freebsd-dev/contrib/kyua/utils/datetime.cpp
Brooks Davis b0d29bc47d Import the kyua test framework.
Having kyua in the base system will simplify automated testing in CI and
eliminates bootstrapping issues on new platforms.

The build of kyua is controlled by WITH(OUT)_TESTS_SUPPORT.

Reviewed by:	emaste
Obtained from:	CheriBSD
Sponsored by:	DARPA
Differential Revision:	https://reviews.freebsd.org/D24103
2020-03-23 19:01:23 +00:00

614 lines
17 KiB
C++

// Copyright 2010 The Kyua Authors.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "utils/datetime.hpp"
extern "C" {
#include <sys/time.h>
#include <time.h>
}
#include <stdexcept>
#include "utils/format/macros.hpp"
#include "utils/optional.ipp"
#include "utils/noncopyable.hpp"
#include "utils/sanity.hpp"
namespace datetime = utils::datetime;
using utils::none;
using utils::optional;
namespace {
/// Fake value for the current time.
static optional< datetime::timestamp > mock_now = none;
} // anonymous namespace
/// Creates a zero time delta.
datetime::delta::delta(void) :
seconds(0),
useconds(0)
{
}
/// Creates a time delta.
///
/// \param seconds_ The seconds in the delta.
/// \param useconds_ The microseconds in the delta.
///
/// \throw std::runtime_error If the input delta is negative.
datetime::delta::delta(const int64_t seconds_,
const unsigned long useconds_) :
seconds(seconds_),
useconds(useconds_)
{
if (seconds_ < 0) {
throw std::runtime_error(F("Negative deltas are not supported by the "
"datetime::delta class; got: %s") % (*this));
}
}
/// Converts a time expressed in microseconds to a delta.
///
/// \param useconds The amount of microseconds representing the delta.
///
/// \return A new delta object.
///
/// \throw std::runtime_error If the input delta is negative.
datetime::delta
datetime::delta::from_microseconds(const int64_t useconds)
{
if (useconds < 0) {
throw std::runtime_error(F("Negative deltas are not supported by the "
"datetime::delta class; got: %sus") %
useconds);
}
return delta(useconds / 1000000, useconds % 1000000);
}
/// Convers the delta to a flat representation expressed in microseconds.
///
/// \return The amount of microseconds that corresponds to this delta.
int64_t
datetime::delta::to_microseconds(void) const
{
return seconds * 1000000 + useconds;
}
/// Checks if two time deltas are equal.
///
/// \param other The object to compare to.
///
/// \return True if the two time deltas are equals; false otherwise.
bool
datetime::delta::operator==(const datetime::delta& other) const
{
return seconds == other.seconds && useconds == other.useconds;
}
/// Checks if two time deltas are different.
///
/// \param other The object to compare to.
///
/// \return True if the two time deltas are different; false otherwise.
bool
datetime::delta::operator!=(const datetime::delta& other) const
{
return !(*this == other);
}
/// Checks if this time delta is shorter than another one.
///
/// \param other The object to compare to.
///
/// \return True if this time delta is shorter than other; false otherwise.
bool
datetime::delta::operator<(const datetime::delta& other) const
{
return seconds < other.seconds ||
(seconds == other.seconds && useconds < other.useconds);
}
/// Checks if this time delta is shorter than or equal to another one.
///
/// \param other The object to compare to.
///
/// \return True if this time delta is shorter than or equal to; false
/// otherwise.
bool
datetime::delta::operator<=(const datetime::delta& other) const
{
return (*this) < other || (*this) == other;
}
/// Checks if this time delta is larger than another one.
///
/// \param other The object to compare to.
///
/// \return True if this time delta is larger than other; false otherwise.
bool
datetime::delta::operator>(const datetime::delta& other) const
{
return seconds > other.seconds ||
(seconds == other.seconds && useconds > other.useconds);
}
/// Checks if this time delta is larger than or equal to another one.
///
/// \param other The object to compare to.
///
/// \return True if this time delta is larger than or equal to; false
/// otherwise.
bool
datetime::delta::operator>=(const datetime::delta& other) const
{
return (*this) > other || (*this) == other;
}
/// Adds a time delta to this one.
///
/// \param other The time delta to add.
///
/// \return The addition of this time delta with the other time delta.
datetime::delta
datetime::delta::operator+(const datetime::delta& other) const
{
return delta::from_microseconds(to_microseconds() +
other.to_microseconds());
}
/// Adds a time delta to this one and updates this with the result.
///
/// \param other The time delta to add.
///
/// \return The addition of this time delta with the other time delta.
datetime::delta&
datetime::delta::operator+=(const datetime::delta& other)
{
*this = *this + other;
return *this;
}
/// Scales this delta by a positive integral factor.
///
/// \param factor The scaling factor.
///
/// \return The scaled delta.
datetime::delta
datetime::delta::operator*(const std::size_t factor) const
{
return delta::from_microseconds(to_microseconds() * factor);
}
/// Scales this delta by and updates this delta with the result.
