freebsd-dev/sys/ufs/ffs/ffs_softdep.c
Poul-Henning Kamp 0ef1c82630 Decommision miscfs/specfs/specdev.h. Most of it goes into <sys/conf.h>,
a few lines into <sys/vnode.h>.

Add a few fields to struct specinfo, paving the way for the fun part.
1999-08-08 18:43:05 +00:00

4486 lines
135 KiB
C

/*
* Copyright 1998 Marshall Kirk McKusick. All Rights Reserved.
*
* The soft updates code is derived from the appendix of a University
* of Michigan technical report (Gregory R. Ganger and Yale N. Patt,
* "Soft Updates: A Solution to the Metadata Update Problem in File
* Systems", CSE-TR-254-95, August 1995).
*
* The following are the copyrights and redistribution conditions that
* apply to this copy of the soft update software. For a license
* to use, redistribute or sell the soft update software under
* conditions other than those described here, please contact the
* author at one of the following addresses:
*
* Marshall Kirk McKusick mckusick@mckusick.com
* 1614 Oxford Street +1-510-843-9542
* Berkeley, CA 94709-1608
* USA
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. None of the names of McKusick, Ganger, Patt, or the University of
* Michigan may be used to endorse or promote products derived from
* this software without specific prior written permission.
* 4. Redistributions in any form must be accompanied by information on
* how to obtain complete source code for any accompanying software
* that uses this software. This source code must either be included
* in the distribution or be available for no more than the cost of
* distribution plus a nominal fee, and must be freely redistributable
* under reasonable conditions. For an executable file, complete
* source code means the source code for all modules it contains.
* It does not mean source code for modules or files that typically
* accompany the operating system on which the executable file runs,
* e.g., standard library modules or system header files.
*
* THIS SOFTWARE IS PROVIDED BY MARSHALL KIRK MCKUSICK ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL MARSHALL KIRK MCKUSICK BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)ffs_softdep.c 9.40 (McKusick) 6/15/99
* $Id: ffs_softdep.c,v 1.34 1999/06/29 15:57:40 mckusick Exp $
*/
/*
* For now we want the safety net that the DIAGNOSTIC and DEBUG flags provide.
*/
#ifndef DIAGNOSTIC
#define DIAGNOSTIC
#endif
#ifndef DEBUG
#define DEBUG
#endif
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/malloc.h>
#include <sys/mount.h>
#include <sys/proc.h>
#include <sys/syslog.h>
#include <sys/vnode.h>
#include <sys/conf.h>
#include <ufs/ufs/dir.h>
#include <ufs/ufs/quota.h>
#include <ufs/ufs/inode.h>
#include <ufs/ufs/ufsmount.h>
#include <ufs/ffs/fs.h>
#include <ufs/ffs/softdep.h>
#include <ufs/ffs/ffs_extern.h>
#include <ufs/ufs/ufs_extern.h>
/*
* These definitions need to be adapted to the system to which
* this file is being ported.
*/
/*
* malloc types defined for the softdep system.
*/
MALLOC_DEFINE(M_PAGEDEP, "pagedep","File page dependencies");
MALLOC_DEFINE(M_INODEDEP, "inodedep","Inode dependencies");
MALLOC_DEFINE(M_NEWBLK, "newblk","New block allocation");
MALLOC_DEFINE(M_BMSAFEMAP, "bmsafemap","Block or frag allocated from cyl group map");
MALLOC_DEFINE(M_ALLOCDIRECT, "allocdirect","Block or frag dependency for an inode");
MALLOC_DEFINE(M_INDIRDEP, "indirdep","Indirect block dependencies");
MALLOC_DEFINE(M_ALLOCINDIR, "allocindir","Block dependency for an indirect block");
MALLOC_DEFINE(M_FREEFRAG, "freefrag","Previously used frag for an inode");
MALLOC_DEFINE(M_FREEBLKS, "freeblks","Blocks freed from an inode");
MALLOC_DEFINE(M_FREEFILE, "freefile","Inode deallocated");
MALLOC_DEFINE(M_DIRADD, "diradd","New directory entry");
MALLOC_DEFINE(M_MKDIR, "mkdir","New directory");
MALLOC_DEFINE(M_DIRREM, "dirrem","Directory entry deleted");
#define D_PAGEDEP 0
#define D_INODEDEP 1
#define D_NEWBLK 2
#define D_BMSAFEMAP 3
#define D_ALLOCDIRECT 4
#define D_INDIRDEP 5
#define D_ALLOCINDIR 6
#define D_FREEFRAG 7
#define D_FREEBLKS 8
#define D_FREEFILE 9
#define D_DIRADD 10
#define D_MKDIR 11
#define D_DIRREM 12
#define D_LAST D_DIRREM
/*
* translate from workitem type to memory type
* MUST match the defines above, such that memtype[D_XXX] == M_XXX
*/
static struct malloc_type *memtype[] = {
M_PAGEDEP,
M_INODEDEP,
M_NEWBLK,
M_BMSAFEMAP,
M_ALLOCDIRECT,
M_INDIRDEP,
M_ALLOCINDIR,
M_FREEFRAG,
M_FREEBLKS,
M_FREEFILE,
M_DIRADD,
M_MKDIR,
M_DIRREM
};
#define DtoM(type) (memtype[type])
/*
* Names of malloc types.
*/
#define TYPENAME(type) \
((unsigned)(type) < D_LAST ? memtype[type]->ks_shortdesc : "???")
#define CURPROC curproc
/*
* End system adaptaion definitions.
*/
/*
* Internal function prototypes.
*/
static void softdep_error __P((char *, int));
static void drain_output __P((struct vnode *, int));
static int getdirtybuf __P((struct buf **, int));
static void clear_remove __P((struct proc *));
static void clear_inodedeps __P((struct proc *));
static int flush_pagedep_deps __P((struct vnode *, struct mount *,
struct diraddhd *));
static int flush_inodedep_deps __P((struct fs *, ino_t));
static int handle_written_filepage __P((struct pagedep *, struct buf *));
static void diradd_inode_written __P((struct diradd *, struct inodedep *));
static int handle_written_inodeblock __P((struct inodedep *, struct buf *));
static void handle_allocdirect_partdone __P((struct allocdirect *));
static void handle_allocindir_partdone __P((struct allocindir *));
static void initiate_write_filepage __P((struct pagedep *, struct buf *));
static void handle_written_mkdir __P((struct mkdir *, int));
static void initiate_write_inodeblock __P((struct inodedep *, struct buf *));
static void handle_workitem_freefile __P((struct freefile *));
static void handle_workitem_remove __P((struct dirrem *));
static struct dirrem *newdirrem __P((struct buf *, struct inode *,
struct inode *, int));
static void free_diradd __P((struct diradd *));
static void free_allocindir __P((struct allocindir *, struct inodedep *));
static int indir_trunc __P((struct inode *, ufs_daddr_t, int, ufs_lbn_t,
long *));
static void deallocate_dependencies __P((struct buf *, struct inodedep *));
static void free_allocdirect __P((struct allocdirectlst *,
struct allocdirect *, int));
static int free_inodedep __P((struct inodedep *));
static void handle_workitem_freeblocks __P((struct freeblks *));
static void merge_inode_lists __P((struct inodedep *));
static void setup_allocindir_phase2 __P((struct buf *, struct inode *,
struct allocindir *));
static struct allocindir *newallocindir __P((struct inode *, int, ufs_daddr_t,
ufs_daddr_t));
static void handle_workitem_freefrag __P((struct freefrag *));
static struct freefrag *newfreefrag __P((struct inode *, ufs_daddr_t, long));
static void allocdirect_merge __P((struct allocdirectlst *,
struct allocdirect *, struct allocdirect *));
static struct bmsafemap *bmsafemap_lookup __P((struct buf *));
static int newblk_lookup __P((struct fs *, ufs_daddr_t, int,
struct newblk **));
static int inodedep_lookup __P((struct fs *, ino_t, int, struct inodedep **));
static int pagedep_lookup __P((struct inode *, ufs_lbn_t, int,
struct pagedep **));
static void pause_timer __P((void *));
static int request_cleanup __P((int, int));
static void add_to_worklist __P((struct worklist *));
/*
* Exported softdep operations.
*/
struct bio_ops bioops = {
softdep_disk_io_initiation, /* io_start */
softdep_disk_write_complete, /* io_complete */
softdep_deallocate_dependencies, /* io_deallocate */
softdep_fsync, /* io_fsync */
softdep_process_worklist, /* io_sync */
};
/*
* Locking primitives.
*
* For a uniprocessor, all we need to do is protect against disk
* interrupts. For a multiprocessor, this lock would have to be
* a mutex. A single mutex is used throughout this file, though
* finer grain locking could be used if contention warranted it.
*
* For a multiprocessor, the sleep call would accept a lock and
* release it after the sleep processing was complete. In a uniprocessor
* implementation there is no such interlock, so we simple mark
* the places where it needs to be done with the `interlocked' form
* of the lock calls. Since the uniprocessor sleep already interlocks
* the spl, there is nothing that really needs to be done.
*/
#ifndef /* NOT */ DEBUG
static struct lockit {
int lkt_spl;
} lk = { 0 };
#define ACQUIRE_LOCK(lk) (lk)->lkt_spl = splbio()
#define FREE_LOCK(lk) splx((lk)->lkt_spl)
#define ACQUIRE_LOCK_INTERLOCKED(lk)
#define FREE_LOCK_INTERLOCKED(lk)
#else /* DEBUG */
static struct lockit {
int lkt_spl;
pid_t lkt_held;
} lk = { 0, -1 };
static int lockcnt;
static void acquire_lock __P((struct lockit *));
static void free_lock __P((struct lockit *));
static void acquire_lock_interlocked __P((struct lockit *));
static void free_lock_interlocked __P((struct lockit *));
#define ACQUIRE_LOCK(lk) acquire_lock(lk)
#define FREE_LOCK(lk) free_lock(lk)
#define ACQUIRE_LOCK_INTERLOCKED(lk) acquire_lock_interlocked(lk)
#define FREE_LOCK_INTERLOCKED(lk) free_lock_interlocked(lk)
static void
acquire_lock(lk)
struct lockit *lk;
{
if (lk->lkt_held != -1) {
if (lk->lkt_held == CURPROC->p_pid)
panic("softdep_lock: locking against myself");
else
panic("softdep_lock: lock held by %d", lk->lkt_held);
}
lk->lkt_spl = splbio();
lk->lkt_held = CURPROC->p_pid;
lockcnt++;
}
static void
free_lock(lk)
struct lockit *lk;
{
if (lk->lkt_held == -1)
panic("softdep_unlock: lock not held");
lk->lkt_held = -1;
splx(lk->lkt_spl);
}
static void
acquire_lock_interlocked(lk)
struct lockit *lk;
{
if (lk->lkt_held != -1) {
if (lk->lkt_held == CURPROC->p_pid)
panic("softdep_lock_interlocked: locking against self");
else
panic("softdep_lock_interlocked: lock held by %d",
lk->lkt_held);
}
lk->lkt_held = CURPROC->p_pid;
lockcnt++;
}
static void
free_lock_interlocked(lk)
struct lockit *lk;
{
if (lk->lkt_held == -1)
panic("softdep_unlock_interlocked: lock not held");
lk->lkt_held = -1;
}
#endif /* DEBUG */
/*
* Place holder for real semaphores.
*/
struct sema {
int value;
pid_t holder;
char *name;
int prio;
int timo;
};
static void sema_init __P((struct sema *, char *, int, int));
static int sema_get __P((struct sema *, struct lockit *));
static void sema_release __P((struct sema *));
static void
sema_init(semap, name, prio, timo)
struct sema *semap;
char *name;
int prio, timo;
{
semap->holder = -1;
semap->value = 0;
semap->name = name;
semap->prio = prio;
semap->timo = timo;
}
static int
sema_get(semap, interlock)
struct sema *semap;
struct lockit *interlock;
{
if (semap->value++ > 0) {
if (interlock != NULL)
FREE_LOCK_INTERLOCKED(interlock);
tsleep((caddr_t)semap, semap->prio, semap->name, semap->timo);
if (interlock != NULL) {
ACQUIRE_LOCK_INTERLOCKED(interlock);
FREE_LOCK(interlock);
}
return (0);
}
semap->holder = CURPROC->p_pid;
if (interlock != NULL)
FREE_LOCK(interlock);
return (1);
}
static void
sema_release(semap)
struct sema *semap;
{
if (semap->value <= 0 || semap->holder != CURPROC->p_pid)
panic("sema_release: not held");
if (--semap->value > 0) {
semap->value = 0;
wakeup(semap);
}
semap->holder = -1;
}
/*
* Worklist queue management.
* These routines require that the lock be held.
*/
#ifndef /* NOT */ DEBUG
#define WORKLIST_INSERT(head, item) do { \
(item)->wk_state |= ONWORKLIST; \
LIST_INSERT_HEAD(head, item, wk_list); \
} while (0)
#define WORKLIST_REMOVE(item) do { \
(item)->wk_state &= ~ONWORKLIST; \
LIST_REMOVE(item, wk_list); \
} while (0)
#define WORKITEM_FREE(item, type) FREE(item, DtoM(type))
#else /* DEBUG */
static void worklist_insert __P((struct workhead *, struct worklist *));
static void worklist_remove __P((struct worklist *));
static void workitem_free __P((struct worklist *, int));
#define WORKLIST_INSERT(head, item) worklist_insert(head, item)
#define WORKLIST_REMOVE(item) worklist_remove(item)
#define WORKITEM_FREE(item, type) workitem_free((struct worklist *)item, type)
static void
worklist_insert(head, item)
struct workhead *head;
struct worklist *item;
{
if (lk.lkt_held == -1)
panic("worklist_insert: lock not held");
if (item->wk_state & ONWORKLIST)
panic("worklist_insert: already on list");
item->wk_state |= ONWORKLIST;
LIST_INSERT_HEAD(head, item, wk_list);
}
static void
worklist_remove(item)
struct worklist *item;
{
if (lk.lkt_held == -1)
panic("worklist_remove: lock not held");
if ((item->wk_state & ONWORKLIST) == 0)
panic("worklist_remove: not on list");
item->wk_state &= ~ONWORKLIST;
LIST_REMOVE(item, wk_list);
}
static void
workitem_free(item, type)
struct worklist *item;
int type;
{
if (item->wk_state & ONWORKLIST)
panic("workitem_free: still on list");
if (item->wk_type != type)
panic("workitem_free: type mismatch");
FREE(item, DtoM(type));
}
#endif /* DEBUG */
/*
* Workitem queue management
*/
static struct workhead softdep_workitem_pending;
static int softdep_worklist_busy;
static int max_softdeps; /* maximum number of structs before slowdown */
static int tickdelay = 2; /* number of ticks to pause during slowdown */
static int proc_waiting; /* tracks whether we have a timeout posted */
static struct proc *filesys_syncer; /* proc of filesystem syncer process */
static int req_clear_inodedeps; /* syncer process flush some inodedeps */
#define FLUSH_INODES 1
static int req_clear_remove; /* syncer process flush some freeblks */
#define FLUSH_REMOVE 2
/*
* runtime statistics
*/
static int stat_blk_limit_push; /* number of times block limit neared */
static int stat_ino_limit_push; /* number of times inode limit neared */
static int stat_blk_limit_hit; /* number of times block slowdown imposed */
static int stat_ino_limit_hit; /* number of times inode slowdown imposed */
static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */
static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */
static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */
static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */
#ifdef DEBUG
#include <vm/vm.h>
#include <sys/sysctl.h>
#if defined(__FreeBSD__)
SYSCTL_INT(_debug, OID_AUTO, max_softdeps, CTLFLAG_RW, &max_softdeps, 0, "");
SYSCTL_INT(_debug, OID_AUTO, tickdelay, CTLFLAG_RW, &tickdelay, 0, "");
SYSCTL_INT(_debug, OID_AUTO, blk_limit_push, CTLFLAG_RW, &stat_blk_limit_push, 0,"");
SYSCTL_INT(_debug, OID_AUTO, ino_limit_push, CTLFLAG_RW, &stat_ino_limit_push, 0,"");
SYSCTL_INT(_debug, OID_AUTO, blk_limit_hit, CTLFLAG_RW, &stat_blk_limit_hit, 0, "");
SYSCTL_INT(_debug, OID_AUTO, ino_limit_hit, CTLFLAG_RW, &stat_ino_limit_hit, 0, "");
SYSCTL_INT(_debug, OID_AUTO, indir_blk_ptrs, CTLFLAG_RW, &stat_indir_blk_ptrs, 0, "");
SYSCTL_INT(_debug, OID_AUTO, inode_bitmap, CTLFLAG_RW, &stat_inode_bitmap, 0, "");
SYSCTL_INT(_debug, OID_AUTO, direct_blk_ptrs, CTLFLAG_RW, &stat_direct_blk_ptrs, 0, "");
SYSCTL_INT(_debug, OID_AUTO, dir_entry, CTLFLAG_RW, &stat_dir_entry, 0, "");
#else /* !__FreeBSD__ */
struct ctldebug debug20 = { "max_softdeps", &max_softdeps };
struct ctldebug debug21 = { "tickdelay", &tickdelay };
struct ctldebug debug23 = { "blk_limit_push", &stat_blk_limit_push };
struct ctldebug debug24 = { "ino_limit_push", &stat_ino_limit_push };
struct ctldebug debug25 = { "blk_limit_hit", &stat_blk_limit_hit };
struct ctldebug debug26 = { "ino_limit_hit", &stat_ino_limit_hit };
struct ctldebug debug27 = { "indir_blk_ptrs", &stat_indir_blk_ptrs };
struct ctldebug debug28 = { "inode_bitmap", &stat_inode_bitmap };
struct ctldebug debug29 = { "direct_blk_ptrs", &stat_direct_blk_ptrs };
struct ctldebug debug30 = { "dir_entry", &stat_dir_entry };
#endif /* !__FreeBSD__ */
#endif /* DEBUG */
/*
* Add an item to the end of the work queue.
* This routine requires that the lock be held.
* This is the only routine that adds items to the list.
* The following routine is the only one that removes items
* and does so in order from first to last.
*/
static void
add_to_worklist(wk)
struct worklist *wk;
{
static struct worklist *worklist_tail;
if (wk->wk_state & ONWORKLIST)
panic("add_to_worklist: already on list");
wk->wk_state |= ONWORKLIST;
if (LIST_FIRST(&softdep_workitem_pending) == NULL)
LIST_INSERT_HEAD(&softdep_workitem_pending, wk, wk_list);
else
LIST_INSERT_AFTER(worklist_tail, wk, wk_list);
worklist_tail = wk;
}
/*
* Process that runs once per second to handle items in the background queue.
