freebsd-dev/sys/dev/cxgbe/iw_cxgbe/cm.c
Alexander V. Chernikov b158cfb3fc Switch cxgbe interface lookup to use fibX_lookup() from older
fibX_lookup_nh_ext().

fibX_lookup_nh_ represents pre-epoch generation of fib kpi,
providing less guarantees over pointer validness and requiring
on-stack data copying.

Reviewed by:	np
Differential Revision:	https://reviews.freebsd.org/D24975
2020-06-22 07:35:23 +00:00

3052 lines
78 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2009-2013, 2016 Chelsio, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#ifdef TCP_OFFLOAD
#include <sys/types.h>
#include <sys/malloc.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sockio.h>
#include <sys/taskqueue.h>
#include <netinet/in.h>
#include <net/route.h>
#include <net/route/nhop.h>
#include <netinet/in_systm.h>
#include <netinet/in_pcb.h>
#include <netinet6/in6_pcb.h>
#include <netinet/ip.h>
#include <netinet/in_fib.h>
#include <netinet6/in6_fib.h>
#include <netinet6/scope6_var.h>
#include <netinet/ip_var.h>
#include <netinet/tcp_var.h>
#include <netinet/tcp.h>
#include <netinet/tcpip.h>
#include <netinet/toecore.h>
struct sge_iq;
struct rss_header;
struct cpl_set_tcb_rpl;
#include <linux/types.h>
#include "offload.h"
#include "tom/t4_tom.h"
#define TOEPCB(so) ((struct toepcb *)(so_sototcpcb((so))->t_toe))
#include "iw_cxgbe.h"
#include <linux/module.h>
#include <linux/workqueue.h>
#include <linux/notifier.h>
#include <linux/inetdevice.h>
#include <linux/if_vlan.h>
#include <net/netevent.h>
#include <rdma/rdma_cm.h>
static spinlock_t req_lock;
static TAILQ_HEAD(c4iw_ep_list, c4iw_ep_common) req_list;
static struct work_struct c4iw_task;
static struct workqueue_struct *c4iw_taskq;
static LIST_HEAD(err_cqe_list);
static spinlock_t err_cqe_lock;
static LIST_HEAD(listen_port_list);
static DEFINE_MUTEX(listen_port_mutex);
static void process_req(struct work_struct *ctx);
static void start_ep_timer(struct c4iw_ep *ep);
static int stop_ep_timer(struct c4iw_ep *ep);
static int set_tcpinfo(struct c4iw_ep *ep);
static void process_timeout(struct c4iw_ep *ep);
static void process_err_cqes(void);
static void *alloc_ep(int size, gfp_t flags);
static void close_socket(struct socket *so);
static int send_mpa_req(struct c4iw_ep *ep);
static int send_mpa_reject(struct c4iw_ep *ep, const void *pdata, u8 plen);
static int send_mpa_reply(struct c4iw_ep *ep, const void *pdata, u8 plen);
static void close_complete_upcall(struct c4iw_ep *ep, int status);
static int send_abort(struct c4iw_ep *ep);
static void peer_close_upcall(struct c4iw_ep *ep);
static void peer_abort_upcall(struct c4iw_ep *ep);
static void connect_reply_upcall(struct c4iw_ep *ep, int status);
static int connect_request_upcall(struct c4iw_ep *ep);
static void established_upcall(struct c4iw_ep *ep);
static int process_mpa_reply(struct c4iw_ep *ep);
static int process_mpa_request(struct c4iw_ep *ep);
static void process_peer_close(struct c4iw_ep *ep);
static void process_conn_error(struct c4iw_ep *ep);
static void process_close_complete(struct c4iw_ep *ep);
static void ep_timeout(unsigned long arg);
static void setiwsockopt(struct socket *so);
static void init_iwarp_socket(struct socket *so, void *arg);
static void uninit_iwarp_socket(struct socket *so);
static void process_data(struct c4iw_ep *ep);
static void process_connected(struct c4iw_ep *ep);
static int c4iw_so_upcall(struct socket *so, void *arg, int waitflag);
static void process_socket_event(struct c4iw_ep *ep);
static void release_ep_resources(struct c4iw_ep *ep);
static int process_terminate(struct c4iw_ep *ep);
static int terminate(struct sge_iq *iq, const struct rss_header *rss,
struct mbuf *m);
static int add_ep_to_req_list(struct c4iw_ep *ep, int ep_events);
static struct listen_port_info *
add_ep_to_listenlist(struct c4iw_listen_ep *lep);
static int rem_ep_from_listenlist(struct c4iw_listen_ep *lep);
static struct c4iw_listen_ep *
find_real_listen_ep(struct c4iw_listen_ep *master_lep, struct socket *so);
static int get_ifnet_from_raddr(struct sockaddr_storage *raddr,
struct ifnet **ifp);
static void process_newconn(struct c4iw_listen_ep *master_lep,
struct socket *new_so);
#define START_EP_TIMER(ep) \
do { \
CTR3(KTR_IW_CXGBE, "start_ep_timer (%s:%d) ep %p", \
__func__, __LINE__, (ep)); \
start_ep_timer(ep); \
} while (0)
#define STOP_EP_TIMER(ep) \
({ \
CTR3(KTR_IW_CXGBE, "stop_ep_timer (%s:%d) ep %p", \
__func__, __LINE__, (ep)); \
stop_ep_timer(ep); \
})
#define GET_LOCAL_ADDR(pladdr, so) \
do { \
struct sockaddr_storage *__a = NULL; \
struct inpcb *__inp = sotoinpcb(so); \
KASSERT(__inp != NULL, \
("GET_LOCAL_ADDR(%s):so:%p, inp = NULL", __func__, so)); \
if (__inp->inp_vflag & INP_IPV4) \
in_getsockaddr(so, (struct sockaddr **)&__a); \
else \
in6_getsockaddr(so, (struct sockaddr **)&__a); \
*(pladdr) = *__a; \
free(__a, M_SONAME); \
} while (0)
#define GET_REMOTE_ADDR(praddr, so) \
do { \
struct sockaddr_storage *__a = NULL; \
struct inpcb *__inp = sotoinpcb(so); \
KASSERT(__inp != NULL, \
("GET_REMOTE_ADDR(%s):so:%p, inp = NULL", __func__, so)); \
if (__inp->inp_vflag & INP_IPV4) \
in_getpeeraddr(so, (struct sockaddr **)&__a); \
else \
in6_getpeeraddr(so, (struct sockaddr **)&__a); \
*(praddr) = *__a; \
free(__a, M_SONAME); \
} while (0)
static char *states[] = {
"idle",
"listen",
"connecting",
"mpa_wait_req",
"mpa_req_sent",
"mpa_req_rcvd",
"mpa_rep_sent",
"fpdu_mode",
"aborting",
"closing",
"moribund",
"dead",
NULL,
};
static void deref_cm_id(struct c4iw_ep_common *epc)
{
epc->cm_id->rem_ref(epc->cm_id);
epc->cm_id = NULL;
set_bit(CM_ID_DEREFED, &epc->history);
}
static void ref_cm_id(struct c4iw_ep_common *epc)
{
set_bit(CM_ID_REFED, &epc->history);
epc->cm_id->add_ref(epc->cm_id);
}
static void deref_qp(struct c4iw_ep *ep)
{
c4iw_qp_rem_ref(&ep->com.qp->ibqp);
clear_bit(QP_REFERENCED, &ep->com.flags);
set_bit(QP_DEREFED, &ep->com.history);
}
static void ref_qp(struct c4iw_ep *ep)
{
set_bit(QP_REFERENCED, &ep->com.flags);
set_bit(QP_REFED, &ep->com.history);
c4iw_qp_add_ref(&ep->com.qp->ibqp);
}
/* allocated per TCP port while listening */
struct listen_port_info {
uint16_t port_num; /* TCP port address */
struct list_head list; /* belongs to listen_port_list */
struct list_head lep_list; /* per port lep list */
uint32_t refcnt; /* number of lep's listening */
};
/*
* Following two lists are used to manage INADDR_ANY listeners:
* 1)listen_port_list
* 2)lep_list
*
* Below is the INADDR_ANY listener lists overview on a system with a two port
* adapter:
* |------------------|
* |listen_port_list |
* |------------------|
* |
* | |-----------| |-----------|
* | | port_num:X| | port_num:X|
* |--------------|-list------|-------|-list------|-------....
* | lep_list----| | lep_list----|
* | refcnt | | | refcnt | |
* | | | | | |
* | | | | | |
* |-----------| | |-----------| |
* | |
* | |
* | |
* | | lep1 lep2
* | | |----------------| |----------------|
* | |----| listen_ep_list |----| listen_ep_list |
* | |----------------| |----------------|
* |
* |
* | lep1 lep2
* | |----------------| |----------------|
* |---| listen_ep_list |----| listen_ep_list |
* |----------------| |----------------|
*
* Because of two port adapter, the number of lep's are two(lep1 & lep2) for
* each TCP port number.
*
* Here 'lep1' is always marked as Master lep, because solisten() is always
* called through first lep.
*
*/
static struct listen_port_info *
add_ep_to_listenlist(struct c4iw_listen_ep *lep)
{
uint16_t port;
struct listen_port_info *port_info = NULL;
struct sockaddr_storage *laddr = &lep->com.local_addr;
port = (laddr->ss_family == AF_INET) ?
((struct sockaddr_in *)laddr)->sin_port :
((struct sockaddr_in6 *)laddr)->sin6_port;
mutex_lock(&listen_port_mutex);
list_for_each_entry(port_info, &listen_port_list, list)
if (port_info->port_num == port)
goto found_port;
port_info = malloc(sizeof(*port_info), M_CXGBE, M_WAITOK);
port_info->port_num = port;
port_info->refcnt = 0;
list_add_tail(&port_info->list, &listen_port_list);
INIT_LIST_HEAD(&port_info->lep_list);
found_port:
port_info->refcnt++;
list_add_tail(&lep->listen_ep_list, &port_info->lep_list);
mutex_unlock(&listen_port_mutex);
return port_info;
}
static int
rem_ep_from_listenlist(struct c4iw_listen_ep *lep)
{
uint16_t port;
struct listen_port_info *port_info = NULL;
struct sockaddr_storage *laddr = &lep->com.local_addr;
int refcnt = 0;
port = (laddr->ss_family == AF_INET) ?
((struct sockaddr_in *)laddr)->sin_port :
((struct sockaddr_in6 *)laddr)->sin6_port;
mutex_lock(&listen_port_mutex);
/* get the port_info structure based on the lep's port address */
list_for_each_entry(port_info, &listen_port_list, list) {
if (port_info->port_num == port) {
port_info->refcnt--;
refcnt = port_info->refcnt;
/* remove the current lep from the listen list */
list_del(&lep->listen_ep_list);
if (port_info->refcnt == 0) {
/* Remove this entry from the list as there
* are no more listeners for this port_num.
*/
list_del(&port_info->list);
kfree(port_info);
}
break;
}
}
mutex_unlock(&listen_port_mutex);
return refcnt;
}
/*
* Find the lep that belongs to the ifnet on which the SYN frame was received.
*/
struct c4iw_listen_ep *
find_real_listen_ep(struct c4iw_listen_ep *master_lep, struct socket *so)
{
struct adapter *adap = NULL;
struct c4iw_listen_ep *lep = NULL;
struct ifnet *ifp = NULL, *hw_ifp = NULL;
struct listen_port_info *port_info = NULL;
int i = 0, found_portinfo = 0, found_lep = 0;
uint16_t port;
/*
* STEP 1: Figure out 'ifp' of the physical interface, not pseudo
* interfaces like vlan, lagg, etc..
* TBD: lagg support, lagg + vlan support.
*/
ifp = TOEPCB(so)->l2te->ifp;
if (ifp->if_type == IFT_L2VLAN) {
hw_ifp = VLAN_TRUNKDEV(ifp);
if (hw_ifp == NULL) {
CTR4(KTR_IW_CXGBE, "%s: Failed to get parent ifnet of "
"vlan ifnet %p, sock %p, master_lep %p",
__func__, ifp, so, master_lep);
return (NULL);
}
} else
hw_ifp = ifp;
/* STEP 2: Find 'port_info' with listener local port address. */
port = (master_lep->com.local_addr.ss_family == AF_INET) ?
