freebsd-dev/sys/dev/sound/pci/csa.c
Ariff Abdullah 90da2b2859 Sound Mega-commit. Expect further cleanup until code freeze.
For a slightly thorough explaination, please refer to
	[1] http://people.freebsd.org/~ariff/SOUND_4.TXT.html .

Summary of changes includes:

1 Volume Per-Channel (vpc).  Provides private / standalone volume control
  unique per-stream pcm channel without touching master volume / pcm.
  Applications can directly use SNDCTL_DSP_[GET|SET][PLAY|REC]VOL, or for
  backwards compatibility, SOUND_MIXER_PCM through the opened dsp device
  instead of /dev/mixer.  Special "bypass" mode is enabled through
  /dev/mixer which will automatically detect if the adjustment is made
  through /dev/mixer and forward its request to this private volume
  controller.  Changes to this volume object will not interfere with
  other channels.

  Requirements:
    - SNDCTL_DSP_[GET|SET][PLAY|REC]_VOL are newer ioctls (OSSv4) which
      require specific application modifications (preferred).
    - No modifications required for using bypass mode, so applications
      like mplayer or xmms should work out of the box.

  Kernel hints:
    - hint.pcm.%d.vpc (0 = disable vpc).

  Kernel sysctls:
    - hw.snd.vpc_mixer_bypass (default: 1).  Enable or disable /dev/mixer
      bypass mode.
    - hw.snd.vpc_autoreset (default: 1).  By default, closing/opening
      /dev/dsp will reset the volume back to 0 db gain/attenuation.
      Setting this to 0 will preserve its settings across device
      closing/opening.
    - hw.snd.vpc_reset (default: 0).  Panic/reset button to reset all
      volume settings back to 0 db.
    - hw.snd.vpc_0db (default: 45).  0 db relative to linear mixer value.

2 High quality fixed-point Bandlimited SINC sampling rate converter,
  based on Julius O'Smith's Digital Audio Resampling -
  http://ccrma.stanford.edu/~jos/resample/.  It includes a filter design
  script written in awk (the clumsiest joke I've ever written)
    - 100% 32bit fixed-point, 64bit accumulator.
    - Possibly among the fastest (if not fastest) of its kind.
    - Resampling quality is tunable, either runtime or during kernel
      compilation (FEEDER_RATE_PRESETS).
    - Quality can be further customized during kernel compilation by
      defining FEEDER_RATE_PRESETS in /etc/make.conf.

  Kernel sysctls:
    - hw.snd.feeder_rate_quality.
      0 - Zero-order Hold (ZOH).  Fastest, bad quality.
      1 - Linear Interpolation (LINEAR).  Slightly slower than ZOH,
          better quality but still does not eliminate aliasing.
      2 - (and above) - Sinc Interpolation(SINC).  Best quality.  SINC
          quality always start from 2 and above.

  Rough quality comparisons:
    - http://people.freebsd.org/~ariff/z_comparison/

3 Bit-perfect mode.  Bypasses all feeder/dsp effects.  Pure sound will be
  directly fed into the hardware.

4 Parametric (compile time) Software Equalizer (Bass/Treble mixer). Can
  be customized by defining FEEDER_EQ_PRESETS in /etc/make.conf.

5 Transparent/Adaptive Virtual Channel. Now you don't have to disable
  vchans in order to make digital format pass through.  It also makes
  vchans more dynamic by choosing a better format/rate among all the
  concurrent streams, which means that dev.pcm.X.play.vchanformat/rate
  becomes sort of optional.

6 Exclusive Stream, with special open() mode O_EXCL.  This will "mute"
  other concurrent vchan streams and only allow a single channel with
  O_EXCL set to keep producing sound.

Other Changes:
    * most feeder_* stuffs are compilable in userland. Let's not
      speculate whether we should go all out for it (save that for
      FreeBSD 16.0-RELEASE).
    * kobj signature fixups, thanks to Andriy Gapon <avg@freebsd.org>
    * pull out channel mixing logic out of vchan.c and create its own
      feeder_mixer for world justice.
    * various refactoring here and there, for good or bad.
    * activation of few more OSSv4 ioctls() (see [1] above).
    * opt_snd.h for possible compile time configuration:
      (mostly for debugging purposes, don't try these at home)
        SND_DEBUG
        SND_DIAGNOSTIC
        SND_FEEDER_MULTIFORMAT
        SND_FEEDER_FULL_MULTIFORMAT
        SND_FEEDER_RATE_HP
        SND_PCM_64
        SND_OLDSTEREO

Manual page updates are on the way.