*
* Note that we ensure that everything is done in the order in which they
* appear in the queue. The code below depends on this property to ensure
* that blocks of a file are freed before the inode itself is freed. This
* ordering ensures that no new <vfsid, inum, lbn> triples will be generated
* until all the old ones have been purged from the dependency lists.
*/
int
softdep_process_worklist(matchmnt)
struct mount *matchmnt;
{
struct proc *p = CURPROC;
struct worklist *wk;
struct fs *matchfs;
int matchcnt;
/*
* Record the process identifier of our caller so that we can give
* this process preferential treatment in request_cleanup below.
*/
filesys_syncer = p;
matchcnt = 0;
matchfs = NULL;
if (matchmnt != NULL)
matchfs = VFSTOUFS(matchmnt)->um_fs;
/*
* There is no danger of having multiple processes run this
* code. It is single threaded solely so that softdep_flushfiles
* (below) can get an accurate count of the number of items
* related to its mount point that are in the list.
*/
if (softdep_worklist_busy && matchmnt == NULL)
return (-1);
/*
* If requested, try removing inode or removal dependencies.
*/
if (req_clear_inodedeps) {
clear_inodedeps(p);
req_clear_inodedeps = 0;
wakeup(&proc_waiting);
}
if (req_clear_remove) {
clear_remove(p);
req_clear_remove = 0;
wakeup(&proc_waiting);
}
ACQUIRE_LOCK(&lk);
while ((wk = LIST_FIRST(&softdep_workitem_pending)) != 0) {
WORKLIST_REMOVE(wk);
FREE_LOCK(&lk);
switch (wk->wk_type) {
case D_DIRREM:
/* removal of a directory entry */
if (WK_DIRREM(wk)->dm_mnt == matchmnt)
matchcnt += 1;
handle_workitem_remove(WK_DIRREM(wk));
break;
case D_FREEBLKS:
/* releasing blocks and/or fragments from a file */
if (WK_FREEBLKS(wk)->fb_fs == matchfs)
matchcnt += 1;
handle_workitem_freeblocks(WK_FREEBLKS(wk));
break;
case D_FREEFRAG:
/* releasing a fragment when replaced as a file grows */
if (WK_FREEFRAG(wk)->ff_fs == matchfs)
matchcnt += 1;
handle_workitem_freefrag(WK_FREEFRAG(wk));
break;
case D_FREEFILE:
/* releasing an inode when its link count drops to 0 */
if (WK_FREEFILE(wk)->fx_fs == matchfs)
matchcnt += 1;
handle_workitem_freefile(WK_FREEFILE(wk));
break;
default:
panic("%s_process_worklist: Unknown type %s",
"softdep", TYPENAME(wk->wk_type));
/* NOTREACHED */
}
if (softdep_worklist_busy && matchmnt == NULL)
return (-1);
/*
* If requested, try removing inode or removal dependencies.
*/
if (req_clear_inodedeps) {
clear_inodedeps(p);
req_clear_inodedeps = 0;
wakeup(&proc_waiting);
}
if (req_clear_remove) {
clear_remove(p);
req_clear_remove = 0;
wakeup(&proc_waiting);
}
ACQUIRE_LOCK(&lk);
}
FREE_LOCK(&lk);
return (matchcnt);
}
/*
* Purge the work list of all items associated with a particular mount point.
*/
int
softdep_flushfiles(oldmnt, flags, p)
struct mount *oldmnt;
int flags;
struct proc *p;
{
struct vnode *devvp;
int error, loopcnt;
/*
* Await our turn to clear out the queue.
*/
while (softdep_worklist_busy)
tsleep(&lbolt, PRIBIO, "softflush", 0);
softdep_worklist_busy = 1;
if ((error = ffs_flushfiles(oldmnt, flags, p)) != 0) {
softdep_worklist_busy = 0;
return (error);
}
/*
* Alternately flush the block device associated with the mount
* point and process any dependencies that the flushing
* creates. In theory, this loop can happen at most twice,
* but we give it a few extra just to be sure.
*/
devvp = VFSTOUFS(oldmnt)->um_devvp;
for (loopcnt = 10; loopcnt > 0; loopcnt--) {
if (softdep_process_worklist(oldmnt) == 0) {
/*
* Do another flush in case any vnodes were brought in
* as part of the cleanup operations.
*/
if ((error = ffs_flushfiles(oldmnt, flags, p)) != 0)
break;
/*
* If we still found nothing to do, we are really done.
*/
if (softdep_process_worklist(oldmnt) == 0)
break;
}
vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY, p);
error = VOP_FSYNC(devvp, p->p_ucred, MNT_WAIT, p);
VOP_UNLOCK(devvp, 0, p);
if (error)
break;
}
softdep_worklist_busy = 0;
/*
* If we are unmounting then it is an error to fail. If we
* are simply trying to downgrade to read-only, then filesystem
* activity can keep us busy forever, so we just fail with EBUSY.
*/
if (loopcnt == 0) {
if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT)
panic("softdep_flushfiles: looping");
error = EBUSY;
}
return (error);
}
/*
* Structure hashing.
*
* There are three types of structures that can be looked up:
* 1) pagedep structures identified by mount point, inode number,
* and logical block.
* 2) inodedep structures identified by mount point and inode number.
* 3) newblk structures identified by mount point and
* physical block number.
*
* The "pagedep" and "inodedep" dependency structures are hashed
* separately from the file blocks and inodes to which they correspond.
* This separation helps when the in-memory copy of an inode or
* file block must be replaced. It also obviates the need to access
* an inode or file page when simply updating (or de-allocating)
* dependency structures. Lookup of newblk structures is needed to
* find newly allocated blocks when trying to associate them with
* their allocdirect or allocindir structure.
*
* The lookup routines optionally create and hash a new instance when
* an existing entry is not found.
*/
#define DEPALLOC 0x0001 /* allocate structure if lookup fails */
/*
* Structures and routines associated with pagedep caching.
*/
LIST_HEAD(pagedep_hashhead, pagedep) *pagedep_hashtbl;
u_long pagedep_hash; /* size of hash table - 1 */
#define PAGEDEP_HASH(mp, inum, lbn) \
(&pagedep_hashtbl[((((register_t)(mp)) >> 13) + (inum) + (lbn)) & \
pagedep_hash])
static struct sema pagedep_in_progress;
/*
* Look up a pagedep. Return 1 if found, 0 if not found.
* If not found, allocate if DEPALLOC flag is passed.
* Found or allocated entry is returned in pagedeppp.
* This routine must be called with splbio interrupts blocked.
*/
static int
pagedep_lookup(ip, lbn, flags, pagedeppp)
struct inode *ip;
ufs_lbn_t lbn;
int flags;
struct pagedep **pagedeppp;
{
struct pagedep *pagedep;
struct pagedep_hashhead *pagedephd;
struct mount *mp;
int i;
#ifdef DEBUG
if (lk.lkt_held == -1)
panic("pagedep_lookup: lock not held");
#endif
mp = ITOV(ip)->v_mount;
pagedephd = PAGEDEP_HASH(mp, ip->i_number, lbn);
top:
for (pagedep = LIST_FIRST(pagedephd); pagedep;
pagedep = LIST_NEXT(pagedep, pd_hash))
if (ip->i_number == pagedep->pd_ino &&
lbn == pagedep->pd_lbn &&
mp == pagedep->pd_mnt)
break;
if (pagedep) {
*pagedeppp = pagedep;
return (1);
}
if ((flags & DEPALLOC) == 0) {
*pagedeppp = NULL;
return (0);
}
if (sema_get(&pagedep_in_progress, &lk) == 0) {
ACQUIRE_LOCK(&lk);
goto top;
}
MALLOC(pagedep, struct pagedep *, sizeof(struct pagedep), M_PAGEDEP,
M_WAITOK);
bzero(pagedep, sizeof(struct pagedep));
pagedep->pd_list.wk_type = D_PAGEDEP;
pagedep->pd_mnt = mp;
pagedep->pd_ino = ip->i_number;
pagedep->pd_lbn = lbn;
LIST_INIT(&pagedep->pd_dirremhd);
LIST_INIT(&pagedep->pd_pendinghd);
for (i = 0; i < DAHASHSZ; i++)
LIST_INIT(&pagedep->pd_diraddhd[i]);
ACQUIRE_LOCK(&lk);
LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash);
sema_release(&pagedep_in_progress);
*pagedeppp = pagedep;
return (0);
}
/*
* Structures and routines associated with inodedep caching.
*/
LIST_HEAD(inodedep_hashhead, inodedep) *inodedep_hashtbl;
static u_long inodedep_hash; /* size of hash table - 1 */
static long num_inodedep; /* number of inodedep allocated */
#define INODEDEP_HASH(fs, inum) \
(&inodedep_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & inodedep_hash])
static struct sema inodedep_in_progress;
/*
* Look up a inodedep. Return 1 if found, 0 if not found.
* If not found, allocate if DEPALLOC flag is passed.
* Found or allocated entry is returned in inodedeppp.
* This routine must be called with splbio interrupts blocked.
*/
static int
inodedep_lookup(fs, inum, flags, inodedeppp)
struct fs *fs;
ino_t inum;
int flags;
struct inodedep **inodedeppp;
{
struct inodedep *inodedep;
struct inodedep_hashhead *inodedephd;
int firsttry;
#ifdef DEBUG
if (lk.lkt_held == -1)
panic("inodedep_lookup: lock not held");
#endif
firsttry = 1;
inodedephd = INODEDEP_HASH(fs, inum);
top:
for (inodedep = LIST_FIRST(inodedephd); inodedep;
inodedep = LIST_NEXT(inodedep, id_hash))
if (inum == inodedep->id_ino && fs == inodedep->id_fs)
break;
if (inodedep) {
*inodedeppp = inodedep;
return (1);
}
if ((flags & DEPALLOC) == 0) {
*inodedeppp = NULL;
return (0);
}
/*
* If we are over our limit, try to improve the situation.
*/
if (num_inodedep > max_softdeps && firsttry && speedup_syncer() == 0 &&
request_cleanup(FLUSH_INODES, 1)) {
firsttry = 0;
goto top;
}
if (sema_get(&inodedep_in_progress, &lk) == 0) {
ACQUIRE_LOCK(&lk);
goto top;
}
num_inodedep += 1;
MALLOC(inodedep, struct inodedep *, sizeof(struct inodedep),
M_INODEDEP, M_WAITOK);
inodedep->id_list.wk_type = D_INODEDEP;
inodedep->id_fs = fs;
inodedep->id_ino = inum;
inodedep->id_state = ALLCOMPLETE;
inodedep->id_nlinkdelta = 0;
inodedep->id_savedino = NULL;
inodedep->id_savedsize = -1;
inodedep->id_buf = NULL;
LIST_INIT(&inodedep->id_pendinghd);
LIST_INIT(&inodedep->id_inowait);
LIST_INIT(&inodedep->id_bufwait);
TAILQ_INIT(&inodedep->id_inoupdt);
TAILQ_INIT(&inodedep->id_newinoupdt);
ACQUIRE_LOCK(&lk);
LIST_INSERT_HEAD(inodedephd, inodedep, id_hash);
sema_release(&inodedep_in_progress);
*inodedeppp = inodedep;
return (0);
}
/*
* Structures and routines associated with newblk caching.
*/
LIST_HEAD(newblk_hashhead, newblk) *newblk_hashtbl;
u_long newblk_hash; /* size of hash table - 1 */
#define NEWBLK_HASH(fs, inum) \
(&newblk_hashtbl[((((register_t)(fs)) >> 13) + (inum)) & newblk_hash])
static struct sema newblk_in_progress;
/*
* Look up a newblk. Return 1 if found, 0 if not found.
* If not found, allocate if DEPALLOC flag is passed.
* Found or allocated entry is returned in newblkpp.
*/
static int
newblk_lookup(fs, newblkno, flags, newblkpp)
struct fs *fs;
ufs_daddr_t newblkno;
int flags;
struct newblk **newblkpp;
{
struct newblk *newblk;
struct newblk_hashhead *newblkhd;
newblkhd = NEWBLK_HASH(fs, newblkno);
top:
for (newblk = LIST_FIRST(newblkhd); newblk;
newblk = LIST_NEXT(newblk, nb_hash))
if (newblkno == newblk->nb_newblkno && fs == newblk->nb_fs)
break;
if (newblk) {
*newblkpp = newblk;
return (1);
}
if ((flags & DEPALLOC) == 0) {
*newblkpp = NULL;
return (0);
}
if (sema_get(&newblk_in_progress, 0) == 0)
goto top;
MALLOC(newblk, struct newblk *, sizeof(struct newblk),
M_NEWBLK, M_WAITOK);
newblk->nb_state = 0;
newblk->nb_fs = fs;
newblk->nb_newblkno = newblkno;
LIST_INSERT_HEAD(newblkhd, newblk, nb_hash);
sema_release(&newblk_in_progress);
*newblkpp = newblk;
return (0);
}
/*
* Executed during filesystem system initialization before
* mounting any file systems.
*/
void
softdep_initialize()
{
LIST_INIT(&mkdirlisthd);
LIST_INIT(&softdep_workitem_pending);
max_softdeps = desiredvnodes * 8;
pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP,
&pagedep_hash);
sema_init(&pagedep_in_progress, "pagedep", PRIBIO, 0);
inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, &inodedep_hash);
sema_init(&inodedep_in_progress, "inodedep", PRIBIO, 0);
newblk_hashtbl = hashinit(64, M_NEWBLK, &newblk_hash);
sema_init(&newblk_in_progress, "newblk", PRIBIO, 0);
}
/*
* Called at mount time to notify the dependency code that a
* filesystem wishes to use it.
*/
int
softdep_mount(devvp, mp, fs, cred)
struct vnode *devvp;
struct mount *mp;
struct fs *fs;
struct ucred *cred;
{
struct csum cstotal;
struct cg *cgp;
struct buf *bp;
int error, cyl;
mp->mnt_flag &= ~MNT_ASYNC;
mp->mnt_flag |= MNT_SOFTDEP;
/*
* When doing soft updates, the counters in the
* superblock may have gotten out of sync, so we have
* to scan the cylinder groups and recalculate them.
*/
if (fs->fs_clean != 0)
return (0);
bzero(&cstotal, sizeof cstotal);
for (cyl = 0; cyl < fs->fs_ncg; cyl++) {
if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)),
fs->fs_cgsize, cred, &bp)) != 0) {
brelse(bp);
return (error);
}
cgp = (struct cg *)bp->b_data;
cstotal.cs_nffree += cgp->cg_cs.cs_nffree;
cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree;
cstotal.cs_nifree += cgp->cg_cs.cs_nifree;
cstotal.cs_ndir += cgp->cg_cs.cs_ndir;
fs->fs_cs(fs, cyl) = cgp->cg_cs;
brelse(bp);
}
#ifdef DEBUG
if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal))
printf("ffs_mountfs: superblock updated for soft updates\n");
#endif
bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal);
return (0);
}
/*
* Protecting the freemaps (or bitmaps).
*
* To eliminate the need to execute fsck before mounting a file system
* after a power failure, one must (conservatively) guarantee that the
* on-disk copy of the bitmaps never indicate that a live inode or block is
* free. So, when a block or inode is allocated, the bitmap should be
* updated (on disk) before any new pointers. When a block or inode is
* freed, the bitmap should not be updated until all pointers have been
* reset. The latter dependency is handled by the delayed de-allocation
* approach described below for block and inode de-allocation. The former
* dependency is handled by calling the following procedure when a block or
* inode is allocated. When an inode is allocated an "inodedep" is created
* with its DEPCOMPLETE flag cleared until its bitmap is written to disk.
* Each "inodedep" is also inserted into the hash indexing structure so
* that any additional link additions can be made dependent on the inode
* allocation.
*
* The ufs file system maintains a number of free block counts (e.g., per
* cylinder group, per cylinder and per <cylinder, rotational position> pair)
* in addition to the bitmaps. These counts are used to improve efficiency
* during allocation and therefore must be consistent with the bitmaps.
* There is no convenient way to guarantee post-crash consistency of these
* counts with simple update ordering, for two main reasons: (1) The counts
* and bitmaps for a single cylinder group block are not in the same disk
* sector. If a disk write is interrupted (e.g., by power failure), one may
* be written and the other not. (2) Some of the counts are located in the
* superblock rather than the cylinder group block. So, we focus our soft
* updates implementation on protecting the bitmaps. When mounting a
* filesystem, we recompute the auxiliary counts from the bitmaps.
*/
/*
* Called just after updating the cylinder group block to allocate an inode.
*/
void
softdep_setup_inomapdep(bp, ip, newinum)
struct buf *bp; /* buffer for cylgroup block with inode map */
struct inode *ip; /* inode related to allocation */
ino_t newinum; /* new inode number being allocated */
{
struct inodedep *inodedep;
struct bmsafemap *bmsafemap;
/*
* Create a dependency for the newly allocated inode.
* Panic if it already exists as something is seriously wrong.
* Otherwise add it to the dependency list for the buffer holding
* the cylinder group map from which it was allocated.
*/
ACQUIRE_LOCK(&lk);
if (inodedep_lookup(ip->i_fs, newinum, DEPALLOC, &inodedep) != 0)
panic("softdep_setup_inomapdep: found inode");
inodedep->id_buf = bp;
inodedep->id_state &= ~DEPCOMPLETE;
bmsafemap = bmsafemap_lookup(bp);
LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps);
FREE_LOCK(&lk);
}
/*
* Called just after updating the cylinder group block to
* allocate block or fragment.
*/
void
softdep_setup_blkmapdep(bp, fs, newblkno)
struct buf *bp; /* buffer for cylgroup block with block map */
struct fs *fs; /* filesystem doing allocation */
ufs_daddr_t newblkno; /* number of newly allocated block */
{
struct newblk *newblk;
struct bmsafemap *bmsafemap;
/*
* Create a dependency for the newly allocated block.
* Add it to the dependency list for the buffer holding
* the cylinder group map from which it was allocated.
*/
if (newblk_lookup(fs, newblkno, DEPALLOC, &newblk) != 0)
panic("softdep_setup_blkmapdep: found block");
ACQUIRE_LOCK(&lk);
newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(bp);
LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps);
FREE_LOCK(&lk);
}
/*
* Find the bmsafemap associated with a cylinder group buffer.
* If none exists, create one. The buffer must be locked when
* this routine is called and this routine must be called with
* splbio interrupts blocked.