((struct sockaddr_in *)&master_lep->com.local_addr)->sin_port :
((struct sockaddr_in6 *)&master_lep->com.local_addr)->sin6_port;
mutex_lock(&listen_port_mutex);
list_for_each_entry(port_info, &listen_port_list, list)
if (port_info->port_num == port) {
found_portinfo =1;
break;
}
if (!found_portinfo)
goto out;
/* STEP 3: Traverse through list of lep's that are bound to the current
* TCP port address and find the lep that belongs to the ifnet on which
* the SYN frame was received.
*/
list_for_each_entry(lep, &port_info->lep_list, listen_ep_list) {
adap = lep->com.dev->rdev.adap;
for_each_port(adap, i) {
if (hw_ifp == adap->port[i]->vi[0].ifp) {
found_lep =1;
goto out;
}
}
}
out:
mutex_unlock(&listen_port_mutex);
return found_lep ? lep : (NULL);
}
static void process_timeout(struct c4iw_ep *ep)
{
struct c4iw_qp_attributes attrs = {0};
int abort = 1;
CTR4(KTR_IW_CXGBE, "%s ep :%p, tid:%u, state %d", __func__,
ep, ep->hwtid, ep->com.state);
set_bit(TIMEDOUT, &ep->com.history);
switch (ep->com.state) {
case MPA_REQ_SENT:
connect_reply_upcall(ep, -ETIMEDOUT);
break;
case MPA_REQ_WAIT:
case MPA_REQ_RCVD:
case MPA_REP_SENT:
case FPDU_MODE:
break;
case CLOSING:
case MORIBUND:
if (ep->com.cm_id && ep->com.qp) {
attrs.next_state = C4IW_QP_STATE_ERROR;
c4iw_modify_qp(ep->com.dev, ep->com.qp,
C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
}
close_complete_upcall(ep, -ETIMEDOUT);
break;
case ABORTING:
case DEAD:
/*
* These states are expected if the ep timed out at the same
* time as another thread was calling stop_ep_timer().
* So we silently do nothing for these states.
*/
abort = 0;
break;
default:
CTR4(KTR_IW_CXGBE, "%s unexpected state ep %p tid %u state %u"
, __func__, ep, ep->hwtid, ep->com.state);
abort = 0;
}
if (abort)
c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
c4iw_put_ep(&ep->com);
return;
}
struct cqe_list_entry {
struct list_head entry;
struct c4iw_dev *rhp;
struct t4_cqe err_cqe;
};
static void
process_err_cqes(void)
{
unsigned long flag;
struct cqe_list_entry *cle;
spin_lock_irqsave(&err_cqe_lock, flag);
while (!list_empty(&err_cqe_list)) {
struct list_head *tmp;
tmp = err_cqe_list.next;
list_del(tmp);
tmp->next = tmp->prev = NULL;
spin_unlock_irqrestore(&err_cqe_lock, flag);
cle = list_entry(tmp, struct cqe_list_entry, entry);
c4iw_ev_dispatch(cle->rhp, &cle->err_cqe);
free(cle, M_CXGBE);
spin_lock_irqsave(&err_cqe_lock, flag);
}
spin_unlock_irqrestore(&err_cqe_lock, flag);
return;
}
static void
process_req(struct work_struct *ctx)
{
struct c4iw_ep_common *epc;
unsigned long flag;
int ep_events;
process_err_cqes();
spin_lock_irqsave(&req_lock, flag);
while (!TAILQ_EMPTY(&req_list)) {
epc = TAILQ_FIRST(&req_list);
TAILQ_REMOVE(&req_list, epc, entry);
epc->entry.tqe_prev = NULL;
ep_events = epc->ep_events;
epc->ep_events = 0;
spin_unlock_irqrestore(&req_lock, flag);
mutex_lock(&epc->mutex);
CTR5(KTR_IW_CXGBE, "%s: so %p, ep %p, ep_state %s events 0x%x",
__func__, epc->so, epc, states[epc->state], ep_events);
if (ep_events & C4IW_EVENT_TERM)
process_terminate((struct c4iw_ep *)epc);
if (ep_events & C4IW_EVENT_TIMEOUT)
process_timeout((struct c4iw_ep *)epc);
if (ep_events & C4IW_EVENT_SOCKET)
process_socket_event((struct c4iw_ep *)epc);
mutex_unlock(&epc->mutex);
c4iw_put_ep(epc);
process_err_cqes();
spin_lock_irqsave(&req_lock, flag);
}
spin_unlock_irqrestore(&req_lock, flag);
}
/*
* XXX: doesn't belong here in the iWARP driver.
* XXX: assumes that the connection was offloaded by cxgbe/t4_tom if TF_TOE is
* set. Is this a valid assumption for active open?
*/
static int
set_tcpinfo(struct c4iw_ep *ep)
{
struct socket *so = ep->com.so;
struct inpcb *inp = sotoinpcb(so);
struct tcpcb *tp;
struct toepcb *toep;
int rc = 0;
INP_WLOCK(inp);
tp = intotcpcb(inp);
if ((tp->t_flags & TF_TOE) == 0) {
rc = EINVAL;
log(LOG_ERR, "%s: connection not offloaded (so %p, ep %p)\n",
__func__, so, ep);
goto done;
}
toep = TOEPCB(so);
ep->hwtid = toep->tid;
ep->snd_seq = tp->snd_nxt;
ep->rcv_seq = tp->rcv_nxt;
done:
INP_WUNLOCK(inp);
return (rc);
}
static int
get_ifnet_from_raddr(struct sockaddr_storage *raddr, struct ifnet **ifp)
{
int err = 0;
struct nhop_object *nh;
if (raddr->ss_family == AF_INET) {
struct sockaddr_in *raddr4 = (struct sockaddr_in *)raddr;
nh = fib4_lookup(RT_DEFAULT_FIB, raddr4->sin_addr, 0,
NHR_NONE, 0);
} else {
struct sockaddr_in6 *raddr6 = (struct sockaddr_in6 *)raddr;
struct in6_addr addr6;
uint32_t scopeid;
memset(&addr6, 0, sizeof(addr6));
in6_splitscope((struct in6_addr *)&raddr6->sin6_addr,
&addr6, &scopeid);
nh = fib6_lookup(RT_DEFAULT_FIB, &addr6, scopeid,
NHR_NONE, 0);
}
if (nh == NULL)
err = EHOSTUNREACH;
else
*ifp = nh->nh_ifp;
CTR2(KTR_IW_CXGBE, "%s: return: %d", __func__, err);
return err;
}
static void
close_socket(struct socket *so)
{
uninit_iwarp_socket(so);
soclose(so);
}
static void
process_peer_close(struct c4iw_ep *ep)
{
struct c4iw_qp_attributes attrs = {0};
int disconnect = 1;
int release = 0;
CTR4(KTR_IW_CXGBE, "%s:ppcB ep %p so %p state %s", __func__, ep,
ep->com.so, states[ep->com.state]);
switch (ep->com.state) {
case MPA_REQ_WAIT:
CTR2(KTR_IW_CXGBE, "%s:ppc1 %p MPA_REQ_WAIT DEAD",
__func__, ep);
/* Fallthrough */
case MPA_REQ_SENT:
CTR2(KTR_IW_CXGBE, "%s:ppc2 %p MPA_REQ_SENT DEAD",
__func__, ep);
ep->com.state = DEAD;
connect_reply_upcall(ep, -ECONNABORTED);
disconnect = 0;
STOP_EP_TIMER(ep);
close_socket(ep->com.so);
deref_cm_id(&ep->com);
release = 1;
break;
case MPA_REQ_RCVD:
/*
* We're gonna mark this puppy DEAD, but keep
* the reference on it until the ULP accepts or
* rejects the CR.
*/
CTR2(KTR_IW_CXGBE, "%s:ppc3 %p MPA_REQ_RCVD CLOSING",
__func__, ep);
ep->com.state = CLOSING;
break;
case MPA_REP_SENT:
CTR2(KTR_IW_CXGBE, "%s:ppc4 %p MPA_REP_SENT CLOSING",
__func__, ep);
ep->com.state = CLOSING;
break;
case FPDU_MODE:
CTR2(KTR_IW_CXGBE, "%s:ppc5 %p FPDU_MODE CLOSING",
__func__, ep);
START_EP_TIMER(ep);
ep->com.state = CLOSING;
attrs.next_state = C4IW_QP_STATE_CLOSING;
c4iw_modify_qp(ep->com.dev, ep->com.qp,
C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
peer_close_upcall(ep);
break;
case ABORTING:
CTR2(KTR_IW_CXGBE, "%s:ppc6 %p ABORTING (disconn)",
__func__, ep);
disconnect = 0;
break;
case CLOSING:
CTR2(KTR_IW_CXGBE, "%s:ppc7 %p CLOSING MORIBUND",
__func__, ep);
ep->com.state = MORIBUND;
disconnect = 0;
break;
case MORIBUND:
CTR2(KTR_IW_CXGBE, "%s:ppc8 %p MORIBUND DEAD", __func__,
ep);
STOP_EP_TIMER(ep);
if (ep->com.cm_id && ep->com.qp) {
attrs.next_state = C4IW_QP_STATE_IDLE;
c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
}
close_socket(ep->com.so);
close_complete_upcall(ep, 0);
ep->com.state = DEAD;
release = 1;
disconnect = 0;
break;
case DEAD:
CTR2(KTR_IW_CXGBE, "%s:ppc9 %p DEAD (disconn)",
__func__, ep);
disconnect = 0;
break;
default:
panic("%s: ep %p state %d", __func__, ep,
ep->com.state);
break;
}
if (disconnect) {
CTR2(KTR_IW_CXGBE, "%s:ppca %p", __func__, ep);
c4iw_ep_disconnect(ep, 0, M_NOWAIT);
}
if (release) {
CTR2(KTR_IW_CXGBE, "%s:ppcb %p", __func__, ep);
c4iw_put_ep(&ep->com);
}
CTR2(KTR_IW_CXGBE, "%s:ppcE %p", __func__, ep);
return;
}
static void
process_conn_error(struct c4iw_ep *ep)
{
struct c4iw_qp_attributes attrs = {0};
int ret;
int state;
state = ep->com.state;
CTR5(KTR_IW_CXGBE, "%s:pceB ep %p so %p so->so_error %u state %s",
__func__, ep, ep->com.so, ep->com.so->so_error,
states[ep->com.state]);
switch (state) {
case MPA_REQ_WAIT:
STOP_EP_TIMER(ep);
c4iw_put_ep(&ep->parent_ep->com);
break;
case MPA_REQ_SENT:
STOP_EP_TIMER(ep);
connect_reply_upcall(ep, -ECONNRESET);
break;
case MPA_REP_SENT:
ep->com.rpl_err = ECONNRESET;
CTR1(KTR_IW_CXGBE, "waking up ep %p", ep);
break;
case MPA_REQ_RCVD:
break;
case MORIBUND:
case CLOSING:
STOP_EP_TIMER(ep);
/*FALLTHROUGH*/
case FPDU_MODE:
if (ep->com.cm_id && ep->com.qp) {
attrs.next_state = C4IW_QP_STATE_ERROR;
ret = c4iw_modify_qp(ep->com.qp->rhp,
ep->com.qp, C4IW_QP_ATTR_NEXT_STATE,
&attrs, 1);
if (ret)
log(LOG_ERR,
"%s - qp <- error failed!\n",
__func__);
}
peer_abort_upcall(ep);
break;
case ABORTING:
break;
case DEAD:
CTR2(KTR_IW_CXGBE, "%s so_error %d IN DEAD STATE!!!!",
__func__, ep->com.so->so_error);
return;
default:
panic("%s: ep %p state %d", __func__, ep, state);
break;
}
if (state != ABORTING) {
close_socket(ep->com.so);
ep->com.state = DEAD;
c4iw_put_ep(&ep->com);
}
CTR2(KTR_IW_CXGBE, "%s:pceE %p", __func__, ep);
return;
}
static void
process_close_complete(struct c4iw_ep *ep)
{
struct c4iw_qp_attributes attrs = {0};
int release = 0;
CTR4(KTR_IW_CXGBE, "%s:pccB ep %p so %p state %s", __func__, ep,
ep->com.so, states[ep->com.state]);
/* The cm_id may be null if we failed to connect */
set_bit(CLOSE_CON_RPL, &ep->com.history);
switch (ep->com.state) {
case CLOSING:
CTR2(KTR_IW_CXGBE, "%s:pcc1 %p CLOSING MORIBUND",
__func__, ep);
ep->com.state = MORIBUND;
break;
case MORIBUND:
CTR2(KTR_IW_CXGBE, "%s:pcc1 %p MORIBUND DEAD", __func__,
ep);
STOP_EP_TIMER(ep);
if ((ep->com.cm_id) && (ep->com.qp)) {
CTR2(KTR_IW_CXGBE, "%s:pcc2 %p QP_STATE_IDLE",
__func__, ep);
attrs.next_state = C4IW_QP_STATE_IDLE;
c4iw_modify_qp(ep->com.dev,
ep->com.qp,
C4IW_QP_ATTR_NEXT_STATE,
&attrs, 1);
}
close_socket(ep->com.so);
close_complete_upcall(ep, 0);
ep->com.state = DEAD;
release = 1;
break;
case ABORTING:
CTR2(KTR_IW_CXGBE, "%s:pcc5 %p ABORTING", __func__, ep);
break;
case DEAD:
CTR2(KTR_IW_CXGBE, "%s:pcc6 %p DEAD", __func__, ep);
break;
default:
CTR2(KTR_IW_CXGBE, "%s:pcc7 %p unknown ep state",
__func__, ep);
panic("%s:pcc6 %p unknown ep state", __func__, ep);
break;
}
if (release) {
CTR2(KTR_IW_CXGBE, "%s:pcc8 %p", __func__, ep);
release_ep_resources(ep);
}
CTR2(KTR_IW_CXGBE, "%s:pccE %p", __func__, ep);
return;
}
static void
setiwsockopt(struct socket *so)
{
int rc;
struct sockopt sopt;
int on = 1;
sopt.sopt_dir = SOPT_SET;
sopt.sopt_level = IPPROTO_TCP;
sopt.sopt_name = TCP_NODELAY;
sopt.sopt_val = (caddr_t)&on;
sopt.sopt_valsize = sizeof on;
sopt.sopt_td = NULL;
rc = -sosetopt(so, &sopt);
if (rc) {
log(LOG_ERR, "%s: can't set TCP_NODELAY on so %p (%d)\n",
__func__, so, rc);
}
}
static void
init_iwarp_socket(struct socket *so, void *arg)
{
if (SOLISTENING(so)) {
SOLISTEN_LOCK(so);
solisten_upcall_set(so, c4iw_so_upcall, arg);
so->so_state |= SS_NBIO;
SOLISTEN_UNLOCK(so);
} else {
SOCKBUF_LOCK(&so->so_rcv);
soupcall_set(so, SO_RCV, c4iw_so_upcall, arg);
so->so_state |= SS_NBIO;
SOCKBUF_UNLOCK(&so->so_rcv);
}
}
static void
uninit_iwarp_socket(struct socket *so)
{
if (SOLISTENING(so)) {
SOLISTEN_LOCK(so);
solisten_upcall_set(so, NULL, NULL);
SOLISTEN_UNLOCK(so);
} else {
SOCKBUF_LOCK(&so->so_rcv);
soupcall_clear(so, SO_RCV);
SOCKBUF_UNLOCK(&so->so_rcv);
}
}
static void
process_data(struct c4iw_ep *ep)
{
int ret = 0;
int disconnect = 0;
struct c4iw_qp_attributes attrs = {0};
CTR5(KTR_IW_CXGBE, "%s: so %p, ep %p, state %s, sbused %d", __func__,
ep->com.so, ep, states[ep->com.state], sbused(&ep->com.so->so_rcv));
switch (ep->com.state) {
case MPA_REQ_SENT:
disconnect = process_mpa_reply(ep);
break;
case MPA_REQ_WAIT:
disconnect = process_mpa_request(ep);
if (disconnect)
/* Refered in process_newconn() */
c4iw_put_ep(&ep->parent_ep->com);
break;
case FPDU_MODE:
MPASS(ep->com.qp != NULL);
attrs.next_state = C4IW_QP_STATE_TERMINATE;
ret = c4iw_modify_qp(ep->com.dev, ep->com.qp,
C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
if (ret != -EINPROGRESS)
disconnect = 1;
break;
default:
log(LOG_ERR, "%s: Unexpected streaming data. ep %p, "
"state %d, so %p, so_state 0x%x, sbused %u\n",
__func__, ep, ep->com.state, ep->com.so,
ep->com.so->so_state, sbused(&ep->com.so->so_rcv));
break;
}
if (disconnect)
c4iw_ep_disconnect(ep, disconnect == 2, GFP_KERNEL);
}
static void
process_connected(struct c4iw_ep *ep)
{
struct socket *so = ep->com.so;
if ((so->so_state & SS_ISCONNECTED) && !so->so_error) {
if (send_mpa_req(ep))
goto err;
} else {
connect_reply_upcall(ep, -so->so_error);
goto err;
}
return;
err:
close_socket(so);
ep->com.state = DEAD;
c4iw_put_ep(&ep->com);
return;
}
static inline int c4iw_zero_addr(struct sockaddr *addr)
{
struct in6_addr *ip6;
if (addr->sa_family == AF_INET)
return IN_ZERONET(
ntohl(((struct sockaddr_in *)addr)->sin_addr.s_addr));
else {
ip6 = &((struct sockaddr_in6 *) addr)->sin6_addr;
return (ip6->s6_addr32[0] | ip6->s6_addr32[1] |
ip6->s6_addr32[2] | ip6->s6_addr32[3]) == 0;
}
}
static inline int c4iw_loopback_addr(struct sockaddr *addr)
{
if (addr->sa_family == AF_INET)
return IN_LOOPBACK(
ntohl(((struct sockaddr_in *) addr)->sin_addr.s_addr));
else
return IN6_IS_ADDR_LOOPBACK(
&((struct sockaddr_in6 *) addr)->sin6_addr);
}
static inline int c4iw_any_addr(struct sockaddr *addr)
{
return c4iw_zero_addr(addr) || c4iw_loopback_addr(addr);
}
static void
process_newconn(struct c4iw_listen_ep *master_lep, struct socket *new_so)
{
struct c4iw_listen_ep *real_lep = NULL;
struct c4iw_ep *new_ep = NULL;
struct sockaddr_in *remote = NULL;
int ret = 0;
MPASS(new_so != NULL);
if (c4iw_any_addr((struct sockaddr *)&master_lep->com.local_addr)) {
/* Here we need to find the 'real_lep' that belongs to the
* incomming socket's network interface, such that the newly
* created 'ep' can be attached to the real 'lep'.
*/
real_lep = find_real_listen_ep(master_lep, new_so);
if (real_lep == NULL) {
CTR2(KTR_IW_CXGBE, "%s: Could not find the real listen "
"ep for sock: %p", __func__, new_so);
log(LOG_ERR,"%s: Could not find the real listen ep for "
"sock: %p\n", __func__, new_so);
/* FIXME: properly free the 'new_so' in failure case.
* Use of soabort() and soclose() are not legal
* here(before soaccept()).
*/
return;
}
} else /* for Non-Wildcard address, master_lep is always the real_lep */
real_lep = master_lep;
new_ep = alloc_ep(sizeof(*new_ep), GFP_KERNEL);
CTR6(KTR_IW_CXGBE, "%s: master_lep %p, real_lep: %p, new ep %p, "
"listening so %p, new so %p", __func__, master_lep, real_lep,
new_ep, master_lep->com.so, new_so);
new_ep->com.dev = real_lep->com.dev;
new_ep->com.so = new_so;
new_ep->com.cm_id = NULL;
new_ep->com.thread = real_lep->com.thread;
new_ep->parent_ep = real_lep;
GET_LOCAL_ADDR(&new_ep->com.local_addr, new_so);
GET_REMOTE_ADDR(&new_ep->com.remote_addr, new_so);
c4iw_get_ep(&real_lep->com);
init_timer(&new_ep->timer);
new_ep->com.state = MPA_REQ_WAIT;
setiwsockopt(new_so);
ret = soaccept(new_so, (struct sockaddr **)&remote);
if (ret != 0) {
CTR4(KTR_IW_CXGBE,
"%s:listen sock:%p, new sock:%p, ret:%d",
__func__, master_lep->com.so, new_so, ret);
if (remote != NULL)
free(remote, M_SONAME);
soclose(new_so);
c4iw_put_ep(&new_ep->com);
c4iw_put_ep(&real_lep->com);
return;
}
free(remote, M_SONAME);
START_EP_TIMER(new_ep);
/* MPA request might have been queued up on the socket already, so we
* initialize the socket/upcall_handler under lock to prevent processing
* MPA request on another thread(via process_req()) simultaniously.
*/
c4iw_get_ep(&new_ep->com); /* Dereferenced at the end below, this is to
avoid freeing of ep before ep unlock. */
mutex_lock(&new_ep->com.mutex);
init_iwarp_socket(new_so, &new_ep->com);
ret = process_mpa_request(new_ep);
if (ret) {
/* ABORT */
c4iw_ep_disconnect(new_ep, 1, GFP_KERNEL);
c4iw_put_ep(&real_lep->com);
}
mutex_unlock(&new_ep->com.mutex);
c4iw_put_ep(&new_ep->com);
return;
}
static int
add_ep_to_req_list(struct c4iw_ep *ep, int new_ep_event)
{
unsigned long flag;
spin_lock_irqsave(&req_lock, flag);
if (ep && ep->com.so) {
ep->com.ep_events |= new_ep_event;
if (!ep->com.entry.tqe_prev) {
c4iw_get_ep(&ep->com);
TAILQ_INSERT_TAIL(&req_list, &ep->com, entry);
queue_work(c4iw_taskq, &c4iw_task);
}
}
spin_unlock_irqrestore(&req_lock, flag);
return (0);
}
static int
c4iw_so_upcall(struct socket *so, void *arg, int waitflag)
{
struct c4iw_ep *ep = arg;
CTR6(KTR_IW_CXGBE,
"%s: so %p, so_state 0x%x, ep %p, ep_state %s, tqe_prev %p",
__func__, so, so->so_state, ep, states[ep->com.state],
ep->com.entry.tqe_prev);
MPASS(ep->com.so == so);
/*
* Wake up any threads waiting in rdma_init()/rdma_fini(),
* with locks held.
*/
if (so->so_error || (ep->com.dev->rdev.flags & T4_FATAL_ERROR))
c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
add_ep_to_req_list(ep, C4IW_EVENT_SOCKET);
return (SU_OK);
}
static int
terminate(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
{
struct adapter *sc = iq->adapter;
const struct cpl_rdma_terminate *cpl = mtod(m, const void *);
unsigned int tid = GET_TID(cpl);
struct toepcb *toep = lookup_tid(sc, tid);
struct socket *so;
struct c4iw_ep *ep;
INP_WLOCK(toep->inp);
so = inp_inpcbtosocket(toep->inp);
ep = so->so_rcv.sb_upcallarg;
INP_WUNLOCK(toep->inp);
CTR3(KTR_IW_CXGBE, "%s: so %p, ep %p", __func__, so, ep);
add_ep_to_req_list(ep, C4IW_EVENT_TERM);
return 0;
}
static void
process_socket_event(struct c4iw_ep *ep)
{
int state = ep->com.state;
struct socket *so = ep->com.so;
if (ep->com.state == DEAD) {
CTR3(KTR_IW_CXGBE, "%s: Pending socket event discarded "
"ep %p ep_state %s", __func__, ep, states[state]);
return;
}
CTR6(KTR_IW_CXGBE, "process_socket_event: so %p, so_state 0x%x, "
"so_err %d, sb_state 0x%x, ep %p, ep_state %s", so, so->so_state,
so->so_error, so->so_rcv.sb_state, ep, states[state]);
if (state == CONNECTING) {
process_connected(ep);
return;
}
if (state == LISTEN) {
struct c4iw_listen_ep *lep = (struct c4iw_listen_ep *)ep;
struct socket *listen_so = so, *new_so = NULL;
int error = 0;
SOLISTEN_LOCK(listen_so);
do {
error = solisten_dequeue(listen_so, &new_so,
SOCK_NONBLOCK);
if (error) {
CTR4(KTR_IW_CXGBE, "%s: lep %p listen_so %p "
"error %d", __func__, lep, listen_so,
error);
return;
}
process_newconn(lep, new_so);
/* solisten_dequeue() unlocks while return, so aquire
* lock again for sol_qlen and also for next iteration.
