90da2b2859
For a slightly thorough explaination, please refer to [1] http://people.freebsd.org/~ariff/SOUND_4.TXT.html . Summary of changes includes: 1 Volume Per-Channel (vpc). Provides private / standalone volume control unique per-stream pcm channel without touching master volume / pcm. Applications can directly use SNDCTL_DSP_[GET|SET][PLAY|REC]VOL, or for backwards compatibility, SOUND_MIXER_PCM through the opened dsp device instead of /dev/mixer. Special "bypass" mode is enabled through /dev/mixer which will automatically detect if the adjustment is made through /dev/mixer and forward its request to this private volume controller. Changes to this volume object will not interfere with other channels. Requirements: - SNDCTL_DSP_[GET|SET][PLAY|REC]_VOL are newer ioctls (OSSv4) which require specific application modifications (preferred). - No modifications required for using bypass mode, so applications like mplayer or xmms should work out of the box. Kernel hints: - hint.pcm.%d.vpc (0 = disable vpc). Kernel sysctls: - hw.snd.vpc_mixer_bypass (default: 1). Enable or disable /dev/mixer bypass mode. - hw.snd.vpc_autoreset (default: 1). By default, closing/opening /dev/dsp will reset the volume back to 0 db gain/attenuation. Setting this to 0 will preserve its settings across device closing/opening. - hw.snd.vpc_reset (default: 0). Panic/reset button to reset all volume settings back to 0 db. - hw.snd.vpc_0db (default: 45). 0 db relative to linear mixer value. 2 High quality fixed-point Bandlimited SINC sampling rate converter, based on Julius O'Smith's Digital Audio Resampling - http://ccrma.stanford.edu/~jos/resample/. It includes a filter design script written in awk (the clumsiest joke I've ever written) - 100% 32bit fixed-point, 64bit accumulator. - Possibly among the fastest (if not fastest) of its kind. - Resampling quality is tunable, either runtime or during kernel compilation (FEEDER_RATE_PRESETS). - Quality can be further customized during kernel compilation by defining FEEDER_RATE_PRESETS in /etc/make.conf. Kernel sysctls: - hw.snd.feeder_rate_quality. 0 - Zero-order Hold (ZOH). Fastest, bad quality. 1 - Linear Interpolation (LINEAR). Slightly slower than ZOH, better quality but still does not eliminate aliasing. 2 - (and above) - Sinc Interpolation(SINC). Best quality. SINC quality always start from 2 and above. Rough quality comparisons: - http://people.freebsd.org/~ariff/z_comparison/ 3 Bit-perfect mode. Bypasses all feeder/dsp effects. Pure sound will be directly fed into the hardware. 4 Parametric (compile time) Software Equalizer (Bass/Treble mixer). Can be customized by defining FEEDER_EQ_PRESETS in /etc/make.conf. 5 Transparent/Adaptive Virtual Channel. Now you don't have to disable vchans in order to make digital format pass through. It also makes vchans more dynamic by choosing a better format/rate among all the concurrent streams, which means that dev.pcm.X.play.vchanformat/rate becomes sort of optional. 6 Exclusive Stream, with special open() mode O_EXCL. This will "mute" other concurrent vchan streams and only allow a single channel with O_EXCL set to keep producing sound. Other Changes: * most feeder_* stuffs are compilable in userland. Let's not speculate whether we should go all out for it (save that for FreeBSD 16.0-RELEASE). * kobj signature fixups, thanks to Andriy Gapon <avg@freebsd.org> * pull out channel mixing logic out of vchan.c and create its own feeder_mixer for world justice. * various refactoring here and there, for good or bad. * activation of few more OSSv4 ioctls() (see [1] above). * opt_snd.h for possible compile time configuration: (mostly for debugging purposes, don't try these at home) SND_DEBUG SND_DIAGNOSTIC SND_FEEDER_MULTIFORMAT SND_FEEDER_FULL_MULTIFORMAT SND_FEEDER_RATE_HP SND_PCM_64 SND_OLDSTEREO Manual page updates are on the way. Tested by: joel, Olivier SMEDTS <olivier at gid0 d org>, too many unsung / unnamed heroes.
1102 lines
26 KiB
C
1102 lines
26 KiB
C
/*-
|
|
* Copyright (c) 1999 Seigo Tanimura
|
|
* All rights reserved.
|
|
*
|
|
* Portions of this source are based on cwcealdr.cpp and dhwiface.cpp in
|
|
* cwcealdr1.zip, the sample sources by Crystal Semiconductor.
