freebsd-dev/sys/kern/kern_environment.c
Kyle Evans 44314c3509 kern_environment: Give the static environment a chance to disable MD env
This variable has been given the name "loader_env.disabled" as it's the
primary way most people will have an MD environment. This restores the
previously-default behavior of ignoring the loader(8) environment, which may
be useful for vendor distributions or other scenarios where inheriting the
loader environment may be considered a security issue or potentially
breaking of a more locked-down environment.

As the change to config(5) indicates, disabling the loader environment
should not be a choice made lightly since it may provide ACPI hints and
other useful things that the system can rely on to boot.

An UPDATING entry has been added to mention an upgrade path for those that
may have relied on the previous behavior.

Discussed with:	bde
Relnotes:	yes (maybe)
2018-07-12 02:51:50 +00:00

930 lines
20 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 1998 Michael Smith
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* The unified bootloader passes us a pointer to a preserved copy of
* bootstrap/kernel environment variables. We convert them to a
* dynamic array of strings later when the VM subsystem is up.
*
* We make these available through the kenv(2) syscall for userland
* and through kern_getenv()/freeenv() kern_setenv() kern_unsetenv() testenv() for
* the kernel.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/priv.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/sysent.h>
#include <sys/sysproto.h>
#include <sys/libkern.h>
#include <sys/kenv.h>
#include <sys/limits.h>
#include <security/mac/mac_framework.h>
static char *_getenv_dynamic_locked(const char *name, int *idx);
static char *_getenv_dynamic(const char *name, int *idx);
static MALLOC_DEFINE(M_KENV, "kenv", "kernel environment");
#define KENV_SIZE 512 /* Maximum number of environment strings */
/* pointer to the config-generated static environment */
char *kern_envp;
/* pointer to the md-static environment */
char *md_envp;
static int md_env_len;
static int md_env_pos;
static char *kernenv_next(char *);
/* dynamic environment variables */
char **kenvp;
struct mtx kenv_lock;
/*
* No need to protect this with a mutex since SYSINITS are single threaded.
*/
bool dynamic_kenv;
#define KENV_CHECK if (!dynamic_kenv) \
panic("%s: called before SI_SUB_KMEM", __func__)
int
sys_kenv(td, uap)
struct thread *td;
struct kenv_args /* {
int what;
const char *name;
char *value;
int len;
} */ *uap;
{
char *name, *value, *buffer = NULL;
size_t len, done, needed, buflen;
int error, i;
KASSERT(dynamic_kenv, ("kenv: dynamic_kenv = false"));
error = 0;
if (uap->what == KENV_DUMP) {
#ifdef MAC
error = mac_kenv_check_dump(td->td_ucred);
if (error)
return (error);
#endif
done = needed = 0;
buflen = uap->len;
if (buflen > KENV_SIZE * (KENV_MNAMELEN + KENV_MVALLEN + 2))
buflen = KENV_SIZE * (KENV_MNAMELEN +
KENV_MVALLEN + 2);
if (uap->len > 0 && uap->value != NULL)
buffer = malloc(buflen, M_TEMP, M_WAITOK|M_ZERO);
mtx_lock(&kenv_lock);
for (i = 0; kenvp[i] != NULL; i++) {
len = strlen(kenvp[i]) + 1;
needed += len;
len = min(len, buflen - done);
/*
* If called with a NULL or insufficiently large
* buffer, just keep computing the required size.
