freebsd-dev/sys/ufs/ffs/ffs_vnops.c
Konstantin Belousov 2f514f92cf Implement VOP_FDATASYNC() for UFS.
Reviewed by:	mckusick
Tested by:	pho
Sponsored by:	The FreeBSD Foundation
MFC after:	2 weeks
Differential revision:	https://reviews.freebsd.org/D7471
2016-08-15 19:22:23 +00:00

1788 lines
44 KiB
C

/*-
* Copyright (c) 2002, 2003 Networks Associates Technology, Inc.
* All rights reserved.
*
* This software was developed for the FreeBSD Project by Marshall
* Kirk McKusick and Network Associates Laboratories, the Security
* Research Division of Network Associates, Inc. under DARPA/SPAWAR
* contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
* research program
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Copyright (c) 1982, 1986, 1989, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)ufs_readwrite.c 8.11 (Berkeley) 5/8/95
* from: $FreeBSD: .../ufs/ufs_readwrite.c,v 1.96 2002/08/12 09:22:11 phk ...
* @(#)ffs_vnops.c 8.15 (Berkeley) 5/14/95
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/bio.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/conf.h>
#include <sys/extattr.h>
#include <sys/kernel.h>
#include <sys/limits.h>
#include <sys/malloc.h>
#include <sys/mount.h>
#include <sys/priv.h>
#include <sys/rwlock.h>
#include <sys/stat.h>
#include <sys/vmmeter.h>
#include <sys/vnode.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_extern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pager.h>
#include <vm/vnode_pager.h>
#include <ufs/ufs/extattr.h>
#include <ufs/ufs/quota.h>
#include <ufs/ufs/inode.h>
#include <ufs/ufs/ufs_extern.h>
#include <ufs/ufs/ufsmount.h>
#include <ufs/ffs/fs.h>
#include <ufs/ffs/ffs_extern.h>
#include "opt_directio.h"
#include "opt_ffs.h"
#ifdef DIRECTIO
extern int ffs_rawread(struct vnode *vp, struct uio *uio, int *workdone);
#endif
static vop_fsync_t ffs_fsync;
static vop_fdatasync_t ffs_fdatasync;
static vop_lock1_t ffs_lock;
static vop_read_t ffs_read;
static vop_write_t ffs_write;
static int ffs_extread(struct vnode *vp, struct uio *uio, int ioflag);
static int ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag,
struct ucred *cred);
static vop_strategy_t ffsext_strategy;
static vop_closeextattr_t ffs_closeextattr;
static vop_deleteextattr_t ffs_deleteextattr;
static vop_getextattr_t ffs_getextattr;
static vop_listextattr_t ffs_listextattr;
static vop_openextattr_t ffs_openextattr;
static vop_setextattr_t ffs_setextattr;
static vop_vptofh_t ffs_vptofh;
/* Global vfs data structures for ufs. */
struct vop_vector ffs_vnodeops1 = {
.vop_default = &ufs_vnodeops,
.vop_fsync = ffs_fsync,
.vop_fdatasync = ffs_fdatasync,
.vop_getpages = vnode_pager_local_getpages,
.vop_getpages_async = vnode_pager_local_getpages_async,
.vop_lock1 = ffs_lock,
.vop_read = ffs_read,
.vop_reallocblks = ffs_reallocblks,
.vop_write = ffs_write,
.vop_vptofh = ffs_vptofh,
};
struct vop_vector ffs_fifoops1 = {
.vop_default = &ufs_fifoops,
.vop_fsync = ffs_fsync,
.vop_fdatasync = ffs_fdatasync,
.vop_reallocblks = ffs_reallocblks, /* XXX: really ??? */
.vop_vptofh = ffs_vptofh,
};
/* Global vfs data structures for ufs. */
struct vop_vector ffs_vnodeops2 = {
.vop_default = &ufs_vnodeops,
.vop_fsync = ffs_fsync,
.vop_fdatasync = ffs_fdatasync,
.vop_getpages = vnode_pager_local_getpages,
.vop_getpages_async = vnode_pager_local_getpages_async,
.vop_lock1 = ffs_lock,
.vop_read = ffs_read,
.vop_reallocblks = ffs_reallocblks,
.vop_write = ffs_write,
.vop_closeextattr = ffs_closeextattr,
.vop_deleteextattr = ffs_deleteextattr,
.vop_getextattr = ffs_getextattr,
.vop_listextattr = ffs_listextattr,
.vop_openextattr = ffs_openextattr,
.vop_setextattr = ffs_setextattr,
.vop_vptofh = ffs_vptofh,
};
struct vop_vector ffs_fifoops2 = {
.vop_default = &ufs_fifoops,
.vop_fsync = ffs_fsync,
.vop_fdatasync = ffs_fdatasync,
.vop_lock1 = ffs_lock,
.vop_reallocblks = ffs_reallocblks,
.vop_strategy = ffsext_strategy,
.vop_closeextattr = ffs_closeextattr,
.vop_deleteextattr = ffs_deleteextattr,
.vop_getextattr = ffs_getextattr,
.vop_listextattr = ffs_listextattr,
.vop_openextattr = ffs_openextattr,
.vop_setextattr = ffs_setextattr,
.vop_vptofh = ffs_vptofh,
};
/*
* Synch an open file.
*/
/* ARGSUSED */
static int
ffs_fsync(struct vop_fsync_args *ap)
{
struct vnode *vp;
struct bufobj *bo;
int error;
vp = ap->a_vp;
bo = &vp->v_bufobj;
retry:
error = ffs_syncvnode(vp, ap->a_waitfor, 0);
if (error)
return (error);
if (ap->a_waitfor == MNT_WAIT && DOINGSOFTDEP(vp)) {
error = softdep_fsync(vp);
if (error)
return (error);
/*
* The softdep_fsync() function may drop vp lock,
* allowing for dirty buffers to reappear on the
* bo_dirty list. Recheck and resync as needed.
*/
BO_LOCK(bo);
if ((vp->v_type == VREG || vp->v_type == VDIR) &&
(bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)) {
BO_UNLOCK(bo);
goto retry;
}
BO_UNLOCK(bo);
}
return (0);
}
int
ffs_syncvnode(struct vnode *vp, int waitfor, int flags)
{
struct inode *ip;
struct bufobj *bo;
struct buf *bp, *nbp;
ufs_lbn_t lbn;
int error, passes;
bool still_dirty, wait;
ip = VTOI(vp);
ip->i_flag &= ~IN_NEEDSYNC;
bo = &vp->v_bufobj;
/*
* When doing MNT_WAIT we must first flush all dependencies
* on the inode.
