freebsd-dev/sys/amd64/linux32/linux32_machdep.c
Edward Tomasz Napierala 52c81be11a Add linux_madvise(2) instead of having Linux apps call the native
FreeBSD madvise(2) directly.  While some of the flag values match,
most don't.

PR:		kern/230160
Reported by:	markj
Reviewed by:	markj
Discussed with:	brooks, kib
MFC after:	2 weeks
Sponsored by:	The FreeBSD Foundation
Differential Revision:	https://reviews.freebsd.org/D25272
2020-06-20 18:29:22 +00:00

784 lines
19 KiB
C

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2004 Tim J. Robbins
* Copyright (c) 2002 Doug Rabson
* Copyright (c) 2000 Marcel Moolenaar
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer
* in this position and unchanged.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_compat.h"
#include <sys/param.h>
#include <sys/capsicum.h>
#include <sys/clock.h>
#include <sys/fcntl.h>
#include <sys/file.h>
#include <sys/imgact.h>
#include <sys/kernel.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mman.h>
#include <sys/mutex.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/resource.h>
#include <sys/resourcevar.h>
#include <sys/syscallsubr.h>
#include <sys/sysproto.h>
#include <sys/systm.h>
#include <sys/unistd.h>
#include <sys/wait.h>
#include <machine/frame.h>
#include <machine/md_var.h>
#include <machine/pcb.h>
#include <machine/psl.h>
#include <machine/segments.h>
#include <machine/specialreg.h>
#include <x86/ifunc.h>
#include <vm/pmap.h>
#include <vm/vm.h>
#include <vm/vm_map.h>
#include <compat/freebsd32/freebsd32_util.h>
#include <amd64/linux32/linux.h>
#include <amd64/linux32/linux32_proto.h>
#include <compat/linux/linux_emul.h>
#include <compat/linux/linux_ipc.h>
#include <compat/linux/linux_misc.h>
#include <compat/linux/linux_mmap.h>
#include <compat/linux/linux_signal.h>
#include <compat/linux/linux_util.h>
static void bsd_to_linux_rusage(struct rusage *ru, struct l_rusage *lru);
struct l_old_select_argv {
l_int nfds;
l_uintptr_t readfds;
l_uintptr_t writefds;
l_uintptr_t exceptfds;
l_uintptr_t timeout;
} __packed;
static void
bsd_to_linux_rusage(struct rusage *ru, struct l_rusage *lru)
{
lru->ru_utime.tv_sec = ru->ru_utime.tv_sec;
lru->ru_utime.tv_usec = ru->ru_utime.tv_usec;
lru->ru_stime.tv_sec = ru->ru_stime.tv_sec;
lru->ru_stime.tv_usec = ru->ru_stime.tv_usec;
lru->ru_maxrss = ru->ru_maxrss;
lru->ru_ixrss = ru->ru_ixrss;
lru->ru_idrss = ru->ru_idrss;
lru->ru_isrss = ru->ru_isrss;
lru->ru_minflt = ru->ru_minflt;
lru->ru_majflt = ru->ru_majflt;
lru->ru_nswap = ru->ru_nswap;
lru->ru_inblock = ru->ru_inblock;
lru->ru_oublock = ru->ru_oublock;
lru->ru_msgsnd = ru->ru_msgsnd;
lru->ru_msgrcv = ru->ru_msgrcv;
lru->ru_nsignals = ru->ru_nsignals;
lru->ru_nvcsw = ru->ru_nvcsw;
lru->ru_nivcsw = ru->ru_nivcsw;
}
int
linux_copyout_rusage(struct rusage *ru, void *uaddr)
{
struct l_rusage lru;
bsd_to_linux_rusage(ru, &lru);
return (copyout(&lru, uaddr, sizeof(struct l_rusage)));
}
int
linux_execve(struct thread *td, struct linux_execve_args *args)
{
struct image_args eargs;
char *path;