*/
if (uap->value != NULL && buffer != NULL && len > 0) {
bcopy(kenvp[i], buffer + done, len);
done += len;
}
}
mtx_unlock(&kenv_lock);
if (buffer != NULL) {
error = copyout(buffer, uap->value, done);
free(buffer, M_TEMP);
}
td->td_retval[0] = ((done == needed) ? 0 : needed);
return (error);
}
switch (uap->what) {
case KENV_SET:
error = priv_check(td, PRIV_KENV_SET);
if (error)
return (error);
break;
case KENV_UNSET:
error = priv_check(td, PRIV_KENV_UNSET);
if (error)
return (error);
break;
}
name = malloc(KENV_MNAMELEN + 1, M_TEMP, M_WAITOK);
error = copyinstr(uap->name, name, KENV_MNAMELEN + 1, NULL);
if (error)
goto done;
switch (uap->what) {
case KENV_GET:
#ifdef MAC
error = mac_kenv_check_get(td->td_ucred, name);
if (error)
goto done;
#endif
value = kern_getenv(name);
if (value == NULL) {
error = ENOENT;
goto done;
}
len = strlen(value) + 1;
if (len > uap->len)
len = uap->len;
error = copyout(value, uap->value, len);
freeenv(value);
if (error)
goto done;
td->td_retval[0] = len;
break;
case KENV_SET:
len = uap->len;
if (len < 1) {
error = EINVAL;
goto done;
}
if (len > KENV_MVALLEN + 1)
len = KENV_MVALLEN + 1;
value = malloc(len, M_TEMP, M_WAITOK);
error = copyinstr(uap->value, value, len, NULL);
if (error) {
free(value, M_TEMP);
goto done;
}
#ifdef MAC
error = mac_kenv_check_set(td->td_ucred, name, value);
if (error == 0)
#endif
kern_setenv(name, value);
free(value, M_TEMP);
break;
case KENV_UNSET:
#ifdef MAC
error = mac_kenv_check_unset(td->td_ucred, name);
if (error)
goto done;
#endif
error = kern_unsetenv(name);
if (error)
error = ENOENT;
break;
default:
error = EINVAL;
break;
}
done:
free(name, M_TEMP);
return (error);
}
/*
* Populate the initial kernel environment.
*
* This is called very early in MD startup, either to provide a copy of the
* environment obtained from a boot loader, or to provide an empty buffer into
* which MD code can store an initial environment using kern_setenv() calls.
*
* kern_envp is set to the static_env generated by config(8). This implements
* the env keyword described in config(5).
*
* If len is non-zero, the caller is providing an empty buffer. The caller will
* subsequently use kern_setenv() to add up to len bytes of initial environment
* before the dynamic environment is available.
*
* If len is zero, the caller is providing a pre-loaded buffer containing
* environment strings. Additional strings cannot be added until the dynamic
* environment is available. The memory pointed to must remain stable at least
* until sysinit runs init_dynamic_kenv() and preferably until after SI_SUB_KMEM
* is finished so that subr_hints routines may continue to use it until the
* environments have been fully merged at the end of the pass. If no initial
* environment is available from the boot loader, passing a NULL pointer allows
* the static_env to be installed if it is configured. In this case, any call
* to kern_setenv() prior to the setup of the dynamic environment will result in
* a panic.
*/
void
init_static_kenv(char *buf, size_t len)
{
char *eval;
/*
* Give the static environment a chance to disable the loader(8)
* environment first. This is done with loader_env.disabled=1.
*
* static_env and static_hints may both be disabled, but in slightly
* different ways. For static_env, we just don't setup kern_envp and
* it's as if a static env wasn't even provided. For static_hints,
* we effectively zero out the buffer to stop the rest of the kernel
* from being able to use it.
*
* We're intentionally setting this up so that static_hints.disabled may
* be specified in either the MD env or the static env. This keeps us
* consistent in our new world view.
*
* As a warning, the static environment may not be disabled in any way
* if the static environment has disabled the loader environment.
*/
kern_envp = static_env;
eval = kern_getenv("loader_env.disabled");
if (eval == NULL || strcmp(eval, "1") != 0) {
md_envp = buf;
md_env_len = len;
md_env_pos = 0;
eval = kern_getenv("static_env.disabled");
if (eval != NULL && strcmp(eval, "1") == 0)
*kern_envp = '\0';
}
eval = kern_getenv("static_hints.disabled");
if (eval != NULL && strcmp(eval, "1") == 0)
*static_hints = '\0';
}
static void
init_dynamic_kenv_from(char *init_env, int *curpos)
{
char *cp, *cpnext, *eqpos, *found;
size_t len;
int i;
if (init_env && *init_env != '\0') {
found = NULL;
i = *curpos;
for (cp = init_env; cp != NULL; cp = cpnext) {
cpnext = kernenv_next(cp);
len = strlen(cp) + 1;
if (len > KENV_MNAMELEN + 1 + KENV_MVALLEN + 1) {
printf(
"WARNING: too long kenv string, ignoring %s\n",
cp);
goto sanitize;
}
eqpos = strchr(cp, '=');
if (eqpos == NULL) {
printf(
"WARNING: malformed static env value, ignoring %s\n",
cp);
goto sanitize;
}
*eqpos = 0;
/*
* De-dupe the environment as we go. We don't add the
* duplicated assignments because config(8) will flip
* the order of the static environment around to make
* kernel processing match the order of specification
* in the kernel config.
