767173cec2
Update 4.2.8p14 --> 4.2.8p15 Summary: Systems that use a CMAC algorithm in ntp.keys will not release a bit of memory on each packet that uses a CMAC keyid, eventually causing ntpd to run out of memory and fail. The CMAC cleanup from https://bugs.ntp.org/3447, part of ntp-4.2.8p11, introduced a bug whereby the CMAC data structure was no longer completely removed. MFC after: 3 days Security: NTP Bug 3661
728 lines
18 KiB
C
728 lines
18 KiB
C
/*
|
|
* ntp_timer.c - event timer support routines
|
|
*/
|
|
#ifdef HAVE_CONFIG_H
|
|
# include <config.h>
|
|
#endif
|
|
|
|
#include "ntp_machine.h"
|
|
#include "ntpd.h"
|
|
#include "ntp_stdlib.h"
|
|
#include "ntp_calendar.h"
|
|
#include "ntp_leapsec.h"
|
|
|
|
#if defined(HAVE_IO_COMPLETION_PORT)
|
|
# include "ntp_iocompletionport.h"
|
|
# include "ntp_timer.h"
|
|
#endif
|
|
|
|
#include <stdio.h>
|
|
#include <signal.h>
|
|
#ifdef HAVE_SYS_SIGNAL_H
|
|
# include <sys/signal.h>
|
|
#endif
|
|
#ifdef HAVE_UNISTD_H
|
|
# include <unistd.h>
|
|
#endif
|
|
|
|
#ifdef KERNEL_PLL
|
|
#include "ntp_syscall.h"
|
|
#endif /* KERNEL_PLL */
|
|
|
|
#ifdef AUTOKEY
|
|
#include <openssl/rand.h>
|
|
#endif /* AUTOKEY */
|
|
|
|
|
|
/* TC_ERR represents the timer_create() error return value. */
|
|
#ifdef SYS_VXWORKS
|
|
#define TC_ERR ERROR
|
|
#else
|
|
#define TC_ERR (-1)
|
|
#endif
|
|
|
|
|
|
static void check_leapsec(u_int32, const time_t*, int/*BOOL*/);
|
|
|
|
/*
|
|
* These routines provide support for the event timer. The timer is
|
|
* implemented by an interrupt routine which sets a flag once every
|
|
* second, and a timer routine which is called when the mainline code
|
|
* gets around to seeing the flag. The timer routine dispatches the
|
|
* clock adjustment code if its time has come, then searches the timer
|
|
* queue for expiries which are dispatched to the transmit procedure.
|
|
* Finally, we call the hourly procedure to do cleanup and print a
|
|
* message.
|
|
*/
|
|
volatile int interface_interval; /* init_io() sets def. 300s */
|
|
|
|
/*
|
|
* Initializing flag. All async routines watch this and only do their
|
|
* thing when it is clear.
|
|
*/
|
|
int initializing;
|
|
|
|
/*
|
|
* Alarm flag. The mainline code imports this.
|
|
*/
|
|
volatile int alarm_flag;
|
|
|
|
/*
|
|
* The counters and timeouts
|
|
*/
|
|
static u_long interface_timer; /* interface update timer */
|
|
static u_long adjust_timer; /* second timer */
|
|
static u_long stats_timer; /* stats timer */
|
|
static u_long leapf_timer; /* Report leapfile problems once/day */
|
|
static u_long huffpuff_timer; /* huff-n'-puff timer */
|
|
static u_long worker_idle_timer;/* next check for idle intres */
|
|
u_long leapsec; /* seconds to next leap (proximity class) */
|
|
int leapdif; /* TAI difference step at next leap second*/
|
|
u_long orphwait; /* orphan wait time */
|
|
#ifdef AUTOKEY
|
|
static u_long revoke_timer; /* keys revoke timer */
|
|
static u_long keys_timer; /* session key timer */
|
|
u_char sys_revoke = KEY_REVOKE; /* keys revoke timeout (log2 s) */
|
|
u_char sys_automax = NTP_AUTOMAX; /* key list timeout (log2 s) */
|
|
#endif /* AUTOKEY */
|
|
|
|
/*
|
|
* Statistics counter for the interested.