|
|
* Copyright (c) 1996-1998 Crystal Semiconductor Corp.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/module.h>
|
|
#include <machine/resource.h>
|
|
#include <machine/bus.h>
|
|
#include <sys/rman.h>
|
|
|
|
#ifdef HAVE_KERNEL_OPTION_HEADERS
|
|
#include "opt_snd.h"
|
|
#endif
|
|
|
|
#include <dev/sound/pcm/sound.h>
|
|
#include <dev/sound/chip.h>
|
|
#include <dev/sound/pci/csareg.h>
|
|
#include <dev/sound/pci/csavar.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
|
|
#include <gnu/dev/sound/pci/csaimg.h>
|
|
|
|
SND_DECLARE_FILE("$FreeBSD$");
|
|
|
|
/* This is the pci device id. */
|
|
#define CS4610_PCI_ID 0x60011013
|
|
#define CS4614_PCI_ID 0x60031013
|
|
#define CS4615_PCI_ID 0x60041013
|
|
|
|
/* Here is the parameter structure per a device. */
|
|
struct csa_softc {
|
|
device_t dev; /* device */
|
|
csa_res res; /* resources */
|
|
|
|
device_t pcm; /* pcm device */
|
|
driver_intr_t* pcmintr; /* pcm intr */
|
|
void *pcmintr_arg; /* pcm intr arg */
|
|
device_t midi; /* midi device */
|
|
driver_intr_t* midiintr; /* midi intr */
|
|
void *midiintr_arg; /* midi intr arg */
|
|
void *ih; /* cookie */
|
|
|
|
struct csa_card *card;
|
|
struct csa_bridgeinfo binfo; /* The state of this bridge. */
|
|
};
|
|
|
|
typedef struct csa_softc *sc_p;
|
|
|
|
static int csa_probe(device_t dev);
|
|
static int csa_attach(device_t dev);
|
|
static struct resource *csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
|
|
u_long start, u_long end, u_long count, u_int flags);
|
|
static int csa_release_resource(device_t bus, device_t child, int type, int rid,
|
|
struct resource *r);
|
|
static int csa_setup_intr(device_t bus, device_t child,
|
|
struct resource *irq, int flags,
|
|
#if __FreeBSD_version >= 700031
|
|
driver_filter_t *filter,
|
|
#endif
|
|
driver_intr_t *intr, void *arg, void **cookiep);
|
|
static int csa_teardown_intr(device_t bus, device_t child,
|
|
struct resource *irq, void *cookie);
|
|
static driver_intr_t csa_intr;
|
|
static int csa_initialize(sc_p scp);
|
|
static int csa_downloadimage(csa_res *resp);
|
|
|
|
static devclass_t csa_devclass;
|
|
|
|
static void
|
|
amp_none(void)
|
|
{
|
|
}
|
|
|
|
static void
|
|
amp_voyetra(void)
|
|
{
|
|
}
|
|
|
|
static int
|
|
clkrun_hack(int run)
|
|
{
|
|
#ifdef __i386__
|
|
devclass_t pci_devclass;
|
|
device_t *pci_devices, *pci_children, *busp, *childp;
|
|
int pci_count = 0, pci_childcount = 0;
|
|
int i, j, port;
|
|
u_int16_t control;
|
|
bus_space_tag_t btag;
|
|
|
|
if ((pci_devclass = devclass_find("pci")) == NULL) {
|
|
return ENXIO;
|
|
}
|
|
|
|
devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
|
|
|
|
for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
|
|
pci_childcount = 0;
|
|
if (device_get_children(*busp, &pci_children, &pci_childcount))
|
|
continue;
|
|
for (j = 0, childp = pci_children; j < pci_childcount; j++, childp++) {
|
|
if (pci_get_vendor(*childp) == 0x8086 && pci_get_device(*childp) == 0x7113) {
|
|
port = (pci_read_config(*childp, 0x41, 1) << 8) + 0x10;
|
|
/* XXX */
|
|
btag = I386_BUS_SPACE_IO;
|
|
|
|
control = bus_space_read_2(btag, 0x0, port);
|
|
control &= ~0x2000;
|
|
control |= run? 0 : 0x2000;
|
|
bus_space_write_2(btag, 0x0, port, control);
|
|
free(pci_devices, M_TEMP);
|
|
free(pci_children, M_TEMP);
|
|
return 0;
|
|
}
|
|
}
|
|
free(pci_children, M_TEMP);
|
|
}
|
|
|
|
free(pci_devices, M_TEMP);
|
|
return ENXIO;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static struct csa_card cards_4610[] = {
|
|
{0, 0, "Unknown/invalid SSID (CS4610)", NULL, NULL, NULL, 0},
|
|
};
|
|
|
|
static struct csa_card cards_4614[] = {
|
|
{0x1489, 0x7001, "Genius Soundmaker 128 value", amp_none, NULL, NULL, 0},
|
|
{0x5053, 0x3357, "Turtle Beach Santa Cruz", amp_voyetra, NULL, NULL, 1},
|
|
{0x1071, 0x6003, "Mitac MI6020/21", amp_voyetra, NULL, NULL, 0},
|
|
{0x14AF, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0},
|
|
{0x1681, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0},
|
|
{0x1014, 0x0132, "Thinkpad 570", amp_none, NULL, NULL, 0},
|
|
{0x1014, 0x0153, "Thinkpad 600X/A20/T20", amp_none, NULL, clkrun_hack, 0},
|
|
{0x1014, 0x1010, "Thinkpad 600E (unsupported)", NULL, NULL, NULL, 0},