*/
static struct bmsafemap *
bmsafemap_lookup(bp)
struct buf *bp;
{
struct bmsafemap *bmsafemap;
struct worklist *wk;
#ifdef DEBUG
if (lk.lkt_held == -1)
panic("bmsafemap_lookup: lock not held");
#endif
for (wk = LIST_FIRST(&bp->b_dep); wk; wk = LIST_NEXT(wk, wk_list))
if (wk->wk_type == D_BMSAFEMAP)
return (WK_BMSAFEMAP(wk));
FREE_LOCK(&lk);
MALLOC(bmsafemap, struct bmsafemap *, sizeof(struct bmsafemap),
M_BMSAFEMAP, M_WAITOK);
bmsafemap->sm_list.wk_type = D_BMSAFEMAP;
bmsafemap->sm_list.wk_state = 0;
bmsafemap->sm_buf = bp;
LIST_INIT(&bmsafemap->sm_allocdirecthd);
LIST_INIT(&bmsafemap->sm_allocindirhd);
LIST_INIT(&bmsafemap->sm_inodedephd);
LIST_INIT(&bmsafemap->sm_newblkhd);
ACQUIRE_LOCK(&lk);
WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list);
return (bmsafemap);
}
/*
* Direct block allocation dependencies.
*
* When a new block is allocated, the corresponding disk locations must be
* initialized (with zeros or new data) before the on-disk inode points to
* them. Also, the freemap from which the block was allocated must be
* updated (on disk) before the inode's pointer. These two dependencies are
* independent of each other and are needed for all file blocks and indirect
* blocks that are pointed to directly by the inode. Just before the
* "in-core" version of the inode is updated with a newly allocated block
* number, a procedure (below) is called to setup allocation dependency
* structures. These structures are removed when the corresponding
* dependencies are satisfied or when the block allocation becomes obsolete
* (i.e., the file is deleted, the block is de-allocated, or the block is a
* fragment that gets upgraded). All of these cases are handled in
* procedures described later.
*
* When a file extension causes a fragment to be upgraded, either to a larger
* fragment or to a full block, the on-disk location may change (if the
* previous fragment could not simply be extended). In this case, the old
* fragment must be de-allocated, but not until after the inode's pointer has
* been updated. In most cases, this is handled by later procedures, which
* will construct a "freefrag" structure to be added to the workitem queue
* when the inode update is complete (or obsolete). The main exception to
* this is when an allocation occurs while a pending allocation dependency
* (for the same block pointer) remains. This case is handled in the main
* allocation dependency setup procedure by immediately freeing the
* unreferenced fragments.
*/
void
softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp)
struct inode *ip; /* inode to which block is being added */
ufs_lbn_t lbn; /* block pointer within inode */
ufs_daddr_t newblkno; /* disk block number being added */
ufs_daddr_t oldblkno; /* previous block number, 0 unless frag */
long newsize; /* size of new block */
long oldsize; /* size of new block */
struct buf *bp; /* bp for allocated block */
{
struct allocdirect *adp, *oldadp;
struct allocdirectlst *adphead;
struct bmsafemap *bmsafemap;
struct inodedep *inodedep;
struct pagedep *pagedep;
struct newblk *newblk;
MALLOC(adp, struct allocdirect *, sizeof(struct allocdirect),
M_ALLOCDIRECT, M_WAITOK);
bzero(adp, sizeof(struct allocdirect));
adp->ad_list.wk_type = D_ALLOCDIRECT;
adp->ad_lbn = lbn;
adp->ad_newblkno = newblkno;
adp->ad_oldblkno = oldblkno;
adp->ad_newsize = newsize;
adp->ad_oldsize = oldsize;
adp->ad_state = ATTACHED;
if (newblkno == oldblkno)
adp->ad_freefrag = NULL;
else
adp->ad_freefrag = newfreefrag(ip, oldblkno, oldsize);
if (newblk_lookup(ip->i_fs, newblkno, 0, &newblk) == 0)
panic("softdep_setup_allocdirect: lost block");
ACQUIRE_LOCK(&lk);
(void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep);
adp->ad_inodedep = inodedep;
if (newblk->nb_state == DEPCOMPLETE) {
adp->ad_state |= DEPCOMPLETE;
adp->ad_buf = NULL;
} else {
bmsafemap = newblk->nb_bmsafemap;
adp->ad_buf = bmsafemap->sm_buf;
LIST_REMOVE(newblk, nb_deps);
LIST_INSERT_HEAD(&bmsafemap->sm_allocdirecthd, adp, ad_deps);
}
LIST_REMOVE(newblk, nb_hash);
FREE(newblk, M_NEWBLK);
WORKLIST_INSERT(&bp->b_dep, &adp->ad_list);
if (lbn >= NDADDR) {
/* allocating an indirect block */
if (oldblkno != 0)
panic("softdep_setup_allocdirect: non-zero indir");
} else {
/*
* Allocating a direct block.
*
* If we are allocating a directory block, then we must
* allocate an associated pagedep to track additions and
* deletions.
*/
if ((ip->i_mode & IFMT) == IFDIR &&
pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
}
/*
* The list of allocdirects must be kept in sorted and ascending
* order so that the rollback routines can quickly determine the
* first uncommitted block (the size of the file stored on disk
* ends at the end of the lowest committed fragment, or if there
* are no fragments, at the end of the highest committed block).
* Since files generally grow, the typical case is that the new
* block is to be added at the end of the list. We speed this
* special case by checking against the last allocdirect in the
* list before laboriously traversing the list looking for the
* insertion point.
*/
adphead = &inodedep->id_newinoupdt;
oldadp = TAILQ_LAST(adphead, allocdirectlst);
if (oldadp == NULL || oldadp->ad_lbn <= lbn) {
/* insert at end of list */
TAILQ_INSERT_TAIL(adphead, adp, ad_next);
if (oldadp != NULL && oldadp->ad_lbn == lbn)
allocdirect_merge(adphead, adp, oldadp);
FREE_LOCK(&lk);
return;
}
for (oldadp = TAILQ_FIRST(adphead); oldadp;
oldadp = TAILQ_NEXT(oldadp, ad_next)) {
if (oldadp->ad_lbn >= lbn)
break;
}
if (oldadp == NULL)
panic("softdep_setup_allocdirect: lost entry");
/* insert in middle of list */
TAILQ_INSERT_BEFORE(oldadp, adp, ad_next);
if (oldadp->ad_lbn == lbn)
allocdirect_merge(adphead, adp, oldadp);
FREE_LOCK(&lk);
}
/*
* Replace an old allocdirect dependency with a newer one.
* This routine must be called with splbio interrupts blocked.
*/
static void
allocdirect_merge(adphead, newadp, oldadp)
struct allocdirectlst *adphead; /* head of list holding allocdirects */
struct allocdirect *newadp; /* allocdirect being added */
struct allocdirect *oldadp; /* existing allocdirect being checked */
{
struct freefrag *freefrag;
#ifdef DEBUG
if (lk.lkt_held == -1)
panic("allocdirect_merge: lock not held");
#endif
if (newadp->ad_oldblkno != oldadp->ad_newblkno ||
newadp->ad_oldsize != oldadp->ad_newsize ||
newadp->ad_lbn >= NDADDR)
panic("allocdirect_check: old %d != new %d || lbn %ld >= %d",
newadp->ad_oldblkno, oldadp->ad_newblkno, newadp->ad_lbn,
NDADDR);
newadp->ad_oldblkno = oldadp->ad_oldblkno;
newadp->ad_oldsize = oldadp->ad_oldsize;
/*
* If the old dependency had a fragment to free or had never
* previously had a block allocated, then the new dependency
* can immediately post its freefrag and adopt the old freefrag.
* This action is done by swapping the freefrag dependencies.
* The new dependency gains the old one's freefrag, and the
* old one gets the new one and then immediately puts it on
* the worklist when it is freed by free_allocdirect. It is
* not possible to do this swap when the old dependency had a
* non-zero size but no previous fragment to free. This condition
* arises when the new block is an extension of the old block.
* Here, the first part of the fragment allocated to the new
* dependency is part of the block currently claimed on disk by
* the old dependency, so cannot legitimately be freed until the
* conditions for the new dependency are fulfilled.
*/
if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) {
freefrag = newadp->ad_freefrag;
newadp->ad_freefrag = oldadp->ad_freefrag;
oldadp->ad_freefrag = freefrag;
}
free_allocdirect(adphead, oldadp, 0);
}
/*
* Allocate a new freefrag structure if needed.
*/
static struct freefrag *
newfreefrag(ip, blkno, size)
struct inode *ip;
ufs_daddr_t blkno;
long size;
{
struct freefrag *freefrag;
struct fs *fs;
if (blkno == 0)
return (NULL);
fs = ip->i_fs;
if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag)
panic("newfreefrag: frag size");
MALLOC(freefrag, struct freefrag *, sizeof(struct freefrag),
M_FREEFRAG, M_WAITOK);
freefrag->ff_list.wk_type = D_FREEFRAG;
freefrag->ff_state = ip->i_uid & ~ONWORKLIST; /* XXX - used below */
freefrag->ff_inum = ip->i_number;
freefrag->ff_fs = fs;
freefrag->ff_devvp = ip->i_devvp;
freefrag->ff_blkno = blkno;
freefrag->ff_fragsize = size;
return (freefrag);
}
/*
* This workitem de-allocates fragments that were replaced during
* file block allocation.
*/
static void
handle_workitem_freefrag(freefrag)
struct freefrag *freefrag;
{
struct inode tip;
tip.i_fs = freefrag->ff_fs;
tip.i_devvp = freefrag->ff_devvp;
tip.i_dev = freefrag->ff_devvp->v_rdev;
tip.i_number = freefrag->ff_inum;
tip.i_uid = freefrag->ff_state & ~ONWORKLIST; /* XXX - set above */
ffs_blkfree(&tip, freefrag->ff_blkno, freefrag->ff_fragsize);
FREE(freefrag, M_FREEFRAG);
}
/*
* Indirect block allocation dependencies.
*
* The same dependencies that exist for a direct block also exist when
* a new block is allocated and pointed to by an entry in a block of
* indirect pointers. The undo/redo states described above are also
* used here. Because an indirect block contains many pointers that
* may have dependencies, a second copy of the entire in-memory indirect
* block is kept. The buffer cache copy is always completely up-to-date.
* The second copy, which is used only as a source for disk writes,
* contains only the safe pointers (i.e., those that have no remaining
* update dependencies). The second copy is freed when all pointers
* are safe. The cache is not allowed to replace indirect blocks with
* pending update dependencies. If a buffer containing an indirect
* block with dependencies is written, these routines will mark it
* dirty again. It can only be successfully written once all the
* dependencies are removed. The ffs_fsync routine in conjunction with
* softdep_sync_metadata work together to get all the dependencies
* removed so that a file can be successfully written to disk. Three
* procedures are used when setting up indirect block pointer
* dependencies. The division is necessary because of the organization
* of the "balloc" routine and because of the distinction between file
* pages and file metadata blocks.
*/
/*
* Allocate a new allocindir structure.
*/
static struct allocindir *
newallocindir(ip, ptrno, newblkno, oldblkno)
struct inode *ip; /* inode for file being extended */
int ptrno; /* offset of pointer in indirect block */
ufs_daddr_t newblkno; /* disk block number being added */
ufs_daddr_t oldblkno; /* previous block number, 0 if none */
{
struct allocindir *aip;
MALLOC(aip, struct allocindir *, sizeof(struct allocindir),
M_ALLOCINDIR, M_WAITOK);
bzero(aip, sizeof(struct allocindir));
aip->ai_list.wk_type = D_ALLOCINDIR;
aip->ai_state = ATTACHED;
aip->ai_offset = ptrno;
aip->ai_newblkno = newblkno;
aip->ai_oldblkno = oldblkno;
aip->ai_freefrag = newfreefrag(ip, oldblkno, ip->i_fs->fs_bsize);
return (aip);
}
/*
* Called just before setting an indirect block pointer
* to a newly allocated file page.
*/
void
softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp)
struct inode *ip; /* inode for file being extended */
ufs_lbn_t lbn; /* allocated block number within file */
struct buf *bp; /* buffer with indirect blk referencing page */
int ptrno; /* offset of pointer in indirect block */
ufs_daddr_t newblkno; /* disk block number being added */
ufs_daddr_t oldblkno; /* previous block number, 0 if none */
struct buf *nbp; /* buffer holding allocated page */
{
struct allocindir *aip;
struct pagedep *pagedep;
aip = newallocindir(ip, ptrno, newblkno, oldblkno);
ACQUIRE_LOCK(&lk);
/*
* If we are allocating a directory page, then we must
* allocate an associated pagedep to track additions and
* deletions.
*/
if ((ip->i_mode & IFMT) == IFDIR &&
pagedep_lookup(ip, lbn, DEPALLOC, &pagedep) == 0)
WORKLIST_INSERT(&nbp->b_dep, &pagedep->pd_list);
WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list);
FREE_LOCK(&lk);
setup_allocindir_phase2(bp, ip, aip);
}
/*
* Called just before setting an indirect block pointer to a
* newly allocated indirect block.
*/
void
softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno)
struct buf *nbp; /* newly allocated indirect block */
struct inode *ip; /* inode for file being extended */
struct buf *bp; /* indirect block referencing allocated block */
int ptrno; /* offset of pointer in indirect block */
ufs_daddr_t newblkno; /* disk block number being added */
{
struct allocindir *aip;
aip = newallocindir(ip, ptrno, newblkno, 0);
ACQUIRE_LOCK(&lk);
WORKLIST_INSERT(&nbp->b_dep, &aip->ai_list);
FREE_LOCK(&lk);
setup_allocindir_phase2(bp, ip, aip);
}
/*
* Called to finish the allocation of the "aip" allocated
* by one of the two routines above.
*/
static void
setup_allocindir_phase2(bp, ip, aip)
struct buf *bp; /* in-memory copy of the indirect block */
struct inode *ip; /* inode for file being extended */
struct allocindir *aip; /* allocindir allocated by the above routines */
{
struct worklist *wk;
struct indirdep *indirdep, *newindirdep;
struct bmsafemap *bmsafemap;
struct allocindir *oldaip;
struct freefrag *freefrag;
struct newblk *newblk;
if (bp->b_lblkno >= 0)
panic("setup_allocindir_phase2: not indir blk");
for (indirdep = NULL, newindirdep = NULL; ; ) {
ACQUIRE_LOCK(&lk);
for (wk = LIST_FIRST(&bp->b_dep); wk;
wk = LIST_NEXT(wk, wk_list)) {
if (wk->wk_type != D_INDIRDEP)
continue;
indirdep = WK_INDIRDEP(wk);
break;
}
if (indirdep == NULL && newindirdep) {
indirdep = newindirdep;
WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list);
newindirdep = NULL;
}
FREE_LOCK(&lk);
if (indirdep) {
if (newblk_lookup(ip->i_fs, aip->ai_newblkno, 0,
&newblk) == 0)
panic("setup_allocindir: lost block");
ACQUIRE_LOCK(&lk);
if (newblk->nb_state == DEPCOMPLETE) {
aip->ai_state |= DEPCOMPLETE;
aip->ai_buf = NULL;
} else {
bmsafemap = newblk->nb_bmsafemap;
aip->ai_buf = bmsafemap->sm_buf;
LIST_REMOVE(newblk, nb_deps);
LIST_INSERT_HEAD(&bmsafemap->sm_allocindirhd,
aip, ai_deps);
}
LIST_REMOVE(newblk, nb_hash);
FREE(newblk, M_NEWBLK);
aip->ai_indirdep = indirdep;
/*
* Check to see if there is an existing dependency
* for this block. If there is, merge the old
* dependency into the new one.
*/
if (aip->ai_oldblkno == 0)
oldaip = NULL;
else
for (oldaip=LIST_FIRST(&indirdep->ir_deplisthd);
oldaip; oldaip = LIST_NEXT(oldaip, ai_next))
if (oldaip->ai_offset == aip->ai_offset)
break;
if (oldaip != NULL) {
if (oldaip->ai_newblkno != aip->ai_oldblkno)
panic("setup_allocindir_phase2: blkno");
aip->ai_oldblkno = oldaip->ai_oldblkno;
freefrag = oldaip->ai_freefrag;
oldaip->ai_freefrag = aip->ai_freefrag;
aip->ai_freefrag = freefrag;
free_allocindir(oldaip, NULL);
}
LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next);
((ufs_daddr_t *)indirdep->ir_savebp->b_data)
[aip->ai_offset] = aip->ai_oldblkno;
FREE_LOCK(&lk);
}
if (newindirdep) {
if (indirdep->ir_savebp != NULL)
brelse(newindirdep->ir_savebp);
WORKITEM_FREE((caddr_t)newindirdep, D_INDIRDEP);
}
if (indirdep)
break;
MALLOC(newindirdep, struct indirdep *, sizeof(struct indirdep),
M_INDIRDEP, M_WAITOK);
newindirdep->ir_list.wk_type = D_INDIRDEP;
newindirdep->ir_state = ATTACHED;
LIST_INIT(&newindirdep->ir_deplisthd);
LIST_INIT(&newindirdep->ir_donehd);
if (bp->b_blkno == bp->b_lblkno) {
VOP_BMAP(bp->b_vp, bp->b_lblkno, NULL, &bp->b_blkno,
NULL, NULL);
}
newindirdep->ir_savebp =
getblk(ip->i_devvp, bp->b_blkno, bp->b_bcount, 0, 0);
BUF_KERNPROC(newindirdep->ir_savebp);
bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount);
}
}
/*
* Block de-allocation dependencies.
*
* When blocks are de-allocated, the on-disk pointers must be nullified before
* the blocks are made available for use by other files. (The true
* requirement is that old pointers must be nullified before new on-disk
* pointers are set. We chose this slightly more stringent requirement to
* reduce complexity.) Our implementation handles this dependency by updating
* the inode (or indirect block) appropriately but delaying the actual block
* de-allocation (i.e., freemap and free space count manipulation) until
* after the updated versions reach stable storage. After the disk is
* updated, the blocks can be safely de-allocated whenever it is convenient.
* This implementation handles only the common case of reducing a file's
* length to zero. Other cases are handled by the conventional synchronous
* write approach.
*
* The ffs implementation with which we worked double-checks
* the state of the block pointers and file size as it reduces
* a file's length. Some of this code is replicated here in our
* soft updates implementation. The freeblks->fb_chkcnt field is
* used to transfer a part of this information to the procedure
* that eventually de-allocates the blocks.
*
* This routine should be called from the routine that shortens
* a file's length, before the inode's size or block pointers
* are modified. It will save the block pointer information for
* later release and zero the inode so that the calling routine
* can release it.
*/
static long num_freeblks; /* number of freeblks allocated */
void
softdep_setup_freeblocks(ip, length)
struct inode *ip; /* The inode whose length is to be reduced */
off_t length; /* The new length for the file */
{
struct freeblks *freeblks;
struct inodedep *inodedep;
struct allocdirect *adp;
struct vnode *vp;
struct buf *bp;
struct fs *fs;
int i, error;
fs = ip->i_fs;
if (length != 0)
panic("softde_setup_freeblocks: non-zero length");
/*
* If we are over our limit, try to improve the situation.