|
|
*/
|
|
volatile u_long alarm_overflow;
|
|
|
|
u_long current_time; /* seconds since startup */
|
|
|
|
/*
|
|
* Stats. Number of overflows and number of calls to transmit().
|
|
*/
|
|
u_long timer_timereset;
|
|
u_long timer_overflows;
|
|
u_long timer_xmtcalls;
|
|
|
|
#if defined(VMS)
|
|
static int vmstimer[2]; /* time for next timer AST */
|
|
static int vmsinc[2]; /* timer increment */
|
|
#endif /* VMS */
|
|
|
|
#ifdef SYS_WINNT
|
|
HANDLE WaitableTimerHandle;
|
|
#else
|
|
static RETSIGTYPE alarming (int);
|
|
#endif /* SYS_WINNT */
|
|
|
|
#if !defined(VMS)
|
|
# if !defined SYS_WINNT || defined(SYS_CYGWIN32)
|
|
# ifdef HAVE_TIMER_CREATE
|
|
static timer_t timer_id;
|
|
typedef struct itimerspec intervaltimer;
|
|
# define itv_frac tv_nsec
|
|
# else
|
|
typedef struct itimerval intervaltimer;
|
|
# define itv_frac tv_usec
|
|
# endif
|
|
intervaltimer itimer;
|
|
# endif
|
|
#endif
|
|
|
|
#if !defined(SYS_WINNT) && !defined(VMS)
|
|
void set_timer_or_die(const intervaltimer *);
|
|
#endif
|
|
|
|
|
|
#if !defined(SYS_WINNT) && !defined(VMS)
|
|
void
|
|
set_timer_or_die(
|
|
const intervaltimer * ptimer
|
|
)
|
|
{
|
|
const char * setfunc;
|
|
int rc;
|
|
|
|
# ifdef HAVE_TIMER_CREATE
|
|
setfunc = "timer_settime";
|
|
rc = timer_settime(timer_id, 0, &itimer, NULL);
|
|
# else
|
|
setfunc = "setitimer";
|
|
rc = setitimer(ITIMER_REAL, &itimer, NULL);
|
|
# endif
|
|
if (-1 == rc) {
|
|
msyslog(LOG_ERR, "interval timer %s failed, %m",
|
|
setfunc);
|
|
exit(1);
|
|
}
|
|
}
|
|
#endif /* !SYS_WINNT && !VMS */
|
|
|
|
|
|
/*
|
|
* reinit_timer - reinitialize interval timer after a clock step.
|
|
*/
|
|
void
|
|
reinit_timer(void)
|
|
{
|
|
#if !defined(SYS_WINNT) && !defined(VMS)
|
|
ZERO(itimer);
|
|
# ifdef HAVE_TIMER_CREATE
|
|
timer_gettime(timer_id, &itimer);
|
|
# else
|
|
getitimer(ITIMER_REAL, &itimer);
|
|
# endif
|
|
if (itimer.it_value.tv_sec < 0 ||
|
|
itimer.it_value.tv_sec > (1 << EVENT_TIMEOUT))
|
|
itimer.it_value.tv_sec = (1 << EVENT_TIMEOUT);
|
|
if (itimer.it_value.itv_frac < 0)
|
|
itimer.it_value.itv_frac = 0;
|
|
if (0 == itimer.it_value.tv_sec &&
|
|
0 == itimer.it_value.itv_frac)
|
|
itimer.it_value.tv_sec = (1 << EVENT_TIMEOUT);
|
|
itimer.it_interval.tv_sec = (1 << EVENT_TIMEOUT);
|
|
itimer.it_interval.itv_frac = 0;
|
|
set_timer_or_die(&itimer);
|
|
# endif /* VMS */
|
|
}
|
|
|
|
|
|
/*
|
|
* init_timer - initialize the timer data structures
|
|
*/
|
|
void
|
|
init_timer(void)
|
|
{
|
|
/*
|
|
* Initialize...