|
|
{0, 0, "Unknown/invalid SSID (CS4614)", NULL, NULL, NULL, 0},
|
|
};
|
|
|
|
static struct csa_card cards_4615[] = {
|
|
{0, 0, "Unknown/invalid SSID (CS4615)", NULL, NULL, NULL, 0},
|
|
};
|
|
|
|
static struct csa_card nocard = {0, 0, "unknown", NULL, NULL, NULL, 0};
|
|
|
|
struct card_type {
|
|
u_int32_t devid;
|
|
char *name;
|
|
struct csa_card *cards;
|
|
};
|
|
|
|
static struct card_type cards[] = {
|
|
{CS4610_PCI_ID, "CS4610/CS4611", cards_4610},
|
|
{CS4614_PCI_ID, "CS4280/CS4614/CS4622/CS4624/CS4630", cards_4614},
|
|
{CS4615_PCI_ID, "CS4615", cards_4615},
|
|
{0, NULL, NULL},
|
|
};
|
|
|
|
static struct card_type *
|
|
csa_findcard(device_t dev)
|
|
{
|
|
int i;
|
|
|
|
i = 0;
|
|
while (cards[i].devid != 0) {
|
|
if (pci_get_devid(dev) == cards[i].devid)
|
|
return &cards[i];
|
|
i++;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
struct csa_card *
|
|
csa_findsubcard(device_t dev)
|
|
{
|
|
int i;
|
|
struct card_type *card;
|
|
struct csa_card *subcard;
|
|
|
|
card = csa_findcard(dev);
|
|
if (card == NULL)
|
|
return &nocard;
|
|
subcard = card->cards;
|
|
i = 0;
|
|
while (subcard[i].subvendor != 0) {
|
|
if (pci_get_subvendor(dev) == subcard[i].subvendor
|
|
&& pci_get_subdevice(dev) == subcard[i].subdevice) {
|
|
return &subcard[i];
|
|
}
|
|
i++;
|
|
}
|
|
return &subcard[i];
|
|
}
|
|
|
|
static int
|
|
csa_probe(device_t dev)
|
|
{
|
|
struct card_type *card;
|
|
|
|
card = csa_findcard(dev);
|
|
if (card) {
|
|
device_set_desc(dev, card->name);
|
|
return BUS_PROBE_DEFAULT;
|
|
}
|
|
return ENXIO;
|
|
}
|
|
|
|
static int
|
|
csa_attach(device_t dev)
|
|
{
|
|
u_int32_t stcmd;
|
|
sc_p scp;
|
|
csa_res *resp;
|
|
struct sndcard_func *func;
|
|
int error = ENXIO;
|
|
|
|
scp = device_get_softc(dev);
|
|
|
|
/* Fill in the softc. */
|
|
bzero(scp, sizeof(*scp));
|
|
scp->dev = dev;
|
|
|
|
/* Wake up the device. */
|
|
stcmd = pci_read_config(dev, PCIR_COMMAND, 2);
|
|
if ((stcmd & PCIM_CMD_MEMEN) == 0 || (stcmd & PCIM_CMD_BUSMASTEREN) == 0) {
|
|
stcmd |= (PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
|
|
pci_write_config(dev, PCIR_COMMAND, stcmd, 2);
|
|
}
|
|
|
|
/* Allocate the resources. */
|
|
resp = &scp->res;
|
|
scp->card = csa_findsubcard(dev);
|
|
scp->binfo.card = scp->card;
|
|
printf("csa: card is %s\n", scp->card->name);
|
|
resp->io_rid = PCIR_BAR(0);
|
|
resp->io = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
|
|
&resp->io_rid, RF_ACTIVE);
|
|
if (resp->io == NULL)
|
|
return (ENXIO);
|
|
resp->mem_rid = PCIR_BAR(1);
|
|
resp->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
|
|
&resp->mem_rid, RF_ACTIVE);
|
|
if (resp->mem == NULL)
|
|
goto err_io;
|
|
resp->irq_rid = 0;
|
|
resp->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
|
|
&resp->irq_rid, RF_ACTIVE | RF_SHAREABLE);
|
|
if (resp->irq == NULL)
|
|
goto err_mem;
|
|
|
|
/* Enable interrupt. */
|
|
if (snd_setup_intr(dev, resp->irq, 0, csa_intr, scp, &scp->ih))
|
|
goto err_intr;
|
|
#if 0
|
|
if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
|
|
csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
|
|
#endif
|
|
|
|
/* Initialize the chip. */
|
|
if (csa_initialize(scp))
|
|
goto err_teardown;
|
|
|
|
/* Reset the Processor. */
|
|
csa_resetdsp(resp);
|
|
|
|
/* Download the Processor Image to the processor. */
|
|
if (csa_downloadimage(resp))
|
|
goto err_teardown;
|
|
|
|
/* Attach the children. */
|
|
|
|
/* PCM Audio */
|
|
func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (func == NULL) {
|
|
error = ENOMEM;
|
|
goto err_teardown;
|
|
}
|
|
func->varinfo = &scp->binfo;
|
|
func->func = SCF_PCM;
|
|
scp->pcm = device_add_child(dev, "pcm", -1);
|
|
device_set_ivars(scp->pcm, func);
|
|
|
|
/* Midi Interface */
|
|
func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (func == NULL) {
|
|
error = ENOMEM;
|
|
goto err_teardown;
|
|
}
|
|
func->varinfo = &scp->binfo;
|
|
func->func = SCF_MIDI;
|
|
scp->midi = device_add_child(dev, "midi", -1);
|
|
device_set_ivars(scp->midi, func);
|
|
|
|
bus_generic_attach(dev);
|
|
|
|
return (0);
|
|
|
|
err_teardown:
|
|
bus_teardown_intr(dev, resp->irq, scp->ih);
|
|
err_intr:
|
|
bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