*/
if (num_freeblks > max_softdeps / 2 && speedup_syncer() == 0)
(void) request_cleanup(FLUSH_REMOVE, 0);
num_freeblks += 1;
MALLOC(freeblks, struct freeblks *, sizeof(struct freeblks),
M_FREEBLKS, M_WAITOK);
bzero(freeblks, sizeof(struct freeblks));
freeblks->fb_list.wk_type = D_FREEBLKS;
freeblks->fb_uid = ip->i_uid;
freeblks->fb_previousinum = ip->i_number;
freeblks->fb_devvp = ip->i_devvp;
freeblks->fb_fs = fs;
freeblks->fb_oldsize = ip->i_size;
freeblks->fb_newsize = length;
freeblks->fb_chkcnt = ip->i_blocks;
for (i = 0; i < NDADDR; i++) {
freeblks->fb_dblks[i] = ip->i_db[i];
ip->i_db[i] = 0;
}
for (i = 0; i < NIADDR; i++) {
freeblks->fb_iblks[i] = ip->i_ib[i];
ip->i_ib[i] = 0;
}
ip->i_blocks = 0;
ip->i_size = 0;
/*
* Push the zero'ed inode to to its disk buffer so that we are free
* to delete its dependencies below. Once the dependencies are gone
* the buffer can be safely released.
*/
if ((error = bread(ip->i_devvp,
fsbtodb(fs, ino_to_fsba(fs, ip->i_number)),
(int)fs->fs_bsize, NOCRED, &bp)) != 0)
softdep_error("softdep_setup_freeblocks", error);
*((struct dinode *)bp->b_data + ino_to_fsbo(fs, ip->i_number)) =
ip->i_din;
/*
* Find and eliminate any inode dependencies.
*/
ACQUIRE_LOCK(&lk);
(void) inodedep_lookup(fs, ip->i_number, DEPALLOC, &inodedep);
if ((inodedep->id_state & IOSTARTED) != 0)
panic("softdep_setup_freeblocks: inode busy");
/*
* Add the freeblks structure to the list of operations that
* must await the zero'ed inode being written to disk.
*/
WORKLIST_INSERT(&inodedep->id_bufwait, &freeblks->fb_list);
/*
* Because the file length has been truncated to zero, any
* pending block allocation dependency structures associated
* with this inode are obsolete and can simply be de-allocated.
* We must first merge the two dependency lists to get rid of
* any duplicate freefrag structures, then purge the merged list.
*/
merge_inode_lists(inodedep);
while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != 0)
free_allocdirect(&inodedep->id_inoupdt, adp, 1);
FREE_LOCK(&lk);
bdwrite(bp);
/*
* We must wait for any I/O in progress to finish so that
* all potential buffers on the dirty list will be visible.
* Once they are all there, walk the list and get rid of
* any dependencies.
*/
vp = ITOV(ip);
ACQUIRE_LOCK(&lk);
drain_output(vp, 1);
while (getdirtybuf(&TAILQ_FIRST(&vp->v_dirtyblkhd), MNT_WAIT)) {
bp = TAILQ_FIRST(&vp->v_dirtyblkhd);
(void) inodedep_lookup(fs, ip->i_number, 0, &inodedep);
deallocate_dependencies(bp, inodedep);
bp->b_flags |= B_INVAL | B_NOCACHE;
FREE_LOCK(&lk);
brelse(bp);
ACQUIRE_LOCK(&lk);
}
/*
* Try freeing the inodedep in case that was the last dependency.
*/
if ((inodedep_lookup(fs, ip->i_number, 0, &inodedep)) != 0)
(void) free_inodedep(inodedep);
FREE_LOCK(&lk);
}
/*
* Reclaim any dependency structures from a buffer that is about to
* be reallocated to a new vnode. The buffer must be locked, thus,
* no I/O completion operations can occur while we are manipulating
* its associated dependencies. The mutex is held so that other I/O's
* associated with related dependencies do not occur.
*/
static void
deallocate_dependencies(bp, inodedep)
struct buf *bp;
struct inodedep *inodedep;
{
struct worklist *wk;
struct indirdep *indirdep;
struct allocindir *aip;
struct pagedep *pagedep;
struct dirrem *dirrem;
struct diradd *dap;
int i;
while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
switch (wk->wk_type) {
case D_INDIRDEP:
indirdep = WK_INDIRDEP(wk);
/*
* None of the indirect pointers will ever be visible,
* so they can simply be tossed. GOINGAWAY ensures
* that allocated pointers will be saved in the buffer
* cache until they are freed. Note that they will
* only be able to be found by their physical address
* since the inode mapping the logical address will
* be gone. The save buffer used for the safe copy
* was allocated in setup_allocindir_phase2 using
* the physical address so it could be used for this
* purpose. Hence we swap the safe copy with the real
* copy, allowing the safe copy to be freed and holding
* on to the real copy for later use in indir_trunc.
*/
if (indirdep->ir_state & GOINGAWAY)
panic("deallocate_dependencies: already gone");
indirdep->ir_state |= GOINGAWAY;
while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != 0)
free_allocindir(aip, inodedep);
if (bp->b_lblkno >= 0 ||
bp->b_blkno != indirdep->ir_savebp->b_lblkno)
panic("deallocate_dependencies: not indir");
bcopy(bp->b_data, indirdep->ir_savebp->b_data,
bp->b_bcount);
WORKLIST_REMOVE(wk);
WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, wk);
continue;
case D_PAGEDEP:
pagedep = WK_PAGEDEP(wk);
/*
* None of the directory additions will ever be
* visible, so they can simply be tossed.
*/
for (i = 0; i < DAHASHSZ; i++)
while ((dap =
LIST_FIRST(&pagedep->pd_diraddhd[i])))
free_diradd(dap);
while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != 0)
free_diradd(dap);
/*
* Copy any directory remove dependencies to the list
* to be processed after the zero'ed inode is written.
* If the inode has already been written, then they
* can be dumped directly onto the work list.
*/
for (dirrem = LIST_FIRST(&pagedep->pd_dirremhd); dirrem;
dirrem = LIST_NEXT(dirrem, dm_next)) {
LIST_REMOVE(dirrem, dm_next);
dirrem->dm_dirinum = pagedep->pd_ino;
if (inodedep == NULL)
add_to_worklist(&dirrem->dm_list);
else
WORKLIST_INSERT(&inodedep->id_bufwait,
&dirrem->dm_list);
}
WORKLIST_REMOVE(&pagedep->pd_list);
LIST_REMOVE(pagedep, pd_hash);
WORKITEM_FREE(pagedep, D_PAGEDEP);
continue;
case D_ALLOCINDIR:
free_allocindir(WK_ALLOCINDIR(wk), inodedep);
continue;
case D_ALLOCDIRECT:
case D_INODEDEP:
panic("deallocate_dependencies: Unexpected type %s",
TYPENAME(wk->wk_type));
/* NOTREACHED */
default:
panic("deallocate_dependencies: Unknown type %s",
TYPENAME(wk->wk_type));
/* NOTREACHED */
}
}
}
/*
* Free an allocdirect. Generate a new freefrag work request if appropriate.
* This routine must be called with splbio interrupts blocked.
*/
static void
free_allocdirect(adphead, adp, delay)
struct allocdirectlst *adphead;
struct allocdirect *adp;
int delay;
{
#ifdef DEBUG
if (lk.lkt_held == -1)
panic("free_allocdirect: lock not held");
#endif
if ((adp->ad_state & DEPCOMPLETE) == 0)
LIST_REMOVE(adp, ad_deps);
TAILQ_REMOVE(adphead, adp, ad_next);
if ((adp->ad_state & COMPLETE) == 0)
WORKLIST_REMOVE(&adp->ad_list);
if (adp->ad_freefrag != NULL) {
if (delay)
WORKLIST_INSERT(&adp->ad_inodedep->id_bufwait,
&adp->ad_freefrag->ff_list);
else
add_to_worklist(&adp->ad_freefrag->ff_list);
}
WORKITEM_FREE(adp, D_ALLOCDIRECT);
}
/*
* Prepare an inode to be freed. The actual free operation is not
* done until the zero'ed inode has been written to disk.
*/
static long num_freefile; /* number of freefile allocated */
void
softdep_freefile(pvp, ino, mode)
struct vnode *pvp;
ino_t ino;
int mode;
{
struct inode *ip = VTOI(pvp);
struct inodedep *inodedep;
struct freefile *freefile;
/*
* If we are over our limit, try to improve the situation.
*/
if (num_freefile > max_softdeps / 2 && speedup_syncer() == 0)
(void) request_cleanup(FLUSH_REMOVE, 0);
/*
* This sets up the inode de-allocation dependency.
*/
num_freefile += 1;
MALLOC(freefile, struct freefile *, sizeof(struct freefile),
M_FREEFILE, M_WAITOK);
freefile->fx_list.wk_type = D_FREEFILE;
freefile->fx_list.wk_state = 0;
freefile->fx_mode = mode;
freefile->fx_oldinum = ino;
freefile->fx_devvp = ip->i_devvp;
freefile->fx_fs = ip->i_fs;
/*
* If the inodedep does not exist, then the zero'ed inode has
* been written to disk and we can free the file immediately.
*/
ACQUIRE_LOCK(&lk);
if (inodedep_lookup(ip->i_fs, ino, 0, &inodedep) == 0) {
add_to_worklist(&freefile->fx_list);
FREE_LOCK(&lk);
return;
}
/*
* If we still have a bitmap dependency, then the inode has never
* been written to disk. Drop the dependency as it is no longer
* necessary since the inode is being deallocated. We could process
* the freefile immediately, but then we would have to clear the
* id_inowait dependencies here and it is easier just to let the
* zero'ed inode be written and let them be cleaned up in the
* normal followup actions that follow the inode write.
*/
if ((inodedep->id_state & DEPCOMPLETE) == 0) {
inodedep->id_state |= DEPCOMPLETE;
LIST_REMOVE(inodedep, id_deps);
inodedep->id_buf = NULL;
}
/*
* If the inodedep has no dependencies associated with it,
* then we must free it here and free the file immediately.
* This case arises when an early allocation fails (for
* example, the user is over their file quota).
*/
if (free_inodedep(inodedep) == 0)
WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list);
else
add_to_worklist(&freefile->fx_list);
FREE_LOCK(&lk);
}
/*
* Try to free an inodedep structure. Return 1 if it could be freed.
*/
static int
free_inodedep(inodedep)
struct inodedep *inodedep;
{
if ((inodedep->id_state & ONWORKLIST) != 0 ||
(inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE ||
LIST_FIRST(&inodedep->id_pendinghd) != NULL ||
LIST_FIRST(&inodedep->id_bufwait) != NULL ||
LIST_FIRST(&inodedep->id_inowait) != NULL ||
TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL ||
inodedep->id_nlinkdelta != 0 || inodedep->id_savedino != NULL)
return (0);
LIST_REMOVE(inodedep, id_hash);
WORKITEM_FREE(inodedep, D_INODEDEP);
num_inodedep -= 1;
return (1);
}
/*
* This workitem routine performs the block de-allocation.
* The workitem is added to the pending list after the updated
* inode block has been written to disk. As mentioned above,
* checks regarding the number of blocks de-allocated (compared
* to the number of blocks allocated for the file) are also
* performed in this function.
*/
static void
handle_workitem_freeblocks(freeblks)
struct freeblks *freeblks;
{
struct inode tip;
ufs_daddr_t bn;
struct fs *fs;
int i, level, bsize;
long nblocks, blocksreleased = 0;
int error, allerror = 0;
ufs_lbn_t baselbns[NIADDR], tmpval;
tip.i_number = freeblks->fb_previousinum;
tip.i_devvp = freeblks->fb_devvp;
tip.i_dev = freeblks->fb_devvp->v_rdev;
tip.i_fs = freeblks->fb_fs;
tip.i_size = freeblks->fb_oldsize;
tip.i_uid = freeblks->fb_uid;
fs = freeblks->fb_fs;
tmpval = 1;
baselbns[0] = NDADDR;
for (i = 1; i < NIADDR; i++) {
tmpval *= NINDIR(fs);
baselbns[i] = baselbns[i - 1] + tmpval;
}
nblocks = btodb(fs->fs_bsize);
blocksreleased = 0;
/*
* Indirect blocks first.
*/
for (level = (NIADDR - 1); level >= 0; level--) {
if ((bn = freeblks->fb_iblks[level]) == 0)
continue;
if ((error = indir_trunc(&tip, fsbtodb(fs, bn), level,
baselbns[level], &blocksreleased)) == 0)
allerror = error;
ffs_blkfree(&tip, bn, fs->fs_bsize);
blocksreleased += nblocks;
}
/*
* All direct blocks or frags.
*/
for (i = (NDADDR - 1); i >= 0; i--) {
if ((bn = freeblks->fb_dblks[i]) == 0)
continue;
bsize = blksize(fs, &tip, i);
ffs_blkfree(&tip, bn, bsize);
blocksreleased += btodb(bsize);
}
#ifdef DIAGNOSTIC
if (freeblks->fb_chkcnt != blocksreleased)
panic("handle_workitem_freeblocks: block count");
if (allerror)
softdep_error("handle_workitem_freeblks", allerror);
#endif /* DIAGNOSTIC */
WORKITEM_FREE(freeblks, D_FREEBLKS);
num_freeblks -= 1;
}
/*
* Release blocks associated with the inode ip and stored in the indirect
* block dbn. If level is greater than SINGLE, the block is an indirect block
* and recursive calls to indirtrunc must be used to cleanse other indirect
* blocks.
*/
static int
indir_trunc(ip, dbn, level, lbn, countp)
struct inode *ip;
ufs_daddr_t dbn;
int level;
ufs_lbn_t lbn;
long *countp;
{
struct buf *bp;
ufs_daddr_t *bap;
ufs_daddr_t nb;
struct fs *fs;
struct worklist *wk;
struct indirdep *indirdep;
int i, lbnadd, nblocks;
int error, allerror = 0;
fs = ip->i_fs;
lbnadd = 1;
for (i = level; i > 0; i--)
lbnadd *= NINDIR(fs);
/*
* Get buffer of block pointers to be freed. This routine is not
* called until the zero'ed inode has been written, so it is safe
* to free blocks as they are encountered. Because the inode has
* been zero'ed, calls to bmap on these blocks will fail. So, we
* have to use the on-disk address and the block device for the
* filesystem to look them up. If the file was deleted before its
* indirect blocks were all written to disk, the routine that set
* us up (deallocate_dependencies) will have arranged to leave
* a complete copy of the indirect block in memory for our use.
* Otherwise we have to read the blocks in from the disk.
*/
ACQUIRE_LOCK(&lk);
if ((bp = incore(ip->i_devvp, dbn)) != NULL &&
(wk = LIST_FIRST(&bp->b_dep)) != NULL) {
if (wk->wk_type != D_INDIRDEP ||
(indirdep = WK_INDIRDEP(wk))->ir_savebp != bp ||
(indirdep->ir_state & GOINGAWAY) == 0)
panic("indir_trunc: lost indirdep");
WORKLIST_REMOVE(wk);
WORKITEM_FREE(indirdep, D_INDIRDEP);
if (LIST_FIRST(&bp->b_dep) != NULL)
panic("indir_trunc: dangling dep");
FREE_LOCK(&lk);
} else {
FREE_LOCK(&lk);
error = bread(ip->i_devvp, dbn, (int)fs->fs_bsize, NOCRED, &bp);
if (error)
return (error);
}
/*
* Recursively free indirect blocks.
*/
bap = (ufs_daddr_t *)bp->b_data;
nblocks = btodb(fs->fs_bsize);
for (i = NINDIR(fs) - 1; i >= 0; i--) {
if ((nb = bap[i]) == 0)
continue;
if (level != 0) {
if ((error = indir_trunc(ip, fsbtodb(fs, nb),
level - 1, lbn + (i * lbnadd), countp)) != 0)
allerror = error;
}
ffs_blkfree(ip, nb, fs->fs_bsize);
*countp += nblocks;
}
bp->b_flags |= B_INVAL | B_NOCACHE;
brelse(bp);
return (allerror);
}
/*
* Free an allocindir.
* This routine must be called with splbio interrupts blocked.
*/
static void
free_allocindir(aip, inodedep)
struct allocindir *aip;
struct inodedep *inodedep;
{
struct freefrag *freefrag;
#ifdef DEBUG
if (lk.lkt_held == -1)
panic("free_allocindir: lock not held");
#endif
if ((aip->ai_state & DEPCOMPLETE) == 0)
LIST_REMOVE(aip, ai_deps);
if (aip->ai_state & ONWORKLIST)
WORKLIST_REMOVE(&aip->ai_list);
LIST_REMOVE(aip, ai_next);
if ((freefrag = aip->ai_freefrag) != NULL) {
if (inodedep == NULL)
add_to_worklist(&freefrag->ff_list);
else
WORKLIST_INSERT(&inodedep->id_bufwait,
&freefrag->ff_list);
}
WORKITEM_FREE(aip, D_ALLOCINDIR);
}
/*
* Directory entry addition dependencies.
*
* When adding a new directory entry, the inode (with its incremented link
* count) must be written to disk before the directory entry's pointer to it.
* Also, if the inode is newly allocated, the corresponding freemap must be
* updated (on disk) before the directory entry's pointer. These requirements
* are met via undo/redo on the directory entry's pointer, which consists
* simply of the inode number.
*
* As directory entries are added and deleted, the free space within a
* directory block can become fragmented. The ufs file system will compact
* a fragmented directory block to make space for a new entry. When this
* occurs, the offsets of previously added entries change. Any "diradd"
* dependency structures corresponding to these entries must be updated with
* the new offsets.
*/
/*
* This routine is called after the in-memory inode's link
* count has been incremented, but before the directory entry's
* pointer to the inode has been set.
*/
void
softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp)
struct buf *bp; /* buffer containing directory block */
struct inode *dp; /* inode for directory */
off_t diroffset; /* offset of new entry in directory */
long newinum; /* inode referenced by new directory entry */
struct buf *newdirbp; /* non-NULL => contents of new mkdir */
{
int offset; /* offset of new entry within directory block */
ufs_lbn_t lbn; /* block in directory containing new entry */
struct fs *fs;
struct diradd *dap;
struct pagedep *pagedep;
struct inodedep *inodedep;
struct mkdir *mkdir1, *mkdir2;
/*
* Whiteouts have no dependencies.