*/
SOLISTEN_LOCK(listen_so);
} while (listen_so->sol_qlen);
SOLISTEN_UNLOCK(listen_so);
return;
}
/* connection error */
if (so->so_error) {
process_conn_error(ep);
return;
}
/* peer close */
if ((so->so_rcv.sb_state & SBS_CANTRCVMORE) && state <= CLOSING) {
process_peer_close(ep);
/*
* check whether socket disconnect event is pending before
* returning. Fallthrough if yes.
*/
if (!(so->so_state & SS_ISDISCONNECTED))
return;
}
/* close complete */
if (so->so_state & SS_ISDISCONNECTED) {
process_close_complete(ep);
return;
}
/* rx data */
if (sbused(&ep->com.so->so_rcv)) {
process_data(ep);
return;
}
/* Socket events for 'MPA Request Received' and 'Close Complete'
* were already processed earlier in their previous events handlers.
* Hence, these socket events are skipped.
* And any other socket events must have handled above.
*/
MPASS((ep->com.state == MPA_REQ_RCVD) || (ep->com.state == MORIBUND));
if ((ep->com.state != MPA_REQ_RCVD) && (ep->com.state != MORIBUND))
log(LOG_ERR, "%s: Unprocessed socket event so %p, "
"so_state 0x%x, so_err %d, sb_state 0x%x, ep %p, ep_state %s\n",
__func__, so, so->so_state, so->so_error, so->so_rcv.sb_state,
ep, states[state]);
}
SYSCTL_NODE(_hw, OID_AUTO, iw_cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
"iw_cxgbe driver parameters");
static int dack_mode = 0;
SYSCTL_INT(_hw_iw_cxgbe, OID_AUTO, dack_mode, CTLFLAG_RWTUN, &dack_mode, 0,
"Delayed ack mode (default = 0)");
int c4iw_max_read_depth = 8;
SYSCTL_INT(_hw_iw_cxgbe, OID_AUTO, c4iw_max_read_depth, CTLFLAG_RWTUN, &c4iw_max_read_depth, 0,
"Per-connection max ORD/IRD (default = 8)");
static int enable_tcp_timestamps;
SYSCTL_INT(_hw_iw_cxgbe, OID_AUTO, enable_tcp_timestamps, CTLFLAG_RWTUN, &enable_tcp_timestamps, 0,
"Enable tcp timestamps (default = 0)");
static int enable_tcp_sack;
SYSCTL_INT(_hw_iw_cxgbe, OID_AUTO, enable_tcp_sack, CTLFLAG_RWTUN, &enable_tcp_sack, 0,
"Enable tcp SACK (default = 0)");
static int enable_tcp_window_scaling = 1;
SYSCTL_INT(_hw_iw_cxgbe, OID_AUTO, enable_tcp_window_scaling, CTLFLAG_RWTUN, &enable_tcp_window_scaling, 0,
"Enable tcp window scaling (default = 1)");
int c4iw_debug = 0;
SYSCTL_INT(_hw_iw_cxgbe, OID_AUTO, c4iw_debug, CTLFLAG_RWTUN, &c4iw_debug, 0,
"Enable debug logging (default = 0)");
static int peer2peer = 1;
SYSCTL_INT(_hw_iw_cxgbe, OID_AUTO, peer2peer, CTLFLAG_RWTUN, &peer2peer, 0,
"Support peer2peer ULPs (default = 1)");
static int p2p_type = FW_RI_INIT_P2PTYPE_READ_REQ;
SYSCTL_INT(_hw_iw_cxgbe, OID_AUTO, p2p_type, CTLFLAG_RWTUN, &p2p_type, 0,
"RDMAP opcode to use for the RTR message: 1 = RDMA_READ 0 = RDMA_WRITE (default 1)");
static int ep_timeout_secs = 60;
SYSCTL_INT(_hw_iw_cxgbe, OID_AUTO, ep_timeout_secs, CTLFLAG_RWTUN, &ep_timeout_secs, 0,
"CM Endpoint operation timeout in seconds (default = 60)");
static int mpa_rev = 1;
SYSCTL_INT(_hw_iw_cxgbe, OID_AUTO, mpa_rev, CTLFLAG_RWTUN, &mpa_rev, 0,
"MPA Revision, 0 supports amso1100, 1 is RFC5044 spec compliant, 2 is IETF MPA Peer Connect Draft compliant (default = 1)");
static int markers_enabled;
SYSCTL_INT(_hw_iw_cxgbe, OID_AUTO, markers_enabled, CTLFLAG_RWTUN, &markers_enabled, 0,
"Enable MPA MARKERS (default(0) = disabled)");
static int crc_enabled = 1;
SYSCTL_INT(_hw_iw_cxgbe, OID_AUTO, crc_enabled, CTLFLAG_RWTUN, &crc_enabled, 0,
"Enable MPA CRC (default(1) = enabled)");
static int rcv_win = 256 * 1024;
SYSCTL_INT(_hw_iw_cxgbe, OID_AUTO, rcv_win, CTLFLAG_RWTUN, &rcv_win, 0,
"TCP receive window in bytes (default = 256KB)");
static int snd_win = 128 * 1024;
SYSCTL_INT(_hw_iw_cxgbe, OID_AUTO, snd_win, CTLFLAG_RWTUN, &snd_win, 0,
"TCP send window in bytes (default = 128KB)");
int use_dsgl = 1;
SYSCTL_INT(_hw_iw_cxgbe, OID_AUTO, use_dsgl, CTLFLAG_RWTUN, &use_dsgl, 0,
"Use DSGL for PBL/FastReg (default=1)");
int inline_threshold = 128;
SYSCTL_INT(_hw_iw_cxgbe, OID_AUTO, inline_threshold, CTLFLAG_RWTUN, &inline_threshold, 0,
"inline vs dsgl threshold (default=128)");
static int reuseaddr = 0;
SYSCTL_INT(_hw_iw_cxgbe, OID_AUTO, reuseaddr, CTLFLAG_RWTUN, &reuseaddr, 0,
"Enable SO_REUSEADDR & SO_REUSEPORT socket options on all iWARP client connections(default = 0)");
static void
start_ep_timer(struct c4iw_ep *ep)
{
if (timer_pending(&ep->timer)) {
CTR2(KTR_IW_CXGBE, "%s: ep %p, already started", __func__, ep);
printk(KERN_ERR "%s timer already started! ep %p\n", __func__,
ep);
return;
}
clear_bit(TIMEOUT, &ep->com.flags);
c4iw_get_ep(&ep->com);
ep->timer.expires = jiffies + ep_timeout_secs * HZ;
ep->timer.data = (unsigned long)ep;
ep->timer.function = ep_timeout;
add_timer(&ep->timer);
}
static int
stop_ep_timer(struct c4iw_ep *ep)
{
del_timer_sync(&ep->timer);
if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) {
c4iw_put_ep(&ep->com);
return 0;
}
return 1;
}
static void *
alloc_ep(int size, gfp_t gfp)
{
struct c4iw_ep_common *epc;
epc = kzalloc(size, gfp);
if (epc == NULL)
return (NULL);
kref_init(&epc->kref);
mutex_init(&epc->mutex);
c4iw_init_wr_wait(&epc->wr_wait);
return (epc);
}
void _c4iw_free_ep(struct kref *kref)
{
struct c4iw_ep *ep;
struct c4iw_ep_common *epc;
ep = container_of(kref, struct c4iw_ep, com.kref);
epc = &ep->com;
KASSERT(!epc->entry.tqe_prev, ("%s epc %p still on req list",
__func__, epc));
if (test_bit(QP_REFERENCED, &ep->com.flags))
deref_qp(ep);
CTR4(KTR_IW_CXGBE, "%s: ep %p, history 0x%lx, flags 0x%lx",
__func__, ep, epc->history, epc->flags);
kfree(ep);
}
static void release_ep_resources(struct c4iw_ep *ep)
{
CTR2(KTR_IW_CXGBE, "%s:rerB %p", __func__, ep);
set_bit(RELEASE_RESOURCES, &ep->com.flags);
c4iw_put_ep(&ep->com);
CTR2(KTR_IW_CXGBE, "%s:rerE %p", __func__, ep);
}
static int
send_mpa_req(struct c4iw_ep *ep)
{
int mpalen;
struct mpa_message *mpa;
struct mpa_v2_conn_params mpa_v2_params;
struct mbuf *m;
char mpa_rev_to_use = mpa_rev;
int err = 0;
if (ep->retry_with_mpa_v1)
mpa_rev_to_use = 1;
mpalen = sizeof(*mpa) + ep->plen;
if (mpa_rev_to_use == 2)
mpalen += sizeof(struct mpa_v2_conn_params);
mpa = malloc(mpalen, M_CXGBE, M_NOWAIT);
if (mpa == NULL) {
err = -ENOMEM;
CTR3(KTR_IW_CXGBE, "%s:smr1 ep: %p , error: %d",
__func__, ep, err);
goto err;
}
memset(mpa, 0, mpalen);
memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key));
mpa->flags = (crc_enabled ? MPA_CRC : 0) |
(markers_enabled ? MPA_MARKERS : 0) |
(mpa_rev_to_use == 2 ? MPA_ENHANCED_RDMA_CONN : 0);
mpa->private_data_size = htons(ep->plen);
mpa->revision = mpa_rev_to_use;
if (mpa_rev_to_use == 1) {
ep->tried_with_mpa_v1 = 1;
ep->retry_with_mpa_v1 = 0;
}
if (mpa_rev_to_use == 2) {
mpa->private_data_size = htons(ntohs(mpa->private_data_size) +
sizeof(struct mpa_v2_conn_params));
mpa_v2_params.ird = htons((u16)ep->ird);
mpa_v2_params.ord = htons((u16)ep->ord);
if (peer2peer) {
mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL);
if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE) {
mpa_v2_params.ord |=
htons(MPA_V2_RDMA_WRITE_RTR);
} else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) {
mpa_v2_params.ord |=
htons(MPA_V2_RDMA_READ_RTR);
}
}
memcpy(mpa->private_data, &mpa_v2_params,
sizeof(struct mpa_v2_conn_params));
if (ep->plen) {
memcpy(mpa->private_data +
sizeof(struct mpa_v2_conn_params),
ep->mpa_pkt + sizeof(*mpa), ep->plen);
}
} else {
if (ep->plen)
memcpy(mpa->private_data,
ep->mpa_pkt + sizeof(*mpa), ep->plen);
CTR2(KTR_IW_CXGBE, "%s:smr7 %p", __func__, ep);
}
m = m_getm(NULL, mpalen, M_NOWAIT, MT_DATA);
if (m == NULL) {
err = -ENOMEM;
CTR3(KTR_IW_CXGBE, "%s:smr2 ep: %p , error: %d",
__func__, ep, err);
free(mpa, M_CXGBE);
goto err;
}
m_copyback(m, 0, mpalen, (void *)mpa);
free(mpa, M_CXGBE);
err = -sosend(ep->com.so, NULL, NULL, m, NULL, MSG_DONTWAIT,
ep->com.thread);
if (err) {
CTR3(KTR_IW_CXGBE, "%s:smr3 ep: %p , error: %d",
__func__, ep, err);
goto err;
}
START_EP_TIMER(ep);
ep->com.state = MPA_REQ_SENT;
ep->mpa_attr.initiator = 1;
CTR3(KTR_IW_CXGBE, "%s:smrE %p, error: %d", __func__, ep, err);
return 0;
err:
connect_reply_upcall(ep, err);
CTR3(KTR_IW_CXGBE, "%s:smrE %p, error: %d", __func__, ep, err);
return err;
}
static int send_mpa_reject(struct c4iw_ep *ep, const void *pdata, u8 plen)
{
int mpalen ;
struct mpa_message *mpa;
struct mpa_v2_conn_params mpa_v2_params;
struct mbuf *m;
int err;
CTR4(KTR_IW_CXGBE, "%s:smrejB %p %u %d", __func__, ep, ep->hwtid,
ep->plen);
mpalen = sizeof(*mpa) + plen;
if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
mpalen += sizeof(struct mpa_v2_conn_params);
CTR4(KTR_IW_CXGBE, "%s:smrej1 %p %u %d", __func__, ep,
ep->mpa_attr.version, mpalen);
}
mpa = malloc(mpalen, M_CXGBE, M_NOWAIT);
if (mpa == NULL)
return (-ENOMEM);
memset(mpa, 0, mpalen);
memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
mpa->flags = MPA_REJECT;
mpa->revision = mpa_rev;
mpa->private_data_size = htons(plen);
if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
mpa->flags |= MPA_ENHANCED_RDMA_CONN;
mpa->private_data_size = htons(ntohs(mpa->private_data_size) +
sizeof(struct mpa_v2_conn_params));
mpa_v2_params.ird = htons(((u16)ep->ird) |
(peer2peer ? MPA_V2_PEER2PEER_MODEL :
0));
mpa_v2_params.ord = htons(((u16)ep->ord) | (peer2peer ?