|
|
err_mem:
|
|
bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
|
|
err_io:
|
|
bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
csa_detach(device_t dev)
|
|
{
|
|
csa_res *resp;
|
|
sc_p scp;
|
|
struct sndcard_func *func;
|
|
int err;
|
|
|
|
scp = device_get_softc(dev);
|
|
resp = &scp->res;
|
|
|
|
if (scp->midi != NULL) {
|
|
func = device_get_ivars(scp->midi);
|
|
err = device_delete_child(dev, scp->midi);
|
|
if (err != 0)
|
|
return err;
|
|
if (func != NULL)
|
|
free(func, M_DEVBUF);
|
|
scp->midi = NULL;
|
|
}
|
|
|
|
if (scp->pcm != NULL) {
|
|
func = device_get_ivars(scp->pcm);
|
|
err = device_delete_child(dev, scp->pcm);
|
|
if (err != 0)
|
|
return err;
|
|
if (func != NULL)
|
|
free(func, M_DEVBUF);
|
|
scp->pcm = NULL;
|
|
}
|
|
|
|
bus_teardown_intr(dev, resp->irq, scp->ih);
|
|
bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
|
|
bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
|
|
bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
|
|
|
|
return bus_generic_detach(dev);
|
|
}
|
|
|
|
static int
|
|
csa_resume(device_t dev)
|
|
{
|
|
csa_res *resp;
|
|
sc_p scp;
|
|
|
|
scp = device_get_softc(dev);
|
|
resp = &scp->res;
|
|
|
|
/* Initialize the chip. */
|
|
if (csa_initialize(scp))
|
|
return (ENXIO);
|
|
|
|
/* Reset the Processor. */
|
|
csa_resetdsp(resp);
|
|
|
|
/* Download the Processor Image to the processor. */
|
|
if (csa_downloadimage(resp))
|
|
return (ENXIO);
|
|
|
|
return (bus_generic_resume(dev));
|
|
}
|
|
|
|
static struct resource *
|
|
csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
|
|
u_long start, u_long end, u_long count, u_int flags)
|
|
{
|
|
sc_p scp;
|
|
csa_res *resp;
|
|
struct resource *res;
|
|
|
|
scp = device_get_softc(bus);
|
|
resp = &scp->res;
|
|
switch (type) {
|
|
case SYS_RES_IRQ:
|
|
if (*rid != 0)
|
|
return (NULL);
|
|
res = resp->irq;
|
|
break;
|
|
case SYS_RES_MEMORY:
|
|
switch (*rid) {
|
|
case PCIR_BAR(0):
|
|
res = resp->io;
|
|
break;
|
|
case PCIR_BAR(1):
|
|
res = resp->mem;
|
|
break;
|
|
default:
|
|
return (NULL);
|
|
}
|
|
break;
|
|
default:
|
|
return (NULL);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
static int
|
|
csa_release_resource(device_t bus, device_t child, int type, int rid,
|
|
struct resource *r)
|
|
{
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* The following three functions deal with interrupt handling.
|
|
* An interrupt is primarily handled by the bridge driver.
|
|
* The bridge driver then determines the child devices to pass
|
|
* the interrupt. Certain information of the device can be read
|
|
* only once(eg the value of HISR). The bridge driver is responsible
|
|
* to pass such the information to the children.
|
|
*/
|
|
|
|
static int
|
|
csa_setup_intr(device_t bus, device_t child,
|
|
struct resource *irq, int flags,
|
|
#if __FreeBSD_version >= 700031
|
|
driver_filter_t *filter,
|
|
#endif
|
|
driver_intr_t *intr, void *arg, void **cookiep)
|
|
{
|
|
sc_p scp;
|
|
csa_res *resp;
|
|
struct sndcard_func *func;
|
|
|
|
#if __FreeBSD_version >= 700031
|
|
if (filter != NULL) {
|
|
printf("ata-csa.c: we cannot use a filter here\n");
|
|
return (EINVAL);
|
|
}
|
|
#endif
|
|
scp = device_get_softc(bus);
|
|
resp = &scp->res;
|
|
|
|
/*
|
|
* Look at the function code of the child to determine
|
|
* the appropriate hander for it.
|
|
*/
|
|
func = device_get_ivars(child);
|
|
if (func == NULL || irq != resp->irq)
|
|
return (EINVAL);
|
|
|
|
switch (func->func) {
|
|
case SCF_PCM:
|
|
scp->pcmintr = intr;
|
|
scp->pcmintr_arg = arg;
|
|
break;
|
|
|
|
case SCF_MIDI:
|
|
scp->midiintr = intr;
|
|
scp->midiintr_arg = arg;
|
|
break;
|
|
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
*cookiep = scp;
|
|
if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
|
|
csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
csa_teardown_intr(device_t bus, device_t child,
|
|
struct resource *irq, void *cookie)
|
|
{
|
|
sc_p scp;
|
|
csa_res *resp;
|
|
struct sndcard_func *func;
|
|
|
|
scp = device_get_softc(bus);
|
|
resp = &scp->res;
|
|
|
|
/*
|
|
* Look at the function code of the child to determine
|
|
* the appropriate hander for it.
