freebsd-dev/contrib/bmake/cond.c

1369 lines
33 KiB
C

/* $NetBSD: cond.c,v 1.267 2021/06/11 14:52:03 rillig Exp $ */
/*
* Copyright (c) 1988, 1989, 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Adam de Boor.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Copyright (c) 1988, 1989 by Adam de Boor
* Copyright (c) 1989 by Berkeley Softworks
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Adam de Boor.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Handling of conditionals in a makefile.
*
* Interface:
* Cond_EvalLine Evaluate the conditional directive, such as
* '.if <cond>', '.elifnmake <cond>', '.else', '.endif'.
*
* Cond_EvalCondition
* Evaluate the conditional, which is either the argument
* of one of the .if directives or the condition in a
* ':?then:else' variable modifier.
*
* Cond_save_depth
* Cond_restore_depth
* Save and restore the nesting of the conditions, at
* the start and end of including another makefile, to
* ensure that in each makefile the conditional
* directives are well-balanced.
*/
#include <errno.h>
#include "make.h"
#include "dir.h"
/* "@(#)cond.c 8.2 (Berkeley) 1/2/94" */
MAKE_RCSID("$NetBSD: cond.c,v 1.267 2021/06/11 14:52:03 rillig Exp $");
/*
* The parsing of conditional expressions is based on this grammar:
* Or -> And '||' Or
* Or -> And
* And -> Term '&&' And
* And -> Term
* Term -> Function '(' Argument ')'
* Term -> Leaf Operator Leaf
* Term -> Leaf
* Term -> '(' Or ')'
* Term -> '!' Term
* Leaf -> "string"
* Leaf -> Number
* Leaf -> VariableExpression
* Leaf -> Symbol
* Operator -> '==' | '!=' | '>' | '<' | '>=' | '<='
*
* 'Symbol' is an unquoted string literal to which the default function is
* applied.
*
* The tokens are scanned by CondToken, which returns:
* TOK_AND for '&&'
* TOK_OR for '||'
* TOK_NOT for '!'
* TOK_LPAREN for '('
* TOK_RPAREN for ')'
*
* Other terminal symbols are evaluated using either the default function or
* the function given in the terminal, they return either TOK_TRUE or
* TOK_FALSE.
*/
typedef enum Token {
TOK_FALSE, TOK_TRUE, TOK_AND, TOK_OR, TOK_NOT,
TOK_LPAREN, TOK_RPAREN, TOK_EOF, TOK_NONE, TOK_ERROR
} Token;
typedef enum CondResult {
CR_FALSE, CR_TRUE, CR_ERROR
} CondResult;
typedef enum ComparisonOp {
LT, LE, GT, GE, EQ, NE
} ComparisonOp;
typedef struct CondParser {
/*
* The plain '.if ${VAR}' evaluates to true if the value of the
* expression has length > 0. The other '.if' variants delegate
* to evalBare instead.
*/
bool plain;
/* The function to apply on unquoted bare words. */
bool (*evalBare)(size_t, const char *);
bool negateEvalBare;
const char *p; /* The remaining condition to parse */
Token curr; /* Single push-back token used in parsing */
/*
* Whether an error message has already been printed for this
* condition. The first available error message is usually the most
* specific one, therefore it makes sense to suppress the standard
* "Malformed conditional" message.
*/
bool printedError;
} CondParser;
static CondResult CondParser_Or(CondParser *par, bool);
static unsigned int cond_depth = 0; /* current .if nesting level */
static unsigned int cond_min_depth = 0; /* depth at makefile open */
static const char *opname[] = { "<", "<=", ">", ">=", "==", "!=" };
/*
* Indicate when we should be strict about lhs of comparisons.
* In strict mode, the lhs must be a variable expression or a string literal
* in quotes. In non-strict mode it may also be an unquoted string literal.
*
* True when CondEvalExpression is called from Cond_EvalLine (.if etc).
* False when CondEvalExpression is called from ApplyModifier_IfElse
* since lhs is already expanded, and at that point we cannot tell if
* it was a variable reference or not.
*/
static bool lhsStrict;
static bool
is_token(const char *str, const char *tok, size_t len)
{
return strncmp(str, tok, len) == 0 && !ch_isalpha(str[len]);
}
static Token
ToToken(bool cond)
{
return cond ? TOK_TRUE : TOK_FALSE;
}
/* Push back the most recent token read. We only need one level of this. */
static void
CondParser_PushBack(CondParser *par, Token t)
{
assert(par->curr == TOK_NONE);
assert(t != TOK_NONE);
par->curr = t;
}
static void
CondParser_SkipWhitespace(CondParser *par)
{
cpp_skip_whitespace(&par->p);
}
/*
* Parse the argument of a built-in function.