Tested by:	joel, Olivier SMEDTS <olivier at gid0 d org>, too many
          	unsung / unnamed heroes.
2009-06-07 19:12:08 +00:00

1102 lines
26 KiB
C

/*-
* Copyright (c) 1999 Seigo Tanimura
* All rights reserved.
*
* Portions of this source are based on cwcealdr.cpp and dhwiface.cpp in
* cwcealdr1.zip, the sample sources by Crystal Semiconductor.
* Copyright (c) 1996-1998 Crystal Semiconductor Corp.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <machine/resource.h>
#include <machine/bus.h>
#include <sys/rman.h>
#ifdef HAVE_KERNEL_OPTION_HEADERS
#include "opt_snd.h"
#endif
#include <dev/sound/pcm/sound.h>
#include <dev/sound/chip.h>
#include <dev/sound/pci/csareg.h>
#include <dev/sound/pci/csavar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <gnu/dev/sound/pci/csaimg.h>
SND_DECLARE_FILE("$FreeBSD$");
/* This is the pci device id. */
#define CS4610_PCI_ID 0x60011013
#define CS4614_PCI_ID 0x60031013
#define CS4615_PCI_ID 0x60041013
/* Here is the parameter structure per a device. */
struct csa_softc {
device_t dev; /* device */
csa_res res; /* resources */
device_t pcm; /* pcm device */
driver_intr_t* pcmintr; /* pcm intr */
void *pcmintr_arg; /* pcm intr arg */
device_t midi; /* midi device */
driver_intr_t* midiintr; /* midi intr */
void *midiintr_arg; /* midi intr arg */
void *ih; /* cookie */
struct csa_card *card;
struct csa_bridgeinfo binfo; /* The state of this bridge. */
};
typedef struct csa_softc *sc_p;
static int csa_probe(device_t dev);
static int csa_attach(device_t dev);
static struct resource *csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
u_long start, u_long end, u_long count, u_int flags);
static int csa_release_resource(device_t bus, device_t child, int type, int rid,
struct resource *r);
static int csa_setup_intr(device_t bus, device_t child,
struct resource *irq, int flags,
#if __FreeBSD_version >= 700031
driver_filter_t *filter,
#endif
driver_intr_t *intr, void *arg, void **cookiep);
static int csa_teardown_intr(device_t bus, device_t child,
struct resource *irq, void *cookie);
static driver_intr_t csa_intr;
static int csa_initialize(sc_p scp);
static int csa_downloadimage(csa_res *resp);
static devclass_t csa_devclass;
static void
amp_none(void)
{
}
static void
amp_voyetra(void)
{
}
static int
clkrun_hack(int run)
{
#ifdef __i386__
devclass_t pci_devclass;
device_t *pci_devices, *pci_children, *busp, *childp;
int pci_count = 0, pci_childcount = 0;
int i, j, port;
u_int16_t control;
bus_space_tag_t btag;
if ((pci_devclass = devclass_find("pci")) == NULL) {
return ENXIO;
}
devclass_get_devices(pci_devclass, &pci_devices, &pci_count);
for (i = 0, busp = pci_devices; i < pci_count; i++, busp++) {
pci_childcount = 0;
if (device_get_children(*busp, &pci_children, &pci_childcount))
continue;
for (j = 0, childp = pci_children; j < pci_childcount; j++, childp++) {
if (pci_get_vendor(*childp) == 0x8086 && pci_get_device(*childp) == 0x7113) {
port = (pci_read_config(*childp, 0x41, 1) << 8) + 0x10;
/* XXX */
btag = I386_BUS_SPACE_IO;
control = bus_space_read_2(btag, 0x0, port);
control &= ~0x2000;
control |= run? 0 : 0x2000;
bus_space_write_2(btag, 0x0, port, control);
free(pci_devices, M_TEMP);
free(pci_children, M_TEMP);
return 0;
}
}
free(pci_children, M_TEMP);
}
free(pci_devices, M_TEMP);
return ENXIO;
#else
return 0;
#endif
}
static struct csa_card cards_4610[] = {
{0, 0, "Unknown/invalid SSID (CS4610)", NULL, NULL, NULL, 0},
};
static struct csa_card cards_4614[] = {
