_LOCK_READ)
db_printf("RLOCK: %ju locks\n",
(uintmax_t)(RW_READERS(rw->rw_lock)));
else {
td = rw_wowner(rw);
db_printf("WLOCK: %p (tid %d, pid %d, \"%s\")\n", td,
td->td_tid, td->td_proc->p_pid, td->td_name);
if (rw_recursed(rw))
db_printf(" recursed: %u\n", rw->rw_recurse);
}
db_printf(" waiters: ");
switch (rw->rw_lock & (RW_LOCK_READ_WAITERS | RW_LOCK_WRITE_WAITERS)) {
case RW_LOCK_READ_WAITERS:
db_printf("readers\n");
break;
case RW_LOCK_WRITE_WAITERS:
db_printf("writers\n");
break;
case RW_LOCK_READ_WAITERS | RW_LOCK_WRITE_WAITERS:
db_printf("readers and writers\n");
break;
default:
db_printf("none\n");
break;
}
}
#endif