*
* Arguments:
* *pp initially points at the '(',
* upon successful return it points right after the ')'.
*
* *out_arg receives the argument as string.
*
* func says whether the argument belongs to an actual function, or
* whether the parsed argument is passed to the default function.
*
* Return the length of the argument, or 0 on error.
*/
static size_t
ParseFuncArg(CondParser *par, const char **pp, bool doEval, const char *func,
char **out_arg)
{
const char *p = *pp;
Buffer argBuf;
int paren_depth;
size_t argLen;
if (func != NULL)
p++; /* Skip opening '(' - verified by caller */
if (*p == '\0') {
*out_arg = NULL; /* Missing closing parenthesis: */
return 0; /* .if defined( */
}
cpp_skip_hspace(&p);
Buf_InitSize(&argBuf, 16);
paren_depth = 0;
for (;;) {
char ch = *p;
if (ch == '\0' || ch == ' ' || ch == '\t')
break;
if ((ch == '&' || ch == '|') && paren_depth == 0)
break;
if (*p == '$') {
/*
* Parse the variable expression and install it as
* part of the argument if it's valid. We tell
* Var_Parse to complain on an undefined variable,
* (XXX: but Var_Parse ignores that request)
* so we don't need to do it. Nor do we return an
* error, though perhaps we should.
*/
VarEvalMode emode = doEval
? VARE_UNDEFERR
: VARE_PARSE_ONLY;
FStr nestedVal;
(void)Var_Parse(&p, SCOPE_CMDLINE, emode, &nestedVal);
/* TODO: handle errors */
Buf_AddStr(&argBuf, nestedVal.str);
FStr_Done(&nestedVal);
continue;
}
if (ch == '(')
paren_depth++;
else if (ch == ')' && --paren_depth < 0)
break;
Buf_AddByte(&argBuf, *p);
p++;
}
argLen = argBuf.len;
*out_arg = Buf_DoneData(&argBuf);
cpp_skip_hspace(&p);
if (func != NULL && *p++ != ')') {
Parse_Error(PARSE_FATAL,
"Missing closing parenthesis for %s()", func);
par->printedError = true;
return 0;
}
*pp = p;
return argLen;
}
/* Test whether the given variable is defined. */
/*ARGSUSED*/
static bool
FuncDefined(size_t argLen MAKE_ATTR_UNUSED, const char *arg)
{
FStr value = Var_Value(SCOPE_CMDLINE, arg);
bool result = value.str != NULL;
FStr_Done(&value);
return result;
}
/* See if the given target is being made. */
/*ARGSUSED*/
static bool
FuncMake(size_t argLen MAKE_ATTR_UNUSED, const char *arg)
{
StringListNode *ln;
for (ln = opts.create.first; ln != NULL; ln = ln->next)
if (Str_Match(ln->datum, arg))
return true;
return false;
}
/* See if the given file exists. */
/*ARGSUSED*/
static bool
FuncExists(size_t argLen MAKE_ATTR_UNUSED, const char *arg)
{
bool result;
char *path;
path = Dir_FindFile(arg, &dirSearchPath);
DEBUG2(COND, "exists(%s) result is \"%s\"\n",
arg, path != NULL ? path : "");
result = path != NULL;
free(path);
return result;
}
/* See if the given node exists and is an actual target. */
/*ARGSUSED*/
static bool
FuncTarget(size_t argLen MAKE_ATTR_UNUSED, const char *arg)
{
GNode *gn = Targ_FindNode(arg);
return gn != NULL && GNode_IsTarget(gn);
}
/*
* See if the given node exists and is an actual target with commands
* associated with it.
*/
/*ARGSUSED*/
static bool
FuncCommands(size_t argLen MAKE_ATTR_UNUSED, const char *arg)
{
GNode *gn = Targ_FindNode(arg);
return gn != NULL && GNode_IsTarget(gn) && !Lst_IsEmpty(&gn->commands);
}
/*
* Convert the given number into a double.
* We try a base 10 or 16 integer conversion first, if that fails
* then we try a floating point conversion instead.
*
* Results:
* Returns true if the conversion succeeded.
* Sets 'out_value' to the converted number.