*/
if (DOINGSOFTDEP(vp) && waitfor == MNT_WAIT &&
(error = softdep_sync_metadata(vp)) != 0)
return (error);
/*
* Flush all dirty buffers associated with a vnode.
*/
error = 0;
passes = 0;
wait = false; /* Always do an async pass first. */
lbn = lblkno(ip->i_fs, (ip->i_size + ip->i_fs->fs_bsize - 1));
BO_LOCK(bo);
loop:
TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs)
bp->b_vflags &= ~BV_SCANNED;
TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
/*
* Reasons to skip this buffer: it has already been considered
* on this pass, the buffer has dependencies that will cause
* it to be redirtied and it has not already been deferred,
* or it is already being written.
*/
if ((bp->b_vflags & BV_SCANNED) != 0)
continue;
bp->b_vflags |= BV_SCANNED;
/*
* Flush indirects in order, if requested.
*
* Note that if only datasync is requested, we can
* skip indirect blocks when softupdates are not
* active. Otherwise we must flush them with data,
* since dependencies prevent data block writes.
*/
if (waitfor == MNT_WAIT && bp->b_lblkno <= -NDADDR &&
(lbn_level(bp->b_lblkno) >= passes ||
((flags & DATA_ONLY) != 0 && !DOINGSOFTDEP(vp))))
continue;
if (bp->b_lblkno > lbn)
panic("ffs_syncvnode: syncing truncated data.");
if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) {
BO_UNLOCK(bo);
} else if (wait) {
if (BUF_LOCK(bp,
LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
BO_LOCKPTR(bo)) != 0) {
bp->b_vflags &= ~BV_SCANNED;
goto next;
}
} else
continue;
if ((bp->b_flags & B_DELWRI) == 0)
panic("ffs_fsync: not dirty");
/*
* Check for dependencies and potentially complete them.
*/
if (!LIST_EMPTY(&bp->b_dep) &&
(error = softdep_sync_buf(vp, bp,
wait ? MNT_WAIT : MNT_NOWAIT)) != 0) {
/* I/O error. */
if (error != EBUSY) {
BUF_UNLOCK(bp);
return (error);
}
/* If we deferred once, don't defer again. */
if ((bp->b_flags & B_DEFERRED) == 0) {
bp->b_flags |= B_DEFERRED;
BUF_UNLOCK(bp);
goto next;
}
}
if (wait) {
bremfree(bp);
if ((error = bwrite(bp)) != 0)
return (error);
} else if ((bp->b_flags & B_CLUSTEROK)) {
(void) vfs_bio_awrite(bp);
} else {
bremfree(bp);
(void) bawrite(bp);
}
next:
/*
* Since we may have slept during the I/O, we need
* to start from a known point.
*/
BO_LOCK(bo);
nbp = TAILQ_FIRST(&bo->bo_dirty.bv_hd);
}
if (waitfor != MNT_WAIT) {
BO_UNLOCK(bo);
if ((flags & NO_INO_UPDT) != 0)
return (0);
else
return (ffs_update(vp, 0));
}
/* Drain IO to see if we're done. */
bufobj_wwait(bo, 0, 0);
/*
* Block devices associated with filesystems may have new I/O
* requests posted for them even if the vnode is locked, so no
* amount of trying will get them clean. We make several passes
* as a best effort.
*
* Regular files may need multiple passes to flush all dependency
* work as it is possible that we must write once per indirect
* level, once for the leaf, and once for the inode and each of
* these will be done with one sync and one async pass.
*/
if (bo->bo_dirty.bv_cnt > 0) {
if ((flags & DATA_ONLY) == 0) {
still_dirty = true;
} else {
/*
* For data-only sync, dirty indirect buffers
* are ignored.
*/
still_dirty = false;
TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) {
if (bp->b_lblkno > -NDADDR) {
still_dirty = true;
break;
}
}
}
if (still_dirty) {
/* Write the inode after sync passes to flush deps. */
if (wait && DOINGSOFTDEP(vp) &&
(flags & NO_INO_UPDT) == 0) {
BO_UNLOCK(bo);
ffs_update(vp, 1);
BO_LOCK(bo);
}
/* switch between sync/async. */
wait = !wait;
if (wait || ++passes < NIADDR + 2)
goto loop;
#ifdef INVARIANTS
if (!vn_isdisk(vp, NULL))
vn_printf(vp, "ffs_fsync: dirty ");
#endif
}
}
BO_UNLOCK(bo);
error = 0;
if ((flags & DATA_ONLY) == 0) {
if ((flags & NO_INO_UPDT) == 0)
error = ffs_update(vp, 1);
if (DOINGSUJ(vp))
softdep_journal_fsync(VTOI(vp));
}
return (error);
}
static int
ffs_fdatasync(struct vop_fdatasync_args *ap)
{
return (ffs_syncvnode(ap->a_vp, MNT_WAIT, DATA_ONLY));
}
static int
ffs_lock(ap)
struct vop_lock1_args /* {
struct vnode *a_vp;
int a_flags;
struct thread *a_td;
char *file;
int line;
} */ *ap;
{
#ifndef NO_FFS_SNAPSHOT
struct vnode *vp;
int flags;
struct lock *lkp;
int result;
switch (ap->a_flags & LK_TYPE_MASK) {
case LK_SHARED:
case LK_UPGRADE:
case LK_EXCLUSIVE:
vp = ap->a_vp;
flags = ap->a_flags;
for (;;) {
#ifdef DEBUG_VFS_LOCKS
KASSERT(vp->v_holdcnt != 0,
("ffs_lock %p: zero hold count", vp));
#endif
lkp = vp->v_vnlock;
result = _lockmgr_args(lkp, flags, VI_MTX(vp),
LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT,
ap->a_file, ap->a_line);
if (lkp == vp->v_vnlock || result != 0)
break;
/*
* Apparent success, except that the vnode
* mutated between snapshot file vnode and
* regular file vnode while this process
* slept. The lock currently held is not the
* right lock. Release it, and try to get the
* new lock.