*/
found = _getenv_dynamic_locked(cp, NULL);
*eqpos = '=';
if (found != NULL)
goto sanitize;
if (i > KENV_SIZE) {
printf(
"WARNING: too many kenv strings, ignoring %s\n",
cp);
goto sanitize;
}
kenvp[i] = malloc(len, M_KENV, M_WAITOK);
strcpy(kenvp[i++], cp);
sanitize:
explicit_bzero(cp, len - 1);
}
*curpos = i;
}
}
/*
* Setup the dynamic kernel environment.
*/
static void
init_dynamic_kenv(void *data __unused)
{
int dynamic_envpos;
kenvp = malloc((KENV_SIZE + 1) * sizeof(char *), M_KENV,
M_WAITOK | M_ZERO);
dynamic_envpos = 0;
init_dynamic_kenv_from(md_envp, &dynamic_envpos);
init_dynamic_kenv_from(kern_envp, &dynamic_envpos);
kenvp[dynamic_envpos] = NULL;
mtx_init(&kenv_lock, "kernel environment", NULL, MTX_DEF);
dynamic_kenv = true;
}
SYSINIT(kenv, SI_SUB_KMEM + 1, SI_ORDER_FIRST, init_dynamic_kenv, NULL);
void
freeenv(char *env)
{
if (dynamic_kenv && env != NULL) {
explicit_bzero(env, strlen(env));
free(env, M_KENV);
}
}
/*
* Internal functions for string lookup.
*/
static char *
_getenv_dynamic_locked(const char *name, int *idx)
{
char *cp;
int len, i;
len = strlen(name);
for (cp = kenvp[0], i = 0; cp != NULL; cp = kenvp[++i]) {
if ((strncmp(cp, name, len) == 0) &&
(cp[len] == '=')) {
if (idx != NULL)
*idx = i;
return (cp + len + 1);
}
}
return (NULL);
}
static char *
_getenv_dynamic(const char *name, int *idx)
{
mtx_assert(&kenv_lock, MA_OWNED);
return (_getenv_dynamic_locked(name, idx));
}
static char *
_getenv_static_from(char *chkenv, const char *name)
{
char *cp, *ep;
int len;
for (cp = chkenv; cp != NULL; cp = kernenv_next(cp)) {
for (ep = cp; (*ep != '=') && (*ep != 0); ep++)
;
if (*ep != '=')
continue;
len = ep - cp;
ep++;
if (!strncmp(name, cp, len) && name[len] == 0)
return (ep);
}
return (NULL);
}
static char *
_getenv_static(const char *name)
{
char *val;
val = _getenv_static_from(md_envp, name);
if (val != NULL)
return (val);
val = _getenv_static_from(kern_envp, name);
if (val != NULL)
return (val);
return (NULL);
}
/*
* Look up an environment variable by name.
* Return a pointer to the string if found.
* The pointer has to be freed with freeenv()
* after use.
*/
char *
kern_getenv(const char *name)
{
char buf[KENV_MNAMELEN + 1 + KENV_MVALLEN + 1];
char *ret;
if (dynamic_kenv) {
if (getenv_string(name, buf, sizeof(buf))) {
ret = strdup(buf, M_KENV);
} else {
ret = NULL;
WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
"getenv");
}
} else
ret = _getenv_static(name);
return (ret);
}
/*
* Test if an environment variable is defined.
*/
int
testenv(const char *name)
{
char *cp;
if (dynamic_kenv) {
mtx_lock(&kenv_lock);
cp = _getenv_dynamic(name, NULL);
mtx_unlock(&kenv_lock);
} else
cp = _getenv_static(name);
if (cp != NULL)
return (1);
return (0);
}
/*
* Set an environment variable in the MD-static environment. This cannot
* feasibly be done on config(8)-generated static environments as they don't
* generally include space for extra variables.
*/
static int
setenv_static(const char *name, const char *value)
{
int len;
if (md_env_pos >= md_env_len)
return (-1);
/* Check space for x=y and two nuls */
len = strlen(name) + strlen(value);
if (len + 3 < md_env_len - md_env_pos) {
len = sprintf(&md_envp[md_env_pos], "%s=%s", name, value);
md_env_pos += len+1;
md_envp[md_env_pos] = '\0';
return (0);
} else
return (-1);
}
/*
* Set an environment variable by name.