(p2p_type ==
FW_RI_INIT_P2PTYPE_RDMA_WRITE ?
MPA_V2_RDMA_WRITE_RTR : p2p_type ==
FW_RI_INIT_P2PTYPE_READ_REQ ?
MPA_V2_RDMA_READ_RTR : 0) : 0));
memcpy(mpa->private_data, &mpa_v2_params,
sizeof(struct mpa_v2_conn_params));
if (ep->plen)
memcpy(mpa->private_data +
sizeof(struct mpa_v2_conn_params), pdata, plen);
CTR5(KTR_IW_CXGBE, "%s:smrej3 %p %d %d %d", __func__, ep,
mpa_v2_params.ird, mpa_v2_params.ord, ep->plen);
} else
if (plen)
memcpy(mpa->private_data, pdata, plen);
m = m_getm(NULL, mpalen, M_NOWAIT, MT_DATA);
if (m == NULL) {
free(mpa, M_CXGBE);
return (-ENOMEM);
}
m_copyback(m, 0, mpalen, (void *)mpa);
free(mpa, M_CXGBE);
err = -sosend(ep->com.so, NULL, NULL, m, NULL, MSG_DONTWAIT, ep->com.thread);
if (!err)
ep->snd_seq += mpalen;
CTR4(KTR_IW_CXGBE, "%s:smrejE %p %u %d", __func__, ep, ep->hwtid, err);
return err;
}
static int send_mpa_reply(struct c4iw_ep *ep, const void *pdata, u8 plen)
{
int mpalen;
struct mpa_message *mpa;
struct mbuf *m;
struct mpa_v2_conn_params mpa_v2_params;
int err;
CTR2(KTR_IW_CXGBE, "%s:smrepB %p", __func__, ep);
mpalen = sizeof(*mpa) + plen;
if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
CTR3(KTR_IW_CXGBE, "%s:smrep1 %p %d", __func__, ep,
ep->mpa_attr.version);
mpalen += sizeof(struct mpa_v2_conn_params);
}
mpa = malloc(mpalen, M_CXGBE, M_NOWAIT);
if (mpa == NULL)
return (-ENOMEM);
memset(mpa, 0, sizeof(*mpa));
memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
mpa->flags = (ep->mpa_attr.crc_enabled ? MPA_CRC : 0) |
(markers_enabled ? MPA_MARKERS : 0);
mpa->revision = ep->mpa_attr.version;
mpa->private_data_size = htons(plen);
if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
mpa->flags |= MPA_ENHANCED_RDMA_CONN;
mpa->private_data_size +=
htons(sizeof(struct mpa_v2_conn_params));
mpa_v2_params.ird = htons((u16)ep->ird);
mpa_v2_params.ord = htons((u16)ep->ord);
CTR5(KTR_IW_CXGBE, "%s:smrep3 %p %d %d %d", __func__, ep,
ep->mpa_attr.version, mpa_v2_params.ird, mpa_v2_params.ord);
if (peer2peer && (ep->mpa_attr.p2p_type !=
FW_RI_INIT_P2PTYPE_DISABLED)) {
mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL);
if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE) {
mpa_v2_params.ord |=
htons(MPA_V2_RDMA_WRITE_RTR);
CTR5(KTR_IW_CXGBE, "%s:smrep4 %p %d %d %d",
__func__, ep, p2p_type, mpa_v2_params.ird,
mpa_v2_params.ord);
}
else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) {
mpa_v2_params.ord |=
htons(MPA_V2_RDMA_READ_RTR);
CTR5(KTR_IW_CXGBE, "%s:smrep5 %p %d %d %d",
__func__, ep, p2p_type, mpa_v2_params.ird,
mpa_v2_params.ord);
}
}
memcpy(mpa->private_data, &mpa_v2_params,
sizeof(struct mpa_v2_conn_params));
if (ep->plen)
memcpy(mpa->private_data +
sizeof(struct mpa_v2_conn_params), pdata, plen);
} else
if (plen)
memcpy(mpa->private_data, pdata, plen);
m = m_getm(NULL, mpalen, M_NOWAIT, MT_DATA);
if (m == NULL) {
free(mpa, M_CXGBE);
return (-ENOMEM);
}
m_copyback(m, 0, mpalen, (void *)mpa);
free(mpa, M_CXGBE);
ep->com.state = MPA_REP_SENT;
ep->snd_seq += mpalen;
err = -sosend(ep->com.so, NULL, NULL, m, NULL, MSG_DONTWAIT,
ep->com.thread);
CTR3(KTR_IW_CXGBE, "%s:smrepE %p %d", __func__, ep, err);
return err;
}
static void close_complete_upcall(struct c4iw_ep *ep, int status)
{
struct iw_cm_event event;
CTR2(KTR_IW_CXGBE, "%s:ccuB %p", __func__, ep);
memset(&event, 0, sizeof(event));
event.event = IW_CM_EVENT_CLOSE;
event.status = status;
if (ep->com.cm_id) {
CTR2(KTR_IW_CXGBE, "%s:ccu1 %1", __func__, ep);
ep->com.cm_id->event_handler(ep->com.cm_id, &event);
deref_cm_id(&ep->com);
set_bit(CLOSE_UPCALL, &ep->com.history);
}
CTR2(KTR_IW_CXGBE, "%s:ccuE %p", __func__, ep);
}
static int
send_abort(struct c4iw_ep *ep)
{
struct socket *so = ep->com.so;
struct sockopt sopt;
int rc;
struct linger l;
CTR5(KTR_IW_CXGBE, "%s ep %p so %p state %s tid %d", __func__, ep, so,
states[ep->com.state], ep->hwtid);
l.l_onoff = 1;
l.l_linger = 0;
/* linger_time of 0 forces RST to be sent */
sopt.sopt_dir = SOPT_SET;
sopt.sopt_level = SOL_SOCKET;
sopt.sopt_name = SO_LINGER;
sopt.sopt_val = (caddr_t)&l;
sopt.sopt_valsize = sizeof l;
sopt.sopt_td = NULL;
rc = -sosetopt(so, &sopt);
if (rc != 0) {
log(LOG_ERR, "%s: sosetopt(%p, linger = 0) failed with %d.\n",
__func__, so, rc);
}
uninit_iwarp_socket(so);
soclose(so);
set_bit(ABORT_CONN, &ep->com.history);
/*
* TBD: iw_cxgbe driver should receive ABORT reply for every ABORT
* request it has sent. But the current TOE driver is not propagating
* this ABORT reply event (via do_abort_rpl) to iw_cxgbe. So as a work-
* around de-refererece 'ep' here instead of doing it in abort_rpl()
* handler(not yet implemented) of iw_cxgbe driver.
*/
release_ep_resources(ep);
ep->com.state = DEAD;
return (0);
}
static void peer_close_upcall(struct c4iw_ep *ep)
{
struct iw_cm_event event;
CTR2(KTR_IW_CXGBE, "%s:pcuB %p", __func__, ep);
memset(&event, 0, sizeof(event));
event.event = IW_CM_EVENT_DISCONNECT;
if (ep->com.cm_id) {
CTR2(KTR_IW_CXGBE, "%s:pcu1 %p", __func__, ep);
ep->com.cm_id->event_handler(ep->com.cm_id, &event);
set_bit(DISCONN_UPCALL, &ep->com.history);
}
CTR2(KTR_IW_CXGBE, "%s:pcuE %p", __func__, ep);
}
static void peer_abort_upcall(struct c4iw_ep *ep)
{
struct iw_cm_event event;
CTR2(KTR_IW_CXGBE, "%s:pauB %p", __func__, ep);
memset(&event, 0, sizeof(event));
event.event = IW_CM_EVENT_CLOSE;
event.status = -ECONNRESET;
if (ep->com.cm_id) {
CTR2(KTR_IW_CXGBE, "%s:pau1 %p", __func__, ep);
ep->com.cm_id->event_handler(ep->com.cm_id, &event);
deref_cm_id(&ep->com);
set_bit(ABORT_UPCALL, &ep->com.history);
}
CTR2(KTR_IW_CXGBE, "%s:pauE %p", __func__, ep);
}
static void connect_reply_upcall(struct c4iw_ep *ep, int status)
{
struct iw_cm_event event;
CTR3(KTR_IW_CXGBE, "%s:cruB %p, status: %d", __func__, ep, status);
memset(&event, 0, sizeof(event));
event.event = IW_CM_EVENT_CONNECT_REPLY;
event.status = ((status == -ECONNABORTED) || (status == -EPIPE)) ?
-ECONNRESET : status;
event.local_addr = ep->com.local_addr;
event.remote_addr = ep->com.remote_addr;
if ((status == 0) || (status == -ECONNREFUSED)) {
if (!ep->tried_with_mpa_v1) {
CTR2(KTR_IW_CXGBE, "%s:cru1 %p", __func__, ep);
/* this means MPA_v2 is used */
event.ord = ep->ird;
event.ird = ep->ord;
event.private_data_len = ep->plen -
sizeof(struct mpa_v2_conn_params);
event.private_data = ep->mpa_pkt +
sizeof(struct mpa_message) +
sizeof(struct mpa_v2_conn_params);
} else {
CTR2(KTR_IW_CXGBE, "%s:cru2 %p", __func__, ep);
/* this means MPA_v1 is used */
event.ord = c4iw_max_read_depth;
event.ird = c4iw_max_read_depth;
event.private_data_len = ep->plen;
event.private_data = ep->mpa_pkt +
sizeof(struct mpa_message);
}
}
if (ep->com.cm_id) {
CTR2(KTR_IW_CXGBE, "%s:cru3 %p", __func__, ep);
set_bit(CONN_RPL_UPCALL, &ep->com.history);
ep->com.cm_id->event_handler(ep->com.cm_id, &event);
}
if(status == -ECONNABORTED) {
CTR3(KTR_IW_CXGBE, "%s:cruE %p %d", __func__, ep, status);
return;
}
if (status < 0) {
CTR3(KTR_IW_CXGBE, "%s:cru4 %p %d", __func__, ep, status);
deref_cm_id(&ep->com);
}
CTR2(KTR_IW_CXGBE, "%s:cruE %p", __func__, ep);
}
static int connect_request_upcall(struct c4iw_ep *ep)
{
struct iw_cm_event event;
int ret;
CTR3(KTR_IW_CXGBE, "%s: ep %p, mpa_v1 %d", __func__, ep,
ep->tried_with_mpa_v1);
memset(&event, 0, sizeof(event));
event.event = IW_CM_EVENT_CONNECT_REQUEST;
event.local_addr = ep->com.local_addr;
event.remote_addr = ep->com.remote_addr;
event.provider_data = ep;
if (!ep->tried_with_mpa_v1) {
/* this means MPA_v2 is used */
event.ord = ep->ord;
event.ird = ep->ird;
event.private_data_len = ep->plen -
sizeof(struct mpa_v2_conn_params);
event.private_data = ep->mpa_pkt + sizeof(struct mpa_message) +
sizeof(struct mpa_v2_conn_params);
} else {
/* this means MPA_v1 is used. Send max supported */
event.ord = c4iw_max_read_depth;
event.ird = c4iw_max_read_depth;
event.private_data_len = ep->plen;
event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
}
c4iw_get_ep(&ep->com);
ret = ep->parent_ep->com.cm_id->event_handler(ep->parent_ep->com.cm_id,
&event);
if(ret) {
CTR3(KTR_IW_CXGBE, "%s: ep %p, Failure while notifying event to"
" IWCM, err:%d", __func__, ep, ret);
c4iw_put_ep(&ep->com);
} else
/* Dereference parent_ep only in success case.
* In case of failure, parent_ep is dereferenced by the caller
* of process_mpa_request().