///
/// \param factor The scaling factor.
///
/// \return The scaled delta as a reference to the input object.
datetime::delta&
datetime::delta::operator*=(const std::size_t factor)
{
*this = *this * factor;
return *this;
}
/// Injects the object into a stream.
///
/// \param output The stream into which to inject the object.
/// \param object The object to format.
///
/// \return The output stream.
std::ostream&
datetime::operator<<(std::ostream& output, const delta& object)
{
return (output << object.to_microseconds() << "us");
}
namespace utils {
namespace datetime {
/// Internal representation for datetime::timestamp.
struct timestamp::impl : utils::noncopyable {
/// The raw timestamp as provided by libc.
::timeval data;
/// Constructs an impl object from initialized data.
///
/// \param data_ The raw timestamp to use.
impl(const ::timeval& data_) : data(data_)
{
}
};
} // namespace datetime
} // namespace utils
/// Constructs a new timestamp.
///
/// \param pimpl_ An existing impl representation.
datetime::timestamp::timestamp(std::shared_ptr< impl > pimpl_) :
_pimpl(pimpl_)
{
}
/// Constructs a timestamp from the amount of microseconds since the epoch.
///
/// \param value Microseconds since the epoch in UTC. Must be positive.
///
/// \return A new timestamp.
datetime::timestamp
datetime::timestamp::from_microseconds(const int64_t value)
{
PRE(value >= 0);
::timeval data;
data.tv_sec = static_cast< time_t >(value / 1000000);
data.tv_usec = static_cast< suseconds_t >(value % 1000000);
return timestamp(std::shared_ptr< impl >(new impl(data)));
}
/// Constructs a timestamp based on user-friendly values.
///
/// \param year The year in the [1900,inf) range.
/// \param month The month in the [1,12] range.
/// \param day The day in the [1,30] range.
/// \param hour The hour in the [0,23] range.
/// \param minute The minute in the [0,59] range.
/// \param second The second in the [0,60] range. Yes, that is 60, which can be
/// the case on leap seconds.
/// \param microsecond The microsecond in the [0,999999] range.
///
/// \return A new timestamp.
datetime::timestamp
datetime::timestamp::from_values(const int year, const int month,
const int day, const int hour,
const int minute, const int second,
const int microsecond)
{
PRE(year >= 1900);
PRE(month >= 1 && month <= 12);
PRE(day >= 1 && day <= 30);
PRE(hour >= 0 && hour <= 23);
PRE(minute >= 0 && minute <= 59);
PRE(second >= 0 && second <= 60);
PRE(microsecond >= 0 && microsecond <= 999999);
// The code below is quite convoluted. The problem is that we can't assume
// that some fields (like tm_zone) of ::tm exist, and thus we can't blindly
// set them from the code. Instead of detecting their presence in the
// configure script, we just query the current time to initialize such
// fields and then we override the ones we are interested in. (There might
// be some better way to do this, but I don't know it and the documentation
// does not shed much light into how to create your own fake date.)
const time_t current_time = ::time(NULL);
::tm timedata;
if (::gmtime_r(&current_time, &timedata) == NULL)
UNREACHABLE;
timedata.tm_sec = second;
timedata.tm_min = minute;
timedata.tm_hour = hour;
timedata.tm_mday = day;
timedata.tm_mon = month - 1;
timedata.tm_year = year - 1900;
// Ignored: timedata.tm_wday
// Ignored: timedata.tm_yday
::timeval data;
data.tv_sec = ::mktime(&timedata);
data.tv_usec = static_cast< suseconds_t >(microsecond);
return timestamp(std::shared_ptr< impl >(new impl(data)));
}
/// Constructs a new timestamp representing the current time in UTC.
///
/// \return A new timestamp.
datetime::timestamp
datetime::timestamp::now(void)
{
if (mock_now)
return mock_now.get();
::timeval data;
{
const int ret = ::gettimeofday(&data, NULL);
INV(ret != -1);
}
return timestamp(std::shared_ptr< impl >(new impl(data)));
}
/// Formats a timestamp.
///
/// \param format The format string to use as consumed by strftime(3).
///
/// \return The formatted time.
std::string
datetime::timestamp::strftime(const std::string& format) const
{
::tm timedata;
// This conversion to time_t is necessary because tv_sec is not guaranteed
// to be a time_t. For example, it isn't in NetBSD 5.x
::time_t epoch_seconds;
epoch_seconds = _pimpl->data.tv_sec;
if (::gmtime_r(&epoch_seconds, &timedata) == NULL)
UNREACHABLE_MSG("gmtime_r(3) did not accept the value returned by "
"gettimeofday(2)");
char buf[128];
if (::strftime(buf, sizeof(buf), format.c_str(), &timedata) == 0)
UNREACHABLE_MSG("Arbitrary-long format strings are unimplemented");
return buf;
}
/// Formats a timestamp with the ISO 8601 standard and in UTC.