*/
(void) _lockmgr_args(lkp, LK_RELEASE, NULL,
LK_WMESG_DEFAULT, LK_PRIO_DEFAULT, LK_TIMO_DEFAULT,
ap->a_file, ap->a_line);
if ((flags & (LK_INTERLOCK | LK_NOWAIT)) ==
(LK_INTERLOCK | LK_NOWAIT))
return (EBUSY);
if ((flags & LK_TYPE_MASK) == LK_UPGRADE)
flags = (flags & ~LK_TYPE_MASK) | LK_EXCLUSIVE;
flags &= ~LK_INTERLOCK;
}
break;
default:
result = VOP_LOCK1_APV(&ufs_vnodeops, ap);
}
return (result);
#else
return (VOP_LOCK1_APV(&ufs_vnodeops, ap));
#endif
}
/*
* Vnode op for reading.
*/
static int
ffs_read(ap)
struct vop_read_args /* {
struct vnode *a_vp;
struct uio *a_uio;
int a_ioflag;
struct ucred *a_cred;
} */ *ap;
{
struct vnode *vp;
struct inode *ip;
struct uio *uio;
struct fs *fs;
struct buf *bp;
ufs_lbn_t lbn, nextlbn;
off_t bytesinfile;
long size, xfersize, blkoffset;
ssize_t orig_resid;
int error;
int seqcount;
int ioflag;
vp = ap->a_vp;
uio = ap->a_uio;
ioflag = ap->a_ioflag;
if (ap->a_ioflag & IO_EXT)
#ifdef notyet
return (ffs_extread(vp, uio, ioflag));
#else
panic("ffs_read+IO_EXT");
#endif
#ifdef DIRECTIO
if ((ioflag & IO_DIRECT) != 0) {
int workdone;
error = ffs_rawread(vp, uio, &workdone);
if (error != 0 || workdone != 0)
return error;
}
#endif
seqcount = ap->a_ioflag >> IO_SEQSHIFT;
ip = VTOI(vp);
#ifdef INVARIANTS
if (uio->uio_rw != UIO_READ)
panic("ffs_read: mode");
if (vp->v_type == VLNK) {
if ((int)ip->i_size < vp->v_mount->mnt_maxsymlinklen)
panic("ffs_read: short symlink");
} else if (vp->v_type != VREG && vp->v_type != VDIR)
panic("ffs_read: type %d", vp->v_type);
#endif
orig_resid = uio->uio_resid;
KASSERT(orig_resid >= 0, ("ffs_read: uio->uio_resid < 0"));
if (orig_resid == 0)
return (0);
KASSERT(uio->uio_offset >= 0, ("ffs_read: uio->uio_offset < 0"));
fs = ip->i_fs;
if (uio->uio_offset < ip->i_size &&
uio->uio_offset >= fs->fs_maxfilesize)
return (EOVERFLOW);
for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) {
if ((bytesinfile = ip->i_size - uio->uio_offset) <= 0)
break;
lbn = lblkno(fs, uio->uio_offset);
nextlbn = lbn + 1;
/*
* size of buffer. The buffer representing the
* end of the file is rounded up to the size of
* the block type ( fragment or full block,
* depending ).
*/
size = blksize(fs, ip, lbn);
blkoffset = blkoff(fs, uio->uio_offset);
/*
* The amount we want to transfer in this iteration is
* one FS block less the amount of the data before
* our startpoint (duh!)
*/
xfersize = fs->fs_bsize - blkoffset;
/*
* But if we actually want less than the block,
* or the file doesn't have a whole block more of data,
* then use the lesser number.
*/
if (uio->uio_resid < xfersize)
xfersize = uio->uio_resid;
if (bytesinfile < xfersize)
xfersize = bytesinfile;
if (lblktosize(fs, nextlbn) >= ip->i_size) {
/*
* Don't do readahead if this is the end of the file.
*/
error = bread_gb(vp, lbn, size, NOCRED,
GB_UNMAPPED, &bp);
} else if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERR) == 0) {
/*
* Otherwise if we are allowed to cluster,
* grab as much as we can.
*
* XXX This may not be a win if we are not
* doing sequential access.
*/
error = cluster_read(vp, ip->i_size, lbn,
size, NOCRED, blkoffset + uio->uio_resid,
seqcount, GB_UNMAPPED, &bp);
} else if (seqcount > 1) {
/*
* If we are NOT allowed to cluster, then
* if we appear to be acting sequentially,
* fire off a request for a readahead
* as well as a read. Note that the 4th and 5th
* arguments point to arrays of the size specified in
* the 6th argument.
*/
u_int nextsize = blksize(fs, ip, nextlbn);
error = breadn_flags(vp, lbn, size, &nextlbn,
&nextsize, 1, NOCRED, GB_UNMAPPED, &bp);
} else {
/*
* Failing all of the above, just read what the
* user asked for. Interestingly, the same as
* the first option above.
*/
error = bread_gb(vp, lbn, size, NOCRED,
GB_UNMAPPED, &bp);
}
if (error) {
brelse(bp);
bp = NULL;
break;
}
/*
* If IO_DIRECT then set B_DIRECT for the buffer. This
* will cause us to attempt to release the buffer later on
* and will cause the buffer cache to attempt to free the
* underlying pages.
*/
if (ioflag & IO_DIRECT)
bp->b_flags |= B_DIRECT;
/*
* We should only get non-zero b_resid when an I/O error
* has occurred, which should cause us to break above.
* However, if the short read did not cause an error,
* then we want to ensure that we do not uiomove bad
* or uninitialized data.
*/
size -= bp->b_resid;
if (size < xfersize) {
if (size == 0)
break;
xfersize = size;
}
if (buf_mapped(bp)) {
error = vn_io_fault_uiomove((char *)bp->b_data +
blkoffset, (int)xfersize, uio);
} else {
error = vn_io_fault_pgmove(bp->b_pages, blkoffset,
(int)xfersize, uio);
}
if (error)
break;
if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
(LIST_EMPTY(&bp->b_dep))) {
/*
* If there are no dependencies, and it's VMIO,
* then we don't need the buf, mark it available
* for freeing. For non-direct VMIO reads, the VM
* has the data.
*/
bp->b_flags |= B_RELBUF;
brelse(bp);
} else {
/*
* Otherwise let whoever
* made the request take care of
* freeing it. We just queue
* it onto another list.
*/
bqrelse(bp);
}
}
/*
* This can only happen in the case of an error
* because the loop above resets bp to NULL on each iteration
* and on normal completion has not set a new value into it.