{0x1489, 0x7001, "Genius Soundmaker 128 value", amp_none, NULL, NULL, 0},
{0x5053, 0x3357, "Turtle Beach Santa Cruz", amp_voyetra, NULL, NULL, 1},
{0x1071, 0x6003, "Mitac MI6020/21", amp_voyetra, NULL, NULL, 0},
{0x14AF, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0},
{0x1681, 0x0050, "Hercules Game Theatre XP", NULL, NULL, NULL, 0},
{0x1014, 0x0132, "Thinkpad 570", amp_none, NULL, NULL, 0},
{0x1014, 0x0153, "Thinkpad 600X/A20/T20", amp_none, NULL, clkrun_hack, 0},
{0x1014, 0x1010, "Thinkpad 600E (unsupported)", NULL, NULL, NULL, 0},
{0, 0, "Unknown/invalid SSID (CS4614)", NULL, NULL, NULL, 0},
};
static struct csa_card cards_4615[] = {
{0, 0, "Unknown/invalid SSID (CS4615)", NULL, NULL, NULL, 0},
};
static struct csa_card nocard = {0, 0, "unknown", NULL, NULL, NULL, 0};
struct card_type {
u_int32_t devid;
char *name;
struct csa_card *cards;
};
static struct card_type cards[] = {
{CS4610_PCI_ID, "CS4610/CS4611", cards_4610},
{CS4614_PCI_ID, "CS4280/CS4614/CS4622/CS4624/CS4630", cards_4614},
{CS4615_PCI_ID, "CS4615", cards_4615},
{0, NULL, NULL},
};
static struct card_type *
csa_findcard(device_t dev)
{
int i;
i = 0;
while (cards[i].devid != 0) {
if (pci_get_devid(dev) == cards[i].devid)
return &cards[i];
i++;
}
return NULL;
}
struct csa_card *
csa_findsubcard(device_t dev)
{
int i;
struct card_type *card;
struct csa_card *subcard;
card = csa_findcard(dev);
if (card == NULL)
return &nocard;
subcard = card->cards;
i = 0;
while (subcard[i].subvendor != 0) {
if (pci_get_subvendor(dev) == subcard[i].subvendor
&& pci_get_subdevice(dev) == subcard[i].subdevice) {
return &subcard[i];
}
i++;
}
return &subcard[i];
}
static int
csa_probe(device_t dev)
{
struct card_type *card;
card = csa_findcard(dev);
if (card) {
device_set_desc(dev, card->name);
return BUS_PROBE_DEFAULT;
}
return ENXIO;
}
static int
csa_attach(device_t dev)
{
u_int32_t stcmd;
sc_p scp;
csa_res *resp;
struct sndcard_func *func;
int error = ENXIO;
scp = device_get_softc(dev);
/* Fill in the softc. */
bzero(scp, sizeof(*scp));
scp->dev = dev;
/* Wake up the device. */
stcmd = pci_read_config(dev, PCIR_COMMAND, 2);
if ((stcmd & PCIM_CMD_MEMEN) == 0 || (stcmd & PCIM_CMD_BUSMASTEREN) == 0) {
stcmd |= (PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
pci_write_config(dev, PCIR_COMMAND, stcmd, 2);
}
/* Allocate the resources. */
resp = &scp->res;
scp->card = csa_findsubcard(dev);
scp->binfo.card = scp->card;
printf("csa: card is %s\n", scp->card->name);
resp->io_rid = PCIR_BAR(0);
resp->io = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&resp->io_rid, RF_ACTIVE);
if (resp->io == NULL)
return (ENXIO);
resp->mem_rid = PCIR_BAR(1);
resp->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY,
&resp->mem_rid, RF_ACTIVE);
if (resp->mem == NULL)
goto err_io;
resp->irq_rid = 0;
resp->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ,
&resp->irq_rid, RF_ACTIVE | RF_SHAREABLE);
if (resp->irq == NULL)
goto err_mem;
/* Enable interrupt. */
if (snd_setup_intr(dev, resp->irq, 0, csa_intr, scp, &scp->ih))
goto err_intr;
#if 0
if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
#endif
/* Initialize the chip. */
if (csa_initialize(scp))
goto err_teardown;
/* Reset the Processor. */
csa_resetdsp(resp);
/* Download the Processor Image to the processor. */
if (csa_downloadimage(resp))
goto err_teardown;
/* Attach the children. */
/* PCM Audio */
func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO);
if (func == NULL) {
error = ENOMEM;