*/
static bool
TryParseNumber(const char *str, double *out_value)
{
char *end;
unsigned long ul_val;
double dbl_val;
errno = 0;
if (str[0] == '\0') { /* XXX: why is an empty string a number? */
*out_value = 0.0;
return true;
}
ul_val = strtoul(str, &end, str[1] == 'x' ? 16 : 10);
if (*end == '\0' && errno != ERANGE) {
*out_value = str[0] == '-' ? -(double)-ul_val : (double)ul_val;
return true;
}
if (*end != '\0' && *end != '.' && *end != 'e' && *end != 'E')
return false; /* skip the expensive strtod call */
dbl_val = strtod(str, &end);
if (*end != '\0')
return false;
*out_value = dbl_val;
return true;
}
static bool
is_separator(char ch)
{
return ch == '\0' || ch_isspace(ch) || ch == '!' || ch == '=' ||
ch == '>' || ch == '<' || ch == ')' /* but not '(' */;
}
/*
* In a quoted or unquoted string literal or a number, parse a variable
* expression.
*
* Example: .if x${CENTER}y == "${PREFIX}${SUFFIX}" || 0x${HEX}
*/
static bool
CondParser_StringExpr(CondParser *par, const char *start,
bool const doEval, bool const quoted,
Buffer *buf, FStr *const inout_str)
{
VarEvalMode emode;
const char *nested_p;
bool atStart;
VarParseResult parseResult;
/* if we are in quotes, an undefined variable is ok */
emode = doEval && !quoted ? VARE_UNDEFERR
: doEval ? VARE_WANTRES
: VARE_PARSE_ONLY;
nested_p = par->p;
atStart = nested_p == start;
parseResult = Var_Parse(&nested_p, SCOPE_CMDLINE, emode, inout_str);
/* TODO: handle errors */
if (inout_str->str == var_Error) {
if (parseResult == VPR_ERR) {
/*
* FIXME: Even if an error occurs, there is no
* guarantee that it is reported.
*
* See cond-token-plain.mk $$$$$$$$.
*/
par->printedError = true;
}
/*
* XXX: Can there be any situation in which a returned
* var_Error needs to be freed?
*/
FStr_Done(inout_str);
/*
* Even if !doEval, we still report syntax errors, which is
* what getting var_Error back with !doEval means.
*/
*inout_str = FStr_InitRefer(NULL);
return false;
}
par->p = nested_p;
/*
* If the '$' started the string literal (which means no quotes), and
* the variable expression is followed by a space, looks like a
* comparison operator or is the end of the expression, we are done.
*/
if (atStart && is_separator(par->p[0]))
return false;
Buf_AddStr(buf, inout_str->str);
FStr_Done(inout_str);
*inout_str = FStr_InitRefer(NULL); /* not finished yet */
return true;
}
/*
* Parse a string from a variable expression or an optionally quoted
* string. This is called for the left-hand and right-hand sides of
* comparisons.
*
* Results:
* Returns the string, absent any quotes, or NULL on error.
* Sets out_quoted if the leaf was a quoted string literal.
*/
static void
CondParser_Leaf(CondParser *par, bool doEval, bool strictLHS,
FStr *out_str, bool *out_quoted)
{
Buffer buf;
FStr str;
bool quoted;
const char *start;
Buf_Init(&buf);
str = FStr_InitRefer(NULL);
*out_quoted = quoted = par->p[0] == '"';
start = par->p;
if (quoted)
par->p++;
while (par->p[0] != '\0' && str.str == NULL) {
switch (par->p[0]) {
case '\\':
par->p++;
if (par->p[0] != '\0') {
Buf_AddByte(&buf, par->p[0]);
par->p++;
}
continue;
case '"':
par->p++;
if (quoted)
goto got_str; /* skip the closing quote */
Buf_AddByte(&buf, '"');
continue;
case ')': /* see is_separator */
case '!':
case '=':
case '>':
case '<':
case ' ':
case '\t':
if (!quoted)
goto got_str;
Buf_AddByte(&buf, par->p[0]);
par->p++;
continue;
case '$':
if (!CondParser_StringExpr(par,
start, doEval, quoted, &buf, &str))
goto cleanup;
continue;
default:
if (strictLHS && !quoted && *start != '$' &&
!ch_isdigit(*start)) {
/*
* The left-hand side must be quoted,
* a variable reference or a number.