*/
c4iw_put_ep(&ep->parent_ep->com);
set_bit(CONNREQ_UPCALL, &ep->com.history);
return ret;
}
static void established_upcall(struct c4iw_ep *ep)
{
struct iw_cm_event event;
CTR2(KTR_IW_CXGBE, "%s:euB %p", __func__, ep);
memset(&event, 0, sizeof(event));
event.event = IW_CM_EVENT_ESTABLISHED;
event.ird = ep->ord;
event.ord = ep->ird;
if (ep->com.cm_id) {
CTR2(KTR_IW_CXGBE, "%s:eu1 %p", __func__, ep);
ep->com.cm_id->event_handler(ep->com.cm_id, &event);
set_bit(ESTAB_UPCALL, &ep->com.history);
}
CTR2(KTR_IW_CXGBE, "%s:euE %p", __func__, ep);
}
#define RELAXED_IRD_NEGOTIATION 1
/*
* process_mpa_reply - process streaming mode MPA reply
*
* Returns:
*
* 0 upon success indicating a connect request was delivered to the ULP
* or the mpa request is incomplete but valid so far.
*
* 1 if a failure requires the caller to close the connection.
*
* 2 if a failure requires the caller to abort the connection.
*/
static int process_mpa_reply(struct c4iw_ep *ep)
{
struct mpa_message *mpa;
struct mpa_v2_conn_params *mpa_v2_params;
u16 plen;
u16 resp_ird, resp_ord;
u8 rtr_mismatch = 0, insuff_ird = 0;
struct c4iw_qp_attributes attrs = {0};
enum c4iw_qp_attr_mask mask;
int err;
struct mbuf *top, *m;
int flags = MSG_DONTWAIT;
struct uio uio;
int disconnect = 0;
CTR2(KTR_IW_CXGBE, "%s:pmrB %p", __func__, ep);
/*
* Stop mpa timer. If it expired, then
* we ignore the MPA reply. process_timeout()
* will abort the connection.
*/
if (STOP_EP_TIMER(ep))
return 0;
uio.uio_resid = 1000000;
uio.uio_td = ep->com.thread;
err = soreceive(ep->com.so, NULL, &uio, &top, NULL, &flags);
if (err) {
if (err == EWOULDBLOCK) {
CTR2(KTR_IW_CXGBE, "%s:pmr1 %p", __func__, ep);
START_EP_TIMER(ep);
return 0;
}
err = -err;
CTR2(KTR_IW_CXGBE, "%s:pmr2 %p", __func__, ep);
goto err;
}
if (ep->com.so->so_rcv.sb_mb) {
CTR2(KTR_IW_CXGBE, "%s:pmr3 %p", __func__, ep);
printf("%s data after soreceive called! so %p sb_mb %p top %p\n",
__func__, ep->com.so, ep->com.so->so_rcv.sb_mb, top);
}
m = top;
do {
CTR2(KTR_IW_CXGBE, "%s:pmr4 %p", __func__, ep);
/*
* If we get more than the supported amount of private data
* then we must fail this connection.
*/
if (ep->mpa_pkt_len + m->m_len > sizeof(ep->mpa_pkt)) {
CTR3(KTR_IW_CXGBE, "%s:pmr5 %p %d", __func__, ep,
ep->mpa_pkt_len + m->m_len);
err = (-EINVAL);
goto err_stop_timer;
}
/*
* copy the new data into our accumulation buffer.
*/
m_copydata(m, 0, m->m_len, &(ep->mpa_pkt[ep->mpa_pkt_len]));
ep->mpa_pkt_len += m->m_len;
if (!m->m_next)
m = m->m_nextpkt;
else
m = m->m_next;
} while (m);
m_freem(top);
/*
* if we don't even have the mpa message, then bail.
*/
if (ep->mpa_pkt_len < sizeof(*mpa)) {
return 0;
}
mpa = (struct mpa_message *) ep->mpa_pkt;
/* Validate MPA header. */
if (mpa->revision > mpa_rev) {
CTR4(KTR_IW_CXGBE, "%s:pmr6 %p %d %d", __func__, ep,
mpa->revision, mpa_rev);
printk(KERN_ERR MOD "%s MPA version mismatch. Local = %d, "
" Received = %d\n", __func__, mpa_rev, mpa->revision);
err = -EPROTO;
goto err_stop_timer;
}
if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) {
CTR2(KTR_IW_CXGBE, "%s:pmr7 %p", __func__, ep);
err = -EPROTO;
goto err_stop_timer;
}
plen = ntohs(mpa->private_data_size);
/*
* Fail if there's too much private data.
*/
if (plen > MPA_MAX_PRIVATE_DATA) {
CTR2(KTR_IW_CXGBE, "%s:pmr8 %p", __func__, ep);
err = -EPROTO;
goto err_stop_timer;
}
/*
* If plen does not account for pkt size
*/
if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
CTR2(KTR_IW_CXGBE, "%s:pmr9 %p", __func__, ep);
STOP_EP_TIMER(ep);
err = -EPROTO;
goto err_stop_timer;
}
ep->plen = (u8) plen;
/*
* If we don't have all the pdata yet, then bail.
* We'll continue process when more data arrives.
*/
if (ep->mpa_pkt_len < (sizeof(*mpa) + plen)) {
CTR2(KTR_IW_CXGBE, "%s:pmra %p", __func__, ep);
return 0;
}
if (mpa->flags & MPA_REJECT) {
CTR2(KTR_IW_CXGBE, "%s:pmrb %p", __func__, ep);
err = -ECONNREFUSED;
goto err_stop_timer;
}
/*
* If we get here we have accumulated the entire mpa
* start reply message including private data. And
* the MPA header is valid.
*/
ep->com.state = FPDU_MODE;
ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
ep->mpa_attr.recv_marker_enabled = markers_enabled;
ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
ep->mpa_attr.version = mpa->revision;
ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
if (mpa->revision == 2) {
CTR2(KTR_IW_CXGBE, "%s:pmrc %p", __func__, ep);
ep->mpa_attr.enhanced_rdma_conn =
mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0;
if (ep->mpa_attr.enhanced_rdma_conn) {
CTR2(KTR_IW_CXGBE, "%s:pmrd %p", __func__, ep);
mpa_v2_params = (struct mpa_v2_conn_params *)
(ep->mpa_pkt + sizeof(*mpa));
resp_ird = ntohs(mpa_v2_params->ird) &
MPA_V2_IRD_ORD_MASK;
resp_ord = ntohs(mpa_v2_params->ord) &
MPA_V2_IRD_ORD_MASK;
/*
* This is a double-check. Ideally, below checks are
* not required since ird/ord stuff has been taken
* care of in c4iw_accept_cr
*/
if (ep->ird < resp_ord) {
if (RELAXED_IRD_NEGOTIATION && resp_ord <=
ep->com.dev->rdev.adap->params.max_ordird_qp)
ep->ird = resp_ord;
else
insuff_ird = 1;
} else if (ep->ird > resp_ord) {
ep->ird = resp_ord;
}
if (ep->ord > resp_ird) {
if (RELAXED_IRD_NEGOTIATION)
ep->ord = resp_ird;
else
insuff_ird = 1;
}
if (insuff_ird) {
err = -ENOMEM;
ep->ird = resp_ord;
ep->ord = resp_ird;
}
if (ntohs(mpa_v2_params->ird) &
MPA_V2_PEER2PEER_MODEL) {
CTR2(KTR_IW_CXGBE, "%s:pmrf %p", __func__, ep);
if (ntohs(mpa_v2_params->ord) &
MPA_V2_RDMA_WRITE_RTR) {
CTR2(KTR_IW_CXGBE, "%s:pmrg %p", __func__, ep);
ep->mpa_attr.p2p_type =
FW_RI_INIT_P2PTYPE_RDMA_WRITE;
}
else if (ntohs(mpa_v2_params->ord) &
MPA_V2_RDMA_READ_RTR) {
CTR2(KTR_IW_CXGBE, "%s:pmrh %p", __func__, ep);
ep->mpa_attr.p2p_type =
FW_RI_INIT_P2PTYPE_READ_REQ;
}
}
}
} else {
CTR2(KTR_IW_CXGBE, "%s:pmri %p", __func__, ep);
if (mpa->revision == 1) {
CTR2(KTR_IW_CXGBE, "%s:pmrj %p", __func__, ep);
if (peer2peer) {
CTR2(KTR_IW_CXGBE, "%s:pmrk %p", __func__, ep);
ep->mpa_attr.p2p_type = p2p_type;
}
}
}
if (set_tcpinfo(ep)) {
CTR2(KTR_IW_CXGBE, "%s:pmrl %p", __func__, ep);
printf("%s set_tcpinfo error\n", __func__);
err = -ECONNRESET;
goto err;
}
CTR6(KTR_IW_CXGBE, "%s - crc_enabled = %d, recv_marker_enabled = %d, "
"xmit_marker_enabled = %d, version = %d p2p_type = %d", __func__,
ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version,
ep->mpa_attr.p2p_type);
/*
* If responder's RTR does not match with that of initiator, assign
* FW_RI_INIT_P2PTYPE_DISABLED in mpa attributes so that RTR is not
* generated when moving QP to RTS state.
* A TERM message will be sent after QP has moved to RTS state
*/
if ((ep->mpa_attr.version == 2) && peer2peer &&
(ep->mpa_attr.p2p_type != p2p_type)) {
CTR2(KTR_IW_CXGBE, "%s:pmrm %p", __func__, ep);
ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
rtr_mismatch = 1;
}
//ep->ofld_txq = TOEPCB(ep->com.so)->ofld_txq;
attrs.mpa_attr = ep->mpa_attr;
attrs.max_ird = ep->ird;
attrs.max_ord = ep->ord;
attrs.llp_stream_handle = ep;
attrs.next_state = C4IW_QP_STATE_RTS;
mask = C4IW_QP_ATTR_NEXT_STATE |
C4IW_QP_ATTR_LLP_STREAM_HANDLE | C4IW_QP_ATTR_MPA_ATTR |
C4IW_QP_ATTR_MAX_IRD | C4IW_QP_ATTR_MAX_ORD;
/* bind QP and TID with INIT_WR */
err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, mask, &attrs, 1);
if (err) {
CTR2(KTR_IW_CXGBE, "%s:pmrn %p", __func__, ep);
goto err;
}
/*
* If responder's RTR requirement did not match with what initiator
* supports, generate TERM message
*/
if (rtr_mismatch) {
CTR2(KTR_IW_CXGBE, "%s:pmro %p", __func__, ep);
printk(KERN_ERR "%s: RTR mismatch, sending TERM\n", __func__);
attrs.layer_etype = LAYER_MPA | DDP_LLP;
attrs.ecode = MPA_NOMATCH_RTR;
attrs.next_state = C4IW_QP_STATE_TERMINATE;
attrs.send_term = 1;
err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
err = -ENOMEM;
disconnect = 1;
goto out;
}
/*
* Generate TERM if initiator IRD is not sufficient for responder
* provided ORD. Currently, we do the same behaviour even when
* responder provided IRD is also not sufficient as regards to
* initiator ORD.
*/
if (insuff_ird) {
CTR2(KTR_IW_CXGBE, "%s:pmrp %p", __func__, ep);
printk(KERN_ERR "%s: Insufficient IRD, sending TERM\n",
__func__);
attrs.layer_etype = LAYER_MPA | DDP_LLP;
attrs.ecode = MPA_INSUFF_IRD;
attrs.next_state = C4IW_QP_STATE_TERMINATE;
attrs.send_term = 1;
err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
err = -ENOMEM;
disconnect = 1;
goto out;
}
goto out;
err_stop_timer:
STOP_EP_TIMER(ep);
err:
disconnect = 2;
out:
connect_reply_upcall(ep, err);
CTR2(KTR_IW_CXGBE, "%s:pmrE %p", __func__, ep);
return disconnect;
}
/*
* process_mpa_request - process streaming mode MPA request
*
* Returns:
*
* 0 upon success indicating a connect request was delivered to the ULP
* or the mpa request is incomplete but valid so far.
*
* 1 if a failure requires the caller to close the connection.
*
* 2 if a failure requires the caller to abort the connection.