* so it must have come from a 'break' statement
*/
if (bp != NULL) {
if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
(LIST_EMPTY(&bp->b_dep))) {
bp->b_flags |= B_RELBUF;
brelse(bp);
} else {
bqrelse(bp);
}
}
if ((error == 0 || uio->uio_resid != orig_resid) &&
(vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0 &&
(ip->i_flag & IN_ACCESS) == 0) {
VI_LOCK(vp);
ip->i_flag |= IN_ACCESS;
VI_UNLOCK(vp);
}
return (error);
}
/*
* Vnode op for writing.
*/
static int
ffs_write(ap)
struct vop_write_args /* {
struct vnode *a_vp;
struct uio *a_uio;
int a_ioflag;
struct ucred *a_cred;
} */ *ap;
{
struct vnode *vp;
struct uio *uio;
struct inode *ip;
struct fs *fs;
struct buf *bp;
ufs_lbn_t lbn;
off_t osize;
ssize_t resid;
int seqcount;
int blkoffset, error, flags, ioflag, size, xfersize;
vp = ap->a_vp;
uio = ap->a_uio;
ioflag = ap->a_ioflag;
if (ap->a_ioflag & IO_EXT)
#ifdef notyet
return (ffs_extwrite(vp, uio, ioflag, ap->a_cred));
#else
panic("ffs_write+IO_EXT");
#endif
seqcount = ap->a_ioflag >> IO_SEQSHIFT;
ip = VTOI(vp);
#ifdef INVARIANTS
if (uio->uio_rw != UIO_WRITE)
panic("ffs_write: mode");
#endif
switch (vp->v_type) {
case VREG:
if (ioflag & IO_APPEND)
uio->uio_offset = ip->i_size;
if ((ip->i_flags & APPEND) && uio->uio_offset != ip->i_size)
return (EPERM);
/* FALLTHROUGH */
case VLNK:
break;
case VDIR:
panic("ffs_write: dir write");
break;
default:
panic("ffs_write: type %p %d (%d,%d)", vp, (int)vp->v_type,
(int)uio->uio_offset,
(int)uio->uio_resid
);
}
KASSERT(uio->uio_resid >= 0, ("ffs_write: uio->uio_resid < 0"));
KASSERT(uio->uio_offset >= 0, ("ffs_write: uio->uio_offset < 0"));
fs = ip->i_fs;
if ((uoff_t)uio->uio_offset + uio->uio_resid > fs->fs_maxfilesize)
return (EFBIG);
/*
* Maybe this should be above the vnode op call, but so long as
* file servers have no limits, I don't think it matters.
*/
if (vn_rlimit_fsize(vp, uio, uio->uio_td))
return (EFBIG);
resid = uio->uio_resid;
osize = ip->i_size;
if (seqcount > BA_SEQMAX)
flags = BA_SEQMAX << BA_SEQSHIFT;
else
flags = seqcount << BA_SEQSHIFT;
if ((ioflag & IO_SYNC) && !DOINGASYNC(vp))
flags |= IO_SYNC;
flags |= BA_UNMAPPED;
for (error = 0; uio->uio_resid > 0;) {
lbn = lblkno(fs, uio->uio_offset);
blkoffset = blkoff(fs, uio->uio_offset);
xfersize = fs->fs_bsize - blkoffset;
if (uio->uio_resid < xfersize)
xfersize = uio->uio_resid;
if (uio->uio_offset + xfersize > ip->i_size)
vnode_pager_setsize(vp, uio->uio_offset + xfersize);
/*
* We must perform a read-before-write if the transfer size
* does not cover the entire buffer.
*/
if (fs->fs_bsize > xfersize)
flags |= BA_CLRBUF;
else
flags &= ~BA_CLRBUF;
/* XXX is uio->uio_offset the right thing here? */
error = UFS_BALLOC(vp, uio->uio_offset, xfersize,
ap->a_cred, flags, &bp);
if (error != 0) {
vnode_pager_setsize(vp, ip->i_size);
break;
}
if (ioflag & IO_DIRECT)
bp->b_flags |= B_DIRECT;
if ((ioflag & (IO_SYNC|IO_INVAL)) == (IO_SYNC|IO_INVAL))
bp->b_flags |= B_NOCACHE;
if (uio->uio_offset + xfersize > ip->i_size) {
ip->i_size = uio->uio_offset + xfersize;
DIP_SET(ip, i_size, ip->i_size);
}
size = blksize(fs, ip, lbn) - bp->b_resid;
if (size < xfersize)
xfersize = size;
if (buf_mapped(bp)) {
error = vn_io_fault_uiomove((char *)bp->b_data +
blkoffset, (int)xfersize, uio);
} else {
error = vn_io_fault_pgmove(bp->b_pages, blkoffset,
(int)xfersize, uio);
}
/*
* If the buffer is not already filled and we encounter an
* error while trying to fill it, we have to clear out any
* garbage data from the pages instantiated for the buffer.
* If we do not, a failed uiomove() during a write can leave
* the prior contents of the pages exposed to a userland mmap.
*
* Note that we need only clear buffers with a transfer size
* equal to the block size because buffers with a shorter
* transfer size were cleared above by the call to UFS_BALLOC()
* with the BA_CLRBUF flag set.
*
* If the source region for uiomove identically mmaps the
* buffer, uiomove() performed the NOP copy, and the buffer
* content remains valid because the page fault handler
* validated the pages.
*/
if (error != 0 && (bp->b_flags & B_CACHE) == 0 &&
fs->fs_bsize == xfersize)
vfs_bio_clrbuf(bp);
if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
(LIST_EMPTY(&bp->b_dep))) {
bp->b_flags |= B_RELBUF;
}
/*
* If IO_SYNC each buffer is written synchronously. Otherwise
* if we have a severe page deficiency write the buffer
* asynchronously. Otherwise try to cluster, and if that
* doesn't do it then either do an async write (if O_DIRECT),
* or a delayed write (if not).
*/
if (ioflag & IO_SYNC) {
(void)bwrite(bp);
} else if (vm_page_count_severe() ||
buf_dirty_count_severe() ||
(ioflag & IO_ASYNC)) {
bp->b_flags |= B_CLUSTEROK;
bawrite(bp);
} else if (xfersize + blkoffset == fs->fs_bsize) {
if ((vp->v_mount->mnt_flag & MNT_NOCLUSTERW) == 0) {
bp->b_flags |= B_CLUSTEROK;
cluster_write(vp, bp, ip->i_size, seqcount,
GB_UNMAPPED);
} else {
bawrite(bp);
}
} else if (ioflag & IO_DIRECT) {
bp->b_flags |= B_CLUSTEROK;
bawrite(bp);
} else {
bp->b_flags |= B_CLUSTEROK;
bdwrite(bp);
}
if (error || xfersize == 0)
break;
ip->i_flag |= IN_CHANGE | IN_UPDATE;
}
/*
* If we successfully wrote any data, and we are not the superuser
* we clear the setuid and setgid bits as a precaution against
* tampering.