int error;
LCONVPATHEXIST(td, args->path, &path);
error = freebsd32_exec_copyin_args(&eargs, path, UIO_SYSSPACE,
args->argp, args->envp);
free(path, M_TEMP);
if (error == 0)
error = linux_common_execve(td, &eargs);
return (error);
}
CTASSERT(sizeof(struct l_iovec32) == 8);
int
linux32_copyinuio(struct l_iovec32 *iovp, l_ulong iovcnt, struct uio **uiop)
{
struct l_iovec32 iov32;
struct iovec *iov;
struct uio *uio;
uint32_t iovlen;
int error, i;
*uiop = NULL;
if (iovcnt > UIO_MAXIOV)
return (EINVAL);
iovlen = iovcnt * sizeof(struct iovec);
uio = malloc(iovlen + sizeof(*uio), M_IOV, M_WAITOK);
iov = (struct iovec *)(uio + 1);
for (i = 0; i < iovcnt; i++) {
error = copyin(&iovp[i], &iov32, sizeof(struct l_iovec32));
if (error) {
free(uio, M_IOV);
return (error);
}
iov[i].iov_base = PTRIN(iov32.iov_base);
iov[i].iov_len = iov32.iov_len;
}
uio->uio_iov = iov;
uio->uio_iovcnt = iovcnt;
uio->uio_segflg = UIO_USERSPACE;
uio->uio_offset = -1;
uio->uio_resid = 0;
for (i = 0; i < iovcnt; i++) {
if (iov->iov_len > INT_MAX - uio->uio_resid) {
free(uio, M_IOV);
return (EINVAL);
}
uio->uio_resid += iov->iov_len;
iov++;
}
*uiop = uio;
return (0);
}
int
linux32_copyiniov(struct l_iovec32 *iovp32, l_ulong iovcnt, struct iovec **iovp,
int error)
{
struct l_iovec32 iov32;
struct iovec *iov;
uint32_t iovlen;
int i;
*iovp = NULL;
if (iovcnt > UIO_MAXIOV)
return (error);
iovlen = iovcnt * sizeof(struct iovec);
iov = malloc(iovlen, M_IOV, M_WAITOK);
for (i = 0; i < iovcnt; i++) {
error = copyin(&iovp32[i], &iov32, sizeof(struct l_iovec32));
if (error) {
free(iov, M_IOV);
return (error);
}
iov[i].iov_base = PTRIN(iov32.iov_base);
iov[i].iov_len = iov32.iov_len;
}
*iovp = iov;
return(0);
}
int
linux_readv(struct thread *td, struct linux_readv_args *uap)
{
struct uio *auio;
int error;
error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio);
if (error)
return (error);
error = kern_readv(td, uap->fd, auio);
free(auio, M_IOV);
return (error);
}
int
linux_writev(struct thread *td, struct linux_writev_args *uap)
{
struct uio *auio;
int error;
error = linux32_copyinuio(uap->iovp, uap->iovcnt, &auio);
if (error)
return (error);
error = kern_writev(td, uap->fd, auio);
free(auio, M_IOV);
return (error);
}
struct l_ipc_kludge {
l_uintptr_t msgp;
l_long msgtyp;
} __packed;
int
linux_ipc(struct thread *td, struct linux_ipc_args *args)
{
switch (args->what & 0xFFFF) {
case LINUX_SEMOP: {
struct linux_semop_args a;
a.semid = args->arg1;
a.tsops = PTRIN(args->ptr);
a.nsops = args->arg2;
return (linux_semop(td, &a));
}
case LINUX_SEMGET: {
struct linux_semget_args a;
a.key = args->arg1;
a.nsems = args->arg2;
a.semflg = args->arg3;
return (linux_semget(td, &a));
}
case LINUX_SEMCTL: {
struct linux_semctl_args a;
int error;
a.semid = args->arg1;
a.semnum = args->arg2;
a.cmd = args->arg3;
error = copyin(PTRIN(args->ptr), &a.arg, sizeof(a.arg));
if (error)
return (error);
return (linux_semctl(td, &a));
}
case LINUX_MSGSND: {
struct linux_msgsnd_args a;
a.msqid = args->arg1;
a.msgp = PTRIN(args->ptr);