|
|
*/
|
|
func = device_get_ivars(child);
|
|
if (func == NULL || irq != resp->irq || cookie != scp)
|
|
return (EINVAL);
|
|
|
|
switch (func->func) {
|
|
case SCF_PCM:
|
|
scp->pcmintr = NULL;
|
|
scp->pcmintr_arg = NULL;
|
|
break;
|
|
|
|
case SCF_MIDI:
|
|
scp->midiintr = NULL;
|
|
scp->midiintr_arg = NULL;
|
|
break;
|
|
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/* The interrupt handler */
|
|
static void
|
|
csa_intr(void *arg)
|
|
{
|
|
sc_p scp = arg;
|
|
csa_res *resp;
|
|
u_int32_t hisr;
|
|
|
|
resp = &scp->res;
|
|
|
|
/* Is this interrupt for us? */
|
|
hisr = csa_readio(resp, BA0_HISR);
|
|
if ((hisr & 0x7fffffff) == 0) {
|
|
/* Throw an eoi. */
|
|
csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Pass the value of HISR via struct csa_bridgeinfo.
|
|
* The children get access through their ivars.
|
|
*/
|
|
scp->binfo.hisr = hisr;
|
|
|
|
/* Invoke the handlers of the children. */
|
|
if ((hisr & (HISR_VC0 | HISR_VC1)) != 0 && scp->pcmintr != NULL) {
|
|
scp->pcmintr(scp->pcmintr_arg);
|
|
hisr &= ~(HISR_VC0 | HISR_VC1);
|
|
}
|
|
if ((hisr & HISR_MIDI) != 0 && scp->midiintr != NULL) {
|
|
scp->midiintr(scp->midiintr_arg);
|
|
hisr &= ~HISR_MIDI;
|
|
}
|
|
|
|
/* Throw an eoi. */
|
|
csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
|
|
}
|
|
|
|
static int
|
|
csa_initialize(sc_p scp)
|
|
{
|
|
int i;
|
|
u_int32_t acsts, acisv;
|
|
csa_res *resp;
|
|
|
|
resp = &scp->res;
|
|
|
|
/*
|
|
* First, blast the clock control register to zero so that the PLL starts
|
|
* out in a known state, and blast the master serial port control register
|
|
* to zero so that the serial ports also start out in a known state.
|
|
*/
|
|
csa_writeio(resp, BA0_CLKCR1, 0);
|
|
csa_writeio(resp, BA0_SERMC1, 0);
|
|
|
|
/*
|
|
* If we are in AC97 mode, then we must set the part to a host controlled
|
|
* AC-link. Otherwise, we won't be able to bring up the link.
|
|
*/
|
|
#if 1
|
|
csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_1_03); /* 1.03 codec */
|
|
#else
|
|
csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_2_0); /* 2.0 codec */
|
|
#endif /* 1 */
|
|
|
|
/*
|
|
* Drive the ARST# pin low for a minimum of 1uS (as defined in the AC97
|
|
* spec) and then drive it high. This is done for non AC97 modes since
|
|
* there might be logic external to the CS461x that uses the ARST# line
|
|
* for a reset.
|
|
*/
|
|
csa_writeio(resp, BA0_ACCTL, 1);
|
|
DELAY(50);
|
|
csa_writeio(resp, BA0_ACCTL, 0);
|
|
DELAY(50);
|
|
csa_writeio(resp, BA0_ACCTL, ACCTL_RSTN);
|
|
|
|
/*
|
|
* The first thing we do here is to enable sync generation. As soon
|
|
* as we start receiving bit clock, we'll start producing the SYNC
|
|
* signal.
|
|
*/
|
|
csa_writeio(resp, BA0_ACCTL, ACCTL_ESYN | ACCTL_RSTN);
|
|
|
|
/*
|
|
* Now wait for a short while to allow the AC97 part to start
|
|
* generating bit clock (so we don't try to start the PLL without an
|
|
* input clock).
|
|
*/
|
|
DELAY(50000);
|
|
|
|
/*
|
|
* Set the serial port timing configuration, so that
|
|
* the clock control circuit gets its clock from the correct place.
|
|
*/
|
|
csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97);
|
|
DELAY(700000);
|
|
|
|
/*
|
|
* Write the selected clock control setup to the hardware. Do not turn on
|
|
* SWCE yet (if requested), so that the devices clocked by the output of
|
|
* PLL are not clocked until the PLL is stable.
|
|
*/
|
|
csa_writeio(resp, BA0_PLLCC, PLLCC_LPF_1050_2780_KHZ | PLLCC_CDR_73_104_MHZ);
|
|
csa_writeio(resp, BA0_PLLM, 0x3a);
|
|
csa_writeio(resp, BA0_CLKCR2, CLKCR2_PDIVS_8);
|
|
|
|
/*
|
|
* Power up the PLL.
|
|
*/
|
|
csa_writeio(resp, BA0_CLKCR1, CLKCR1_PLLP);
|
|
|
|
/*
|
|
* Wait until the PLL has stabilized.
|
|
*/
|
|
DELAY(5000);
|
|
|
|
/*
|
|
* Turn on clocking of the core so that we can setup the serial ports.