*/
int
kern_setenv(const char *name, const char *value)
{
char *buf, *cp, *oldenv;
int namelen, vallen, i;
if (!dynamic_kenv && md_env_len > 0)
return (setenv_static(name, value));
KENV_CHECK;
namelen = strlen(name) + 1;
if (namelen > KENV_MNAMELEN + 1)
return (-1);
vallen = strlen(value) + 1;
if (vallen > KENV_MVALLEN + 1)
return (-1);
buf = malloc(namelen + vallen, M_KENV, M_WAITOK);
sprintf(buf, "%s=%s", name, value);
mtx_lock(&kenv_lock);
cp = _getenv_dynamic(name, &i);
if (cp != NULL) {
oldenv = kenvp[i];
kenvp[i] = buf;
mtx_unlock(&kenv_lock);
free(oldenv, M_KENV);
} else {
/* We add the option if it wasn't found */
for (i = 0; (cp = kenvp[i]) != NULL; i++)
;
/* Bounds checking */
if (i < 0 || i >= KENV_SIZE) {
free(buf, M_KENV);
mtx_unlock(&kenv_lock);
return (-1);
}
kenvp[i] = buf;
kenvp[i + 1] = NULL;
mtx_unlock(&kenv_lock);
}
return (0);
}
/*
* Unset an environment variable string.
*/
int
kern_unsetenv(const char *name)
{
char *cp, *oldenv;
int i, j;
KENV_CHECK;
mtx_lock(&kenv_lock);
cp = _getenv_dynamic(name, &i);
if (cp != NULL) {
oldenv = kenvp[i];
for (j = i + 1; kenvp[j] != NULL; j++)
kenvp[i++] = kenvp[j];
kenvp[i] = NULL;
mtx_unlock(&kenv_lock);
explicit_bzero(oldenv, strlen(oldenv));
free(oldenv, M_KENV);
return (0);
}
mtx_unlock(&kenv_lock);
return (-1);
}
/*
* Return a string value from an environment variable.
*/
int
getenv_string(const char *name, char *data, int size)
{
char *cp;
if (dynamic_kenv) {
mtx_lock(&kenv_lock);
cp = _getenv_dynamic(name, NULL);
if (cp != NULL)
strlcpy(data, cp, size);
mtx_unlock(&kenv_lock);
} else {
cp = _getenv_static(name);
if (cp != NULL)
strlcpy(data, cp, size);
}
return (cp != NULL);
}
/*
* Return an array of integers at the given type size and signedness.
*/
int
getenv_array(const char *name, void *pdata, int size, int *psize,
int type_size, bool allow_signed)
{
char buf[KENV_MNAMELEN + 1 + KENV_MVALLEN + 1];
uint8_t shift;
int64_t value;
int64_t old;
char *end;
char *ptr;
int n;
if (getenv_string(name, buf, sizeof(buf)) == 0)
return (0);
/* get maximum number of elements */
size /= type_size;
n = 0;
for (ptr = buf; *ptr != 0; ) {
value = strtoq(ptr, &end, 0);
/* check if signed numbers are allowed */
if (value < 0 && !allow_signed)
goto error;
/* check for invalid value */
if (ptr == end)
goto error;
/* check for valid suffix */
switch (*end) {
case 't':
case 'T':
shift = 40;
end++;
break;
case 'g':
case 'G':
shift = 30;
end++;
break;
case 'm':
case 'M':
shift = 20;
end++;
break;
case 'k':
case 'K':
shift = 10;
end++;
break;
case ' ':
case '\t':
case ',':
case 0:
shift = 0;
break;
default:
/* garbage after numeric value */
goto error;
}
/* skip till next value, if any */
while (*end == '\t' || *end == ',' || *end == ' ')
end++;
/* update pointer */
ptr = end;
/* apply shift */
old = value;
value <<= shift;
/* overflow check */
if ((value >> shift) != old)
goto error;
/* check for buffer overflow */
if (n >= size)
goto error;
/* store value according to type size */
switch (type_size) {
case 1:
if (allow_signed) {
if (value < SCHAR_MIN || value > SCHAR_MAX)
goto error;
} else {
if (value < 0 || value > UCHAR_MAX)
goto error;
}
((uint8_t *)pdata)[n] = (uint8_t)value;
break;
case 2:
if (allow_signed) {
if (value < SHRT_MIN || value > SHRT_MAX)
goto error;
} else {
if (value < 0 || value > USHRT_MAX)
goto error;
}
((uint16_t *)pdata)[n] = (uint16_t)value;
break;
case 4:
if (allow_signed) {
if (value < INT_MIN || value > INT_MAX)
goto error;
} else {
if (value > UINT_MAX)
goto error;
}
((uint32_t *)pdata)[n] = (uint32_t)value;
break;
case 8:
((uint64_t *)pdata)[n] = (uint64_t)value;
break;
default:
goto error;
}
n++;
}
*psize = n * type_size;
if (n != 0)
return (1); /* success */
error:
return (0); /* failure */
}
/*
* Return an integer value from an environment variable.