*/
if (newinum == WINO) {
if (newdirbp != NULL)
bdwrite(newdirbp);
return;
}
fs = dp->i_fs;
lbn = lblkno(fs, diroffset);
offset = blkoff(fs, diroffset);
MALLOC(dap, struct diradd *, sizeof(struct diradd), M_DIRADD, M_WAITOK);
bzero(dap, sizeof(struct diradd));
dap->da_list.wk_type = D_DIRADD;
dap->da_offset = offset;
dap->da_newinum = newinum;
dap->da_state = ATTACHED;
if (newdirbp == NULL) {
dap->da_state |= DEPCOMPLETE;
ACQUIRE_LOCK(&lk);
} else {
dap->da_state |= MKDIR_BODY | MKDIR_PARENT;
MALLOC(mkdir1, struct mkdir *, sizeof(struct mkdir), M_MKDIR,
M_WAITOK);
mkdir1->md_list.wk_type = D_MKDIR;
mkdir1->md_state = MKDIR_BODY;
mkdir1->md_diradd = dap;
MALLOC(mkdir2, struct mkdir *, sizeof(struct mkdir), M_MKDIR,
M_WAITOK);
mkdir2->md_list.wk_type = D_MKDIR;
mkdir2->md_state = MKDIR_PARENT;
mkdir2->md_diradd = dap;
/*
* Dependency on "." and ".." being written to disk.
*/
mkdir1->md_buf = newdirbp;
ACQUIRE_LOCK(&lk);
LIST_INSERT_HEAD(&mkdirlisthd, mkdir1, md_mkdirs);
WORKLIST_INSERT(&newdirbp->b_dep, &mkdir1->md_list);
FREE_LOCK(&lk);
bdwrite(newdirbp);
/*
* Dependency on link count increase for parent directory
*/
ACQUIRE_LOCK(&lk);
if (inodedep_lookup(dp->i_fs, dp->i_number, 0, &inodedep) == 0
|| (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
dap->da_state &= ~MKDIR_PARENT;
WORKITEM_FREE(mkdir2, D_MKDIR);
} else {
LIST_INSERT_HEAD(&mkdirlisthd, mkdir2, md_mkdirs);
WORKLIST_INSERT(&inodedep->id_bufwait,&mkdir2->md_list);
}
}
/*
* Link into parent directory pagedep to await its being written.
*/
if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
dap->da_pagedep = pagedep;
LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap,
da_pdlist);
/*
* Link into its inodedep. Put it on the id_bufwait list if the inode
* is not yet written. If it is written, do the post-inode write
* processing to put it on the id_pendinghd list.
*/
(void) inodedep_lookup(fs, newinum, DEPALLOC, &inodedep);
if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE)
diradd_inode_written(dap, inodedep);
else
WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
FREE_LOCK(&lk);
}
/*
* This procedure is called to change the offset of a directory
* entry when compacting a directory block which must be owned
* exclusively by the caller. Note that the actual entry movement
* must be done in this procedure to ensure that no I/O completions
* occur while the move is in progress.
*/
void
softdep_change_directoryentry_offset(dp, base, oldloc, newloc, entrysize)
struct inode *dp; /* inode for directory */
caddr_t base; /* address of dp->i_offset */
caddr_t oldloc; /* address of old directory location */
caddr_t newloc; /* address of new directory location */
int entrysize; /* size of directory entry */
{
int offset, oldoffset, newoffset;
struct pagedep *pagedep;
struct diradd *dap;
ufs_lbn_t lbn;
ACQUIRE_LOCK(&lk);
lbn = lblkno(dp->i_fs, dp->i_offset);
offset = blkoff(dp->i_fs, dp->i_offset);
if (pagedep_lookup(dp, lbn, 0, &pagedep) == 0)
goto done;
oldoffset = offset + (oldloc - base);
newoffset = offset + (newloc - base);
for (dap = LIST_FIRST(&pagedep->pd_diraddhd[DIRADDHASH(oldoffset)]);
dap; dap = LIST_NEXT(dap, da_pdlist)) {
if (dap->da_offset != oldoffset)
continue;
dap->da_offset = newoffset;
if (DIRADDHASH(newoffset) == DIRADDHASH(oldoffset))
break;
LIST_REMOVE(dap, da_pdlist);
LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(newoffset)],
dap, da_pdlist);
break;
}
if (dap == NULL) {
for (dap = LIST_FIRST(&pagedep->pd_pendinghd);
dap; dap = LIST_NEXT(dap, da_pdlist)) {
if (dap->da_offset == oldoffset) {
dap->da_offset = newoffset;
break;
}
}
}
done:
bcopy(oldloc, newloc, entrysize);
FREE_LOCK(&lk);
}
/*
* Free a diradd dependency structure. This routine must be called
* with splbio interrupts blocked.
*/
static void
free_diradd(dap)
struct diradd *dap;
{
struct dirrem *dirrem;
struct pagedep *pagedep;
struct inodedep *inodedep;
struct mkdir *mkdir, *nextmd;
#ifdef DEBUG
if (lk.lkt_held == -1)
panic("free_diradd: lock not held");
#endif
WORKLIST_REMOVE(&dap->da_list);
LIST_REMOVE(dap, da_pdlist);
if ((dap->da_state & DIRCHG) == 0) {
pagedep = dap->da_pagedep;
} else {
dirrem = dap->da_previous;
pagedep = dirrem->dm_pagedep;
dirrem->dm_dirinum = pagedep->pd_ino;
add_to_worklist(&dirrem->dm_list);
}
if (inodedep_lookup(VFSTOUFS(pagedep->pd_mnt)->um_fs, dap->da_newinum,
0, &inodedep) != 0)
(void) free_inodedep(inodedep);
if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) {
for (mkdir = LIST_FIRST(&mkdirlisthd); mkdir; mkdir = nextmd) {
nextmd = LIST_NEXT(mkdir, md_mkdirs);
if (mkdir->md_diradd != dap)
continue;
dap->da_state &= ~mkdir->md_state;
WORKLIST_REMOVE(&mkdir->md_list);
LIST_REMOVE(mkdir, md_mkdirs);
WORKITEM_FREE(mkdir, D_MKDIR);
}
if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0)
panic("free_diradd: unfound ref");
}
WORKITEM_FREE(dap, D_DIRADD);
}
/*
* Directory entry removal dependencies.
*
* When removing a directory entry, the entry's inode pointer must be
* zero'ed on disk before the corresponding inode's link count is decremented
* (possibly freeing the inode for re-use). This dependency is handled by
* updating the directory entry but delaying the inode count reduction until
* after the directory block has been written to disk. After this point, the
* inode count can be decremented whenever it is convenient.
*/
/*
* This routine should be called immediately after removing
* a directory entry. The inode's link count should not be
* decremented by the calling procedure -- the soft updates
* code will do this task when it is safe.
*/
void
softdep_setup_remove(bp, dp, ip, isrmdir)
struct buf *bp; /* buffer containing directory block */
struct inode *dp; /* inode for the directory being modified */
struct inode *ip; /* inode for directory entry being removed */
int isrmdir; /* indicates if doing RMDIR */
{
struct dirrem *dirrem;
/*
* Allocate a new dirrem if appropriate and ACQUIRE_LOCK.
*/
dirrem = newdirrem(bp, dp, ip, isrmdir);
if ((dirrem->dm_state & COMPLETE) == 0) {
LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem,
dm_next);
} else {
dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino;
add_to_worklist(&dirrem->dm_list);
}
FREE_LOCK(&lk);
}
/*
* Allocate a new dirrem if appropriate and return it along with
* its associated pagedep. Called without a lock, returns with lock.
*/
static struct dirrem *
newdirrem(bp, dp, ip, isrmdir)
struct buf *bp; /* buffer containing directory block */
struct inode *dp; /* inode for the directory being modified */
struct inode *ip; /* inode for directory entry being removed */
int isrmdir; /* indicates if doing RMDIR */
{
int offset;
ufs_lbn_t lbn;
struct diradd *dap;
struct dirrem *dirrem;
struct pagedep *pagedep;
/*
* Whiteouts have no deletion dependencies.
*/
if (ip == NULL)
panic("newdirrem: whiteout");
MALLOC(dirrem, struct dirrem *, sizeof(struct dirrem),
M_DIRREM, M_WAITOK);
bzero(dirrem, sizeof(struct dirrem));
dirrem->dm_list.wk_type = D_DIRREM;
dirrem->dm_state = isrmdir ? RMDIR : 0;
dirrem->dm_mnt = ITOV(ip)->v_mount;
dirrem->dm_oldinum = ip->i_number;
ACQUIRE_LOCK(&lk);
lbn = lblkno(dp->i_fs, dp->i_offset);
offset = blkoff(dp->i_fs, dp->i_offset);
if (pagedep_lookup(dp, lbn, DEPALLOC, &pagedep) == 0)
WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list);
dirrem->dm_pagedep = pagedep;
/*
* Check for a diradd dependency for the same directory entry.
* If present, then both dependencies become obsolete and can
* be de-allocated. Check for an entry on both the pd_dirraddhd
* list and the pd_pendinghd list.
*/
for (dap = LIST_FIRST(&pagedep->pd_diraddhd[DIRADDHASH(offset)]);
dap; dap = LIST_NEXT(dap, da_pdlist))
if (dap->da_offset == offset)
break;
if (dap == NULL) {
for (dap = LIST_FIRST(&pagedep->pd_pendinghd);
dap; dap = LIST_NEXT(dap, da_pdlist))
if (dap->da_offset == offset)
break;
if (dap == NULL)
return (dirrem);
}
/*
* Must be ATTACHED at this point, so just delete it.
*/
if ((dap->da_state & ATTACHED) == 0)
panic("newdirrem: not ATTACHED");
if (dap->da_newinum != ip->i_number)
panic("newdirrem: inum %d should be %d",
ip->i_number, dap->da_newinum);
free_diradd(dap);
dirrem->dm_state |= COMPLETE;
return (dirrem);
}
/*
* Directory entry change dependencies.
*
* Changing an existing directory entry requires that an add operation
* be completed first followed by a deletion. The semantics for the addition
* are identical to the description of adding a new entry above except
* that the rollback is to the old inode number rather than zero. Once
* the addition dependency is completed, the removal is done as described
* in the removal routine above.
*/
/*
* This routine should be called immediately after changing
* a directory entry. The inode's link count should not be
* decremented by the calling procedure -- the soft updates
* code will perform this task when it is safe.
*/
void
softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir)
struct buf *bp; /* buffer containing directory block */
struct inode *dp; /* inode for the directory being modified */
struct inode *ip; /* inode for directory entry being removed */
long newinum; /* new inode number for changed entry */
int isrmdir; /* indicates if doing RMDIR */
{
int offset;
struct diradd *dap = NULL;
struct dirrem *dirrem;
struct pagedep *pagedep;
struct inodedep *inodedep;
offset = blkoff(dp->i_fs, dp->i_offset);
/*
* Whiteouts do not need diradd dependencies.
*/
if (newinum != WINO) {
MALLOC(dap, struct diradd *, sizeof(struct diradd),
M_DIRADD, M_WAITOK);
bzero(dap, sizeof(struct diradd));
dap->da_list.wk_type = D_DIRADD;
dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE;
dap->da_offset = offset;
dap->da_newinum = newinum;
}
/*
* Allocate a new dirrem and ACQUIRE_LOCK.
*/
dirrem = newdirrem(bp, dp, ip, isrmdir);
pagedep = dirrem->dm_pagedep;
/*
* The possible values for isrmdir:
* 0 - non-directory file rename
* 1 - directory rename within same directory
* inum - directory rename to new directory of given inode number
* When renaming to a new directory, we are both deleting and
* creating a new directory entry, so the link count on the new
* directory should not change. Thus we do not need the followup
* dirrem which is usually done in handle_workitem_remove. We set
* the DIRCHG flag to tell handle_workitem_remove to skip the
* followup dirrem.
*/
if (isrmdir > 1)
dirrem->dm_state |= DIRCHG;
/*
* Whiteouts have no additional dependencies,
* so just put the dirrem on the correct list.
*/
if (newinum == WINO) {
if ((dirrem->dm_state & COMPLETE) == 0) {
LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem,
dm_next);
} else {
dirrem->dm_dirinum = pagedep->pd_ino;
add_to_worklist(&dirrem->dm_list);
}
FREE_LOCK(&lk);
return;
}
/*
* Link into its inodedep. Put it on the id_bufwait list if the inode
* is not yet written. If it is written, do the post-inode write
* processing to put it on the id_pendinghd list.
*/
dap->da_previous = dirrem;
if (inodedep_lookup(dp->i_fs, newinum, DEPALLOC, &inodedep) == 0 ||
(inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) {
dap->da_state |= COMPLETE;
LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
} else {
LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)],
dap, da_pdlist);
WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list);
}
/*
* If the previous inode was never written or its previous directory
* entry was never written, then we do not want to roll back to this
* previous value. Instead we want to roll back to zero and immediately
* free the unwritten or unreferenced inode.
*/
if (dirrem->dm_state & COMPLETE) {
dap->da_state &= ~DIRCHG;
dap->da_pagedep = pagedep;
dirrem->dm_dirinum = pagedep->pd_ino;
add_to_worklist(&dirrem->dm_list);
}
FREE_LOCK(&lk);
}
/*
* Called whenever the link count on an inode is increased.
* It creates an inode dependency so that the new reference(s)
* to the inode cannot be committed to disk until the updated
* inode has been written.
*/
void
softdep_increase_linkcnt(ip)
struct inode *ip; /* the inode with the increased link count */
{
struct inodedep *inodedep;
ACQUIRE_LOCK(&lk);
(void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC, &inodedep);
FREE_LOCK(&lk);
}
/*
* This workitem decrements the inode's link count.
* If the link count reaches zero, the file is removed.
*/
static void
handle_workitem_remove(dirrem)
struct dirrem *dirrem;
{
struct proc *p = CURPROC; /* XXX */
struct inodedep *inodedep;
struct vnode *vp;
struct inode *ip;
int error;
if ((error = VFS_VGET(dirrem->dm_mnt, dirrem->dm_oldinum, &vp)) != 0) {
softdep_error("handle_workitem_remove: vget", error);
return;
}
ip = VTOI(vp);
/*
* Normal file deletion.
*/
if ((dirrem->dm_state & RMDIR) == 0) {
ip->i_nlink--;
if (ip->i_nlink < ip->i_effnlink)
panic("handle_workitem_remove: bad file delta");
ip->i_flag |= IN_CHANGE;
vput(vp);
WORKITEM_FREE(dirrem, D_DIRREM);
return;
}
/*
* Directory deletion. Decrement reference count for both the
* just deleted parent directory entry and the reference for ".".
* Next truncate the directory to length zero. When the
* truncation completes, arrange to have the reference count on
* the parent decremented to account for the loss of "..".
*/
ip->i_nlink -= 2;
if (ip->i_nlink < ip->i_effnlink)
panic("handle_workitem_remove: bad dir delta");
ip->i_flag |= IN_CHANGE;
if ((error = UFS_TRUNCATE(vp, (off_t)0, 0, p->p_ucred, p)) != 0)
softdep_error("handle_workitem_remove: truncate", error);
/*
* Rename a directory to a new parent. Since, we are both deleting
* and creating a new directory entry, the link count on the new
* directory should not change. Thus we skip the followup dirrem.
*/
if (dirrem->dm_state & DIRCHG) {
vput(vp);
WORKITEM_FREE(dirrem, D_DIRREM);
return;
}
ACQUIRE_LOCK(&lk);
(void) inodedep_lookup(ip->i_fs, dirrem->dm_oldinum, DEPALLOC,
&inodedep);
dirrem->dm_state = 0;
dirrem->dm_oldinum = dirrem->dm_dirinum;
WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list);
FREE_LOCK(&lk);
vput(vp);
}
/*
* Inode de-allocation dependencies.
*
* When an inode's link count is reduced to zero, it can be de-allocated. We
* found it convenient to postpone de-allocation until after the inode is
* written to disk with its new link count (zero). At this point, all of the
* on-disk inode's block pointers are nullified and, with careful dependency
* list ordering, all dependencies related to the inode will be satisfied and
* the corresponding dependency structures de-allocated. So, if/when the
* inode is reused, there will be no mixing of old dependencies with new
* ones. This artificial dependency is set up by the block de-allocation
* procedure above (softdep_setup_freeblocks) and completed by the
* following procedure.
*/
static void
handle_workitem_freefile(freefile)
struct freefile *freefile;
{
struct vnode vp;
struct inode tip;
struct inodedep *idp;
int error;
#ifdef DEBUG
ACQUIRE_LOCK(&lk);
if (inodedep_lookup(freefile->fx_fs, freefile->fx_oldinum, 0, &idp))
panic("handle_workitem_freefile: inodedep survived");
FREE_LOCK(&lk);
#endif
tip.i_devvp = freefile->fx_devvp;
tip.i_dev = freefile->fx_devvp->v_rdev;
tip.i_fs = freefile->fx_fs;
vp.v_data = &tip;
if ((error = ffs_freefile(&vp, freefile->fx_oldinum, freefile->fx_mode)) != 0)
softdep_error("handle_workitem_freefile", error);
WORKITEM_FREE(freefile, D_FREEFILE);
num_freefile -= 1;
}
/*
* Disk writes.
*
* The dependency structures constructed above are most actively used when file
* system blocks are written to disk. No constraints are placed on when a
* block can be written, but unsatisfied update dependencies are made safe by
* modifying (or replacing) the source memory for the duration of the disk
* write. When the disk write completes, the memory block is again brought
* up-to-date.
*
* In-core inode structure reclamation.
*
* Because there are a finite number of "in-core" inode structures, they are
* reused regularly. By transferring all inode-related dependencies to the
* in-memory inode block and indexing them separately (via "inodedep"s), we
* can allow "in-core" inode structures to be reused at any time and avoid
* any increase in contention.
*
* Called just before entering the device driver to initiate a new disk I/O.
* The buffer must be locked, thus, no I/O completion operations can occur
* while we are manipulating its associated dependencies.
*/
void
softdep_disk_io_initiation(bp)
struct buf *bp; /* structure describing disk write to occur */
{
struct worklist *wk, *nextwk;
struct indirdep *indirdep;
/*
* We only care about write operations. There should never
* be dependencies for reads.
*/
if (bp->b_flags & B_READ)
panic("softdep_disk_io_initiation: read");
/*
* Do any necessary pre-I/O processing.
*/
for (wk = LIST_FIRST(&bp->b_dep); wk; wk = nextwk) {
nextwk = LIST_NEXT(wk, wk_list);
switch (wk->wk_type) {
case D_PAGEDEP:
initiate_write_filepage(WK_PAGEDEP(wk), bp);
continue;
case D_INODEDEP:
initiate_write_inodeblock(WK_INODEDEP(wk), bp);
continue;
case D_INDIRDEP:
indirdep = WK_INDIRDEP(wk);
if (indirdep->ir_state & GOINGAWAY)
panic("disk_io_initiation: indirdep gone");
/*
* If there are no remaining dependencies, this
* will be writing the real pointers, so the
* dependency can be freed.