|
|
*/
|
|
alarm_flag = FALSE;
|
|
alarm_overflow = 0;
|
|
adjust_timer = 1;
|
|
stats_timer = SECSPERHR;
|
|
leapf_timer = SECSPERDAY;
|
|
huffpuff_timer = 0;
|
|
interface_timer = 0;
|
|
current_time = 0;
|
|
timer_overflows = 0;
|
|
timer_xmtcalls = 0;
|
|
timer_timereset = 0;
|
|
|
|
#ifndef SYS_WINNT
|
|
/*
|
|
* Set up the alarm interrupt. The first comes 2**EVENT_TIMEOUT
|
|
* seconds from now and they continue on every 2**EVENT_TIMEOUT
|
|
* seconds.
|
|
*/
|
|
# ifndef VMS
|
|
# ifdef HAVE_TIMER_CREATE
|
|
if (TC_ERR == timer_create(CLOCK_REALTIME, NULL, &timer_id)) {
|
|
msyslog(LOG_ERR, "timer_create failed, %m");
|
|
exit(1);
|
|
}
|
|
# endif
|
|
signal_no_reset(SIGALRM, alarming);
|
|
itimer.it_interval.tv_sec =
|
|
itimer.it_value.tv_sec = (1 << EVENT_TIMEOUT);
|
|
itimer.it_interval.itv_frac = itimer.it_value.itv_frac = 0;
|
|
set_timer_or_die(&itimer);
|
|
# else /* VMS follows */
|
|
vmsinc[0] = 10000000; /* 1 sec */
|
|
vmsinc[1] = 0;
|
|
lib$emul(&(1<<EVENT_TIMEOUT), &vmsinc, &0, &vmsinc);
|
|
|
|
sys$gettim(&vmstimer); /* that's "now" as abstime */
|
|
|
|
lib$addx(&vmsinc, &vmstimer, &vmstimer);
|
|
sys$setimr(0, &vmstimer, alarming, alarming, 0);
|
|
# endif /* VMS */
|
|
#else /* SYS_WINNT follows */
|
|
/*
|
|
* Set up timer interrupts for every 2**EVENT_TIMEOUT seconds
|
|
* Under Windows/NT,
|
|
*/
|
|
|
|
WaitableTimerHandle = CreateWaitableTimer(NULL, FALSE, NULL);
|
|
if (WaitableTimerHandle == NULL) {
|
|
msyslog(LOG_ERR, "CreateWaitableTimer failed: %m");
|
|
exit(1);
|
|
}
|
|
else {
|
|
DWORD Period;
|
|
LARGE_INTEGER DueTime;
|
|
BOOL rc;
|
|
|
|
Period = (1 << EVENT_TIMEOUT) * 1000;
|
|
DueTime.QuadPart = Period * 10000i64;
|
|
rc = SetWaitableTimer(WaitableTimerHandle, &DueTime,
|
|
Period, NULL, NULL, FALSE);
|
|
if (!rc) {
|
|
msyslog(LOG_ERR, "SetWaitableTimer failed: %m");
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
#endif /* SYS_WINNT */
|
|
}
|
|
|
|
|
|
/*
|
|
* intres_timeout_req(s) is invoked in the parent to schedule an idle
|
|
* timeout to fire in s seconds, if not reset earlier by a call to
|
|
* intres_timeout_req(0), which clears any pending timeout. When the
|
|
* timeout expires, worker_idle_timer_fired() is invoked (again, in the
|
|
* parent).
|
|
*
|
|
* sntp and ntpd each provide implementations adapted to their timers.
|
|
*/
|
|
void
|
|
intres_timeout_req(
|
|
u_int seconds /* 0 cancels */
|
|
)
|
|
{
|
|
#if defined(HAVE_DROPROOT) && defined(NEED_EARLY_FORK)
|
|
if (droproot) {
|
|
worker_idle_timer = 0;
|
|
return;
|
|
}
|
|
#endif
|
|
if (0 == seconds) {
|
|
worker_idle_timer = 0;
|
|
return;
|
|
}
|
|
worker_idle_timer = current_time + seconds;
|
|
}
|
|
|
|
|
|
/*
|
|
* timer - event timer
|
|
*/
|
|
void
|
|
timer(void)
|
|
{
|
|
struct peer * p;
|
|
struct peer * next_peer;
|
|
l_fp now;
|
|
time_t tnow;
|
|
|
|
/*
|
|
* The basic timerevent is one second. This is used to adjust the
|
|
* system clock in time and frequency, implement the kiss-o'-death
|
|
* function and the association polling function.