///
/// \return A string with the formatted timestamp.
std::string
datetime::timestamp::to_iso8601_in_utc(void) const
{
return F("%s.%06sZ") % strftime("%Y-%m-%dT%H:%M:%S") % _pimpl->data.tv_usec;
}
/// Returns the number of microseconds since the epoch in UTC.
///
/// \return A number of microseconds.
int64_t
datetime::timestamp::to_microseconds(void) const
{
return static_cast< int64_t >(_pimpl->data.tv_sec) * 1000000 +
_pimpl->data.tv_usec;
}
/// Returns the number of seconds since the epoch in UTC.
///
/// \return A number of seconds.
int64_t
datetime::timestamp::to_seconds(void) const
{
return static_cast< int64_t >(_pimpl->data.tv_sec);
}
/// Sets the current time for testing purposes.
void
datetime::set_mock_now(const int year, const int month,
const int day, const int hour,
const int minute, const int second,
const int microsecond)
{
mock_now = timestamp::from_values(year, month, day, hour, minute, second,
microsecond);
}
/// Sets the current time for testing purposes.
///
/// \param mock_now_ The mock timestamp to set the time to.
void
datetime::set_mock_now(const timestamp& mock_now_)
{
mock_now = mock_now_;
}
/// Checks if two timestamps are equal.
///
/// \param other The object to compare to.
///
/// \return True if the two timestamps are equals; false otherwise.
bool
datetime::timestamp::operator==(const datetime::timestamp& other) const
{
return _pimpl->data.tv_sec == other._pimpl->data.tv_sec &&
_pimpl->data.tv_usec == other._pimpl->data.tv_usec;
}
/// Checks if two timestamps are different.
///
/// \param other The object to compare to.
///
/// \return True if the two timestamps are different; false otherwise.
bool
datetime::timestamp::operator!=(const datetime::timestamp& other) const
{
return !(*this == other);
}
/// Checks if a timestamp is before another.
///
/// \param other The object to compare to.
///
/// \return True if this timestamp comes before other; false otherwise.
bool
datetime::timestamp::operator<(const datetime::timestamp& other) const
{
return to_microseconds() < other.to_microseconds();
}
/// Checks if a timestamp is before or equal to another.
///
/// \param other The object to compare to.
///
/// \return True if this timestamp comes before other or is equal to it;
/// false otherwise.
bool
datetime::timestamp::operator<=(const datetime::timestamp& other) const
{
return to_microseconds() <= other.to_microseconds();
}
/// Checks if a timestamp is after another.
///
/// \param other The object to compare to.
///
/// \return True if this timestamp comes after other; false otherwise;
bool
datetime::timestamp::operator>(const datetime::timestamp& other) const
{
return to_microseconds() > other.to_microseconds();
}
/// Checks if a timestamp is after or equal to another.
///
/// \param other The object to compare to.
///
/// \return True if this timestamp comes after other or is equal to it;
/// false otherwise.
bool
datetime::timestamp::operator>=(const datetime::timestamp& other) const
{
return to_microseconds() >= other.to_microseconds();
}
/// Calculates the addition of a delta to a timestamp.
///
/// \param other The delta to add.
///
/// \return A new timestamp in the future.
datetime::timestamp
datetime::timestamp::operator+(const datetime::delta& other) const
{
return datetime::timestamp::from_microseconds(to_microseconds() +
other.to_microseconds());
}
/// Calculates the addition of a delta to this timestamp.
///
/// \param other The delta to add.
///
/// \return A reference to the modified timestamp.
datetime::timestamp&
datetime::timestamp::operator+=(const datetime::delta& other)
{
*this = *this + other;
return *this;
}
/// Calculates the subtraction of a delta from a timestamp.
///
/// \param other The delta to subtract.
///
/// \return A new timestamp in the past.
datetime::timestamp
datetime::timestamp::operator-(const datetime::delta& other) const
{
return datetime::timestamp::from_microseconds(to_microseconds() -
other.to_microseconds());
}
/// Calculates the subtraction of a delta from this timestamp.
///
/// \param other The delta to subtract.
///
/// \return A reference to the modified timestamp.
datetime::timestamp&
datetime::timestamp::operator-=(const datetime::delta& other)
{
*this = *this - other;
return *this;
}
/// Calculates the delta between two timestamps.
///
/// \param other The subtrahend.
///
/// \return The difference between this object and the other object.
///
/// \throw std::runtime_error If the subtraction would result in a negative time
/// delta, which are currently not supported.
datetime::delta
datetime::timestamp::operator-(const datetime::timestamp& other) const
{
if ((*this) < other) {
throw std::runtime_error(
F("Cannot subtract %s from %s as it would result in a negative "
"datetime::delta, which are not supported") % other % (*this));
}
return datetime::delta::from_microseconds(to_microseconds() -
other.to_microseconds());
}
/// Injects the object into a stream.
///
/// \param output The stream into which to inject the object.
/// \param object The object to format.
///
/// \return The output stream.
std::ostream&
datetime::operator<<(std::ostream& output, const timestamp& object)
{
return (output << object.to_microseconds() << "us");
}