goto err_teardown;
}
func->varinfo = &scp->binfo;
func->func = SCF_PCM;
scp->pcm = device_add_child(dev, "pcm", -1);
device_set_ivars(scp->pcm, func);
/* Midi Interface */
func = malloc(sizeof(struct sndcard_func), M_DEVBUF, M_NOWAIT | M_ZERO);
if (func == NULL) {
error = ENOMEM;
goto err_teardown;
}
func->varinfo = &scp->binfo;
func->func = SCF_MIDI;
scp->midi = device_add_child(dev, "midi", -1);
device_set_ivars(scp->midi, func);
bus_generic_attach(dev);
return (0);
err_teardown:
bus_teardown_intr(dev, resp->irq, scp->ih);
err_intr:
bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
err_mem:
bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
err_io:
bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
return (error);
}
static int
csa_detach(device_t dev)
{
csa_res *resp;
sc_p scp;
struct sndcard_func *func;
int err;
scp = device_get_softc(dev);
resp = &scp->res;
if (scp->midi != NULL) {
func = device_get_ivars(scp->midi);
err = device_delete_child(dev, scp->midi);
if (err != 0)
return err;
if (func != NULL)
free(func, M_DEVBUF);
scp->midi = NULL;
}
if (scp->pcm != NULL) {
func = device_get_ivars(scp->pcm);
err = device_delete_child(dev, scp->pcm);
if (err != 0)
return err;
if (func != NULL)
free(func, M_DEVBUF);
scp->pcm = NULL;
}
bus_teardown_intr(dev, resp->irq, scp->ih);
bus_release_resource(dev, SYS_RES_IRQ, resp->irq_rid, resp->irq);
bus_release_resource(dev, SYS_RES_MEMORY, resp->mem_rid, resp->mem);
bus_release_resource(dev, SYS_RES_MEMORY, resp->io_rid, resp->io);
return bus_generic_detach(dev);
}
static int
csa_resume(device_t dev)
{
csa_res *resp;
sc_p scp;
scp = device_get_softc(dev);
resp = &scp->res;
/* Initialize the chip. */
if (csa_initialize(scp))
return (ENXIO);
/* Reset the Processor. */
csa_resetdsp(resp);
/* Download the Processor Image to the processor. */
if (csa_downloadimage(resp))
return (ENXIO);
return (bus_generic_resume(dev));
}
static struct resource *
csa_alloc_resource(device_t bus, device_t child, int type, int *rid,
u_long start, u_long end, u_long count, u_int flags)
{
sc_p scp;
csa_res *resp;
struct resource *res;
scp = device_get_softc(bus);
resp = &scp->res;
switch (type) {
case SYS_RES_IRQ:
if (*rid != 0)
return (NULL);
res = resp->irq;
break;
case SYS_RES_MEMORY:
switch (*rid) {
case PCIR_BAR(0):
res = resp->io;
break;
case PCIR_BAR(1):
res = resp->mem;
break;
default:
return (NULL);
}
break;
default:
return (NULL);
}
return res;
}
static int
csa_release_resource(device_t bus, device_t child, int type, int rid,
struct resource *r)
{
return (0);
}
/*
* The following three functions deal with interrupt handling.
* An interrupt is primarily handled by the bridge driver.
* The bridge driver then determines the child devices to pass
* the interrupt. Certain information of the device can be read
* only once(eg the value of HISR). The bridge driver is responsible
* to pass such the information to the children.
*/
static int
csa_setup_intr(device_t bus, device_t child,
struct resource *irq, int flags,
#if __FreeBSD_version >= 700031
driver_filter_t *filter,
#endif
driver_intr_t *intr, void *arg, void **cookiep)
{
sc_p scp;
csa_res *resp;
struct sndcard_func *func;
#if __FreeBSD_version >= 700031
if (filter != NULL) {
printf("ata-csa.c: we cannot use a filter here\n");
return (EINVAL);
}
#endif
scp = device_get_softc(bus);
resp = &scp->res;
/*
* Look at the function code of the child to determine
* the appropriate hander for it.
*/
func = device_get_ivars(child);