|
|
*/
|
|
current_time++;
|
|
if (adjust_timer <= current_time) {
|
|
adjust_timer += 1;
|
|
adj_host_clock();
|
|
#ifdef REFCLOCK
|
|
for (p = peer_list; p != NULL; p = next_peer) {
|
|
next_peer = p->p_link;
|
|
if (FLAG_REFCLOCK & p->flags)
|
|
refclock_timer(p);
|
|
}
|
|
#endif /* REFCLOCK */
|
|
}
|
|
|
|
/*
|
|
* Now dispatch any peers whose event timer has expired. Be
|
|
* careful here, since the peer structure might go away as the
|
|
* result of the call.
|
|
*/
|
|
for (p = peer_list; p != NULL; p = next_peer) {
|
|
next_peer = p->p_link;
|
|
|
|
/*
|
|
* Restrain the non-burst packet rate not more
|
|
* than one packet every 16 seconds. This is
|
|
* usually tripped using iburst and minpoll of
|
|
* 128 s or less.
|
|
*/
|
|
if (p->throttle > 0)
|
|
p->throttle--;
|
|
if (p->nextdate <= current_time) {
|
|
#ifdef REFCLOCK
|
|
if (FLAG_REFCLOCK & p->flags)
|
|
refclock_transmit(p);
|
|
else
|
|
#endif /* REFCLOCK */
|
|
transmit(p);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Orphan mode is active when enabled and when no servers less
|
|
* than the orphan stratum are available. A server with no other
|
|
* synchronization source is an orphan. It shows offset zero and
|
|
* reference ID the loopback address.
|
|
*
|
|
* [bug 3644] If the orphan stratum is >= STRATUM_UNSPEC, we
|
|
* have to do it a bit different. 'clock_select()' simply
|
|
* tiptoed home, but since we're unsync'd and have no peer, we
|
|
* should eventually declare we're out of sync. Otherwise we
|
|
* would persistently claim we're good, and we're everything but
|
|
* that...
|
|
*
|
|
* XXX: do we want to log an event about this?
|
|
*/
|
|
if (sys_peer == NULL && current_time > orphwait) {
|
|
if (sys_orphan < STRATUM_UNSPEC) {
|
|
if (sys_leap == LEAP_NOTINSYNC) {
|
|
set_sys_leap(LEAP_NOWARNING);
|
|
#ifdef AUTOKEY
|
|
if (crypto_flags)
|
|
crypto_update();
|
|
#endif /* AUTOKEY */
|
|
}
|
|
sys_stratum = (u_char)sys_orphan;
|
|
} else {
|
|
if (sys_leap != LEAP_NOTINSYNC) {
|
|
set_sys_leap(LEAP_NOTINSYNC);
|
|
msyslog(LOG_WARNING, "%s",
|
|
"no peer for too long, server running free now");
|
|
}
|
|
sys_stratum = STRATUM_UNSPEC;
|
|
}
|
|
if (sys_stratum > 1)
|
|
sys_refid = htonl(LOOPBACKADR);
|
|
else
|
|
memcpy(&sys_refid, "LOOP", 4);
|
|
sys_offset = 0;
|
|
sys_rootdelay = 0;
|
|
sys_rootdisp = 0;
|
|
}
|
|
|
|
get_systime(&now);
|
|
time(&tnow);
|
|
|
|
/*
|
|
* Leapseconds. Get time and defer to worker if either something
|
|
* is imminent or every 8th second.
|
|
*/
|
|
if (leapsec > LSPROX_NOWARN || 0 == (current_time & 7))
|
|
check_leapsec(now.l_ui, &tnow,
|
|
(sys_leap == LEAP_NOTINSYNC));
|
|
if (sys_leap != LEAP_NOTINSYNC) {
|
|
if (leapsec >= LSPROX_ANNOUNCE && leapdif) {
|
|
if (leapdif > 0)
|
|
set_sys_leap(LEAP_ADDSECOND);
|
|
else
|
|
set_sys_leap(LEAP_DELSECOND);
|
|
} else {
|
|
set_sys_leap(LEAP_NOWARNING);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update huff-n'-puff filter.