*/
if (LIST_FIRST(&indirdep->ir_deplisthd) == NULL) {
indirdep->ir_savebp->b_flags |= B_INVAL | B_NOCACHE;
brelse(indirdep->ir_savebp);
/* inline expand WORKLIST_REMOVE(wk); */
wk->wk_state &= ~ONWORKLIST;
LIST_REMOVE(wk, wk_list);
WORKITEM_FREE(indirdep, D_INDIRDEP);
continue;
}
/*
* Replace up-to-date version with safe version.
*/
ACQUIRE_LOCK(&lk);
indirdep->ir_state &= ~ATTACHED;
indirdep->ir_state |= UNDONE;
MALLOC(indirdep->ir_saveddata, caddr_t, bp->b_bcount,
M_INDIRDEP, M_WAITOK);
bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount);
bcopy(indirdep->ir_savebp->b_data, bp->b_data,
bp->b_bcount);
FREE_LOCK(&lk);
continue;
case D_MKDIR:
case D_BMSAFEMAP:
case D_ALLOCDIRECT:
case D_ALLOCINDIR:
continue;
default:
panic("handle_disk_io_initiation: Unexpected type %s",
TYPENAME(wk->wk_type));
/* NOTREACHED */
}
}
}
/*
* Called from within the procedure above to deal with unsatisfied
* allocation dependencies in a directory. The buffer must be locked,
* thus, no I/O completion operations can occur while we are
* manipulating its associated dependencies.
*/
static void
initiate_write_filepage(pagedep, bp)
struct pagedep *pagedep;
struct buf *bp;
{
struct diradd *dap;
struct direct *ep;
int i;
if (pagedep->pd_state & IOSTARTED) {
/*
* This can only happen if there is a driver that does not
* understand chaining. Here biodone will reissue the call
* to strategy for the incomplete buffers.
*/
printf("initiate_write_filepage: already started\n");
return;
}
pagedep->pd_state |= IOSTARTED;
ACQUIRE_LOCK(&lk);
for (i = 0; i < DAHASHSZ; i++) {
for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
dap = LIST_NEXT(dap, da_pdlist)) {
ep = (struct direct *)
((char *)bp->b_data + dap->da_offset);
if (ep->d_ino != dap->da_newinum)
panic("%s: dir inum %d != new %d",
"initiate_write_filepage",
ep->d_ino, dap->da_newinum);
if (dap->da_state & DIRCHG)
ep->d_ino = dap->da_previous->dm_oldinum;
else
ep->d_ino = 0;
dap->da_state &= ~ATTACHED;
dap->da_state |= UNDONE;
}
}
FREE_LOCK(&lk);
}
/*
* Called from within the procedure above to deal with unsatisfied
* allocation dependencies in an inodeblock. The buffer must be
* locked, thus, no I/O completion operations can occur while we
* are manipulating its associated dependencies.
*/
static void
initiate_write_inodeblock(inodedep, bp)
struct inodedep *inodedep;
struct buf *bp; /* The inode block */
{
struct allocdirect *adp, *lastadp;
struct dinode *dp;
struct fs *fs;
ufs_lbn_t prevlbn = 0;
int i, deplist;
if (inodedep->id_state & IOSTARTED)
panic("initiate_write_inodeblock: already started");
inodedep->id_state |= IOSTARTED;
fs = inodedep->id_fs;
dp = (struct dinode *)bp->b_data +
ino_to_fsbo(fs, inodedep->id_ino);
/*
* If the bitmap is not yet written, then the allocated
* inode cannot be written to disk.
*/
if ((inodedep->id_state & DEPCOMPLETE) == 0) {
if (inodedep->id_savedino != NULL)
panic("initiate_write_inodeblock: already doing I/O");
MALLOC(inodedep->id_savedino, struct dinode *,
sizeof(struct dinode), M_INODEDEP, M_WAITOK);
*inodedep->id_savedino = *dp;
bzero((caddr_t)dp, sizeof(struct dinode));
return;
}
/*
* If no dependencies, then there is nothing to roll back.
*/
inodedep->id_savedsize = dp->di_size;
if (TAILQ_FIRST(&inodedep->id_inoupdt) == NULL)
return;
/*
* Set the dependencies to busy.
*/
ACQUIRE_LOCK(&lk);
for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
adp = TAILQ_NEXT(adp, ad_next)) {
#ifdef DIAGNOSTIC
if (deplist != 0 && prevlbn >= adp->ad_lbn)
panic("softdep_write_inodeblock: lbn order");
prevlbn = adp->ad_lbn;
if (adp->ad_lbn < NDADDR &&
dp->di_db[adp->ad_lbn] != adp->ad_newblkno)
panic("%s: direct pointer #%ld mismatch %d != %d",
"softdep_write_inodeblock", adp->ad_lbn,
dp->di_db[adp->ad_lbn], adp->ad_newblkno);
if (adp->ad_lbn >= NDADDR &&
dp->di_ib[adp->ad_lbn - NDADDR] != adp->ad_newblkno)
panic("%s: indirect pointer #%ld mismatch %d != %d",
"softdep_write_inodeblock", adp->ad_lbn - NDADDR,
dp->di_ib[adp->ad_lbn - NDADDR], adp->ad_newblkno);
deplist |= 1 << adp->ad_lbn;
if ((adp->ad_state & ATTACHED) == 0)
panic("softdep_write_inodeblock: Unknown state 0x%x",
adp->ad_state);
#endif /* DIAGNOSTIC */
adp->ad_state &= ~ATTACHED;
adp->ad_state |= UNDONE;
}
/*
* The on-disk inode cannot claim to be any larger than the last
* fragment that has been written. Otherwise, the on-disk inode
* might have fragments that were not the last block in the file
* which would corrupt the filesystem.
*/
for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) {
if (adp->ad_lbn >= NDADDR)
break;
dp->di_db[adp->ad_lbn] = adp->ad_oldblkno;
/* keep going until hitting a rollback to a frag */
if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize)
continue;
dp->di_size = fs->fs_bsize * adp->ad_lbn + adp->ad_oldsize;
for (i = adp->ad_lbn + 1; i < NDADDR; i++) {
#ifdef DIAGNOSTIC
if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0)
panic("softdep_write_inodeblock: lost dep1");
#endif /* DIAGNOSTIC */
dp->di_db[i] = 0;
}
for (i = 0; i < NIADDR; i++) {
#ifdef DIAGNOSTIC
if (dp->di_ib[i] != 0 &&
(deplist & ((1 << NDADDR) << i)) == 0)
panic("softdep_write_inodeblock: lost dep2");
#endif /* DIAGNOSTIC */
dp->di_ib[i] = 0;
}
FREE_LOCK(&lk);
return;
}
/*
* If we have zero'ed out the last allocated block of the file,
* roll back the size to the last currently allocated block.
* We know that this last allocated block is a full-sized as
* we already checked for fragments in the loop above.
*/
if (lastadp != NULL &&
dp->di_size <= (lastadp->ad_lbn + 1) * fs->fs_bsize) {
for (i = lastadp->ad_lbn; i >= 0; i--)
if (dp->di_db[i] != 0)
break;
dp->di_size = (i + 1) * fs->fs_bsize;
}
/*
* The only dependencies are for indirect blocks.
*
* The file size for indirect block additions is not guaranteed.
* Such a guarantee would be non-trivial to achieve. The conventional
* synchronous write implementation also does not make this guarantee.
* Fsck should catch and fix discrepancies. Arguably, the file size
* can be over-estimated without destroying integrity when the file
* moves into the indirect blocks (i.e., is large). If we want to
* postpone fsck, we are stuck with this argument.
*/
for (; adp; adp = TAILQ_NEXT(adp, ad_next))
dp->di_ib[adp->ad_lbn - NDADDR] = 0;
FREE_LOCK(&lk);
}
/*
* This routine is called during the completion interrupt
* service routine for a disk write (from the procedure called
* by the device driver to inform the file system caches of
* a request completion). It should be called early in this
* procedure, before the block is made available to other
* processes or other routines are called.
*/
void
softdep_disk_write_complete(bp)
struct buf *bp; /* describes the completed disk write */
{
struct worklist *wk;
struct workhead reattach;
struct newblk *newblk;
struct allocindir *aip;
struct allocdirect *adp;
struct indirdep *indirdep;
struct inodedep *inodedep;
struct bmsafemap *bmsafemap;
#ifdef DEBUG
if (lk.lkt_held != -1)
panic("softdep_disk_write_complete: lock is held");
lk.lkt_held = -2;
#endif
LIST_INIT(&reattach);
while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) {
WORKLIST_REMOVE(wk);
switch (wk->wk_type) {
case D_PAGEDEP:
if (handle_written_filepage(WK_PAGEDEP(wk), bp))
WORKLIST_INSERT(&reattach, wk);
continue;
case D_INODEDEP:
if (handle_written_inodeblock(WK_INODEDEP(wk), bp))
WORKLIST_INSERT(&reattach, wk);
continue;
case D_BMSAFEMAP:
bmsafemap = WK_BMSAFEMAP(wk);
while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkhd))) {
newblk->nb_state |= DEPCOMPLETE;
newblk->nb_bmsafemap = NULL;
LIST_REMOVE(newblk, nb_deps);
}
while ((adp =
LIST_FIRST(&bmsafemap->sm_allocdirecthd))) {
adp->ad_state |= DEPCOMPLETE;
adp->ad_buf = NULL;
LIST_REMOVE(adp, ad_deps);
handle_allocdirect_partdone(adp);
}
while ((aip =
LIST_FIRST(&bmsafemap->sm_allocindirhd))) {
aip->ai_state |= DEPCOMPLETE;
aip->ai_buf = NULL;
LIST_REMOVE(aip, ai_deps);
handle_allocindir_partdone(aip);
}
while ((inodedep =
LIST_FIRST(&bmsafemap->sm_inodedephd)) != NULL) {
inodedep->id_state |= DEPCOMPLETE;
LIST_REMOVE(inodedep, id_deps);
inodedep->id_buf = NULL;
}
WORKITEM_FREE(bmsafemap, D_BMSAFEMAP);
continue;
case D_MKDIR:
handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY);
continue;
case D_ALLOCDIRECT:
adp = WK_ALLOCDIRECT(wk);
adp->ad_state |= COMPLETE;
handle_allocdirect_partdone(adp);
continue;
case D_ALLOCINDIR:
aip = WK_ALLOCINDIR(wk);
aip->ai_state |= COMPLETE;
handle_allocindir_partdone(aip);
continue;
case D_INDIRDEP:
indirdep = WK_INDIRDEP(wk);
if (indirdep->ir_state & GOINGAWAY)
panic("disk_write_complete: indirdep gone");
bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount);
FREE(indirdep->ir_saveddata, M_INDIRDEP);
indirdep->ir_saveddata = 0;
indirdep->ir_state &= ~UNDONE;
indirdep->ir_state |= ATTACHED;
while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != 0) {
handle_allocindir_partdone(aip);
if (aip == LIST_FIRST(&indirdep->ir_donehd))
panic("disk_write_complete: not gone");
}
WORKLIST_INSERT(&reattach, wk);
if ((bp->b_flags & B_DELWRI) == 0)
stat_indir_blk_ptrs++;
bdirty(bp);
continue;
default:
panic("handle_disk_write_complete: Unknown type %s",
TYPENAME(wk->wk_type));
/* NOTREACHED */
}
}
/*
* Reattach any requests that must be redone.
*/
while ((wk = LIST_FIRST(&reattach)) != NULL) {
WORKLIST_REMOVE(wk);
WORKLIST_INSERT(&bp->b_dep, wk);
}
#ifdef DEBUG
if (lk.lkt_held != -2)
panic("softdep_disk_write_complete: lock lost");
lk.lkt_held = -1;
#endif
}
/*
* Called from within softdep_disk_write_complete above. Note that
* this routine is always called from interrupt level with further
* splbio interrupts blocked.
*/
static void
handle_allocdirect_partdone(adp)
struct allocdirect *adp; /* the completed allocdirect */
{
struct allocdirect *listadp;
struct inodedep *inodedep;
long bsize;
if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
return;
if (adp->ad_buf != NULL)
panic("handle_allocdirect_partdone: dangling dep");
/*
* The on-disk inode cannot claim to be any larger than the last
* fragment that has been written. Otherwise, the on-disk inode
* might have fragments that were not the last block in the file
* which would corrupt the filesystem. Thus, we cannot free any
* allocdirects after one whose ad_oldblkno claims a fragment as
* these blocks must be rolled back to zero before writing the inode.
* We check the currently active set of allocdirects in id_inoupdt.
*/
inodedep = adp->ad_inodedep;
bsize = inodedep->id_fs->fs_bsize;
for (listadp = TAILQ_FIRST(&inodedep->id_inoupdt); listadp;
listadp = TAILQ_NEXT(listadp, ad_next)) {
/* found our block */
if (listadp == adp)
break;
/* continue if ad_oldlbn is not a fragment */
if (listadp->ad_oldsize == 0 ||
listadp->ad_oldsize == bsize)
continue;
/* hit a fragment */
return;
}
/*
* If we have reached the end of the current list without
* finding the just finished dependency, then it must be
* on the future dependency list. Future dependencies cannot
* be freed until they are moved to the current list.
*/
if (listadp == NULL) {
#ifdef DEBUG
for (listadp = TAILQ_FIRST(&inodedep->id_newinoupdt); listadp;
listadp = TAILQ_NEXT(listadp, ad_next))
/* found our block */
if (listadp == adp)
break;
if (listadp == NULL)
panic("handle_allocdirect_partdone: lost dep");
#endif /* DEBUG */
return;
}
/*
* If we have found the just finished dependency, then free
* it along with anything that follows it that is complete.
*/
for (; adp; adp = listadp) {
listadp = TAILQ_NEXT(adp, ad_next);
if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE)
return;
free_allocdirect(&inodedep->id_inoupdt, adp, 1);
}
}
/*
* Called from within softdep_disk_write_complete above. Note that
* this routine is always called from interrupt level with further
* splbio interrupts blocked.
*/
static void
handle_allocindir_partdone(aip)
struct allocindir *aip; /* the completed allocindir */
{
struct indirdep *indirdep;
if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE)
return;
if (aip->ai_buf != NULL)
panic("handle_allocindir_partdone: dangling dependency");
indirdep = aip->ai_indirdep;
if (indirdep->ir_state & UNDONE) {
LIST_REMOVE(aip, ai_next);
LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next);
return;
}
((ufs_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] =
aip->ai_newblkno;
LIST_REMOVE(aip, ai_next);
if (aip->ai_freefrag != NULL)
add_to_worklist(&aip->ai_freefrag->ff_list);
WORKITEM_FREE(aip, D_ALLOCINDIR);
}
/*
* Called from within softdep_disk_write_complete above to restore
* in-memory inode block contents to their most up-to-date state. Note
* that this routine is always called from interrupt level with further
* splbio interrupts blocked.
*/
static int
handle_written_inodeblock(inodedep, bp)
struct inodedep *inodedep;
struct buf *bp; /* buffer containing the inode block */
{
struct worklist *wk, *filefree;
struct allocdirect *adp, *nextadp;
struct dinode *dp;
int hadchanges;
if ((inodedep->id_state & IOSTARTED) == 0)
panic("handle_written_inodeblock: not started");
inodedep->id_state &= ~IOSTARTED;
inodedep->id_state |= COMPLETE;
dp = (struct dinode *)bp->b_data +
ino_to_fsbo(inodedep->id_fs, inodedep->id_ino);
/*
* If we had to rollback the inode allocation because of
* bitmaps being incomplete, then simply restore it.
* Keep the block dirty so that it will not be reclaimed until
* all associated dependencies have been cleared and the
* corresponding updates written to disk.
*/
if (inodedep->id_savedino != NULL) {
*dp = *inodedep->id_savedino;
FREE(inodedep->id_savedino, M_INODEDEP);
inodedep->id_savedino = NULL;
if ((bp->b_flags & B_DELWRI) == 0)
stat_inode_bitmap++;
bdirty(bp);
return (1);
}
/*
* Roll forward anything that had to be rolled back before
* the inode could be updated.
*/
hadchanges = 0;
for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) {
nextadp = TAILQ_NEXT(adp, ad_next);
if (adp->ad_state & ATTACHED)
panic("handle_written_inodeblock: new entry");
if (adp->ad_lbn < NDADDR) {
if (dp->di_db[adp->ad_lbn] != adp->ad_oldblkno)
panic("%s: %s #%ld mismatch %d != %d",
"handle_written_inodeblock",
"direct pointer", adp->ad_lbn,
dp->di_db[adp->ad_lbn], adp->ad_oldblkno);
dp->di_db[adp->ad_lbn] = adp->ad_newblkno;
} else {
if (dp->di_ib[adp->ad_lbn - NDADDR] != 0)
panic("%s: %s #%ld allocated as %d",
"handle_written_inodeblock",
"indirect pointer", adp->ad_lbn - NDADDR,
dp->di_ib[adp->ad_lbn - NDADDR]);
dp->di_ib[adp->ad_lbn - NDADDR] = adp->ad_newblkno;
}
adp->ad_state &= ~UNDONE;
adp->ad_state |= ATTACHED;
hadchanges = 1;
}
if (hadchanges && (bp->b_flags & B_DELWRI) == 0)
stat_direct_blk_ptrs++;
/*
* Reset the file size to its most up-to-date value.
*/
if (inodedep->id_savedsize == -1)
panic("handle_written_inodeblock: bad size");
if (dp->di_size != inodedep->id_savedsize) {
dp->di_size = inodedep->id_savedsize;
hadchanges = 1;
}
inodedep->id_savedsize = -1;
/*
* If there were any rollbacks in the inode block, then it must be
* marked dirty so that its will eventually get written back in
* its correct form.
*/
if (hadchanges)
bdirty(bp);
/*
* Process any allocdirects that completed during the update.
*/
if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL)
handle_allocdirect_partdone(adp);
/*
* Process deallocations that were held pending until the
* inode had been written to disk. Freeing of the inode
* is delayed until after all blocks have been freed to
* avoid creation of new <vfsid, inum, lbn> triples
* before the old ones have been deleted.
*/
filefree = NULL;
while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) {
WORKLIST_REMOVE(wk);
switch (wk->wk_type) {
case D_FREEFILE:
/*
* We defer adding filefree to the worklist until
* all other additions have been made to ensure
* that it will be done after all the old blocks
* have been freed.