*/
if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid &&
ap->a_cred) {
if (priv_check_cred(ap->a_cred, PRIV_VFS_RETAINSUGID, 0)) {
ip->i_mode &= ~(ISUID | ISGID);
DIP_SET(ip, i_mode, ip->i_mode);
}
}
if (error) {
if (ioflag & IO_UNIT) {
(void)ffs_truncate(vp, osize,
IO_NORMAL | (ioflag & IO_SYNC), ap->a_cred);
uio->uio_offset -= resid - uio->uio_resid;
uio->uio_resid = resid;
}
} else if (resid > uio->uio_resid && (ioflag & IO_SYNC))
error = ffs_update(vp, 1);
return (error);
}
/*
* Extended attribute area reading.
*/
static int
ffs_extread(struct vnode *vp, struct uio *uio, int ioflag)
{
struct inode *ip;
struct ufs2_dinode *dp;
struct fs *fs;
struct buf *bp;
ufs_lbn_t lbn, nextlbn;
off_t bytesinfile;
long size, xfersize, blkoffset;
ssize_t orig_resid;
int error;
ip = VTOI(vp);
fs = ip->i_fs;
dp = ip->i_din2;
#ifdef INVARIANTS
if (uio->uio_rw != UIO_READ || fs->fs_magic != FS_UFS2_MAGIC)
panic("ffs_extread: mode");
#endif
orig_resid = uio->uio_resid;
KASSERT(orig_resid >= 0, ("ffs_extread: uio->uio_resid < 0"));
if (orig_resid == 0)
return (0);
KASSERT(uio->uio_offset >= 0, ("ffs_extread: uio->uio_offset < 0"));
for (error = 0, bp = NULL; uio->uio_resid > 0; bp = NULL) {
if ((bytesinfile = dp->di_extsize - uio->uio_offset) <= 0)
break;
lbn = lblkno(fs, uio->uio_offset);
nextlbn = lbn + 1;
/*
* size of buffer. The buffer representing the
* end of the file is rounded up to the size of
* the block type ( fragment or full block,
* depending ).
*/
size = sblksize(fs, dp->di_extsize, lbn);
blkoffset = blkoff(fs, uio->uio_offset);
/*
* The amount we want to transfer in this iteration is
* one FS block less the amount of the data before
* our startpoint (duh!)
*/
xfersize = fs->fs_bsize - blkoffset;
/*
* But if we actually want less than the block,
* or the file doesn't have a whole block more of data,
* then use the lesser number.
*/
if (uio->uio_resid < xfersize)
xfersize = uio->uio_resid;
if (bytesinfile < xfersize)
xfersize = bytesinfile;
if (lblktosize(fs, nextlbn) >= dp->di_extsize) {
/*
* Don't do readahead if this is the end of the info.
*/
error = bread(vp, -1 - lbn, size, NOCRED, &bp);
} else {
/*
* If we have a second block, then
* fire off a request for a readahead
* as well as a read. Note that the 4th and 5th
* arguments point to arrays of the size specified in
* the 6th argument.
*/
u_int nextsize = sblksize(fs, dp->di_extsize, nextlbn);
nextlbn = -1 - nextlbn;
error = breadn(vp, -1 - lbn,
size, &nextlbn, &nextsize, 1, NOCRED, &bp);
}
if (error) {
brelse(bp);
bp = NULL;
break;
}
/*
* If IO_DIRECT then set B_DIRECT for the buffer. This
* will cause us to attempt to release the buffer later on
* and will cause the buffer cache to attempt to free the
* underlying pages.
*/
if (ioflag & IO_DIRECT)
bp->b_flags |= B_DIRECT;
/*
* We should only get non-zero b_resid when an I/O error
* has occurred, which should cause us to break above.
* However, if the short read did not cause an error,
* then we want to ensure that we do not uiomove bad
* or uninitialized data.
*/
size -= bp->b_resid;
if (size < xfersize) {
if (size == 0)
break;
xfersize = size;
}
error = uiomove((char *)bp->b_data + blkoffset,
(int)xfersize, uio);
if (error)
break;
if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
(LIST_EMPTY(&bp->b_dep))) {
/*
* If there are no dependencies, and it's VMIO,
* then we don't need the buf, mark it available
* for freeing. For non-direct VMIO reads, the VM
* has the data.
*/
bp->b_flags |= B_RELBUF;
brelse(bp);
} else {
/*
* Otherwise let whoever
* made the request take care of
* freeing it. We just queue
* it onto another list.
*/
bqrelse(bp);
}
}
/*
* This can only happen in the case of an error
* because the loop above resets bp to NULL on each iteration
* and on normal completion has not set a new value into it.
* so it must have come from a 'break' statement
*/
if (bp != NULL) {
if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
(LIST_EMPTY(&bp->b_dep))) {
bp->b_flags |= B_RELBUF;
brelse(bp);
} else {
bqrelse(bp);
}
}
return (error);
}
/*
* Extended attribute area writing.
*/
static int
ffs_extwrite(struct vnode *vp, struct uio *uio, int ioflag, struct ucred *ucred)
{
struct inode *ip;
struct ufs2_dinode *dp;
struct fs *fs;
struct buf *bp;
ufs_lbn_t lbn;
off_t osize;
ssize_t resid;
int blkoffset, error, flags, size, xfersize;
ip = VTOI(vp);
fs = ip->i_fs;
dp = ip->i_din2;
#ifdef INVARIANTS
if (uio->uio_rw != UIO_WRITE || fs->fs_magic != FS_UFS2_MAGIC)
panic("ffs_extwrite: mode");
#endif
if (ioflag & IO_APPEND)
uio->uio_offset = dp->di_extsize;
KASSERT(uio->uio_offset >= 0, ("ffs_extwrite: uio->uio_offset < 0"));
KASSERT(uio->uio_resid >= 0, ("ffs_extwrite: uio->uio_resid < 0"));
if ((uoff_t)uio->uio_offset + uio->uio_resid > NXADDR * fs->fs_bsize)
return (EFBIG);
resid = uio->uio_resid;
osize = dp->di_extsize;
flags = IO_EXT;
if ((ioflag & IO_SYNC) && !DOINGASYNC(vp))
flags |= IO_SYNC;
for (error = 0; uio->uio_resid > 0;) {
lbn = lblkno(fs, uio->uio_offset);
blkoffset = blkoff(fs, uio->uio_offset);
xfersize = fs->fs_bsize - blkoffset;
if (uio->uio_resid < xfersize)
xfersize = uio->uio_resid;
/*
* We must perform a read-before-write if the transfer size
* does not cover the entire buffer.