|
|
*/
|
|
if (huffpuff_timer <= current_time) {
|
|
huffpuff_timer += HUFFPUFF;
|
|
huffpuff();
|
|
}
|
|
|
|
#ifdef AUTOKEY
|
|
/*
|
|
* Garbage collect expired keys.
|
|
*/
|
|
if (keys_timer <= current_time) {
|
|
keys_timer += (1UL << sys_automax);
|
|
auth_agekeys();
|
|
}
|
|
|
|
/*
|
|
* Generate new private value. This causes all associations
|
|
* to regenerate cookies.
|
|
*/
|
|
if (revoke_timer && revoke_timer <= current_time) {
|
|
revoke_timer += (1UL << sys_revoke);
|
|
RAND_bytes((u_char *)&sys_private, 4);
|
|
}
|
|
#endif /* AUTOKEY */
|
|
|
|
/*
|
|
* Interface update timer
|
|
*/
|
|
if (interface_interval && interface_timer <= current_time) {
|
|
timer_interfacetimeout(current_time +
|
|
interface_interval);
|
|
DPRINTF(2, ("timer: interface update\n"));
|
|
interface_update(NULL, NULL);
|
|
}
|
|
|
|
if (worker_idle_timer && worker_idle_timer <= current_time)
|
|
worker_idle_timer_fired();
|
|
|
|
/*
|
|
* Finally, write hourly stats and do the hourly
|
|
* and daily leapfile checks.
|
|
*/
|
|
if (stats_timer <= current_time) {
|
|
stats_timer += SECSPERHR;
|
|
write_stats();
|
|
if (leapf_timer <= current_time) {
|
|
leapf_timer += SECSPERDAY;
|
|
check_leap_file(TRUE, now.l_ui, &tnow);
|
|
} else {
|
|
check_leap_file(FALSE, now.l_ui, &tnow);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
#ifndef SYS_WINNT
|
|
/*
|
|
* alarming - tell the world we've been alarmed
|
|
*/
|
|
static RETSIGTYPE
|
|
alarming(
|
|
int sig
|
|
)
|
|
{
|
|
# ifdef DEBUG
|
|
const char *msg = "alarming: initializing TRUE\n";
|
|
# endif
|
|
|
|
if (!initializing) {
|
|
if (alarm_flag) {
|
|
alarm_overflow++;
|
|
# ifdef DEBUG
|
|
msg = "alarming: overflow\n";
|
|
# endif
|
|
} else {
|
|
# ifndef VMS
|
|
alarm_flag++;
|
|
# else
|
|
/* VMS AST routine, increment is no good */
|
|
alarm_flag = 1;
|
|
# endif
|
|
# ifdef DEBUG
|
|
msg = "alarming: normal\n";
|
|
# endif
|
|
}
|
|
}
|
|
# ifdef VMS
|
|
lib$addx(&vmsinc, &vmstimer, &vmstimer);
|
|
sys$setimr(0, &vmstimer, alarming, alarming, 0);
|
|
# endif
|
|
# ifdef DEBUG
|
|
if (debug >= 4)
|
|
(void)(-1 == write(1, msg, strlen(msg)));
|
|
# endif
|
|
}
|
|
#endif /* SYS_WINNT */
|
|
|
|
|
|
void
|
|
timer_interfacetimeout(u_long timeout)
|
|
{
|
|
interface_timer = timeout;
|
|
}
|
|
|
|
|
|
/*
|
|
* timer_clr_stats - clear timer module stat counters
|
|
*/
|
|
void
|
|
timer_clr_stats(void)
|
|
{
|
|
timer_overflows = 0;
|
|
timer_xmtcalls = 0;
|
|
timer_timereset = current_time;
|
|
}
|
|
|
|
|
|
static void
|
|
check_leap_sec_in_progress( const leap_result_t *lsdata ) {
|
|
int prv_leap_sec_in_progress = leap_sec_in_progress;
|
|
leap_sec_in_progress = lsdata->tai_diff && (lsdata->ddist < 3);
|
|
|
|
/* if changed we may have to update the leap status sent to clients */
|
|
if (leap_sec_in_progress != prv_leap_sec_in_progress)
|
|
set_sys_leap(sys_leap);
|
|
}
|
|
|
|
|
|
static void
|
|
check_leapsec(
|
|
u_int32 now ,
|
|
const time_t * tpiv ,
|
|
int/*BOOL*/ reset)
|
|
{
|
|
static const char leapmsg_p_step[] =
|
|
"Positive leap second, stepped backward.";
|
|
static const char leapmsg_p_slew[] =
|
|