if (func == NULL || irq != resp->irq)
return (EINVAL);
switch (func->func) {
case SCF_PCM:
scp->pcmintr = intr;
scp->pcmintr_arg = arg;
break;
case SCF_MIDI:
scp->midiintr = intr;
scp->midiintr_arg = arg;
break;
default:
return (EINVAL);
}
*cookiep = scp;
if ((csa_readio(resp, BA0_HISR) & HISR_INTENA) == 0)
csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
return (0);
}
static int
csa_teardown_intr(device_t bus, device_t child,
struct resource *irq, void *cookie)
{
sc_p scp;
csa_res *resp;
struct sndcard_func *func;
scp = device_get_softc(bus);
resp = &scp->res;
/*
* Look at the function code of the child to determine
* the appropriate hander for it.
*/
func = device_get_ivars(child);
if (func == NULL || irq != resp->irq || cookie != scp)
return (EINVAL);
switch (func->func) {
case SCF_PCM:
scp->pcmintr = NULL;
scp->pcmintr_arg = NULL;
break;
case SCF_MIDI:
scp->midiintr = NULL;
scp->midiintr_arg = NULL;
break;
default:
return (EINVAL);
}
return (0);
}
/* The interrupt handler */
static void
csa_intr(void *arg)
{
sc_p scp = arg;
csa_res *resp;
u_int32_t hisr;
resp = &scp->res;
/* Is this interrupt for us? */
hisr = csa_readio(resp, BA0_HISR);
if ((hisr & 0x7fffffff) == 0) {
/* Throw an eoi. */
csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
return;
}
/*
* Pass the value of HISR via struct csa_bridgeinfo.
* The children get access through their ivars.
*/
scp->binfo.hisr = hisr;
/* Invoke the handlers of the children. */
if ((hisr & (HISR_VC0 | HISR_VC1)) != 0 && scp->pcmintr != NULL) {
scp->pcmintr(scp->pcmintr_arg);
hisr &= ~(HISR_VC0 | HISR_VC1);
}
if ((hisr & HISR_MIDI) != 0 && scp->midiintr != NULL) {
scp->midiintr(scp->midiintr_arg);
hisr &= ~HISR_MIDI;
}
/* Throw an eoi. */
csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
}
static int
csa_initialize(sc_p scp)
{
int i;
u_int32_t acsts, acisv;
csa_res *resp;
resp = &scp->res;
/*
* First, blast the clock control register to zero so that the PLL starts
* out in a known state, and blast the master serial port control register
* to zero so that the serial ports also start out in a known state.
*/
csa_writeio(resp, BA0_CLKCR1, 0);
csa_writeio(resp, BA0_SERMC1, 0);
/*
* If we are in AC97 mode, then we must set the part to a host controlled
* AC-link. Otherwise, we won't be able to bring up the link.
*/
#if 1
csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_1_03); /* 1.03 codec */
#else
csa_writeio(resp, BA0_SERACC, SERACC_HSP | SERACC_CODEC_TYPE_2_0); /* 2.0 codec */
#endif /* 1 */
/*
* Drive the ARST# pin low for a minimum of 1uS (as defined in the AC97
* spec) and then drive it high. This is done for non AC97 modes since
* there might be logic external to the CS461x that uses the ARST# line
* for a reset.
*/
csa_writeio(resp, BA0_ACCTL, 1);
DELAY(50);
csa_writeio(resp, BA0_ACCTL, 0);
DELAY(50);
csa_writeio(resp, BA0_ACCTL, ACCTL_RSTN);
/*
* The first thing we do here is to enable sync generation. As soon
* as we start receiving bit clock, we'll start producing the SYNC
* signal.
*/
csa_writeio(resp, BA0_ACCTL, ACCTL_ESYN | ACCTL_RSTN);
/*
* Now wait for a short while to allow the AC97 part to start
* generating bit clock (so we don't try to start the PLL without an
* input clock).
*/
DELAY(50000);
/*
* Set the serial port timing configuration, so that
* the clock control circuit gets its clock from the correct place.
*/
csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97);
DELAY(700000);
/*