|
|
*/
|
|
csa_writeio(resp, BA0_CLKCR1, csa_readio(resp, BA0_CLKCR1) | CLKCR1_SWCE);
|
|
|
|
/*
|
|
* Fill the serial port FIFOs with silence.
|
|
*/
|
|
csa_clearserialfifos(resp);
|
|
|
|
/*
|
|
* Set the serial port FIFO pointer to the first sample in the FIFO.
|
|
*/
|
|
#ifdef notdef
|
|
csa_writeio(resp, BA0_SERBSP, 0);
|
|
#endif /* notdef */
|
|
|
|
/*
|
|
* Write the serial port configuration to the part. The master
|
|
* enable bit is not set until all other values have been written.
|
|
*/
|
|
csa_writeio(resp, BA0_SERC1, SERC1_SO1F_AC97 | SERC1_SO1EN);
|
|
csa_writeio(resp, BA0_SERC2, SERC2_SI1F_AC97 | SERC1_SO1EN);
|
|
csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97 | SERMC1_MSPE);
|
|
|
|
/*
|
|
* Wait for the codec ready signal from the AC97 codec.
|
|
*/
|
|
acsts = 0;
|
|
for (i = 0 ; i < 1000 ; i++) {
|
|
/*
|
|
* First, lets wait a short while to let things settle out a bit,
|
|
* and to prevent retrying the read too quickly.
|
|
*/
|
|
DELAY(125);
|
|
|
|
/*
|
|
* Read the AC97 status register to see if we've seen a CODEC READY
|
|
* signal from the AC97 codec.
|
|
*/
|
|
acsts = csa_readio(resp, BA0_ACSTS);
|
|
if ((acsts & ACSTS_CRDY) != 0)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Make sure we sampled CODEC READY.
|
|
*/
|
|
if ((acsts & ACSTS_CRDY) == 0)
|
|
return (ENXIO);
|
|
|
|
/*
|
|
* Assert the vaid frame signal so that we can start sending commands
|
|
* to the AC97 codec.
|
|
*/
|
|
csa_writeio(resp, BA0_ACCTL, ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
|
|
|
|
/*
|
|
* Wait until we've sampled input slots 3 and 4 as valid, meaning that
|
|
* the codec is pumping ADC data across the AC-link.
|
|
*/
|
|
acisv = 0;
|
|
for (i = 0 ; i < 1000 ; i++) {
|
|
/*
|
|
* First, lets wait a short while to let things settle out a bit,
|
|
* and to prevent retrying the read too quickly.
|
|
*/
|
|
#ifdef notdef
|
|
DELAY(10000000L); /* clw */
|
|
#else
|
|
DELAY(1000);
|
|
#endif /* notdef */
|
|
/*
|
|
* Read the input slot valid register and see if input slots 3 and
|
|
* 4 are valid yet.
|
|
*/
|
|
acisv = csa_readio(resp, BA0_ACISV);
|
|
if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) == (ACISV_ISV3 | ACISV_ISV4))
|
|
break;
|
|
}
|
|
/*
|
|
* Make sure we sampled valid input slots 3 and 4. If not, then return
|
|
* an error.
|
|
*/
|
|
if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) != (ACISV_ISV3 | ACISV_ISV4))
|
|
return (ENXIO);
|
|
|
|
/*
|
|
* Now, assert valid frame and the slot 3 and 4 valid bits. This will
|
|
* commense the transfer of digital audio data to the AC97 codec.
|
|
*/
|
|
csa_writeio(resp, BA0_ACOSV, ACOSV_SLV3 | ACOSV_SLV4);
|
|
|
|
/*
|
|
* Power down the DAC and ADC. We will power them up (if) when we need
|
|
* them.
|
|
*/
|
|
#ifdef notdef
|
|
csa_writeio(resp, BA0_AC97_POWERDOWN, 0x300);
|
|
#endif /* notdef */
|
|
|
|
/*
|
|
* Turn off the Processor by turning off the software clock enable flag in
|
|
* the clock control register.
|
|
*/
|
|
#ifdef notdef
|
|
clkcr1 = csa_readio(resp, BA0_CLKCR1) & ~CLKCR1_SWCE;
|
|
csa_writeio(resp, BA0_CLKCR1, clkcr1);
|
|
#endif /* notdef */
|
|
|
|
/*
|
|
* Enable interrupts on the part.
|
|
*/
|
|
#if 0
|
|
csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
|
|
#endif /* notdef */
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
csa_clearserialfifos(csa_res *resp)
|
|
{
|
|
int i, j, pwr;
|
|
u_int8_t clkcr1, serbst;
|
|
|
|
/*
|
|
* See if the devices are powered down. If so, we must power them up first
|
|
* or they will not respond.
|
|
*/
|
|
pwr = 1;
|
|
clkcr1 = csa_readio(resp, BA0_CLKCR1);
|
|
if ((clkcr1 & CLKCR1_SWCE) == 0) {
|
|
csa_writeio(resp, BA0_CLKCR1, clkcr1 | CLKCR1_SWCE);
|
|
pwr = 0;
|
|
}
|
|
|
|
/*
|
|
* We want to clear out the serial port FIFOs so we don't end up playing
|
|
* whatever random garbage happens to be in them. We fill the sample FIFOs
|
|
* with zero (silence).