*/
if (fs->fs_bsize > xfersize)
flags |= BA_CLRBUF;
else
flags &= ~BA_CLRBUF;
error = UFS_BALLOC(vp, uio->uio_offset, xfersize,
ucred, flags, &bp);
if (error != 0)
break;
/*
* If the buffer is not valid we have to clear out any
* garbage data from the pages instantiated for the buffer.
* If we do not, a failed uiomove() during a write can leave
* the prior contents of the pages exposed to a userland
* mmap(). XXX deal with uiomove() errors a better way.
*/
if ((bp->b_flags & B_CACHE) == 0 && fs->fs_bsize <= xfersize)
vfs_bio_clrbuf(bp);
if (ioflag & IO_DIRECT)
bp->b_flags |= B_DIRECT;
if (uio->uio_offset + xfersize > dp->di_extsize)
dp->di_extsize = uio->uio_offset + xfersize;
size = sblksize(fs, dp->di_extsize, lbn) - bp->b_resid;
if (size < xfersize)
xfersize = size;
error =
uiomove((char *)bp->b_data + blkoffset, (int)xfersize, uio);
if ((ioflag & (IO_VMIO|IO_DIRECT)) &&
(LIST_EMPTY(&bp->b_dep))) {
bp->b_flags |= B_RELBUF;
}
/*
* If IO_SYNC each buffer is written synchronously. Otherwise
* if we have a severe page deficiency write the buffer
* asynchronously. Otherwise try to cluster, and if that
* doesn't do it then either do an async write (if O_DIRECT),
* or a delayed write (if not).
*/
if (ioflag & IO_SYNC) {
(void)bwrite(bp);
} else if (vm_page_count_severe() ||
buf_dirty_count_severe() ||
xfersize + blkoffset == fs->fs_bsize ||
(ioflag & (IO_ASYNC | IO_DIRECT)))
bawrite(bp);
else
bdwrite(bp);
if (error || xfersize == 0)
break;
ip->i_flag |= IN_CHANGE;
}
/*
* If we successfully wrote any data, and we are not the superuser
* we clear the setuid and setgid bits as a precaution against
* tampering.
*/
if ((ip->i_mode & (ISUID | ISGID)) && resid > uio->uio_resid && ucred) {
if (priv_check_cred(ucred, PRIV_VFS_RETAINSUGID, 0)) {
ip->i_mode &= ~(ISUID | ISGID);
dp->di_mode = ip->i_mode;
}
}
if (error) {
if (ioflag & IO_UNIT) {
(void)ffs_truncate(vp, osize,
IO_EXT | (ioflag&IO_SYNC), ucred);
uio->uio_offset -= resid - uio->uio_resid;
uio->uio_resid = resid;
}
} else if (resid > uio->uio_resid && (ioflag & IO_SYNC))
error = ffs_update(vp, 1);
return (error);
}
/*
* Vnode operating to retrieve a named extended attribute.
*
* Locate a particular EA (nspace:name) in the area (ptr:length), and return
* the length of the EA, and possibly the pointer to the entry and to the data.
*/
static int
ffs_findextattr(u_char *ptr, u_int length, int nspace, const char *name, u_char **eap, u_char **eac)
{
u_char *p, *pe, *pn, *p0;
int eapad1, eapad2, ealength, ealen, nlen;
uint32_t ul;
pe = ptr + length;
nlen = strlen(name);
for (p = ptr; p < pe; p = pn) {
p0 = p;
bcopy(p, &ul, sizeof(ul));
pn = p + ul;
/* make sure this entry is complete */
if (pn > pe)
break;
p += sizeof(uint32_t);
if (*p != nspace)
continue;
p++;
eapad2 = *p++;
if (*p != nlen)
continue;
p++;
if (bcmp(p, name, nlen))
continue;
ealength = sizeof(uint32_t) + 3 + nlen;
eapad1 = 8 - (ealength % 8);
if (eapad1 == 8)
eapad1 = 0;
ealength += eapad1;
ealen = ul - ealength - eapad2;
p += nlen + eapad1;
if (eap != NULL)
*eap = p0;
if (eac != NULL)
*eac = p;
return (ealen);
}
return(-1);
}
static int
ffs_rdextattr(u_char **p, struct vnode *vp, struct thread *td, int extra)
{
struct inode *ip;
struct ufs2_dinode *dp;
struct fs *fs;
struct uio luio;
struct iovec liovec;
u_int easize;
int error;
u_char *eae;
ip = VTOI(vp);
fs = ip->i_fs;
dp = ip->i_din2;
easize = dp->di_extsize;
if ((uoff_t)easize + extra > NXADDR * fs->fs_bsize)
return (EFBIG);
eae = malloc(easize + extra, M_TEMP, M_WAITOK);
liovec.iov_base = eae;
liovec.iov_len = easize;
luio.uio_iov = &liovec;
luio.uio_iovcnt = 1;
luio.uio_offset = 0;
luio.uio_resid = easize;
luio.uio_segflg = UIO_SYSSPACE;
luio.uio_rw = UIO_READ;
luio.uio_td = td;
error = ffs_extread(vp, &luio, IO_EXT | IO_SYNC);
if (error) {
free(eae, M_TEMP);
return(error);
}
*p = eae;
return (0);
}
static void
ffs_lock_ea(struct vnode *vp)
{
struct inode *ip;
ip = VTOI(vp);
VI_LOCK(vp);
while (ip->i_flag & IN_EA_LOCKED) {
ip->i_flag |= IN_EA_LOCKWAIT;
msleep(&ip->i_ea_refs, &vp->v_interlock, PINOD + 2, "ufs_ea",
0);
}
ip->i_flag |= IN_EA_LOCKED;
VI_UNLOCK(vp);
}
static void
ffs_unlock_ea(struct vnode *vp)
{
struct inode *ip;
ip = VTOI(vp);
VI_LOCK(vp);
if (ip->i_flag & IN_EA_LOCKWAIT)
wakeup(&ip->i_ea_refs);
ip->i_flag &= ~(IN_EA_LOCKED | IN_EA_LOCKWAIT);
VI_UNLOCK(vp);
}
static int
ffs_open_ea(struct vnode *vp, struct ucred *cred, struct thread *td)
{
struct inode *ip;
struct ufs2_dinode *dp;
int error;
ip = VTOI(vp);
ffs_lock_ea(vp);
if (ip->i_ea_area != NULL) {
ip->i_ea_refs++;
ffs_unlock_ea(vp);
return (0);
}
dp = ip->i_din2;
error = ffs_rdextattr(&ip->i_ea_area, vp, td, 0);