* Write the selected clock control setup to the hardware. Do not turn on
* SWCE yet (if requested), so that the devices clocked by the output of
* PLL are not clocked until the PLL is stable.
*/
csa_writeio(resp, BA0_PLLCC, PLLCC_LPF_1050_2780_KHZ | PLLCC_CDR_73_104_MHZ);
csa_writeio(resp, BA0_PLLM, 0x3a);
csa_writeio(resp, BA0_CLKCR2, CLKCR2_PDIVS_8);
/*
* Power up the PLL.
*/
csa_writeio(resp, BA0_CLKCR1, CLKCR1_PLLP);
/*
* Wait until the PLL has stabilized.
*/
DELAY(5000);
/*
* Turn on clocking of the core so that we can setup the serial ports.
*/
csa_writeio(resp, BA0_CLKCR1, csa_readio(resp, BA0_CLKCR1) | CLKCR1_SWCE);
/*
* Fill the serial port FIFOs with silence.
*/
csa_clearserialfifos(resp);
/*
* Set the serial port FIFO pointer to the first sample in the FIFO.
*/
#ifdef notdef
csa_writeio(resp, BA0_SERBSP, 0);
#endif /* notdef */
/*
* Write the serial port configuration to the part. The master
* enable bit is not set until all other values have been written.
*/
csa_writeio(resp, BA0_SERC1, SERC1_SO1F_AC97 | SERC1_SO1EN);
csa_writeio(resp, BA0_SERC2, SERC2_SI1F_AC97 | SERC1_SO1EN);
csa_writeio(resp, BA0_SERMC1, SERMC1_PTC_AC97 | SERMC1_MSPE);
/*
* Wait for the codec ready signal from the AC97 codec.
*/
acsts = 0;
for (i = 0 ; i < 1000 ; i++) {
/*
* First, lets wait a short while to let things settle out a bit,
* and to prevent retrying the read too quickly.
*/
DELAY(125);
/*
* Read the AC97 status register to see if we've seen a CODEC READY
* signal from the AC97 codec.
*/
acsts = csa_readio(resp, BA0_ACSTS);
if ((acsts & ACSTS_CRDY) != 0)
break;
}
/*
* Make sure we sampled CODEC READY.
*/
if ((acsts & ACSTS_CRDY) == 0)
return (ENXIO);
/*
* Assert the vaid frame signal so that we can start sending commands
* to the AC97 codec.
*/
csa_writeio(resp, BA0_ACCTL, ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
/*
* Wait until we've sampled input slots 3 and 4 as valid, meaning that
* the codec is pumping ADC data across the AC-link.
*/
acisv = 0;
for (i = 0 ; i < 1000 ; i++) {
/*
* First, lets wait a short while to let things settle out a bit,
* and to prevent retrying the read too quickly.
*/
#ifdef notdef
DELAY(10000000L); /* clw */
#else
DELAY(1000);
#endif /* notdef */
/*
* Read the input slot valid register and see if input slots 3 and
* 4 are valid yet.
*/
acisv = csa_readio(resp, BA0_ACISV);
if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) == (ACISV_ISV3 | ACISV_ISV4))
break;
}
/*
* Make sure we sampled valid input slots 3 and 4. If not, then return
* an error.
*/
if ((acisv & (ACISV_ISV3 | ACISV_ISV4)) != (ACISV_ISV3 | ACISV_ISV4))
return (ENXIO);
/*
* Now, assert valid frame and the slot 3 and 4 valid bits. This will
* commense the transfer of digital audio data to the AC97 codec.
*/
csa_writeio(resp, BA0_ACOSV, ACOSV_SLV3 | ACOSV_SLV4);
/*
* Power down the DAC and ADC. We will power them up (if) when we need
* them.
*/
#ifdef notdef
csa_writeio(resp, BA0_AC97_POWERDOWN, 0x300);
#endif /* notdef */
/*
* Turn off the Processor by turning off the software clock enable flag in
* the clock control register.
*/
#ifdef notdef
clkcr1 = csa_readio(resp, BA0_CLKCR1) & ~CLKCR1_SWCE;
csa_writeio(resp, BA0_CLKCR1, clkcr1);
#endif /* notdef */
/*
* Enable interrupts on the part.
*/
#if 0
csa_writeio(resp, BA0_HICR, HICR_IEV | HICR_CHGM);
#endif /* notdef */
return (0);
}
void
csa_clearserialfifos(csa_res *resp)
{
int i, j, pwr;
u_int8_t clkcr1, serbst;
/*
* See if the devices are powered down. If so, we must power them up first