*/
if (filefree != NULL)
panic("handle_written_inodeblock: filefree");
filefree = wk;
continue;
case D_MKDIR:
handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT);
continue;
case D_DIRADD:
diradd_inode_written(WK_DIRADD(wk), inodedep);
continue;
case D_FREEBLKS:
case D_FREEFRAG:
case D_DIRREM:
add_to_worklist(wk);
continue;
default:
panic("handle_written_inodeblock: Unknown type %s",
TYPENAME(wk->wk_type));
/* NOTREACHED */
}
}
if (filefree != NULL) {
if (free_inodedep(inodedep) == 0)
panic("handle_written_inodeblock: live inodedep");
add_to_worklist(filefree);
return (0);
}
/*
* If no outstanding dependencies, free it.
*/
if (free_inodedep(inodedep) || TAILQ_FIRST(&inodedep->id_inoupdt) == 0)
return (0);
return (hadchanges);
}
/*
* Process a diradd entry after its dependent inode has been written.
* This routine must be called with splbio interrupts blocked.
*/
static void
diradd_inode_written(dap, inodedep)
struct diradd *dap;
struct inodedep *inodedep;
{
struct pagedep *pagedep;
dap->da_state |= COMPLETE;
if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
if (dap->da_state & DIRCHG)
pagedep = dap->da_previous->dm_pagedep;
else
pagedep = dap->da_pagedep;
LIST_REMOVE(dap, da_pdlist);
LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
}
WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list);
}
/*
* Handle the completion of a mkdir dependency.
*/
static void
handle_written_mkdir(mkdir, type)
struct mkdir *mkdir;
int type;
{
struct diradd *dap;
struct pagedep *pagedep;
if (mkdir->md_state != type)
panic("handle_written_mkdir: bad type");
dap = mkdir->md_diradd;
dap->da_state &= ~type;
if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0)
dap->da_state |= DEPCOMPLETE;
if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
if (dap->da_state & DIRCHG)
pagedep = dap->da_previous->dm_pagedep;
else
pagedep = dap->da_pagedep;
LIST_REMOVE(dap, da_pdlist);
LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist);
}
LIST_REMOVE(mkdir, md_mkdirs);
WORKITEM_FREE(mkdir, D_MKDIR);
}
/*
* Called from within softdep_disk_write_complete above.
* A write operation was just completed. Removed inodes can
* now be freed and associated block pointers may be committed.
* Note that this routine is always called from interrupt level
* with further splbio interrupts blocked.
*/
static int
handle_written_filepage(pagedep, bp)
struct pagedep *pagedep;
struct buf *bp; /* buffer containing the written page */
{
struct dirrem *dirrem;
struct diradd *dap, *nextdap;
struct direct *ep;
int i, chgs;
if ((pagedep->pd_state & IOSTARTED) == 0)
panic("handle_written_filepage: not started");
pagedep->pd_state &= ~IOSTARTED;
/*
* Process any directory removals that have been committed.
*/
while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) {
LIST_REMOVE(dirrem, dm_next);
dirrem->dm_dirinum = pagedep->pd_ino;
add_to_worklist(&dirrem->dm_list);
}
/*
* Free any directory additions that have been committed.
*/
while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL)
free_diradd(dap);
/*
* Uncommitted directory entries must be restored.
*/
for (chgs = 0, i = 0; i < DAHASHSZ; i++) {
for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap;
dap = nextdap) {
nextdap = LIST_NEXT(dap, da_pdlist);
if (dap->da_state & ATTACHED)
panic("handle_written_filepage: attached");
ep = (struct direct *)
((char *)bp->b_data + dap->da_offset);
ep->d_ino = dap->da_newinum;
dap->da_state &= ~UNDONE;
dap->da_state |= ATTACHED;
chgs = 1;
/*
* If the inode referenced by the directory has
* been written out, then the dependency can be
* moved to the pending list.
*/
if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) {
LIST_REMOVE(dap, da_pdlist);
LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap,
da_pdlist);
}
}
}
/*
* If there were any rollbacks in the directory, then it must be
* marked dirty so that its will eventually get written back in
* its correct form.
*/
if (chgs) {
if ((bp->b_flags & B_DELWRI) == 0)
stat_dir_entry++;
bdirty(bp);
}
/*
* If no dependencies remain, the pagedep will be freed.
* Otherwise it will remain to update the page before it
* is written back to disk.
*/
if (LIST_FIRST(&pagedep->pd_pendinghd) == 0) {
for (i = 0; i < DAHASHSZ; i++)
if (LIST_FIRST(&pagedep->pd_diraddhd[i]) != NULL)
break;
if (i == DAHASHSZ) {
LIST_REMOVE(pagedep, pd_hash);
WORKITEM_FREE(pagedep, D_PAGEDEP);
return (0);
}
}
return (1);
}
/*
* Writing back in-core inode structures.
*
* The file system only accesses an inode's contents when it occupies an
* "in-core" inode structure. These "in-core" structures are separate from
* the page frames used to cache inode blocks. Only the latter are
* transferred to/from the disk. So, when the updated contents of the
* "in-core" inode structure are copied to the corresponding in-memory inode
* block, the dependencies are also transferred. The following procedure is
* called when copying a dirty "in-core" inode to a cached inode block.
*/
/*
* Called when an inode is loaded from disk. If the effective link count
* differed from the actual link count when it was last flushed, then we
* need to ensure that the correct effective link count is put back.
*/
void
softdep_load_inodeblock(ip)
struct inode *ip; /* the "in_core" copy of the inode */
{
struct inodedep *inodedep;
/*
* Check for alternate nlink count.
*/
ip->i_effnlink = ip->i_nlink;
ACQUIRE_LOCK(&lk);
if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
FREE_LOCK(&lk);
return;
}
if (inodedep->id_nlinkdelta != 0) {
ip->i_effnlink -= inodedep->id_nlinkdelta;
ip->i_flag |= IN_MODIFIED;
inodedep->id_nlinkdelta = 0;
(void) free_inodedep(inodedep);
}
FREE_LOCK(&lk);
}
/*
* This routine is called just before the "in-core" inode
* information is to be copied to the in-memory inode block.
* Recall that an inode block contains several inodes. If
* the force flag is set, then the dependencies will be
* cleared so that the update can always be made. Note that
* the buffer is locked when this routine is called, so we
* will never be in the middle of writing the inode block
* to disk.
*/
void
softdep_update_inodeblock(ip, bp, waitfor)
struct inode *ip; /* the "in_core" copy of the inode */
struct buf *bp; /* the buffer containing the inode block */
int waitfor; /* nonzero => update must be allowed */
{
struct inodedep *inodedep;
struct worklist *wk;
int error, gotit;
/*
* If the effective link count is not equal to the actual link
* count, then we must track the difference in an inodedep while
* the inode is (potentially) tossed out of the cache. Otherwise,
* if there is no existing inodedep, then there are no dependencies
* to track.
*/
ACQUIRE_LOCK(&lk);
if (ip->i_effnlink != ip->i_nlink) {
(void) inodedep_lookup(ip->i_fs, ip->i_number, DEPALLOC,
&inodedep);
} else if (inodedep_lookup(ip->i_fs, ip->i_number, 0, &inodedep) == 0) {
FREE_LOCK(&lk);
return;
}
if (ip->i_nlink < ip->i_effnlink)
panic("softdep_update_inodeblock: bad delta");
inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink;
/*
* Changes have been initiated. Anything depending on these
* changes cannot occur until this inode has been written.
*/
inodedep->id_state &= ~COMPLETE;
if ((inodedep->id_state & ONWORKLIST) == 0)
WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list);
/*
* Any new dependencies associated with the incore inode must
* now be moved to the list associated with the buffer holding
* the in-memory copy of the inode. Once merged process any
* allocdirects that are completed by the merger.
*/
merge_inode_lists(inodedep);
if (TAILQ_FIRST(&inodedep->id_inoupdt) != NULL)
handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt));
/*
* Now that the inode has been pushed into the buffer, the
* operations dependent on the inode being written to disk
* can be moved to the id_bufwait so that they will be
* processed when the buffer I/O completes.
*/
while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) {
WORKLIST_REMOVE(wk);
WORKLIST_INSERT(&inodedep->id_bufwait, wk);
}
/*
* Newly allocated inodes cannot be written until the bitmap
* that allocates them have been written (indicated by
* DEPCOMPLETE being set in id_state). If we are doing a
* forced sync (e.g., an fsync on a file), we force the bitmap
* to be written so that the update can be done.
*/
if ((inodedep->id_state & DEPCOMPLETE) != 0 || waitfor == 0) {
FREE_LOCK(&lk);
return;
}
gotit = getdirtybuf(&inodedep->id_buf, MNT_WAIT);
FREE_LOCK(&lk);
if (gotit &&
(error = VOP_BWRITE(inodedep->id_buf->b_vp, inodedep->id_buf)) != 0)
softdep_error("softdep_update_inodeblock: bwrite", error);
if ((inodedep->id_state & DEPCOMPLETE) == 0)
panic("softdep_update_inodeblock: update failed");
}
/*
* Merge the new inode dependency list (id_newinoupdt) into the old
* inode dependency list (id_inoupdt). This routine must be called
* with splbio interrupts blocked.
*/
static void
merge_inode_lists(inodedep)
struct inodedep *inodedep;
{
struct allocdirect *listadp, *newadp;
newadp = TAILQ_FIRST(&inodedep->id_newinoupdt);
for (listadp = TAILQ_FIRST(&inodedep->id_inoupdt); listadp && newadp;) {
if (listadp->ad_lbn < newadp->ad_lbn) {
listadp = TAILQ_NEXT(listadp, ad_next);
continue;
}
TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next);
TAILQ_INSERT_BEFORE(listadp, newadp, ad_next);
if (listadp->ad_lbn == newadp->ad_lbn) {
allocdirect_merge(&inodedep->id_inoupdt, newadp,
listadp);
listadp = newadp;
}
newadp = TAILQ_FIRST(&inodedep->id_newinoupdt);
}
while ((newadp = TAILQ_FIRST(&inodedep->id_newinoupdt)) != NULL) {
TAILQ_REMOVE(&inodedep->id_newinoupdt, newadp, ad_next);
TAILQ_INSERT_TAIL(&inodedep->id_inoupdt, newadp, ad_next);
}
}
/*
* If we are doing an fsync, then we must ensure that any directory
* entries for the inode have been written after the inode gets to disk.
*/
int
softdep_fsync(vp)
struct vnode *vp; /* the "in_core" copy of the inode */
{
struct diradd *dap, *olddap;
struct inodedep *inodedep;
struct pagedep *pagedep;
struct worklist *wk;
struct mount *mnt;
struct vnode *pvp;
struct inode *ip;
struct buf *bp;
struct fs *fs;
struct proc *p = CURPROC; /* XXX */
int error, ret, flushparent;
ino_t parentino;
ufs_lbn_t lbn;
ip = VTOI(vp);
fs = ip->i_fs;
for (error = 0, flushparent = 0, olddap = NULL; ; ) {
ACQUIRE_LOCK(&lk);
if (inodedep_lookup(fs, ip->i_number, 0, &inodedep) == 0)
break;
if (LIST_FIRST(&inodedep->id_inowait) != NULL ||
LIST_FIRST(&inodedep->id_bufwait) != NULL ||
TAILQ_FIRST(&inodedep->id_inoupdt) != NULL ||
TAILQ_FIRST(&inodedep->id_newinoupdt) != NULL)
panic("softdep_fsync: pending ops");
if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL)
break;
if (wk->wk_type != D_DIRADD)
panic("softdep_fsync: Unexpected type %s",
TYPENAME(wk->wk_type));
dap = WK_DIRADD(wk);
/*
* If we have failed to get rid of all the dependencies
* then something is seriously wrong.
*/
if (dap == olddap)
panic("softdep_fsync: flush failed");
olddap = dap;
/*
* Flush our parent if this directory entry
* has a MKDIR_PARENT dependency.
*/
if (dap->da_state & DIRCHG)
pagedep = dap->da_previous->dm_pagedep;
else
pagedep = dap->da_pagedep;
mnt = pagedep->pd_mnt;
parentino = pagedep->pd_ino;
lbn = pagedep->pd_lbn;
if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE)
panic("softdep_fsync: dirty");
flushparent = dap->da_state & MKDIR_PARENT;
/*
* If we are being fsync'ed as part of vgone'ing this vnode,
* then we will not be able to release and recover the
* vnode below, so we just have to give up on writing its
* directory entry out. It will eventually be written, just
* not now, but then the user was not asking to have it
* written, so we are not breaking any promises.
*/
if (vp->v_flag & VXLOCK)
break;
/*
* We prevent deadlock by always fetching inodes from the
* root, moving down the directory tree. Thus, when fetching
* our parent directory, we must unlock ourselves before
* requesting the lock on our parent. See the comment in
* ufs_lookup for details on possible races.
*/
FREE_LOCK(&lk);
VOP_UNLOCK(vp, 0, p);
if ((error = VFS_VGET(mnt, parentino, &pvp)) != 0) {
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p);
return (error);
}
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, p);
if (flushparent) {
if ((error = UFS_UPDATE(pvp, 1)) != 0) {
vput(pvp);
return (error);
}
}
/*
* Flush directory page containing the inode's name.
*/
error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), p->p_ucred,
&bp);
ret = VOP_BWRITE(bp->b_vp, bp);
vput(pvp);
if (error != 0)
return (error);
if (ret != 0)
return (ret);
}
FREE_LOCK(&lk);
return (0);
}
/*
* Flush all the dirty bitmaps associated with the block device
* before flushing the rest of the dirty blocks so as to reduce
* the number of dependencies that will have to be rolled back.
*/
void
softdep_fsync_mountdev(vp)
struct vnode *vp;
{
struct buf *bp, *nbp;
struct worklist *wk;
if (vp->v_type != VBLK)
panic("softdep_fsync_mountdev: vnode not VBLK");
ACQUIRE_LOCK(&lk);
for (bp = TAILQ_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
nbp = TAILQ_NEXT(bp, b_vnbufs);
/*
* If it is already scheduled, skip to the next buffer.
*/
if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT))
continue;
if ((bp->b_flags & B_DELWRI) == 0)
panic("softdep_fsync_mountdev: not dirty");
/*
* We are only interested in bitmaps with outstanding
* dependencies.
*/
if ((wk = LIST_FIRST(&bp->b_dep)) == NULL ||
wk->wk_type != D_BMSAFEMAP) {
BUF_UNLOCK(bp);
continue;
}
bremfree(bp);
FREE_LOCK(&lk);
(void) bawrite(bp);
ACQUIRE_LOCK(&lk);
/*
* Since we may have slept during the I/O, we need
* to start from a known point.
*/
nbp = TAILQ_FIRST(&vp->v_dirtyblkhd);
}
drain_output(vp, 1);
FREE_LOCK(&lk);
}
/*
* This routine is called when we are trying to synchronously flush a
* file. This routine must eliminate any filesystem metadata dependencies
* so that the syncing routine can succeed by pushing the dirty blocks
* associated with the file. If any I/O errors occur, they are returned.
*/
int
softdep_sync_metadata(ap)
struct vop_fsync_args /* {
struct vnode *a_vp;
struct ucred *a_cred;
int a_waitfor;
struct proc *a_p;
} */ *ap;
{
struct vnode *vp = ap->a_vp;
struct pagedep *pagedep;
struct allocdirect *adp;
struct allocindir *aip;
struct buf *bp, *nbp;
struct worklist *wk;
int i, error, waitfor;
/*
* Check whether this vnode is involved in a filesystem
* that is doing soft dependency processing.
*/
if (vp->v_type != VBLK) {
if (!DOINGSOFTDEP(vp))
return (0);
} else
if (vp->v_specmountpoint == NULL ||
(vp->v_specmountpoint->mnt_flag & MNT_SOFTDEP) == 0)
return (0);
/*
* Ensure that any direct block dependencies have been cleared.
*/
ACQUIRE_LOCK(&lk);
if ((error = flush_inodedep_deps(VTOI(vp)->i_fs, VTOI(vp)->i_number))) {
FREE_LOCK(&lk);
return (error);
}
/*
* For most files, the only metadata dependencies are the
* cylinder group maps that allocate their inode or blocks.
* The block allocation dependencies can be found by traversing
* the dependency lists for any buffers that remain on their
* dirty buffer list. The inode allocation dependency will
* be resolved when the inode is updated with MNT_WAIT.
* This work is done in two passes. The first pass grabs most
* of the buffers and begins asynchronously writing them. The
* only way to wait for these asynchronous writes is to sleep
* on the filesystem vnode which may stay busy for a long time
* if the filesystem is active. So, instead, we make a second
* pass over the dependencies blocking on each write. In the
* usual case we will be blocking against a write that we
* initiated, so when it is done the dependency will have been
* resolved. Thus the second pass is expected to end quickly.
*/
waitfor = MNT_NOWAIT;
top:
if (getdirtybuf(&TAILQ_FIRST(&vp->v_dirtyblkhd), MNT_WAIT) == 0) {
FREE_LOCK(&lk);
return (0);
}
bp = TAILQ_FIRST(&vp->v_dirtyblkhd);
loop:
/*
* As we hold the buffer locked, none of its dependencies
* will disappear.
*/
for (wk = LIST_FIRST(&bp->b_dep); wk;
wk = LIST_NEXT(wk, wk_list)) {
switch (wk->wk_type) {
case D_ALLOCDIRECT:
adp = WK_ALLOCDIRECT(wk);
if (adp->ad_state & DEPCOMPLETE)
break;
nbp = adp->ad_buf;
if (getdirtybuf(&nbp, waitfor) == 0)
break;
FREE_LOCK(&lk);
if (waitfor == MNT_NOWAIT) {
bawrite(nbp);
} else if ((error = VOP_BWRITE(nbp->b_vp, nbp)) != 0) {
bawrite(bp);
return (error);
}
ACQUIRE_LOCK(&lk);
break;
case D_ALLOCINDIR:
aip = WK_ALLOCINDIR(wk);
if (aip->ai_state & DEPCOMPLETE)
break;
nbp = aip->ai_buf;
if (getdirtybuf(&nbp, waitfor) == 0)
break;
FREE_LOCK(&lk);
if (waitfor == MNT_NOWAIT) {
bawrite(nbp);
} else if ((error = VOP_BWRITE(nbp->b_vp, nbp)) != 0) {
bawrite(bp);
return (error);
}
ACQUIRE_LOCK(&lk);
break;
case D_INDIRDEP:
restart:
for (aip = LIST_FIRST(&WK_INDIRDEP(wk)->ir_deplisthd);
aip; aip = LIST_NEXT(aip, ai_next)) {
if (aip->ai_state & DEPCOMPLETE)
continue;
nbp = aip->ai_buf;
if (getdirtybuf(&nbp, MNT_WAIT) == 0)
goto restart;
FREE_LOCK(&lk);
if ((error = VOP_BWRITE(nbp->b_vp, nbp)) != 0) {
bawrite(bp);
return (error);
}
ACQUIRE_LOCK(&lk);
goto restart;
}
break;
case D_INODEDEP:
if ((error = flush_inodedep_deps(WK_INODEDEP(wk)->id_fs,
WK_INODEDEP(wk)->id_ino)) != 0) {
FREE_LOCK(&lk);
bawrite(bp);
return (error);
}
break;
case D_PAGEDEP:
/*
* We are trying to sync a directory that may
* have dependencies on both its own metadata
* and/or dependencies on the inodes of any
* recently allocated files. We walk its diradd
* lists pushing out the associated inode.