*/
static int
process_mpa_request(struct c4iw_ep *ep)
{
struct mpa_message *mpa;
struct mpa_v2_conn_params *mpa_v2_params;
u16 plen;
int flags = MSG_DONTWAIT;
int rc;
struct iovec iov;
struct uio uio;
enum c4iw_ep_state state = ep->com.state;
CTR3(KTR_IW_CXGBE, "%s: ep %p, state %s", __func__, ep, states[state]);
if (state != MPA_REQ_WAIT)
return 0;
iov.iov_base = &ep->mpa_pkt[ep->mpa_pkt_len];
iov.iov_len = sizeof(ep->mpa_pkt) - ep->mpa_pkt_len;
uio.uio_iov = &iov;
uio.uio_iovcnt = 1;
uio.uio_offset = 0;
uio.uio_resid = sizeof(ep->mpa_pkt) - ep->mpa_pkt_len;
uio.uio_segflg = UIO_SYSSPACE;
uio.uio_rw = UIO_READ;
uio.uio_td = NULL; /* uio.uio_td = ep->com.thread; */
rc = soreceive(ep->com.so, NULL, &uio, NULL, NULL, &flags);
if (rc == EAGAIN)
return 0;
else if (rc)
goto err_stop_timer;
KASSERT(uio.uio_offset > 0, ("%s: sorecieve on so %p read no data",
__func__, ep->com.so));
ep->mpa_pkt_len += uio.uio_offset;
/*
* If we get more than the supported amount of private data then we must
* fail this connection. XXX: check so_rcv->sb_cc, or peek with another
* soreceive, or increase the size of mpa_pkt by 1 and abort if the last
* byte is filled by the soreceive above.
*/
/* Don't even have the MPA message. Wait for more data to arrive. */
if (ep->mpa_pkt_len < sizeof(*mpa))
return 0;
mpa = (struct mpa_message *) ep->mpa_pkt;
/*
* Validate MPA Header.
*/
if (mpa->revision > mpa_rev) {
log(LOG_ERR, "%s: MPA version mismatch. Local = %d,"
" Received = %d\n", __func__, mpa_rev, mpa->revision);
goto err_stop_timer;
}
if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key)))
goto err_stop_timer;
/*
* Fail if there's too much private data.
*/
plen = ntohs(mpa->private_data_size);
if (plen > MPA_MAX_PRIVATE_DATA)
goto err_stop_timer;
/*
* If plen does not account for pkt size
*/
if (ep->mpa_pkt_len > (sizeof(*mpa) + plen))
goto err_stop_timer;
ep->plen = (u8) plen;
/*
* If we don't have all the pdata yet, then bail.
*/
if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
return 0;
/*
* If we get here we have accumulated the entire mpa
* start reply message including private data.
*/
ep->mpa_attr.initiator = 0;
ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
ep->mpa_attr.recv_marker_enabled = markers_enabled;
ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
ep->mpa_attr.version = mpa->revision;
if (mpa->revision == 1)
ep->tried_with_mpa_v1 = 1;
ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
if (mpa->revision == 2) {
ep->mpa_attr.enhanced_rdma_conn =
mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0;
if (ep->mpa_attr.enhanced_rdma_conn) {
mpa_v2_params = (struct mpa_v2_conn_params *)
(ep->mpa_pkt + sizeof(*mpa));
ep->ird = ntohs(mpa_v2_params->ird) &
MPA_V2_IRD_ORD_MASK;
ep->ird = min_t(u32, ep->ird,
cur_max_read_depth(ep->com.dev));
ep->ord = ntohs(mpa_v2_params->ord) &
MPA_V2_IRD_ORD_MASK;
ep->ord = min_t(u32, ep->ord,
cur_max_read_depth(ep->com.dev));
CTR3(KTR_IW_CXGBE, "%s initiator ird %u ord %u",
__func__, ep->ird, ep->ord);
if (ntohs(mpa_v2_params->ird) & MPA_V2_PEER2PEER_MODEL)
if (peer2peer) {
if (ntohs(mpa_v2_params->ord) &
MPA_V2_RDMA_WRITE_RTR)
ep->mpa_attr.p2p_type =
FW_RI_INIT_P2PTYPE_RDMA_WRITE;
else if (ntohs(mpa_v2_params->ord) &
MPA_V2_RDMA_READ_RTR)
ep->mpa_attr.p2p_type =
FW_RI_INIT_P2PTYPE_READ_REQ;
}
}
} else if (mpa->revision == 1 && peer2peer)
ep->mpa_attr.p2p_type = p2p_type;
if (set_tcpinfo(ep))
goto err_stop_timer;
CTR5(KTR_IW_CXGBE, "%s: crc_enabled = %d, recv_marker_enabled = %d, "
"xmit_marker_enabled = %d, version = %d", __func__,
ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version);
ep->com.state = MPA_REQ_RCVD;
STOP_EP_TIMER(ep);
/* drive upcall */
if (ep->parent_ep->com.state != DEAD)
if (connect_request_upcall(ep))
goto err_out;
return 0;
err_stop_timer:
STOP_EP_TIMER(ep);
err_out:
return 2;
}
/*
* Upcall from the adapter indicating data has been transmitted.
* For us its just the single MPA request or reply. We can now free
* the skb holding the mpa message.
*/
int c4iw_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len)
{
int err;
struct c4iw_ep *ep = to_ep(cm_id);
int abort = 0;
mutex_lock(&ep->com.mutex);
CTR2(KTR_IW_CXGBE, "%s:crcB %p", __func__, ep);
if ((ep->com.state == DEAD) ||
(ep->com.state != MPA_REQ_RCVD)) {
CTR2(KTR_IW_CXGBE, "%s:crc1 %p", __func__, ep);
mutex_unlock(&ep->com.mutex);
c4iw_put_ep(&ep->com);
return -ECONNRESET;
}
set_bit(ULP_REJECT, &ep->com.history);
if (mpa_rev == 0) {
CTR2(KTR_IW_CXGBE, "%s:crc2 %p", __func__, ep);
abort = 1;
}
else {
CTR2(KTR_IW_CXGBE, "%s:crc3 %p", __func__, ep);
abort = send_mpa_reject(ep, pdata, pdata_len);
}
STOP_EP_TIMER(ep);
err = c4iw_ep_disconnect(ep, abort != 0, GFP_KERNEL);
mutex_unlock(&ep->com.mutex);
c4iw_put_ep(&ep->com);
CTR3(KTR_IW_CXGBE, "%s:crc4 %p, err: %d", __func__, ep, err);
return 0;
}
int c4iw_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
{
int err;
struct c4iw_qp_attributes attrs = {0};
enum c4iw_qp_attr_mask mask;
struct c4iw_ep *ep = to_ep(cm_id);
struct c4iw_dev *h = to_c4iw_dev(cm_id->device);
struct c4iw_qp *qp = get_qhp(h, conn_param->qpn);
int abort = 0;
mutex_lock(&ep->com.mutex);
CTR2(KTR_IW_CXGBE, "%s:cacB %p", __func__, ep);
if ((ep->com.state == DEAD) ||
(ep->com.state != MPA_REQ_RCVD)) {
CTR2(KTR_IW_CXGBE, "%s:cac1 %p", __func__, ep);
err = -ECONNRESET;
goto err_out;
}
BUG_ON(!qp);
set_bit(ULP_ACCEPT, &ep->com.history);
if ((conn_param->ord > c4iw_max_read_depth) ||
(conn_param->ird > c4iw_max_read_depth)) {
CTR2(KTR_IW_CXGBE, "%s:cac2 %p", __func__, ep);
err = -EINVAL;
goto err_abort;
}
if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
CTR2(KTR_IW_CXGBE, "%s:cac3 %p", __func__, ep);
if (conn_param->ord > ep->ird) {
if (RELAXED_IRD_NEGOTIATION) {
conn_param->ord = ep->ird;
} else {
ep->ird = conn_param->ird;
ep->ord = conn_param->ord;
send_mpa_reject(ep, conn_param->private_data,
conn_param->private_data_len);
err = -ENOMEM;
goto err_abort;
}
}
if (conn_param->ird < ep->ord) {
if (RELAXED_IRD_NEGOTIATION &&
ep->ord <= h->rdev.adap->params.max_ordird_qp) {
conn_param->ird = ep->ord;
} else {
err = -ENOMEM;
goto err_abort;
}
}
}
ep->ird = conn_param->ird;
ep->ord = conn_param->ord;
if (ep->mpa_attr.version == 1) {
if (peer2peer && ep->ird == 0)
ep->ird = 1;
} else {
if (peer2peer &&
(ep->mpa_attr.p2p_type != FW_RI_INIT_P2PTYPE_DISABLED) &&
(p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) && ep->ird == 0)
ep->ird = 1;
}
CTR4(KTR_IW_CXGBE, "%s %d ird %d ord %d", __func__, __LINE__,
ep->ird, ep->ord);
ep->com.cm_id = cm_id;
ref_cm_id(&ep->com);
ep->com.qp = qp;
ref_qp(ep);
//ep->ofld_txq = TOEPCB(ep->com.so)->ofld_txq;
/* bind QP to EP and move to RTS */
attrs.mpa_attr = ep->mpa_attr;
attrs.max_ird = ep->ird;
attrs.max_ord = ep->ord;
attrs.llp_stream_handle = ep;
attrs.next_state = C4IW_QP_STATE_RTS;
/* bind QP and TID with INIT_WR */
mask = C4IW_QP_ATTR_NEXT_STATE |
C4IW_QP_ATTR_LLP_STREAM_HANDLE |
C4IW_QP_ATTR_MPA_ATTR |
C4IW_QP_ATTR_MAX_IRD |
C4IW_QP_ATTR_MAX_ORD;
err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, mask, &attrs, 1);
if (err) {
CTR3(KTR_IW_CXGBE, "%s:caca %p, err: %d", __func__, ep, err);
goto err_defef_cm_id;
}
err = send_mpa_reply(ep, conn_param->private_data,
conn_param->private_data_len);
if (err) {
CTR3(KTR_IW_CXGBE, "%s:cacb %p, err: %d", __func__, ep, err);
goto err_defef_cm_id;
}
ep->com.state = FPDU_MODE;
established_upcall(ep);
mutex_unlock(&ep->com.mutex);
c4iw_put_ep(&ep->com);
CTR2(KTR_IW_CXGBE, "%s:cacE %p", __func__, ep);
return 0;
err_defef_cm_id:
deref_cm_id(&ep->com);
err_abort:
abort = 1;
err_out:
if (abort)
c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
mutex_unlock(&ep->com.mutex);
c4iw_put_ep(&ep->com);
CTR2(KTR_IW_CXGBE, "%s:cacE err %p", __func__, ep);
return err;
}
static int
c4iw_sock_create(struct sockaddr_storage *laddr, struct socket **so)
{
int ret;
int size, on;
struct socket *sock = NULL;
struct sockopt sopt;
ret = sock_create_kern(laddr->ss_family,
SOCK_STREAM, IPPROTO_TCP, &sock);
if (ret) {
CTR2(KTR_IW_CXGBE, "%s:Failed to create TCP socket. err %d",
__func__, ret);
return ret;
}
if (reuseaddr) {
bzero(&sopt, sizeof(struct sockopt));
sopt.sopt_dir = SOPT_SET;
sopt.sopt_level = SOL_SOCKET;
sopt.sopt_name = SO_REUSEADDR;
on = 1;
sopt.sopt_val = &on;
sopt.sopt_valsize = sizeof(on);
ret = -sosetopt(sock, &sopt);
if (ret != 0) {
log(LOG_ERR, "%s: sosetopt(%p, SO_REUSEADDR) "
"failed with %d.\n", __func__, sock, ret);
}
bzero(&sopt, sizeof(struct sockopt));
sopt.sopt_dir = SOPT_SET;
sopt.sopt_level = SOL_SOCKET;
sopt.sopt_name = SO_REUSEPORT;
on = 1;
sopt.sopt_val = &on;
sopt.sopt_valsize = sizeof(on);
ret = -sosetopt(sock, &sopt);
if (ret != 0) {
log(LOG_ERR, "%s: sosetopt(%p, SO_REUSEPORT) "
"failed with %d.\n", __func__, sock, ret);
}
}
ret = -sobind(sock, (struct sockaddr *)laddr, curthread);
if (ret) {
CTR2(KTR_IW_CXGBE, "%s:Failed to bind socket. err %p",
__func__, ret);
sock_release(sock);
return ret;
}
size = laddr->ss_family == AF_INET6 ?