*/
str = FStr_InitRefer(NULL);
goto cleanup;
}
Buf_AddByte(&buf, par->p[0]);
par->p++;
continue;
}
}
got_str:
str = FStr_InitOwn(buf.data);
cleanup:
Buf_DoneData(&buf); /* XXX: memory leak on failure? */
*out_str = str;
}
static bool
EvalBare(const CondParser *par, const char *arg, size_t arglen)
{
bool res = par->evalBare(arglen, arg);
return par->negateEvalBare ? !res : res;
}
/*
* Evaluate a "comparison without operator", such as in ".if ${VAR}" or
* ".if 0".
*/
static bool
EvalNotEmpty(CondParser *par, const char *value, bool quoted)
{
double num;
/* For .ifxxx "...", check for non-empty string. */
if (quoted)
return value[0] != '\0';
/* For .ifxxx <number>, compare against zero */
if (TryParseNumber(value, &num))
return num != 0.0;
/* For .if ${...}, check for non-empty string. This is different from
* the evaluation function from that .if variant, which would test
* whether a variable of the given name were defined. */
/* XXX: Whitespace should count as empty, just as in ParseEmptyArg. */
if (par->plain)
return value[0] != '\0';
return EvalBare(par, value, strlen(value));
}
/* Evaluate a numerical comparison, such as in ".if ${VAR} >= 9". */
static bool
EvalCompareNum(double lhs, ComparisonOp op, double rhs)
{
DEBUG3(COND, "lhs = %f, rhs = %f, op = %.2s\n", lhs, rhs, opname[op]);
switch (op) {
case LT:
return lhs < rhs;
case LE:
return lhs <= rhs;
case GT:
return lhs > rhs;
case GE:
return lhs >= rhs;
case NE:
return lhs != rhs;
default:
return lhs == rhs;
}
}
static Token
EvalCompareStr(CondParser *par, const char *lhs,
ComparisonOp op, const char *rhs)
{
if (op != EQ && op != NE) {
Parse_Error(PARSE_FATAL,
"String comparison operator must be either == or !=");
par->printedError = true;
return TOK_ERROR;
}
DEBUG3(COND, "lhs = \"%s\", rhs = \"%s\", op = %.2s\n",
lhs, rhs, opname[op]);
return ToToken((op == EQ) == (strcmp(lhs, rhs) == 0));
}
/* Evaluate a comparison, such as "${VAR} == 12345". */
static Token
EvalCompare(CondParser *par, const char *lhs, bool lhsQuoted,
ComparisonOp op, const char *rhs, bool rhsQuoted)
{
double left, right;
if (!rhsQuoted && !lhsQuoted)
if (TryParseNumber(lhs, &left) && TryParseNumber(rhs, &right))
return ToToken(EvalCompareNum(left, op, right));
return EvalCompareStr(par, lhs, op, rhs);
}
static bool
CondParser_ComparisonOp(CondParser *par, ComparisonOp *out_op)
{
const char *p = par->p;
if (p[0] == '<' && p[1] == '=') {
*out_op = LE;
goto length_2;
} else if (p[0] == '<') {
*out_op = LT;
goto length_1;
} else if (p[0] == '>' && p[1] == '=') {
*out_op = GE;
goto length_2;
} else if (p[0] == '>') {
*out_op = GT;
goto length_1;
} else if (p[0] == '=' && p[1] == '=') {
*out_op = EQ;
goto length_2;
} else if (p[0] == '!' && p[1] == '=') {
*out_op = NE;
goto length_2;
}
return false;
length_2:
par->p = p + 2;
return true;
length_1:
par->p = p + 1;
return true;
}
/*
* Parse a comparison condition such as:
*
* 0
* ${VAR:Mpattern}
* ${VAR} == value
* ${VAR:U0} < 12345
*/
static Token
CondParser_Comparison(CondParser *par, bool doEval)
{
Token t = TOK_ERROR;
FStr lhs, rhs;
ComparisonOp op;
bool lhsQuoted, rhsQuoted;
/*
* Parse the variable spec and skip over it, saving its
* value in lhs.