*/
pagedep = WK_PAGEDEP(wk);
for (i = 0; i < DAHASHSZ; i++) {
if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0)
continue;
if ((error =
flush_pagedep_deps(vp, pagedep->pd_mnt,
&pagedep->pd_diraddhd[i]))) {
FREE_LOCK(&lk);
bawrite(bp);
return (error);
}
}
break;
case D_MKDIR:
/*
* This case should never happen if the vnode has
* been properly sync'ed. However, if this function
* is used at a place where the vnode has not yet
* been sync'ed, this dependency can show up. So,
* rather than panic, just flush it.
*/
nbp = WK_MKDIR(wk)->md_buf;
if (getdirtybuf(&nbp, waitfor) == 0)
break;
FREE_LOCK(&lk);
if (waitfor == MNT_NOWAIT) {
bawrite(nbp);
} else if ((error = VOP_BWRITE(nbp->b_vp, nbp)) != 0) {
bawrite(bp);
return (error);
}
ACQUIRE_LOCK(&lk);
break;
case D_BMSAFEMAP:
/*
* This case should never happen if the vnode has
* been properly sync'ed. However, if this function
* is used at a place where the vnode has not yet
* been sync'ed, this dependency can show up. So,
* rather than panic, just flush it.
*/
nbp = WK_BMSAFEMAP(wk)->sm_buf;
if (getdirtybuf(&nbp, waitfor) == 0)
break;
FREE_LOCK(&lk);
if (waitfor == MNT_NOWAIT) {
bawrite(nbp);
} else if ((error = VOP_BWRITE(nbp->b_vp, nbp)) != 0) {
bawrite(bp);
return (error);
}
ACQUIRE_LOCK(&lk);
break;
default:
panic("softdep_sync_metadata: Unknown type %s",
TYPENAME(wk->wk_type));
/* NOTREACHED */
}
}
(void) getdirtybuf(&TAILQ_NEXT(bp, b_vnbufs), MNT_WAIT);
nbp = TAILQ_NEXT(bp, b_vnbufs);
FREE_LOCK(&lk);
bawrite(bp);
ACQUIRE_LOCK(&lk);
if (nbp != NULL) {
bp = nbp;
goto loop;
}
/*
* We must wait for any I/O in progress to finish so that
* all potential buffers on the dirty list will be visible.
* Once they are all there, proceed with the second pass
* which will wait for the I/O as per above.
*/
drain_output(vp, 1);
/*
* The brief unlock is to allow any pent up dependency
* processing to be done.
*/
if (waitfor == MNT_NOWAIT) {
waitfor = MNT_WAIT;
FREE_LOCK(&lk);
ACQUIRE_LOCK(&lk);
goto top;
}
/*
* If we have managed to get rid of all the dirty buffers,
* then we are done. For certain directories and block
* devices, we may need to do further work.
*/
if (TAILQ_FIRST(&vp->v_dirtyblkhd) == NULL) {
FREE_LOCK(&lk);
return (0);
}
FREE_LOCK(&lk);
/*
* If we are trying to sync a block device, some of its buffers may
* contain metadata that cannot be written until the contents of some
* partially written files have been written to disk. The only easy
* way to accomplish this is to sync the entire filesystem (luckily
* this happens rarely).
*/
if (vp->v_type == VBLK && vp->v_specmountpoint && !VOP_ISLOCKED(vp) &&
(error = VFS_SYNC(vp->v_specmountpoint, MNT_WAIT, ap->a_cred,
ap->a_p)) != 0)
return (error);
return (0);
}
/*
* Flush the dependencies associated with an inodedep.
* Called with splbio blocked.
*/
static int
flush_inodedep_deps(fs, ino)
struct fs *fs;
ino_t ino;
{
struct inodedep *inodedep;
struct allocdirect *adp;
int error, waitfor;
struct buf *bp;
/*
* This work is done in two passes. The first pass grabs most
* of the buffers and begins asynchronously writing them. The
* only way to wait for these asynchronous writes is to sleep
* on the filesystem vnode which may stay busy for a long time
* if the filesystem is active. So, instead, we make a second
* pass over the dependencies blocking on each write. In the
* usual case we will be blocking against a write that we
* initiated, so when it is done the dependency will have been
* resolved. Thus the second pass is expected to end quickly.
* We give a brief window at the top of the loop to allow
* any pending I/O to complete.
*/
for (waitfor = MNT_NOWAIT; ; ) {
FREE_LOCK(&lk);
ACQUIRE_LOCK(&lk);
if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
return (0);
for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp;
adp = TAILQ_NEXT(adp, ad_next)) {
if (adp->ad_state & DEPCOMPLETE)
continue;
bp = adp->ad_buf;
if (getdirtybuf(&bp, waitfor) == 0) {
if (waitfor == MNT_NOWAIT)
continue;
break;
}
FREE_LOCK(&lk);
if (waitfor == MNT_NOWAIT) {
bawrite(bp);
} else if ((error = VOP_BWRITE(bp->b_vp, bp)) != 0) {
ACQUIRE_LOCK(&lk);
return (error);
}
ACQUIRE_LOCK(&lk);
break;
}
if (adp != NULL)
continue;
for (adp = TAILQ_FIRST(&inodedep->id_newinoupdt); adp;
adp = TAILQ_NEXT(adp, ad_next)) {
if (adp->ad_state & DEPCOMPLETE)
continue;
bp = adp->ad_buf;
if (getdirtybuf(&bp, waitfor) == 0) {
if (waitfor == MNT_NOWAIT)
continue;
break;
}
FREE_LOCK(&lk);
if (waitfor == MNT_NOWAIT) {
bawrite(bp);
} else if ((error = VOP_BWRITE(bp->b_vp, bp)) != 0) {
ACQUIRE_LOCK(&lk);
return (error);
}
ACQUIRE_LOCK(&lk);
break;
}
if (adp != NULL)
continue;
/*
* If pass2, we are done, otherwise do pass 2.
*/
if (waitfor == MNT_WAIT)
break;
waitfor = MNT_WAIT;
}
/*
* Try freeing inodedep in case all dependencies have been removed.
*/
if (inodedep_lookup(fs, ino, 0, &inodedep) != 0)
(void) free_inodedep(inodedep);
return (0);
}
/*
* Eliminate a pagedep dependency by flushing out all its diradd dependencies.
* Called with splbio blocked.
*/
static int
flush_pagedep_deps(pvp, mp, diraddhdp)
struct vnode *pvp;
struct mount *mp;
struct diraddhd *diraddhdp;
{
struct proc *p = CURPROC; /* XXX */
struct inodedep *inodedep;
struct ufsmount *ump;
struct diradd *dap;
struct vnode *vp;
int gotit, error = 0;
struct buf *bp;
ino_t inum;
ump = VFSTOUFS(mp);
while ((dap = LIST_FIRST(diraddhdp)) != NULL) {
/*
* Flush ourselves if this directory entry
* has a MKDIR_PARENT dependency.
*/
if (dap->da_state & MKDIR_PARENT) {
FREE_LOCK(&lk);
if ((error = UFS_UPDATE(pvp, 1)) != 0)
break;
ACQUIRE_LOCK(&lk);
/*
* If that cleared dependencies, go on to next.
*/
if (dap != LIST_FIRST(diraddhdp))
continue;
if (dap->da_state & MKDIR_PARENT)
panic("flush_pagedep_deps: MKDIR");
}
/*
* Flush the file on which the directory entry depends.
* If the inode has already been pushed out of the cache,
* then all the block dependencies will have been flushed
* leaving only inode dependencies (e.g., bitmaps). Thus,
* we do a ufs_ihashget to check for the vnode in the cache.
* If it is there, we do a full flush. If it is no longer
* there we need only dispose of any remaining bitmap
* dependencies and write the inode to disk.
*/
inum = dap->da_newinum;
FREE_LOCK(&lk);
if ((vp = ufs_ihashget(ump->um_dev, inum)) == NULL) {
ACQUIRE_LOCK(&lk);
if (inodedep_lookup(ump->um_fs, inum, 0, &inodedep) == 0
&& dap == LIST_FIRST(diraddhdp))
panic("flush_pagedep_deps: flush 1 failed");
/*
* If the inode still has bitmap dependencies,
* push them to disk.
*/
if ((inodedep->id_state & DEPCOMPLETE) == 0) {
gotit = getdirtybuf(&inodedep->id_buf,MNT_WAIT);
FREE_LOCK(&lk);
if (gotit &&
(error = VOP_BWRITE(inodedep->id_buf->b_vp,
inodedep->id_buf)) != 0)
break;
ACQUIRE_LOCK(&lk);
}
if (dap != LIST_FIRST(diraddhdp))
continue;
/*
* If the inode is still sitting in a buffer waiting
* to be written, push it to disk.
*/
FREE_LOCK(&lk);
if ((error = bread(ump->um_devvp,
fsbtodb(ump->um_fs, ino_to_fsba(ump->um_fs, inum)),
(int)ump->um_fs->fs_bsize, NOCRED, &bp)) != 0)
break;
if ((error = VOP_BWRITE(bp->b_vp, bp)) != 0)
break;
ACQUIRE_LOCK(&lk);
if (dap == LIST_FIRST(diraddhdp))
panic("flush_pagedep_deps: flush 2 failed");
continue;
}
if (vp->v_type == VDIR) {
/*
* A newly allocated directory must have its "." and
* ".." entries written out before its name can be
* committed in its parent. We do not want or need
* the full semantics of a synchronous VOP_FSYNC as
* that may end up here again, once for each directory
* level in the filesystem. Instead, we push the blocks
* and wait for them to clear.
*/
if ((error =
VOP_FSYNC(vp, p->p_ucred, MNT_NOWAIT, p))) {
vput(vp);
break;
}
drain_output(vp, 0);
}
error = UFS_UPDATE(vp, 1);
vput(vp);
if (error)
break;
/*
* If we have failed to get rid of all the dependencies
* then something is seriously wrong.
*/
if (dap == LIST_FIRST(diraddhdp))
panic("flush_pagedep_deps: flush 3 failed");
ACQUIRE_LOCK(&lk);
}
if (error)
ACQUIRE_LOCK(&lk);
return (error);
}
/*
* A large burst of file addition or deletion activity can drive the
* memory load excessively high. Therefore we deliberately slow things
* down and speed up the I/O processing if we find ourselves with too
* many dependencies in progress.
*/
static int
request_cleanup(resource, islocked)
int resource;
int islocked;
{
struct callout_handle handle;
struct proc *p = CURPROC;
/*
* We never hold up the filesystem syncer process.
*/
if (p == filesys_syncer)
return (0);
/*
* If we are resource constrained on inode dependencies, try
* flushing some dirty inodes. Otherwise, we are constrained
* by file deletions, so try accelerating flushes of directories
* with removal dependencies. We would like to do the cleanup
* here, but we probably hold an inode locked at this point and
* that might deadlock against one that we try to clean. So,
* the best that we can do is request the syncer daemon to do
* the cleanup for us.
*/
switch (resource) {
case FLUSH_INODES:
stat_ino_limit_push += 1;
req_clear_inodedeps = 1;
break;
case FLUSH_REMOVE:
stat_blk_limit_push += 1;
req_clear_remove = 1;
break;
default:
panic("request_cleanup: unknown type");
}
/*
* Hopefully the syncer daemon will catch up and awaken us.
* We wait at most tickdelay before proceeding in any case.
*/
if (islocked == 0)
ACQUIRE_LOCK(&lk);
if (proc_waiting == 0) {
proc_waiting = 1;
handle = timeout(pause_timer, NULL,
tickdelay > 2 ? tickdelay : 2);
}
FREE_LOCK_INTERLOCKED(&lk);
(void) tsleep((caddr_t)&proc_waiting, PPAUSE | PCATCH, "softupdate", 0);
ACQUIRE_LOCK_INTERLOCKED(&lk);
if (proc_waiting) {
untimeout(pause_timer, NULL, handle);
proc_waiting = 0;
} else {
switch (resource) {
case FLUSH_INODES:
stat_ino_limit_hit += 1;
break;
case FLUSH_REMOVE:
stat_blk_limit_hit += 1;
break;
}
}
if (islocked == 0)
FREE_LOCK(&lk);
return (1);
}
/*
* Awaken processes pausing in request_cleanup and clear proc_waiting
* to indicate that there is no longer a timer running.
*/
void
pause_timer(arg)
void *arg;
{
proc_waiting = 0;
wakeup(&proc_waiting);
}
/*
* Flush out a directory with at least one removal dependency in an effort
* to reduce the number of freefile and freeblks dependency structures.
*/
static void
clear_remove(p)
struct proc *p;
{
struct pagedep_hashhead *pagedephd;
struct pagedep *pagedep;
static int next = 0;
struct mount *mp;
struct vnode *vp;
int error, cnt;
ino_t ino;
ACQUIRE_LOCK(&lk);
for (cnt = 0; cnt < pagedep_hash; cnt++) {
pagedephd = &pagedep_hashtbl[next++];
if (next >= pagedep_hash)
next = 0;
for (pagedep = LIST_FIRST(pagedephd); pagedep;
pagedep = LIST_NEXT(pagedep, pd_hash)) {
if (LIST_FIRST(&pagedep->pd_dirremhd) == NULL)
continue;
mp = pagedep->pd_mnt;
ino = pagedep->pd_ino;
FREE_LOCK(&lk);
if ((error = VFS_VGET(mp, ino, &vp)) != 0) {
softdep_error("clear_remove: vget", error);
return;
}
if ((error = VOP_FSYNC(vp, p->p_ucred, MNT_NOWAIT, p)))
softdep_error("clear_remove: fsync", error);
drain_output(vp, 0);
vput(vp);
return;
}
}
FREE_LOCK(&lk);
}
/*
* Clear out a block of dirty inodes in an effort to reduce
* the number of inodedep dependency structures.
*/
static void
clear_inodedeps(p)
struct proc *p;
{
struct inodedep_hashhead *inodedephd;
struct inodedep *inodedep;
static int next = 0;
struct mount *mp;
struct vnode *vp;
struct fs *fs;
int error, cnt;
ino_t firstino, lastino, ino;
ACQUIRE_LOCK(&lk);
/*
* Pick a random inode dependency to be cleared.
* We will then gather up all the inodes in its block
* that have dependencies and flush them out.
*/
for (cnt = 0; cnt < inodedep_hash; cnt++) {
inodedephd = &inodedep_hashtbl[next++];
if (next >= inodedep_hash)
next = 0;
if ((inodedep = LIST_FIRST(inodedephd)) != NULL)
break;
}
/*
* Ugly code to find mount point given pointer to superblock.
*/
fs = inodedep->id_fs;
for (mp = CIRCLEQ_FIRST(&mountlist); mp != (void *)&mountlist;
mp = CIRCLEQ_NEXT(mp, mnt_list))
if ((mp->mnt_flag & MNT_SOFTDEP) && fs == VFSTOUFS(mp)->um_fs)
break;
/*
* Find the last inode in the block with dependencies.
*/
firstino = inodedep->id_ino & ~(INOPB(fs) - 1);
for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--)
if (inodedep_lookup(fs, lastino, 0, &inodedep) != 0)
break;
/*
* Asynchronously push all but the last inode with dependencies.
* Synchronously push the last inode with dependencies to ensure
* that the inode block gets written to free up the inodedeps.
*/
for (ino = firstino; ino <= lastino; ino++) {
if (inodedep_lookup(fs, ino, 0, &inodedep) == 0)
continue;
FREE_LOCK(&lk);
if ((error = VFS_VGET(mp, ino, &vp)) != 0) {
softdep_error("clear_inodedeps: vget", error);
return;
}
if (ino == lastino) {
if ((error = VOP_FSYNC(vp, p->p_ucred, MNT_WAIT, p)))
softdep_error("clear_inodedeps: fsync1", error);
} else {
if ((error = VOP_FSYNC(vp, p->p_ucred, MNT_NOWAIT, p)))
softdep_error("clear_inodedeps: fsync2", error);
drain_output(vp, 0);
}
vput(vp);
ACQUIRE_LOCK(&lk);
}
FREE_LOCK(&lk);
}
/*
* Acquire exclusive access to a buffer.
* Must be called with splbio blocked.
* Return 1 if buffer was acquired.
*/
static int
getdirtybuf(bpp, waitfor)
struct buf **bpp;
int waitfor;
{
struct buf *bp;
for (;;) {
if ((bp = *bpp) == NULL)
return (0);
if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT) == 0)
break;
if (waitfor != MNT_WAIT)
return (0);
FREE_LOCK_INTERLOCKED(&lk);
if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL) != ENOLCK)
panic("getdirtybuf: inconsistent lock");
ACQUIRE_LOCK_INTERLOCKED(&lk);
}
if ((bp->b_flags & B_DELWRI) == 0) {
BUF_UNLOCK(bp);
return (0);
}
bremfree(bp);
return (1);
}
/*
* Wait for pending output on a vnode to complete.
* Must be called with vnode locked.
*/
static void
drain_output(vp, islocked)
struct vnode *vp;
int islocked;
{
if (!islocked)
ACQUIRE_LOCK(&lk);
while (vp->v_numoutput) {
vp->v_flag |= VBWAIT;
FREE_LOCK_INTERLOCKED(&lk);
tsleep((caddr_t)&vp->v_numoutput, PRIBIO + 1, "drainvp", 0);
ACQUIRE_LOCK_INTERLOCKED(&lk);
}
if (!islocked)
FREE_LOCK(&lk);
}
/*
* Called whenever a buffer that is being invalidated or reallocated
* contains dependencies. This should only happen if an I/O error has
* occurred. The routine is called with the buffer locked.
*/
void
softdep_deallocate_dependencies(bp)
struct buf *bp;
{
if ((bp->b_flags & B_ERROR) == 0)
panic("softdep_deallocate_dependencies: dangling deps");
softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error);
panic("softdep_deallocate_dependencies: unrecovered I/O error");
}
/*
* Function to handle asynchronous write errors in the filesystem.
*/
void
softdep_error(func, error)
char *func;
int error;
{
/* XXX should do something better! */
printf("%s: got error %d while accessing filesystem\n", func, error);
}