|
|
*/
|
|
csa_writeio(resp, BA0_SERBWP, 0);
|
|
|
|
/* Fill all 256 sample FIFO locations. */
|
|
serbst = 0;
|
|
for (i = 0 ; i < 256 ; i++) {
|
|
/* Make sure the previous FIFO write operation has completed. */
|
|
for (j = 0 ; j < 5 ; j++) {
|
|
DELAY(100);
|
|
serbst = csa_readio(resp, BA0_SERBST);
|
|
if ((serbst & SERBST_WBSY) == 0)
|
|
break;
|
|
}
|
|
if ((serbst & SERBST_WBSY) != 0) {
|
|
if (!pwr)
|
|
csa_writeio(resp, BA0_CLKCR1, clkcr1);
|
|
}
|
|
/* Write the serial port FIFO index. */
|
|
csa_writeio(resp, BA0_SERBAD, i);
|
|
/* Tell the serial port to load the new value into the FIFO location. */
|
|
csa_writeio(resp, BA0_SERBCM, SERBCM_WRC);
|
|
}
|
|
/*
|
|
* Now, if we powered up the devices, then power them back down again.
|
|
* This is kinda ugly, but should never happen.
|
|
*/
|
|
if (!pwr)
|
|
csa_writeio(resp, BA0_CLKCR1, clkcr1);
|
|
}
|
|
|
|
void
|
|
csa_resetdsp(csa_res *resp)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Write the reset bit of the SP control register.
|
|
*/
|
|
csa_writemem(resp, BA1_SPCR, SPCR_RSTSP);
|
|
|
|
/*
|
|
* Write the control register.
|
|
*/
|
|
csa_writemem(resp, BA1_SPCR, SPCR_DRQEN);
|
|
|
|
/*
|
|
* Clear the trap registers.
|
|
*/
|
|
for (i = 0 ; i < 8 ; i++) {
|
|
csa_writemem(resp, BA1_DREG, DREG_REGID_TRAP_SELECT + i);
|
|
csa_writemem(resp, BA1_TWPR, 0xffff);
|
|
}
|
|
csa_writemem(resp, BA1_DREG, 0);
|
|
|
|
/*
|
|
* Set the frame timer to reflect the number of cycles per frame.
|
|
*/
|
|
csa_writemem(resp, BA1_FRMT, 0xadf);
|
|
}
|
|
|
|
static int
|
|
csa_downloadimage(csa_res *resp)
|
|
{
|
|
int i;
|
|
u_int32_t tmp, src, dst, count, data;
|
|
|
|
for (i = 0; i < CLEAR__COUNT; i++) {
|
|
dst = ClrStat[i].BA1__DestByteOffset;
|
|
count = ClrStat[i].BA1__SourceSize;
|
|
for (tmp = 0; tmp < count; tmp += 4)
|
|
csa_writemem(resp, dst + tmp, 0x00000000);
|
|
}
|
|
|
|
for (i = 0; i < FILL__COUNT; i++) {
|
|
src = 0;
|
|
dst = FillStat[i].Offset;
|
|
count = FillStat[i].Size;
|
|
for (tmp = 0; tmp < count; tmp += 4) {
|
|
data = FillStat[i].pFill[src];
|
|
csa_writemem(resp, dst + tmp, data);
|
|
src++;
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
csa_readcodec(csa_res *resp, u_long offset, u_int32_t *data)
|
|
{
|
|
int i;
|
|
u_int32_t acctl, acsts;
|
|
|
|
/*
|
|
* Make sure that there is not data sitting around from a previous
|
|
* uncompleted access. ACSDA = Status Data Register = 47Ch
|
|
*/
|
|
csa_readio(resp, BA0_ACSDA);
|
|
|
|
/*
|
|
* Setup the AC97 control registers on the CS461x to send the
|
|
* appropriate command to the AC97 to perform the read.
|
|
* ACCAD = Command Address Register = 46Ch
|
|
* ACCDA = Command Data Register = 470h
|
|
* ACCTL = Control Register = 460h
|
|
* set DCV - will clear when process completed
|
|
* set CRW - Read command
|
|
* set VFRM - valid frame enabled
|
|
* set ESYN - ASYNC generation enabled
|
|
* set RSTN - ARST# inactive, AC97 codec not reset
|
|
*/
|
|
|
|
/*
|
|
* Get the actual AC97 register from the offset
|
|
*/
|
|
csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
|
|
csa_writeio(resp, BA0_ACCDA, 0);
|
|
csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_CRW | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
|
|
|
|
/*
|
|
* Wait for the read to occur.
|
|
*/
|
|
acctl = 0;
|
|
for (i = 0 ; i < 10 ; i++) {
|
|
/*
|
|
* First, we want to wait for a short time.
|
|
*/
|
|
DELAY(25);
|
|
|
|
/*
|
|
* Now, check to see if the read has completed.
|
|
* ACCTL = 460h, DCV should be reset by now and 460h = 17h
|
|
*/
|
|
acctl = csa_readio(resp, BA0_ACCTL);
|
|
if ((acctl & ACCTL_DCV) == 0)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Make sure the read completed.
|
|
*/
|
|
if ((acctl & ACCTL_DCV) != 0)
|
|
return (EAGAIN);
|
|
|
|
/*
|
|
* Wait for the valid status bit to go active.