a.msgsz = args->arg2;
a.msgflg = args->arg3;
return (linux_msgsnd(td, &a));
}
case LINUX_MSGRCV: {
struct linux_msgrcv_args a;
a.msqid = args->arg1;
a.msgsz = args->arg2;
a.msgflg = args->arg3;
if ((args->what >> 16) == 0) {
struct l_ipc_kludge tmp;
int error;
if (args->ptr == 0)
return (EINVAL);
error = copyin(PTRIN(args->ptr), &tmp, sizeof(tmp));
if (error)
return (error);
a.msgp = PTRIN(tmp.msgp);
a.msgtyp = tmp.msgtyp;
} else {
a.msgp = PTRIN(args->ptr);
a.msgtyp = args->arg5;
}
return (linux_msgrcv(td, &a));
}
case LINUX_MSGGET: {
struct linux_msgget_args a;
a.key = args->arg1;
a.msgflg = args->arg2;
return (linux_msgget(td, &a));
}
case LINUX_MSGCTL: {
struct linux_msgctl_args a;
a.msqid = args->arg1;
a.cmd = args->arg2;
a.buf = PTRIN(args->ptr);
return (linux_msgctl(td, &a));
}
case LINUX_SHMAT: {
struct linux_shmat_args a;
l_uintptr_t addr;
int error;
a.shmid = args->arg1;
a.shmaddr = PTRIN(args->ptr);
a.shmflg = args->arg2;
error = linux_shmat(td, &a);
if (error != 0)
return (error);
addr = td->td_retval[0];
error = copyout(&addr, PTRIN(args->arg3), sizeof(addr));
td->td_retval[0] = 0;
return (error);
}
case LINUX_SHMDT: {
struct linux_shmdt_args a;
a.shmaddr = PTRIN(args->ptr);
return (linux_shmdt(td, &a));
}
case LINUX_SHMGET: {
struct linux_shmget_args a;
a.key = args->arg1;
a.size = args->arg2;
a.shmflg = args->arg3;
return (linux_shmget(td, &a));
}
case LINUX_SHMCTL: {
struct linux_shmctl_args a;
a.shmid = args->arg1;
a.cmd = args->arg2;
a.buf = PTRIN(args->ptr);
return (linux_shmctl(td, &a));
}
default:
break;
}
return (EINVAL);
}
int
linux_old_select(struct thread *td, struct linux_old_select_args *args)
{
struct l_old_select_argv linux_args;
struct linux_select_args newsel;
int error;
error = copyin(args->ptr, &linux_args, sizeof(linux_args));
if (error)
return (error);
newsel.nfds = linux_args.nfds;
newsel.readfds = PTRIN(linux_args.readfds);
newsel.writefds = PTRIN(linux_args.writefds);
newsel.exceptfds = PTRIN(linux_args.exceptfds);
newsel.timeout = PTRIN(linux_args.timeout);
return (linux_select(td, &newsel));
}
int
linux_set_cloned_tls(struct thread *td, void *desc)
{
struct user_segment_descriptor sd;
struct l_user_desc info;
struct pcb *pcb;
int error;
int a[2];
error = copyin(desc, &info, sizeof(struct l_user_desc));
if (error) {
linux_msg(td, "set_cloned_tls copyin info failed!");
} else {
/* We might copy out the entry_number as GUGS32_SEL. */
info.entry_number = GUGS32_SEL;
error = copyout(&info, desc, sizeof(struct l_user_desc));
if (error)
linux_msg(td, "set_cloned_tls copyout info failed!");
a[0] = LINUX_LDT_entry_a(&info);
a[1] = LINUX_LDT_entry_b(&info);
memcpy(&sd, &a, sizeof(a));
pcb = td->td_pcb;
pcb->pcb_gsbase = (register_t)info.base_addr;
td->td_frame->tf_gs = GSEL(GUGS32_SEL, SEL_UPL);
set_pcb_flags(pcb, PCB_32BIT);
}
return (error);
}
int
linux_set_upcall_kse(struct thread *td, register_t stack)
{
if (stack)
td->td_frame->tf_rsp = stack;
/*
* The newly created Linux thread returns
* to the user space by the same path that a parent do.