*/
int
getenv_int(const char *name, int *data)
{
quad_t tmp;
int rval;
rval = getenv_quad(name, &tmp);
if (rval)
*data = (int) tmp;
return (rval);
}
/*
* Return an unsigned integer value from an environment variable.
*/
int
getenv_uint(const char *name, unsigned int *data)
{
quad_t tmp;
int rval;
rval = getenv_quad(name, &tmp);
if (rval)
*data = (unsigned int) tmp;
return (rval);
}
/*
* Return an int64_t value from an environment variable.
*/
int
getenv_int64(const char *name, int64_t *data)
{
quad_t tmp;
int64_t rval;
rval = getenv_quad(name, &tmp);
if (rval)
*data = (int64_t) tmp;
return (rval);
}
/*
* Return an uint64_t value from an environment variable.
*/
int
getenv_uint64(const char *name, uint64_t *data)
{
quad_t tmp;
uint64_t rval;
rval = getenv_quad(name, &tmp);
if (rval)
*data = (uint64_t) tmp;
return (rval);
}
/*
* Return a long value from an environment variable.
*/
int
getenv_long(const char *name, long *data)
{
quad_t tmp;
int rval;
rval = getenv_quad(name, &tmp);
if (rval)
*data = (long) tmp;
return (rval);
}
/*
* Return an unsigned long value from an environment variable.
*/
int
getenv_ulong(const char *name, unsigned long *data)
{
quad_t tmp;
int rval;
rval = getenv_quad(name, &tmp);
if (rval)
*data = (unsigned long) tmp;
return (rval);
}
/*
* Return a quad_t value from an environment variable.
*/
int
getenv_quad(const char *name, quad_t *data)
{
char value[KENV_MNAMELEN + 1 + KENV_MVALLEN + 1];
char *vtp;
quad_t iv;
if (!getenv_string(name, value, sizeof(value)))
return (0);
iv = strtoq(value, &vtp, 0);
if (vtp == value || (vtp[0] != '\0' && vtp[1] != '\0'))
return (0);
switch (vtp[0]) {
case 't': case 'T':
iv *= 1024;
case 'g': case 'G':
iv *= 1024;
case 'm': case 'M':
iv *= 1024;
case 'k': case 'K':
iv *= 1024;
case '\0':
break;
default:
return (0);
}
*data = iv;
return (1);
}
/*
* Find the next entry after the one which (cp) falls within, return a
* pointer to its start or NULL if there are no more.
*/
static char *
kernenv_next(char *cp)
{
if (cp != NULL) {
while (*cp != 0)
cp++;
cp++;
if (*cp == 0)
cp = NULL;
}
return (cp);
}
void
tunable_int_init(void *data)
{
struct tunable_int *d = (struct tunable_int *)data;
TUNABLE_INT_FETCH(d->path, d->var);
}
void
tunable_long_init(void *data)
{
struct tunable_long *d = (struct tunable_long *)data;
TUNABLE_LONG_FETCH(d->path, d->var);
}
void
tunable_ulong_init(void *data)
{
struct tunable_ulong *d = (struct tunable_ulong *)data;
TUNABLE_ULONG_FETCH(d->path, d->var);
}
void
tunable_int64_init(void *data)
{
struct tunable_int64 *d = (struct tunable_int64 *)data;
TUNABLE_INT64_FETCH(d->path, d->var);
}
void
tunable_uint64_init(void *data)
{
struct tunable_uint64 *d = (struct tunable_uint64 *)data;
TUNABLE_UINT64_FETCH(d->path, d->var);
}
void
tunable_quad_init(void *data)
{
struct tunable_quad *d = (struct tunable_quad *)data;
TUNABLE_QUAD_FETCH(d->path, d->var);
}
void
tunable_str_init(void *data)
{
struct tunable_str *d = (struct tunable_str *)data;
TUNABLE_STR_FETCH(d->path, d->var, d->size);
}