*/
CondParser_Leaf(par, doEval, lhsStrict, &lhs, &lhsQuoted);
if (lhs.str == NULL)
goto done_lhs;
CondParser_SkipWhitespace(par);
if (!CondParser_ComparisonOp(par, &op)) {
/* Unknown operator, compare against an empty string or 0. */
t = ToToken(doEval && EvalNotEmpty(par, lhs.str, lhsQuoted));
goto done_lhs;
}
CondParser_SkipWhitespace(par);
if (par->p[0] == '\0') {
Parse_Error(PARSE_FATAL,
"Missing right-hand-side of operator '%s'", opname[op]);
par->printedError = true;
goto done_lhs;
}
CondParser_Leaf(par, doEval, false, &rhs, &rhsQuoted);
if (rhs.str == NULL)
goto done_rhs;
if (!doEval) {
t = TOK_FALSE;
goto done_rhs;
}
t = EvalCompare(par, lhs.str, lhsQuoted, op, rhs.str, rhsQuoted);
done_rhs:
FStr_Done(&rhs);
done_lhs:
FStr_Done(&lhs);
return t;
}
/*
* The argument to empty() is a variable name, optionally followed by
* variable modifiers.
*/
/*ARGSUSED*/
static size_t
ParseEmptyArg(CondParser *par MAKE_ATTR_UNUSED, const char **pp,
bool doEval, const char *func MAKE_ATTR_UNUSED,
char **out_arg)
{
FStr val;
size_t magic_res;
/* We do all the work here and return the result as the length */
*out_arg = NULL;
(*pp)--; /* Make (*pp)[1] point to the '('. */
(void)Var_Parse(pp, SCOPE_CMDLINE,
doEval ? VARE_WANTRES : VARE_PARSE_ONLY, &val);
/* TODO: handle errors */
/* If successful, *pp points beyond the closing ')' now. */
if (val.str == var_Error) {
FStr_Done(&val);
return (size_t)-1;
}
/*
* A variable is empty when it just contains spaces...
* 4/15/92, christos
*/
cpp_skip_whitespace(&val.str);
/*
* For consistency with the other functions we can't generate the
* true/false here.
*/
magic_res = val.str[0] != '\0' ? 2 : 1;
FStr_Done(&val);
return magic_res;
}
/*ARGSUSED*/
static bool
FuncEmpty(size_t arglen, const char *arg MAKE_ATTR_UNUSED)
{
/* Magic values ahead, see ParseEmptyArg. */
return arglen == 1;
}
/* Parse a function call expression, such as 'defined(${file})'. */
static bool
CondParser_FuncCall(CondParser *par, bool doEval, Token *out_token)
{
static const struct fn_def {
const char *fn_name;
size_t fn_name_len;
size_t (*fn_parse)(CondParser *, const char **, bool,
const char *, char **);
bool (*fn_eval)(size_t, const char *);
} fns[] = {
{ "defined", 7, ParseFuncArg, FuncDefined },
{ "make", 4, ParseFuncArg, FuncMake },
{ "exists", 6, ParseFuncArg, FuncExists },
{ "empty", 5, ParseEmptyArg, FuncEmpty },
{ "target", 6, ParseFuncArg, FuncTarget },
{ "commands", 8, ParseFuncArg, FuncCommands }
};
const struct fn_def *fn;
char *arg = NULL;
size_t arglen;
const char *cp = par->p;
const struct fn_def *fns_end = fns + sizeof fns / sizeof fns[0];
for (fn = fns; fn != fns_end; fn++) {
if (!is_token(cp, fn->fn_name, fn->fn_name_len))
continue;
cp += fn->fn_name_len;
cpp_skip_whitespace(&cp);
if (*cp != '(')
break;
arglen = fn->fn_parse(par, &cp, doEval, fn->fn_name, &arg);
if (arglen == 0 || arglen == (size_t)-1) {
par->p = cp;
*out_token = arglen == 0 ? TOK_FALSE : TOK_ERROR;
return true;
}
/* Evaluate the argument using the required function. */
*out_token = ToToken(!doEval || fn->fn_eval(arglen, arg));
free(arg);
par->p = cp;
return true;
}
return false;
}
/*
* Parse a comparison such as '${VAR} == "value"', or a simple leaf without
* operator, which is a number, a variable expression or a string literal.
*/
static Token
CondParser_ComparisonOrLeaf(CondParser *par, bool doEval)
{
Token t;
char *arg = NULL;
size_t arglen;
const char *cp;
const char *cp1;
/* Push anything numeric through the compare expression */
cp = par->p;
if (ch_isdigit(cp[0]) || cp[0] == '-' || cp[0] == '+')
return CondParser_Comparison(par, doEval);
/*
* Most likely we have a naked token to apply the default function to.
* However ".if a == b" gets here when the "a" is unquoted and doesn't
* start with a '$'. This surprises people.
* If what follows the function argument is a '=' or '!' then the
* syntax would be invalid if we did "defined(a)" - so instead treat
* as an expression.