*/
td->td_frame->tf_rax = 0;
return (0);
}
int
linux_mmap2(struct thread *td, struct linux_mmap2_args *args)
{
return (linux_mmap_common(td, PTROUT(args->addr), args->len, args->prot,
args->flags, args->fd, (uint64_t)(uint32_t)args->pgoff *
PAGE_SIZE));
}
int
linux_mmap(struct thread *td, struct linux_mmap_args *args)
{
int error;
struct l_mmap_argv linux_args;
error = copyin(args->ptr, &linux_args, sizeof(linux_args));
if (error)
return (error);
return (linux_mmap_common(td, linux_args.addr, linux_args.len,
linux_args.prot, linux_args.flags, linux_args.fd,
(uint32_t)linux_args.pgoff));
}
int
linux_mprotect(struct thread *td, struct linux_mprotect_args *uap)
{
return (linux_mprotect_common(td, PTROUT(uap->addr), uap->len, uap->prot));
}
int
linux_madvise(struct thread *td, struct linux_madvise_args *uap)
{
return (linux_madvise_common(td, PTROUT(uap->addr), uap->len, uap->behav));
}
int
linux_iopl(struct thread *td, struct linux_iopl_args *args)
{
int error;
if (args->level < 0 || args->level > 3)
return (EINVAL);
if ((error = priv_check(td, PRIV_IO)) != 0)
return (error);
if ((error = securelevel_gt(td->td_ucred, 0)) != 0)
return (error);
td->td_frame->tf_rflags = (td->td_frame->tf_rflags & ~PSL_IOPL) |
(args->level * (PSL_IOPL / 3));
return (0);
}
int
linux_sigaction(struct thread *td, struct linux_sigaction_args *args)
{
l_osigaction_t osa;
l_sigaction_t act, oact;
int error;
if (args->nsa != NULL) {
error = copyin(args->nsa, &osa, sizeof(l_osigaction_t));
if (error)
return (error);
act.lsa_handler = osa.lsa_handler;
act.lsa_flags = osa.lsa_flags;
act.lsa_restorer = osa.lsa_restorer;
LINUX_SIGEMPTYSET(act.lsa_mask);
act.lsa_mask.__mask = osa.lsa_mask;
}
error = linux_do_sigaction(td, args->sig, args->nsa ? &act : NULL,
args->osa ? &oact : NULL);
if (args->osa != NULL && !error) {
osa.lsa_handler = oact.lsa_handler;
osa.lsa_flags = oact.lsa_flags;
osa.lsa_restorer = oact.lsa_restorer;
osa.lsa_mask = oact.lsa_mask.__mask;
error = copyout(&osa, args->osa, sizeof(l_osigaction_t));
}
return (error);
}
/*
* Linux has two extra args, restart and oldmask. We don't use these,
* but it seems that "restart" is actually a context pointer that
* enables the signal to happen with a different register set.
*/
int
linux_sigsuspend(struct thread *td, struct linux_sigsuspend_args *args)
{
sigset_t sigmask;
l_sigset_t mask;
LINUX_SIGEMPTYSET(mask);
mask.__mask = args->mask;
linux_to_bsd_sigset(&mask, &sigmask);
return (kern_sigsuspend(td, sigmask));
}
int
linux_rt_sigsuspend(struct thread *td, struct linux_rt_sigsuspend_args *uap)
{
l_sigset_t lmask;
sigset_t sigmask;
int error;
if (uap->sigsetsize != sizeof(l_sigset_t))
return (EINVAL);
error = copyin(uap->newset, &lmask, sizeof(l_sigset_t));
if (error)
return (error);
linux_to_bsd_sigset(&lmask, &sigmask);
return (kern_sigsuspend(td, sigmask));
}
int
linux_pause(struct thread *td, struct linux_pause_args *args)
{
struct proc *p = td->td_proc;
sigset_t sigmask;
PROC_LOCK(p);
sigmask = td->td_sigmask;
PROC_UNLOCK(p);
return (kern_sigsuspend(td, sigmask));
}
int
linux_sigaltstack(struct thread *td, struct linux_sigaltstack_args *uap)
{
stack_t ss, oss;
l_stack_t lss;
int error;
if (uap->uss != NULL) {
error = copyin(uap->uss, &lss, sizeof(l_stack_t));
if (error)
return (error);
ss.ss_sp = PTRIN(lss.ss_sp);
ss.ss_size = lss.ss_size;
ss.ss_flags = linux_to_bsd_sigaltstack(lss.ss_flags);
}
error = kern_sigaltstack(td, (uap->uss != NULL) ? &ss : NULL,
(uap->uoss != NULL) ? &oss : NULL);
if (!error && uap->uoss != NULL) {
lss.ss_sp = PTROUT(oss.ss_sp);
lss.ss_size = oss.ss_size;
lss.ss_flags = bsd_to_linux_sigaltstack(oss.ss_flags);
error = copyout(&lss, uap->uoss, sizeof(l_stack_t));
}
return (error);
}
int
linux_gettimeofday(struct thread *td, struct linux_gettimeofday_args *uap)
{
struct timeval atv;
l_timeval atv32;
struct timezone rtz;
int error = 0;
if (uap->tp) {
microtime(&atv);
atv32.tv_sec = atv.tv_sec;
atv32.tv_usec = atv.tv_usec;
error = copyout(&atv32, uap->tp, sizeof(atv32));
}
if (error == 0 && uap->tzp != NULL) {
rtz.tz_minuteswest = 0;
rtz.tz_dsttime = 0;
error = copyout(&rtz, uap->tzp, sizeof(rtz));
}
return (error);
}
int
linux_settimeofday(struct thread *td, struct linux_settimeofday_args *uap)
{
l_timeval atv32;
struct timeval atv, *tvp;
struct timezone atz, *tzp;
int error;
if (uap->tp) {
error = copyin(uap->tp, &atv32, sizeof(atv32));
if (error)
return (error);
atv.tv_sec = atv32.tv_sec;
atv.tv_usec = atv32.tv_usec;
tvp = &atv;
} else
tvp = NULL;
if (uap->tzp) {
error = copyin(uap->tzp, &atz, sizeof(atz));
if (error)
return (error);
tzp = &atz;
} else
tzp = NULL;
return (kern_settimeofday(td, tvp, tzp));
}
int
linux_getrusage(struct thread *td, struct linux_getrusage_args *uap)
{
struct rusage s;
int error;
error = kern_getrusage(td, uap->who, &s);
if (error != 0)
return (error);
if (uap->rusage != NULL)
error = linux_copyout_rusage(&s, uap->rusage);
return (error);
}
int
linux_set_thread_area(struct thread *td,
struct linux_set_thread_area_args *args)
{
struct l_user_desc info;
struct user_segment_descriptor sd;
struct pcb *pcb;
int a[2];
int error;
error = copyin(args->desc, &info, sizeof(struct l_user_desc));
if (error)
return (error);
/*
* Semantics of Linux version: every thread in the system has array
* of three TLS descriptors. 1st is GLIBC TLS, 2nd is WINE, 3rd unknown.