* or they will not respond.
*/
pwr = 1;
clkcr1 = csa_readio(resp, BA0_CLKCR1);
if ((clkcr1 & CLKCR1_SWCE) == 0) {
csa_writeio(resp, BA0_CLKCR1, clkcr1 | CLKCR1_SWCE);
pwr = 0;
}
/*
* We want to clear out the serial port FIFOs so we don't end up playing
* whatever random garbage happens to be in them. We fill the sample FIFOs
* with zero (silence).
*/
csa_writeio(resp, BA0_SERBWP, 0);
/* Fill all 256 sample FIFO locations. */
serbst = 0;
for (i = 0 ; i < 256 ; i++) {
/* Make sure the previous FIFO write operation has completed. */
for (j = 0 ; j < 5 ; j++) {
DELAY(100);
serbst = csa_readio(resp, BA0_SERBST);
if ((serbst & SERBST_WBSY) == 0)
break;
}
if ((serbst & SERBST_WBSY) != 0) {
if (!pwr)
csa_writeio(resp, BA0_CLKCR1, clkcr1);
}
/* Write the serial port FIFO index. */
csa_writeio(resp, BA0_SERBAD, i);
/* Tell the serial port to load the new value into the FIFO location. */
csa_writeio(resp, BA0_SERBCM, SERBCM_WRC);
}
/*
* Now, if we powered up the devices, then power them back down again.
* This is kinda ugly, but should never happen.
*/
if (!pwr)
csa_writeio(resp, BA0_CLKCR1, clkcr1);
}
void
csa_resetdsp(csa_res *resp)
{
int i;
/*
* Write the reset bit of the SP control register.
*/
csa_writemem(resp, BA1_SPCR, SPCR_RSTSP);
/*
* Write the control register.
*/
csa_writemem(resp, BA1_SPCR, SPCR_DRQEN);
/*
* Clear the trap registers.
*/
for (i = 0 ; i < 8 ; i++) {
csa_writemem(resp, BA1_DREG, DREG_REGID_TRAP_SELECT + i);
csa_writemem(resp, BA1_TWPR, 0xffff);
}
csa_writemem(resp, BA1_DREG, 0);
/*
* Set the frame timer to reflect the number of cycles per frame.
*/
csa_writemem(resp, BA1_FRMT, 0xadf);
}
static int
csa_downloadimage(csa_res *resp)
{
int i;
u_int32_t tmp, src, dst, count, data;
for (i = 0; i < CLEAR__COUNT; i++) {
dst = ClrStat[i].BA1__DestByteOffset;
count = ClrStat[i].BA1__SourceSize;
for (tmp = 0; tmp < count; tmp += 4)
csa_writemem(resp, dst + tmp, 0x00000000);
}
for (i = 0; i < FILL__COUNT; i++) {
src = 0;
dst = FillStat[i].Offset;
count = FillStat[i].Size;
for (tmp = 0; tmp < count; tmp += 4) {
data = FillStat[i].pFill[src];
csa_writemem(resp, dst + tmp, data);
src++;
}
}
return (0);
}
int
csa_readcodec(csa_res *resp, u_long offset, u_int32_t *data)
{
int i;
u_int32_t acctl, acsts;
/*
* Make sure that there is not data sitting around from a previous
* uncompleted access. ACSDA = Status Data Register = 47Ch
*/
csa_readio(resp, BA0_ACSDA);
/*
* Setup the AC97 control registers on the CS461x to send the
* appropriate command to the AC97 to perform the read.
* ACCAD = Command Address Register = 46Ch
* ACCDA = Command Data Register = 470h
* ACCTL = Control Register = 460h
* set DCV - will clear when process completed
* set CRW - Read command
* set VFRM - valid frame enabled
* set ESYN - ASYNC generation enabled
* set RSTN - ARST# inactive, AC97 codec not reset
*/
/*
* Get the actual AC97 register from the offset
*/
csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
csa_writeio(resp, BA0_ACCDA, 0);
csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_CRW | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
/*
* Wait for the read to occur.
*/
acctl = 0;
for (i = 0 ; i < 10 ; i++) {
/*
* First, we want to wait for a short time.
*/
DELAY(25);
/*
* Now, check to see if the read has completed.
* ACCTL = 460h, DCV should be reset by now and 460h = 17h
*/
acctl = csa_readio(resp, BA0_ACCTL);
if ((acctl & ACCTL_DCV) == 0)
break;
}
/*
* Make sure the read completed.
*/