if (error) {
ffs_unlock_ea(vp);
return (error);
}
ip->i_ea_len = dp->di_extsize;
ip->i_ea_error = 0;
ip->i_ea_refs++;
ffs_unlock_ea(vp);
return (0);
}
/*
* Vnode extattr transaction commit/abort
*/
static int
ffs_close_ea(struct vnode *vp, int commit, struct ucred *cred, struct thread *td)
{
struct inode *ip;
struct uio luio;
struct iovec liovec;
int error;
struct ufs2_dinode *dp;
ip = VTOI(vp);
ffs_lock_ea(vp);
if (ip->i_ea_area == NULL) {
ffs_unlock_ea(vp);
return (EINVAL);
}
dp = ip->i_din2;
error = ip->i_ea_error;
if (commit && error == 0) {
ASSERT_VOP_ELOCKED(vp, "ffs_close_ea commit");
if (cred == NOCRED)
cred = vp->v_mount->mnt_cred;
liovec.iov_base = ip->i_ea_area;
liovec.iov_len = ip->i_ea_len;
luio.uio_iov = &liovec;
luio.uio_iovcnt = 1;
luio.uio_offset = 0;
luio.uio_resid = ip->i_ea_len;
luio.uio_segflg = UIO_SYSSPACE;
luio.uio_rw = UIO_WRITE;
luio.uio_td = td;
/* XXX: I'm not happy about truncating to zero size */
if (ip->i_ea_len < dp->di_extsize)
error = ffs_truncate(vp, 0, IO_EXT, cred);
error = ffs_extwrite(vp, &luio, IO_EXT | IO_SYNC, cred);
}
if (--ip->i_ea_refs == 0) {
free(ip->i_ea_area, M_TEMP);
ip->i_ea_area = NULL;
ip->i_ea_len = 0;
ip->i_ea_error = 0;
}
ffs_unlock_ea(vp);
return (error);
}
/*
* Vnode extattr strategy routine for fifos.
*
* We need to check for a read or write of the external attributes.
* Otherwise we just fall through and do the usual thing.
*/
static int
ffsext_strategy(struct vop_strategy_args *ap)
/*
struct vop_strategy_args {
struct vnodeop_desc *a_desc;
struct vnode *a_vp;
struct buf *a_bp;
};
*/
{
struct vnode *vp;
daddr_t lbn;
vp = ap->a_vp;
lbn = ap->a_bp->b_lblkno;
if (VTOI(vp)->i_fs->fs_magic == FS_UFS2_MAGIC &&
lbn < 0 && lbn >= -NXADDR)
return (VOP_STRATEGY_APV(&ufs_vnodeops, ap));
if (vp->v_type == VFIFO)
return (VOP_STRATEGY_APV(&ufs_fifoops, ap));
panic("spec nodes went here");
}
/*
* Vnode extattr transaction commit/abort
*/
static int
ffs_openextattr(struct vop_openextattr_args *ap)
/*
struct vop_openextattr_args {
struct vnodeop_desc *a_desc;
struct vnode *a_vp;
IN struct ucred *a_cred;
IN struct thread *a_td;
};
*/
{
if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
return (EOPNOTSUPP);
return (ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td));
}
/*
* Vnode extattr transaction commit/abort
*/
static int
ffs_closeextattr(struct vop_closeextattr_args *ap)
/*
struct vop_closeextattr_args {
struct vnodeop_desc *a_desc;
struct vnode *a_vp;
int a_commit;
IN struct ucred *a_cred;
IN struct thread *a_td;
};
*/
{
if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
return (EOPNOTSUPP);
if (ap->a_commit && (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY))
return (EROFS);
return (ffs_close_ea(ap->a_vp, ap->a_commit, ap->a_cred, ap->a_td));
}
/*
* Vnode operation to remove a named attribute.
*/
static int
ffs_deleteextattr(struct vop_deleteextattr_args *ap)
/*
vop_deleteextattr {
IN struct vnode *a_vp;
IN int a_attrnamespace;
IN const char *a_name;
IN struct ucred *a_cred;
IN struct thread *a_td;
};
*/
{
struct inode *ip;
struct fs *fs;
uint32_t ealength, ul;
int ealen, olen, eapad1, eapad2, error, i, easize;
u_char *eae, *p;
ip = VTOI(ap->a_vp);
fs = ip->i_fs;
if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
return (EOPNOTSUPP);
if (strlen(ap->a_name) == 0)
return (EINVAL);
if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)
return (EROFS);
error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
ap->a_cred, ap->a_td, VWRITE);
if (error) {
/*
* ffs_lock_ea is not needed there, because the vnode
* must be exclusively locked.
*/
if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
ip->i_ea_error = error;
return (error);
}
error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
if (error)
return (error);
ealength = eapad1 = ealen = eapad2 = 0;
eae = malloc(ip->i_ea_len, M_TEMP, M_WAITOK);
bcopy(ip->i_ea_area, eae, ip->i_ea_len);
easize = ip->i_ea_len;
olen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name,
&p, NULL);
if (olen == -1) {
/* delete but nonexistent */
free(eae, M_TEMP);
ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
return(ENOATTR);
}
bcopy(p, &ul, sizeof ul);
i = p - eae + ul;
if (ul != ealength) {
bcopy(p + ul, p + ealength, easize - i);
easize += (ealength - ul);
}
if (easize > NXADDR * fs->fs_bsize) {
free(eae, M_TEMP);
ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
ip->i_ea_error = ENOSPC;
return(ENOSPC);
}
p = ip->i_ea_area;
ip->i_ea_area = eae;
ip->i_ea_len = easize;
free(p, M_TEMP);
error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td);
return(error);
}
/*
* Vnode operation to retrieve a named extended attribute.