|
|
*/
|
|
acsts = 0;
|
|
for (i = 0 ; i < 10 ; i++) {
|
|
/*
|
|
* Read the AC97 status register.
|
|
* ACSTS = Status Register = 464h
|
|
*/
|
|
acsts = csa_readio(resp, BA0_ACSTS);
|
|
/*
|
|
* See if we have valid status.
|
|
* VSTS - Valid Status
|
|
*/
|
|
if ((acsts & ACSTS_VSTS) != 0)
|
|
break;
|
|
/*
|
|
* Wait for a short while.
|
|
*/
|
|
DELAY(25);
|
|
}
|
|
|
|
/*
|
|
* Make sure we got valid status.
|
|
*/
|
|
if ((acsts & ACSTS_VSTS) == 0)
|
|
return (EAGAIN);
|
|
|
|
/*
|
|
* Read the data returned from the AC97 register.
|
|
* ACSDA = Status Data Register = 474h
|
|
*/
|
|
*data = csa_readio(resp, BA0_ACSDA);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
csa_writecodec(csa_res *resp, u_long offset, u_int32_t data)
|
|
{
|
|
int i;
|
|
u_int32_t acctl;
|
|
|
|
/*
|
|
* Setup the AC97 control registers on the CS461x to send the
|
|
* appropriate command to the AC97 to perform the write.
|
|
* ACCAD = Command Address Register = 46Ch
|
|
* ACCDA = Command Data Register = 470h
|
|
* ACCTL = Control Register = 460h
|
|
* set DCV - will clear when process completed
|
|
* set VFRM - valid frame enabled
|
|
* set ESYN - ASYNC generation enabled
|
|
* set RSTN - ARST# inactive, AC97 codec not reset
|
|
*/
|
|
|
|
/*
|
|
* Get the actual AC97 register from the offset
|
|
*/
|
|
csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
|
|
csa_writeio(resp, BA0_ACCDA, data);
|
|
csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
|
|
|
|
/*
|
|
* Wait for the write to occur.
|
|
*/
|
|
acctl = 0;
|
|
for (i = 0 ; i < 10 ; i++) {
|
|
/*
|
|
* First, we want to wait for a short time.
|
|
*/
|
|
DELAY(25);
|
|
|
|
/*
|
|
* Now, check to see if the read has completed.
|
|
* ACCTL = 460h, DCV should be reset by now and 460h = 17h
|
|
*/
|
|
acctl = csa_readio(resp, BA0_ACCTL);
|
|
if ((acctl & ACCTL_DCV) == 0)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Make sure the write completed.
|
|
*/
|
|
if ((acctl & ACCTL_DCV) != 0)
|
|
return (EAGAIN);
|
|
|
|
return (0);
|
|
}
|
|
|
|
u_int32_t
|
|
csa_readio(csa_res *resp, u_long offset)
|
|
{
|
|
u_int32_t ul;
|
|
|
|
if (offset < BA0_AC97_RESET)
|
|
return bus_space_read_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset) & 0xffffffff;
|
|
else {
|
|
if (csa_readcodec(resp, offset, &ul))
|
|
ul = 0;
|
|
return (ul);
|
|
}
|
|
}
|
|
|
|
void
|
|
csa_writeio(csa_res *resp, u_long offset, u_int32_t data)
|
|
{
|
|
if (offset < BA0_AC97_RESET)
|
|
bus_space_write_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset, data);
|
|
else
|
|
csa_writecodec(resp, offset, data);
|
|
}
|
|
|
|
u_int32_t
|
|
csa_readmem(csa_res *resp, u_long offset)
|
|
{
|
|
return bus_space_read_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset);
|
|
}
|
|
|
|
void
|
|
csa_writemem(csa_res *resp, u_long offset, u_int32_t data)
|
|
{
|
|
bus_space_write_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset, data);
|
|
}
|
|
|
|
static device_method_t csa_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, csa_probe),
|
|
DEVMETHOD(device_attach, csa_attach),
|
|
DEVMETHOD(device_detach, csa_detach),
|
|
DEVMETHOD(device_shutdown, bus_generic_shutdown),
|
|
DEVMETHOD(device_suspend, bus_generic_suspend),
|
|
DEVMETHOD(device_resume, csa_resume),
|
|
|
|
/* Bus interface */
|
|
DEVMETHOD(bus_print_child, bus_generic_print_child),
|
|
DEVMETHOD(bus_alloc_resource, csa_alloc_resource),
|
|
DEVMETHOD(bus_release_resource, csa_release_resource),
|
|
DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
|
|
DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
|
|
DEVMETHOD(bus_setup_intr, csa_setup_intr),
|
|
DEVMETHOD(bus_teardown_intr, csa_teardown_intr),
|
|
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static driver_t csa_driver = {
|
|
"csa",
|
|
csa_methods,
|
|
sizeof(struct csa_softc),
|
|
};
|
|
|
|
/*
|
|
* csa can be attached to a pci bus.
|
|
*/
|
|
DRIVER_MODULE(snd_csa, pci, csa_driver, csa_devclass, 0, 0);
|
|
MODULE_DEPEND(snd_csa, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
|
|
MODULE_VERSION(snd_csa, 1);
|