if ((acctl & ACCTL_DCV) != 0)
return (EAGAIN);
/*
* Wait for the valid status bit to go active.
*/
acsts = 0;
for (i = 0 ; i < 10 ; i++) {
/*
* Read the AC97 status register.
* ACSTS = Status Register = 464h
*/
acsts = csa_readio(resp, BA0_ACSTS);
/*
* See if we have valid status.
* VSTS - Valid Status
*/
if ((acsts & ACSTS_VSTS) != 0)
break;
/*
* Wait for a short while.
*/
DELAY(25);
}
/*
* Make sure we got valid status.
*/
if ((acsts & ACSTS_VSTS) == 0)
return (EAGAIN);
/*
* Read the data returned from the AC97 register.
* ACSDA = Status Data Register = 474h
*/
*data = csa_readio(resp, BA0_ACSDA);
return (0);
}
int
csa_writecodec(csa_res *resp, u_long offset, u_int32_t data)
{
int i;
u_int32_t acctl;
/*
* Setup the AC97 control registers on the CS461x to send the
* appropriate command to the AC97 to perform the write.
* ACCAD = Command Address Register = 46Ch
* ACCDA = Command Data Register = 470h
* ACCTL = Control Register = 460h
* set DCV - will clear when process completed
* set VFRM - valid frame enabled
* set ESYN - ASYNC generation enabled
* set RSTN - ARST# inactive, AC97 codec not reset
*/
/*
* Get the actual AC97 register from the offset
*/
csa_writeio(resp, BA0_ACCAD, offset - BA0_AC97_RESET);
csa_writeio(resp, BA0_ACCDA, data);
csa_writeio(resp, BA0_ACCTL, ACCTL_DCV | ACCTL_VFRM | ACCTL_ESYN | ACCTL_RSTN);
/*
* Wait for the write to occur.
*/
acctl = 0;
for (i = 0 ; i < 10 ; i++) {
/*
* First, we want to wait for a short time.
*/
DELAY(25);
/*
* Now, check to see if the read has completed.
* ACCTL = 460h, DCV should be reset by now and 460h = 17h
*/
acctl = csa_readio(resp, BA0_ACCTL);
if ((acctl & ACCTL_DCV) == 0)
break;
}
/*
* Make sure the write completed.
*/
if ((acctl & ACCTL_DCV) != 0)
return (EAGAIN);
return (0);
}
u_int32_t
csa_readio(csa_res *resp, u_long offset)
{
u_int32_t ul;
if (offset < BA0_AC97_RESET)
return bus_space_read_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset) & 0xffffffff;
else {
if (csa_readcodec(resp, offset, &ul))
ul = 0;
return (ul);
}
}
void
csa_writeio(csa_res *resp, u_long offset, u_int32_t data)
{
if (offset < BA0_AC97_RESET)
bus_space_write_4(rman_get_bustag(resp->io), rman_get_bushandle(resp->io), offset, data);
else
csa_writecodec(resp, offset, data);
}
u_int32_t
csa_readmem(csa_res *resp, u_long offset)
{
return bus_space_read_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset);
}
void
csa_writemem(csa_res *resp, u_long offset, u_int32_t data)
{
bus_space_write_4(rman_get_bustag(resp->mem), rman_get_bushandle(resp->mem), offset, data);
}
static device_method_t csa_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, csa_probe),
DEVMETHOD(device_attach, csa_attach),
DEVMETHOD(device_detach, csa_detach),
DEVMETHOD(device_shutdown, bus_generic_shutdown),
DEVMETHOD(device_suspend, bus_generic_suspend),
DEVMETHOD(device_resume, csa_resume),
/* Bus interface */
DEVMETHOD(bus_print_child, bus_generic_print_child),
DEVMETHOD(bus_alloc_resource, csa_alloc_resource),
DEVMETHOD(bus_release_resource, csa_release_resource),
DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
DEVMETHOD(bus_setup_intr, csa_setup_intr),
DEVMETHOD(bus_teardown_intr, csa_teardown_intr),
{ 0, 0 }
};
static driver_t csa_driver = {
"csa",
csa_methods,
sizeof(struct csa_softc),
};
/*
* csa can be attached to a pci bus.
*/
DRIVER_MODULE(snd_csa, pci, csa_driver, csa_devclass, 0, 0);
MODULE_DEPEND(snd_csa, sound, SOUND_MINVER, SOUND_PREFVER, SOUND_MAXVER);
MODULE_VERSION(snd_csa, 1);