*/
/*
* XXX: Is it possible to have a variable expression evaluated twice
* at this point?
*/
arglen = ParseFuncArg(par, &cp, doEval, NULL, &arg);
cp1 = cp;
cpp_skip_whitespace(&cp1);
if (*cp1 == '=' || *cp1 == '!' || *cp1 == '<' || *cp1 == '>')
return CondParser_Comparison(par, doEval);
par->p = cp;
/*
* Evaluate the argument using the default function.
* This path always treats .if as .ifdef. To get here, the character
* after .if must have been taken literally, so the argument cannot
* be empty - even if it contained a variable expansion.
*/
t = ToToken(!doEval || EvalBare(par, arg, arglen));
free(arg);
return t;
}
/* Return the next token or comparison result from the parser. */
static Token
CondParser_Token(CondParser *par, bool doEval)
{
Token t;
t = par->curr;
if (t != TOK_NONE) {
par->curr = TOK_NONE;
return t;
}
cpp_skip_hspace(&par->p);
switch (par->p[0]) {
case '(':
par->p++;
return TOK_LPAREN;
case ')':
par->p++;
return TOK_RPAREN;
case '|':
par->p++;
if (par->p[0] == '|')
par->p++;
else if (opts.strict) {
Parse_Error(PARSE_FATAL, "Unknown operator '|'");
par->printedError = true;
return TOK_ERROR;
}
return TOK_OR;
case '&':
par->p++;
if (par->p[0] == '&')
par->p++;
else if (opts.strict) {
Parse_Error(PARSE_FATAL, "Unknown operator '&'");
par->printedError = true;
return TOK_ERROR;
}
return TOK_AND;
case '!':
par->p++;
return TOK_NOT;
case '#': /* XXX: see unit-tests/cond-token-plain.mk */
case '\n': /* XXX: why should this end the condition? */
/* Probably obsolete now, from 1993-03-21. */
case '\0':
return TOK_EOF;
case '"':
case '$':
return CondParser_Comparison(par, doEval);
default:
if (CondParser_FuncCall(par, doEval, &t))
return t;
return CondParser_ComparisonOrLeaf(par, doEval);
}
}
/*
* Term -> '(' Or ')'
* Term -> '!' Term
* Term -> Leaf Operator Leaf
* Term -> Leaf
*/
static CondResult
CondParser_Term(CondParser *par, bool doEval)
{
CondResult res;
Token t;
t = CondParser_Token(par, doEval);
if (t == TOK_TRUE)
return CR_TRUE;
if (t == TOK_FALSE)
return CR_FALSE;
if (t == TOK_LPAREN) {
res = CondParser_Or(par, doEval);
if (res == CR_ERROR)
return CR_ERROR;
if (CondParser_Token(par, doEval) != TOK_RPAREN)
return CR_ERROR;
return res;
}
if (t == TOK_NOT) {
res = CondParser_Term(par, doEval);
if (res == CR_TRUE)
res = CR_FALSE;
else if (res == CR_FALSE)
res = CR_TRUE;
return res;
}
return CR_ERROR;
}
/*
* And -> Term '&&' And
* And -> Term
*/
static CondResult
CondParser_And(CondParser *par, bool doEval)
{
CondResult res;
Token op;
res = CondParser_Term(par, doEval);
if (res == CR_ERROR)
return CR_ERROR;
op = CondParser_Token(par, doEval);
if (op == TOK_AND) {
if (res == CR_TRUE)
return CondParser_And(par, doEval);
if (CondParser_And(par, false) == CR_ERROR)
return CR_ERROR;
return res;
}
CondParser_PushBack(par, op);
return res;
}
/*
* Or -> And '||' Or
* Or -> And
*/
static CondResult
CondParser_Or(CondParser *par, bool doEval)
{
CondResult res;
Token op;
res = CondParser_And(par, doEval);
if (res == CR_ERROR)
return CR_ERROR;
op = CondParser_Token(par, doEval);
if (op == TOK_OR) {
if (res == CR_FALSE)
return CondParser_Or(par, doEval);
if (CondParser_Or(par, false) == CR_ERROR)
return CR_ERROR;
return res;
}
CondParser_PushBack(par, op);
return res;
}
static CondEvalResult
CondParser_Eval(CondParser *par, bool *out_value)
{
CondResult res;
DEBUG1(COND, "CondParser_Eval: %s\n", par->p);
res = CondParser_Or(par, true);
if (res == CR_ERROR)
return COND_INVALID;
if (CondParser_Token(par, false) != TOK_EOF)
return COND_INVALID;
*out_value = res == CR_TRUE;
return COND_PARSE;
}
/*
* Evaluate the condition, including any side effects from the variable
* expressions in the condition. The condition consists of &&, ||, !,
* function(arg), comparisons and parenthetical groupings thereof.