"Positive leap second, no step correction. "
|
|
"System clock will be inaccurate for a long time.";
|
|
|
|
static const char leapmsg_n_step[] =
|
|
"Negative leap second, stepped forward.";
|
|
static const char leapmsg_n_slew[] =
|
|
"Negative leap second, no step correction. "
|
|
"System clock will be inaccurate for a long time.";
|
|
|
|
leap_result_t lsdata;
|
|
u_int32 lsprox;
|
|
#ifdef AUTOKEY
|
|
int/*BOOL*/ update_autokey = FALSE;
|
|
#endif
|
|
|
|
#ifndef SYS_WINNT /* WinNT port has its own leap second handling */
|
|
# ifdef KERNEL_PLL
|
|
leapsec_electric(pll_control && kern_enable);
|
|
# else
|
|
leapsec_electric(0);
|
|
# endif
|
|
#endif
|
|
#ifdef LEAP_SMEAR
|
|
leap_smear.enabled = leap_smear_intv != 0;
|
|
#endif
|
|
if (reset) {
|
|
lsprox = LSPROX_NOWARN;
|
|
leapsec_reset_frame();
|
|
memset(&lsdata, 0, sizeof(lsdata));
|
|
} else {
|
|
int fired;
|
|
|
|
fired = leapsec_query(&lsdata, now, tpiv);
|
|
|
|
DPRINTF(3, ("*** leapsec_query: fired %i, now %u (0x%08X), tai_diff %i, ddist %u\n",
|
|
fired, now, now, lsdata.tai_diff, lsdata.ddist));
|
|
|
|
#ifdef LEAP_SMEAR
|
|
leap_smear.in_progress = 0;
|
|
leap_smear.doffset = 0.0;
|
|
|
|
if (leap_smear.enabled) {
|
|
if (lsdata.tai_diff) {
|
|
if (leap_smear.interval == 0) {
|
|
leap_smear.interval = leap_smear_intv;
|
|
leap_smear.intv_end = lsdata.ttime.Q_s;
|
|
leap_smear.intv_start = leap_smear.intv_end - leap_smear.interval;
|
|
DPRINTF(1, ("*** leapsec_query: setting leap_smear interval %li, begin %.0f, end %.0f\n",
|
|
leap_smear.interval, leap_smear.intv_start, leap_smear.intv_end));
|
|
}
|
|
} else {
|
|
if (leap_smear.interval)
|
|
DPRINTF(1, ("*** leapsec_query: clearing leap_smear interval\n"));
|
|
leap_smear.interval = 0;
|
|
}
|
|
|
|
if (leap_smear.interval) {
|
|
double dtemp = now;
|
|
if (dtemp >= leap_smear.intv_start && dtemp <= leap_smear.intv_end) {
|
|
double leap_smear_time = dtemp - leap_smear.intv_start;
|
|
/*
|
|
* For now we just do a linear interpolation over the smear interval
|
|
*/
|
|
#if 0
|
|
// linear interpolation
|
|
leap_smear.doffset = -(leap_smear_time * lsdata.tai_diff / leap_smear.interval);
|
|
#else
|
|
// Google approach: lie(t) = (1.0 - cos(pi * t / w)) / 2.0
|
|
leap_smear.doffset = -((double) lsdata.tai_diff - cos( M_PI * leap_smear_time / leap_smear.interval)) / 2.0;
|
|
#endif
|
|
/*
|
|
* TODO see if we're inside an inserted leap second, so we need to compute
|
|
* leap_smear.doffset = 1.0 - leap_smear.doffset
|
|
*/
|
|
leap_smear.in_progress = 1;
|
|
#if 0 && defined( DEBUG )
|
|
msyslog(LOG_NOTICE, "*** leapsec_query: [%.0f:%.0f] (%li), now %u (%.0f), smear offset %.6f ms\n",
|
|
leap_smear.intv_start, leap_smear.intv_end, leap_smear.interval,
|
|
now, leap_smear_time, leap_smear.doffset);
|
|
#else
|
|
DPRINTF(1, ("*** leapsec_query: [%.0f:%.0f] (%li), now %u (%.0f), smear offset %.6f ms\n",
|
|
leap_smear.intv_start, leap_smear.intv_end, leap_smear.interval,
|
|
now, leap_smear_time, leap_smear.doffset));
|
|
#endif
|
|
|
|
}
|
|
}
|
|
}
|
|
else
|
|
leap_smear.interval = 0;
|
|
|
|
/*
|
|
* Update the current leap smear offset, eventually 0.0 if outside smear interval.