* This syscall loads one of the selected TLS decriptors with a value
* and also loads GDT descriptors 6, 7 and 8 with the content of
* the per-thread descriptors.
*
* Semantics of FreeBSD version: I think we can ignore that Linux has
* three per-thread descriptors and use just the first one.
* The tls_array[] is used only in [gs]et_thread_area() syscalls and
* for loading the GDT descriptors. We use just one GDT descriptor
* for TLS, so we will load just one.
*
* XXX: This doesn't work when a user space process tries to use more
* than one TLS segment. Comment in the Linux source says wine might
* do this.
*/
/*
* GLIBC reads current %gs and call set_thread_area() with it.
* We should let GUDATA_SEL and GUGS32_SEL proceed as well because
* we use these segments.
*/
switch (info.entry_number) {
case GUGS32_SEL:
case GUDATA_SEL:
case 6:
case -1:
info.entry_number = GUGS32_SEL;
break;
default:
return (EINVAL);
}
/*
* We have to copy out the GDT entry we use.
*
* XXX: What if a user space program does not check the return value
* and tries to use 6, 7 or 8?
*/
error = copyout(&info, args->desc, sizeof(struct l_user_desc));
if (error)
return (error);
if (LINUX_LDT_empty(&info)) {
a[0] = 0;
a[1] = 0;
} else {
a[0] = LINUX_LDT_entry_a(&info);
a[1] = LINUX_LDT_entry_b(&info);
}
memcpy(&sd, &a, sizeof(a));
pcb = td->td_pcb;
pcb->pcb_gsbase = (register_t)info.base_addr;
set_pcb_flags(pcb, PCB_32BIT);
update_gdt_gsbase(td, info.base_addr);
return (0);
}
int futex_xchgl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
int futex_xchgl_smap(int oparg, uint32_t *uaddr, int *oldval);
DEFINE_IFUNC(, int, futex_xchgl, (int, uint32_t *, int *))
{
return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
futex_xchgl_smap : futex_xchgl_nosmap);
}
int futex_addl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
int futex_addl_smap(int oparg, uint32_t *uaddr, int *oldval);
DEFINE_IFUNC(, int, futex_addl, (int, uint32_t *, int *))
{
return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
futex_addl_smap : futex_addl_nosmap);
}
int futex_orl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
int futex_orl_smap(int oparg, uint32_t *uaddr, int *oldval);
DEFINE_IFUNC(, int, futex_orl, (int, uint32_t *, int *))
{
return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
futex_orl_smap : futex_orl_nosmap);
}
int futex_andl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
int futex_andl_smap(int oparg, uint32_t *uaddr, int *oldval);
DEFINE_IFUNC(, int, futex_andl, (int, uint32_t *, int *))
{
return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
futex_andl_smap : futex_andl_nosmap);
}
int futex_xorl_nosmap(int oparg, uint32_t *uaddr, int *oldval);
int futex_xorl_smap(int oparg, uint32_t *uaddr, int *oldval);
DEFINE_IFUNC(, int, futex_xorl, (int, uint32_t *, int *))
{
return ((cpu_stdext_feature & CPUID_STDEXT_SMAP) != 0 ?
futex_xorl_smap : futex_xorl_nosmap);
}