*
* Results:
* COND_PARSE if the condition was valid grammatically
* COND_INVALID if not a valid conditional.
*
* (*value) is set to the boolean value of the condition
*/
static CondEvalResult
CondEvalExpression(const char *cond, bool *out_value, bool plain,
bool (*evalBare)(size_t, const char *), bool negate,
bool eprint, bool strictLHS)
{
CondParser par;
CondEvalResult rval;
lhsStrict = strictLHS;
cpp_skip_hspace(&cond);
par.plain = plain;
par.evalBare = evalBare;
par.negateEvalBare = negate;
par.p = cond;
par.curr = TOK_NONE;
par.printedError = false;
rval = CondParser_Eval(&par, out_value);
if (rval == COND_INVALID && eprint && !par.printedError)
Parse_Error(PARSE_FATAL, "Malformed conditional (%s)", cond);
return rval;
}
/*
* Evaluate a condition in a :? modifier, such as
* ${"${VAR}" == value:?yes:no}.
*/
CondEvalResult
Cond_EvalCondition(const char *cond, bool *out_value)
{
return CondEvalExpression(cond, out_value, true,
FuncDefined, false, false, false);
}
static bool
IsEndif(const char *p)
{
return p[0] == 'e' && p[1] == 'n' && p[2] == 'd' &&
p[3] == 'i' && p[4] == 'f' && !ch_isalpha(p[5]);
}
static bool
DetermineKindOfConditional(const char **pp, bool *out_plain,
bool (**out_evalBare)(size_t, const char *),
bool *out_negate)
{
const char *p = *pp;
p += 2;
*out_plain = false;
*out_evalBare = FuncDefined;
*out_negate = false;
if (*p == 'n') {
p++;
*out_negate = true;
}
if (is_token(p, "def", 3)) { /* .ifdef and .ifndef */
p += 3;
} else if (is_token(p, "make", 4)) { /* .ifmake and .ifnmake */
p += 4;
*out_evalBare = FuncMake;
} else if (is_token(p, "", 0) && !*out_negate) { /* plain .if */
*out_plain = true;
} else {
/*
* TODO: Add error message about unknown directive,
* since there is no other known directive that starts
* with 'el' or 'if'.
*
* Example: .elifx 123
*/
return false;
}
*pp = p;
return true;
}
/*
* Evaluate the conditional directive in the line, which is one of:
*
* .if <cond>
* .ifmake <cond>
* .ifnmake <cond>
* .ifdef <cond>
* .ifndef <cond>
* .elif <cond>
* .elifmake <cond>
* .elifnmake <cond>
* .elifdef <cond>
* .elifndef <cond>
* .else
* .endif
*
* In these directives, <cond> consists of &&, ||, !, function(arg),
* comparisons, expressions, bare words, numbers and strings, and
* parenthetical groupings thereof.
*
* Results:
* COND_PARSE to continue parsing the lines that follow the
* conditional (when <cond> evaluates to true)
* COND_SKIP to skip the lines after the conditional
* (when <cond> evaluates to false, or when a previous
* branch has already been taken)
* COND_INVALID if the conditional was not valid, either because of
* a syntax error or because some variable was undefined
* or because the condition could not be evaluated
*/
CondEvalResult
Cond_EvalLine(const char *line)
{
typedef enum IfState {
/* None of the previous <cond> evaluated to true. */
IFS_INITIAL = 0,
/* The previous <cond> evaluated to true.