|
|
*/
|
|
DTOLFP(leap_smear.doffset, &leap_smear.offset);
|
|
|
|
#endif /* LEAP_SMEAR */
|
|
|
|
if (fired) {
|
|
/* Full hit. Eventually step the clock, but always
|
|
* announce the leap event has happened.
|
|
*/
|
|
const char *leapmsg = NULL;
|
|
double lswarp = lsdata.warped;
|
|
if (lswarp < 0.0) {
|
|
if (clock_max_back > 0.0 &&
|
|
clock_max_back < -lswarp) {
|
|
step_systime(lswarp);
|
|
leapmsg = leapmsg_p_step;
|
|
} else {
|
|
leapmsg = leapmsg_p_slew;
|
|
}
|
|
} else if (lswarp > 0.0) {
|
|
if (clock_max_fwd > 0.0 &&
|
|
clock_max_fwd < lswarp) {
|
|
step_systime(lswarp);
|
|
leapmsg = leapmsg_n_step;
|
|
} else {
|
|
leapmsg = leapmsg_n_slew;
|
|
}
|
|
}
|
|
if (leapmsg)
|
|
msyslog(LOG_NOTICE, "%s", leapmsg);
|
|
report_event(EVNT_LEAP, NULL, NULL);
|
|
#ifdef AUTOKEY
|
|
update_autokey = TRUE;
|
|
#endif
|
|
lsprox = LSPROX_NOWARN;
|
|
leapsec = LSPROX_NOWARN;
|
|
sys_tai = lsdata.tai_offs;
|
|
} else {
|
|
#ifdef AUTOKEY
|
|
update_autokey = (sys_tai != (u_int)lsdata.tai_offs);
|
|
#endif
|
|
lsprox = lsdata.proximity;
|
|
sys_tai = lsdata.tai_offs;
|
|
}
|
|
}
|
|
|
|
/* We guard against panic alarming during the red alert phase.
|
|
* Strange and evil things might happen if we go from stone cold
|
|
* to piping hot in one step. If things are already that wobbly,
|
|
* we let the normal clock correction take over, even if a jump
|
|
* is involved.
|
|
* Also make sure the alarming events are edge-triggered, that is,
|
|
* ceated only when the threshold is crossed.
|
|
*/
|
|
if ( (leapsec > 0 || lsprox < LSPROX_ALERT)
|
|
&& leapsec < lsprox ) {
|
|
if ( leapsec < LSPROX_SCHEDULE
|
|
&& lsprox >= LSPROX_SCHEDULE) {
|
|
if (lsdata.dynamic)
|
|
report_event(PEVNT_ARMED, sys_peer, NULL);
|
|
else
|
|
report_event(EVNT_ARMED, NULL, NULL);
|
|
}
|
|
leapsec = lsprox;
|
|
}
|
|
if (leapsec > lsprox) {
|
|
if ( leapsec >= LSPROX_SCHEDULE
|
|
&& lsprox < LSPROX_SCHEDULE) {
|
|
report_event(EVNT_DISARMED, NULL, NULL);
|
|
}
|
|
leapsec = lsprox;
|
|
}
|
|
|
|
if (leapsec >= LSPROX_SCHEDULE)
|
|
leapdif = lsdata.tai_diff;
|
|
else
|
|
leapdif = 0;
|
|
|
|
check_leap_sec_in_progress(&lsdata);
|
|
|
|
#ifdef AUTOKEY
|
|
if (update_autokey)
|
|
crypto_update_taichange();
|
|
#endif
|
|
}
|