*/
static int
ffs_getextattr(struct vop_getextattr_args *ap)
/*
vop_getextattr {
IN struct vnode *a_vp;
IN int a_attrnamespace;
IN const char *a_name;
INOUT struct uio *a_uio;
OUT size_t *a_size;
IN struct ucred *a_cred;
IN struct thread *a_td;
};
*/
{
struct inode *ip;
u_char *eae, *p;
unsigned easize;
int error, ealen;
ip = VTOI(ap->a_vp);
if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
return (EOPNOTSUPP);
error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
ap->a_cred, ap->a_td, VREAD);
if (error)
return (error);
error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
if (error)
return (error);
eae = ip->i_ea_area;
easize = ip->i_ea_len;
ealen = ffs_findextattr(eae, easize, ap->a_attrnamespace, ap->a_name,
NULL, &p);
if (ealen >= 0) {
error = 0;
if (ap->a_size != NULL)
*ap->a_size = ealen;
else if (ap->a_uio != NULL)
error = uiomove(p, ealen, ap->a_uio);
} else
error = ENOATTR;
ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
return(error);
}
/*
* Vnode operation to retrieve extended attributes on a vnode.
*/
static int
ffs_listextattr(struct vop_listextattr_args *ap)
/*
vop_listextattr {
IN struct vnode *a_vp;
IN int a_attrnamespace;
INOUT struct uio *a_uio;
OUT size_t *a_size;
IN struct ucred *a_cred;
IN struct thread *a_td;
};
*/
{
struct inode *ip;
u_char *eae, *p, *pe, *pn;
unsigned easize;
uint32_t ul;
int error, ealen;
ip = VTOI(ap->a_vp);
if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
return (EOPNOTSUPP);
error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
ap->a_cred, ap->a_td, VREAD);
if (error)
return (error);
error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
if (error)
return (error);
eae = ip->i_ea_area;
easize = ip->i_ea_len;
error = 0;
if (ap->a_size != NULL)
*ap->a_size = 0;
pe = eae + easize;
for(p = eae; error == 0 && p < pe; p = pn) {
bcopy(p, &ul, sizeof(ul));
pn = p + ul;
if (pn > pe)
break;
p += sizeof(ul);
if (*p++ != ap->a_attrnamespace)
continue;
p++; /* pad2 */
ealen = *p;
if (ap->a_size != NULL) {
*ap->a_size += ealen + 1;
} else if (ap->a_uio != NULL) {
error = uiomove(p, ealen + 1, ap->a_uio);
}
}
ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
return(error);
}
/*
* Vnode operation to set a named attribute.
*/
static int
ffs_setextattr(struct vop_setextattr_args *ap)
/*
vop_setextattr {
IN struct vnode *a_vp;
IN int a_attrnamespace;
IN const char *a_name;
INOUT struct uio *a_uio;
IN struct ucred *a_cred;
IN struct thread *a_td;
};
*/
{
struct inode *ip;
struct fs *fs;
uint32_t ealength, ul;
ssize_t ealen;
int olen, eapad1, eapad2, error, i, easize;
u_char *eae, *p;
ip = VTOI(ap->a_vp);
fs = ip->i_fs;
if (ap->a_vp->v_type == VCHR || ap->a_vp->v_type == VBLK)
return (EOPNOTSUPP);
if (strlen(ap->a_name) == 0)
return (EINVAL);
/* XXX Now unsupported API to delete EAs using NULL uio. */
if (ap->a_uio == NULL)
return (EOPNOTSUPP);
if (ap->a_vp->v_mount->mnt_flag & MNT_RDONLY)
return (EROFS);
ealen = ap->a_uio->uio_resid;
if (ealen < 0 || ealen > lblktosize(fs, NXADDR))
return (EINVAL);
error = extattr_check_cred(ap->a_vp, ap->a_attrnamespace,
ap->a_cred, ap->a_td, VWRITE);
if (error) {
/*
* ffs_lock_ea is not needed there, because the vnode
* must be exclusively locked.
*/
if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
ip->i_ea_error = error;
return (error);
}
error = ffs_open_ea(ap->a_vp, ap->a_cred, ap->a_td);
if (error)
return (error);
ealength = sizeof(uint32_t) + 3 + strlen(ap->a_name);
eapad1 = 8 - (ealength % 8);
if (eapad1 == 8)
eapad1 = 0;
eapad2 = 8 - (ealen % 8);
if (eapad2 == 8)
eapad2 = 0;
ealength += eapad1 + ealen + eapad2;
eae = malloc(ip->i_ea_len + ealength, M_TEMP, M_WAITOK);
bcopy(ip->i_ea_area, eae, ip->i_ea_len);
easize = ip->i_ea_len;
olen = ffs_findextattr(eae, easize,
ap->a_attrnamespace, ap->a_name, &p, NULL);
if (olen == -1) {
/* new, append at end */
p = eae + easize;
easize += ealength;
} else {
bcopy(p, &ul, sizeof ul);
i = p - eae + ul;
if (ul != ealength) {
bcopy(p + ul, p + ealength, easize - i);
easize += (ealength - ul);
}
}
if (easize > lblktosize(fs, NXADDR)) {
free(eae, M_TEMP);
ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
ip->i_ea_error = ENOSPC;
return(ENOSPC);
}
bcopy(&ealength, p, sizeof(ealength));
p += sizeof(ealength);
*p++ = ap->a_attrnamespace;
*p++ = eapad2;
*p++ = strlen(ap->a_name);
strcpy(p, ap->a_name);
p += strlen(ap->a_name);
bzero(p, eapad1);
p += eapad1;
error = uiomove(p, ealen, ap->a_uio);
if (error) {
free(eae, M_TEMP);
ffs_close_ea(ap->a_vp, 0, ap->a_cred, ap->a_td);
if (ip->i_ea_area != NULL && ip->i_ea_error == 0)
ip->i_ea_error = error;
return(error);
}
p += ealen;
bzero(p, eapad2);
p = ip->i_ea_area;
ip->i_ea_area = eae;
ip->i_ea_len = easize;
free(p, M_TEMP);
error = ffs_close_ea(ap->a_vp, 1, ap->a_cred, ap->a_td);
return(error);
}
/*
* Vnode pointer to File handle
*/
static int
ffs_vptofh(struct vop_vptofh_args *ap)
/*
vop_vptofh {
IN struct vnode *a_vp;
IN struct fid *a_fhp;
};
*/
{
struct inode *ip;
struct ufid *ufhp;
ip = VTOI(ap->a_vp);
ufhp = (struct ufid *)ap->a_fhp;
ufhp->ufid_len = sizeof(struct ufid);
ufhp->ufid_ino = ip->i_number;
ufhp->ufid_gen = ip->i_gen;
return (0);
}