* The lines following this condition are interpreted. */
IFS_ACTIVE = 1 << 0,
/* The previous directive was an '.else'. */
IFS_SEEN_ELSE = 1 << 1,
/* One of the previous <cond> evaluated to true. */
IFS_WAS_ACTIVE = 1 << 2
} IfState;
static enum IfState *cond_states = NULL;
static unsigned int cond_states_cap = 128;
bool plain;
bool (*evalBare)(size_t, const char *);
bool negate;
bool isElif;
bool value;
IfState state;
const char *p = line;
if (cond_states == NULL) {
cond_states = bmake_malloc(
cond_states_cap * sizeof *cond_states);
cond_states[0] = IFS_ACTIVE;
}
p++; /* skip the leading '.' */
cpp_skip_hspace(&p);
if (IsEndif(p)) { /* It is an '.endif'. */
if (p[5] != '\0') {
Parse_Error(PARSE_FATAL,
"The .endif directive does not take arguments.");
}
if (cond_depth == cond_min_depth) {
Parse_Error(PARSE_FATAL, "if-less endif");
return COND_PARSE;
}
/* Return state for previous conditional */
cond_depth--;
return cond_states[cond_depth] & IFS_ACTIVE
? COND_PARSE : COND_SKIP;
}
/* Parse the name of the directive, such as 'if', 'elif', 'endif'. */
if (p[0] == 'e') {
if (p[1] != 'l') {
/*
* Unknown directive. It might still be a
* transformation rule like '.elisp.scm',
* therefore no error message here.
*/
return COND_INVALID;
}
/* Quite likely this is 'else' or 'elif' */
p += 2;
if (is_token(p, "se", 2)) { /* It is an 'else'. */
if (p[2] != '\0')
Parse_Error(PARSE_FATAL,
"The .else directive "
"does not take arguments.");
if (cond_depth == cond_min_depth) {
Parse_Error(PARSE_FATAL, "if-less else");
return COND_PARSE;
}
state = cond_states[cond_depth];
if (state == IFS_INITIAL) {
state = IFS_ACTIVE | IFS_SEEN_ELSE;
} else {
if (state & IFS_SEEN_ELSE)
Parse_Error(PARSE_WARNING,
"extra else");
state = IFS_WAS_ACTIVE | IFS_SEEN_ELSE;
}
cond_states[cond_depth] = state;
return state & IFS_ACTIVE ? COND_PARSE : COND_SKIP;
}
/* Assume for now it is an elif */
isElif = true;
} else
isElif = false;
if (p[0] != 'i' || p[1] != 'f') {
/*
* Unknown directive. It might still be a transformation rule
* like '.elisp.scm', therefore no error message here.
*/
return COND_INVALID; /* Not an ifxxx or elifxxx line */
}
if (!DetermineKindOfConditional(&p, &plain, &evalBare, &negate))
return COND_INVALID;
if (isElif) {
if (cond_depth == cond_min_depth) {
Parse_Error(PARSE_FATAL, "if-less elif");
return COND_PARSE;
}
state = cond_states[cond_depth];
if (state & IFS_SEEN_ELSE) {
Parse_Error(PARSE_WARNING, "extra elif");
cond_states[cond_depth] =
IFS_WAS_ACTIVE | IFS_SEEN_ELSE;
return COND_SKIP;
}
if (state != IFS_INITIAL) {
cond_states[cond_depth] = IFS_WAS_ACTIVE;
return COND_SKIP;
}
} else {
/* Normal .if */
if (cond_depth + 1 >= cond_states_cap) {
/*
* This is rare, but not impossible.
* In meta mode, dirdeps.mk (only runs at level 0)
* can need more than the default.
*/
cond_states_cap += 32;
cond_states = bmake_realloc(cond_states,
cond_states_cap *
sizeof *cond_states);
}
state = cond_states[cond_depth];
cond_depth++;
if (!(state & IFS_ACTIVE)) {
/*
* If we aren't parsing the data,
* treat as always false.
*/
cond_states[cond_depth] = IFS_WAS_ACTIVE;
return COND_SKIP;
}
}
/* And evaluate the conditional expression */
if (CondEvalExpression(p, &value, plain, evalBare, negate,
true, true) == COND_INVALID) {
/* Syntax error in conditional, error message already output. */
/* Skip everything to matching .endif */
/* XXX: An extra '.else' is not detected in this case. */
cond_states[cond_depth] = IFS_WAS_ACTIVE;
return COND_SKIP;
}
if (!value) {
cond_states[cond_depth] = IFS_INITIAL;
return COND_SKIP;
}
cond_states[cond_depth] = IFS_ACTIVE;
return COND_PARSE;
}
void
Cond_restore_depth(unsigned int saved_depth)
{
unsigned int open_conds = cond_depth - cond_min_depth;
if (open_conds != 0 || saved_depth > cond_depth) {
Parse_Error(PARSE_FATAL, "%u open conditional%s",
open_conds, open_conds == 1 ? "" : "s");
cond_depth = cond_min_depth;
}
cond_min_depth = saved_depth;
}
unsigned int
Cond_save_depth(void)
{
unsigned int depth = cond_min_depth;
cond_min_depth = cond_depth;
return depth;
}