sizeof(struct sockaddr_in6) : sizeof(struct sockaddr_in);
ret = sock_getname(sock, (struct sockaddr *)laddr, &size, 0);
if (ret) {
CTR2(KTR_IW_CXGBE, "%s:sock_getname failed. err %p",
__func__, ret);
sock_release(sock);
return ret;
}
*so = sock;
return 0;
}
int c4iw_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
{
int err = 0;
struct c4iw_dev *dev = to_c4iw_dev(cm_id->device);
struct c4iw_ep *ep = NULL;
struct ifnet *nh_ifp; /* Logical egress interface */
struct epoch_tracker et;
#ifdef VIMAGE
struct rdma_cm_id *rdma_id = (struct rdma_cm_id*)cm_id->context;
struct vnet *vnet = rdma_id->route.addr.dev_addr.net;
#endif
CTR2(KTR_IW_CXGBE, "%s:ccB %p", __func__, cm_id);
if ((conn_param->ord > c4iw_max_read_depth) ||
(conn_param->ird > c4iw_max_read_depth)) {
CTR2(KTR_IW_CXGBE, "%s:cc1 %p", __func__, cm_id);
err = -EINVAL;
goto out;
}
ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
cm_id->provider_data = ep;
init_timer(&ep->timer);
ep->plen = conn_param->private_data_len;
if (ep->plen) {
CTR2(KTR_IW_CXGBE, "%s:cc3 %p", __func__, ep);
memcpy(ep->mpa_pkt + sizeof(struct mpa_message),
conn_param->private_data, ep->plen);
}
ep->ird = conn_param->ird;
ep->ord = conn_param->ord;
if (peer2peer && ep->ord == 0) {
CTR2(KTR_IW_CXGBE, "%s:cc4 %p", __func__, ep);
ep->ord = 1;
}
ep->com.dev = dev;
ep->com.cm_id = cm_id;
ref_cm_id(&ep->com);
ep->com.qp = get_qhp(dev, conn_param->qpn);
if (!ep->com.qp) {
CTR2(KTR_IW_CXGBE, "%s:cc5 %p", __func__, ep);
err = -EINVAL;
goto fail;
}
ref_qp(ep);
ep->com.thread = curthread;
NET_EPOCH_ENTER(et);
CURVNET_SET(vnet);
err = get_ifnet_from_raddr(&cm_id->remote_addr, &nh_ifp);
CURVNET_RESTORE();
NET_EPOCH_EXIT(et);
if (err) {
CTR2(KTR_IW_CXGBE, "%s:cc7 %p", __func__, ep);
printk(KERN_ERR MOD "%s - cannot find route.\n", __func__);
err = EHOSTUNREACH;
return err;
}
if (!(nh_ifp->if_capenable & IFCAP_TOE) ||
TOEDEV(nh_ifp) == NULL) {
err = -ENOPROTOOPT;
goto fail;
}
ep->com.state = CONNECTING;
ep->tos = 0;
ep->com.local_addr = cm_id->local_addr;
ep->com.remote_addr = cm_id->remote_addr;
err = c4iw_sock_create(&cm_id->local_addr, &ep->com.so);
if (err)
goto fail;
setiwsockopt(ep->com.so);
init_iwarp_socket(ep->com.so, &ep->com);
err = -soconnect(ep->com.so, (struct sockaddr *)&ep->com.remote_addr,
ep->com.thread);
if (err)
goto fail_free_so;
CTR2(KTR_IW_CXGBE, "%s:ccE, ep %p", __func__, ep);
return 0;
fail_free_so:
uninit_iwarp_socket(ep->com.so);
ep->com.state = DEAD;
sock_release(ep->com.so);
fail:
deref_cm_id(&ep->com);
c4iw_put_ep(&ep->com);
ep = NULL;
out:
CTR2(KTR_IW_CXGBE, "%s:ccE Error %d", __func__, err);
return err;
}
/*
* iwcm->create_listen. Returns -errno on failure.
*/
int
c4iw_create_listen(struct iw_cm_id *cm_id, int backlog)
{
struct c4iw_dev *dev = to_c4iw_dev(cm_id->device);
struct c4iw_listen_ep *lep = NULL;
struct listen_port_info *port_info = NULL;
int rc = 0;
CTR3(KTR_IW_CXGBE, "%s: cm_id %p, backlog %s", __func__, cm_id,
backlog);
if (c4iw_fatal_error(&dev->rdev)) {
CTR2(KTR_IW_CXGBE, "%s: cm_id %p, fatal error", __func__,
cm_id);
return -EIO;
}
lep = alloc_ep(sizeof(*lep), GFP_KERNEL);
lep->com.cm_id = cm_id;
ref_cm_id(&lep->com);
lep->com.dev = dev;
lep->backlog = backlog;
lep->com.local_addr = cm_id->local_addr;
lep->com.thread = curthread;
cm_id->provider_data = lep;
lep->com.state = LISTEN;
/* In case of INDADDR_ANY, ibcore creates cmid for each device and
* invokes iw_cxgbe listener callbacks assuming that iw_cxgbe creates
* HW listeners for each device seperately. But toecore expects single
* solisten() call with INADDR_ANY address to create HW listeners on
* all devices for a given port number. So iw_cxgbe driver calls
* solisten() only once for INADDR_ANY(usually done at first time
* listener callback from ibcore). And all the subsequent INADDR_ANY
* listener callbacks from ibcore(for the same port address) do not
* invoke solisten() as first listener callback has already created
* listeners for all other devices(via solisten).
*/
if (c4iw_any_addr((struct sockaddr *)&lep->com.local_addr)) {
port_info = add_ep_to_listenlist(lep);
/* skip solisten() if refcnt > 1, as the listeners were
* alredy created by 'Master lep'
*/
if (port_info->refcnt > 1) {
/* As there will be only one listener socket for a TCP
* port, copy Master lep's socket pointer to other lep's
* that are belonging to same TCP port.
*/
struct c4iw_listen_ep *head_lep =
container_of(port_info->lep_list.next,
struct c4iw_listen_ep, listen_ep_list);
lep->com.so = head_lep->com.so;
goto out;
}
}
rc = c4iw_sock_create(&cm_id->local_addr, &lep->com.so);
if (rc) {
CTR2(KTR_IW_CXGBE, "%s:Failed to create socket. err %d",
__func__, rc);
goto fail;
}
rc = -solisten(lep->com.so, backlog, curthread);
if (rc) {
CTR3(KTR_IW_CXGBE, "%s:Failed to listen on sock:%p. err %d",
__func__, lep->com.so, rc);
goto fail_free_so;
}
init_iwarp_socket(lep->com.so, &lep->com);
out:
return 0;
fail_free_so:
sock_release(lep->com.so);
fail:
if (port_info)
rem_ep_from_listenlist(lep);
deref_cm_id(&lep->com);
c4iw_put_ep(&lep->com);
return rc;
}
int
c4iw_destroy_listen(struct iw_cm_id *cm_id)
{
struct c4iw_listen_ep *lep = to_listen_ep(cm_id);
mutex_lock(&lep->com.mutex);
CTR3(KTR_IW_CXGBE, "%s: cm_id %p, state %s", __func__, cm_id,
states[lep->com.state]);
lep->com.state = DEAD;
if (c4iw_any_addr((struct sockaddr *)&lep->com.local_addr)) {
/* if no refcount then close listen socket */
if (!rem_ep_from_listenlist(lep))
close_socket(lep->com.so);
} else
close_socket(lep->com.so);
deref_cm_id(&lep->com);
mutex_unlock(&lep->com.mutex);
c4iw_put_ep(&lep->com);
return 0;
}
int __c4iw_ep_disconnect(struct c4iw_ep *ep, int abrupt, gfp_t gfp)
{
int ret;
mutex_lock(&ep->com.mutex);
ret = c4iw_ep_disconnect(ep, abrupt, gfp);
mutex_unlock(&ep->com.mutex);
return ret;
}
int c4iw_ep_disconnect(struct c4iw_ep *ep, int abrupt, gfp_t gfp)
{
int ret = 0;
int close = 0;
struct c4iw_rdev *rdev;
CTR2(KTR_IW_CXGBE, "%s:cedB %p", __func__, ep);
rdev = &ep->com.dev->rdev;
if (c4iw_fatal_error(rdev)) {
CTR3(KTR_IW_CXGBE, "%s:ced1 fatal error %p %s", __func__, ep,
states[ep->com.state]);
if (ep->com.state != DEAD) {
send_abort(ep);
ep->com.state = DEAD;
}
close_complete_upcall(ep, -ECONNRESET);
return ECONNRESET;
}
CTR3(KTR_IW_CXGBE, "%s:ced2 %p %s", __func__, ep,
states[ep->com.state]);
/*
* Ref the ep here in case we have fatal errors causing the
* ep to be released and freed.
*/
c4iw_get_ep(&ep->com);
switch (ep->com.state) {
case MPA_REQ_WAIT:
case MPA_REQ_SENT:
case MPA_REQ_RCVD:
case MPA_REP_SENT:
case FPDU_MODE:
close = 1;
if (abrupt)
ep->com.state = ABORTING;
else {
ep->com.state = CLOSING;
START_EP_TIMER(ep);
}
set_bit(CLOSE_SENT, &ep->com.flags);
break;
case CLOSING:
if (!test_and_set_bit(CLOSE_SENT, &ep->com.flags)) {
close = 1;
if (abrupt) {
STOP_EP_TIMER(ep);
ep->com.state = ABORTING;
} else
ep->com.state = MORIBUND;
}
break;
case MORIBUND:
case ABORTING:
case DEAD:
CTR3(KTR_IW_CXGBE,
"%s ignoring disconnect ep %p state %u", __func__,
ep, ep->com.state);
break;
default:
BUG();
break;
}
if (close) {
CTR2(KTR_IW_CXGBE, "%s:ced3 %p", __func__, ep);
if (abrupt) {
CTR2(KTR_IW_CXGBE, "%s:ced4 %p", __func__, ep);
set_bit(EP_DISC_ABORT, &ep->com.history);
close_complete_upcall(ep, -ECONNRESET);
send_abort(ep);
} else {
CTR2(KTR_IW_CXGBE, "%s:ced5 %p", __func__, ep);
set_bit(EP_DISC_CLOSE, &ep->com.history);
if (!ep->parent_ep)
ep->com.state = MORIBUND;
CURVNET_SET(ep->com.so->so_vnet);
ret = sodisconnect(ep->com.so);
CURVNET_RESTORE();
if (ret) {
CTR2(KTR_IW_CXGBE, "%s:ced6 %p", __func__, ep);
STOP_EP_TIMER(ep);
send_abort(ep);
ep->com.state = DEAD;
close_complete_upcall(ep, -ECONNRESET);
set_bit(EP_DISC_FAIL, &ep->com.history);
if (ep->com.qp) {
struct c4iw_qp_attributes attrs = {0};
attrs.next_state = C4IW_QP_STATE_ERROR;
ret = c4iw_modify_qp(
ep->com.dev, ep->com.qp,
C4IW_QP_ATTR_NEXT_STATE,
&attrs, 1);
CTR3(KTR_IW_CXGBE, "%s:ced7 %p ret %d",
__func__, ep, ret);
}
}
}
}
c4iw_put_ep(&ep->com);
CTR2(KTR_IW_CXGBE, "%s:cedE %p", __func__, ep);
return ret;
}
#ifdef C4IW_EP_REDIRECT
int c4iw_ep_redirect(void *ctx, struct dst_entry *old, struct dst_entry *new,
struct l2t_entry *l2t)
{
struct c4iw_ep *ep = ctx;
if (ep->dst != old)
return 0;
PDBG("%s ep %p redirect to dst %p l2t %p\n", __func__, ep, new,
l2t);
dst_hold(new);
cxgb4_l2t_release(ep->l2t);
ep->l2t = l2t;
dst_release(old);
ep->dst = new;
return 1;
}
#endif
static void ep_timeout(unsigned long arg)
{
struct c4iw_ep *ep = (struct c4iw_ep *)arg;
if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) {
/*
* Only insert if it is not already on the list.
*/
if (!(ep->com.ep_events & C4IW_EVENT_TIMEOUT)) {
CTR2(KTR_IW_CXGBE, "%s:et1 %p", __func__, ep);
add_ep_to_req_list(ep, C4IW_EVENT_TIMEOUT);
}
}
}
static int fw6_wr_rpl(struct adapter *sc, const __be64 *rpl)
{
uint64_t val = be64toh(*rpl);
int ret;
struct c4iw_wr_wait *wr_waitp;
ret = (int)((val >> 8) & 0xff);
wr_waitp = (struct c4iw_wr_wait *)rpl[1];
CTR3(KTR_IW_CXGBE, "%s wr_waitp %p ret %u", __func__, wr_waitp, ret);
if (wr_waitp)
c4iw_wake_up(wr_waitp, ret ? -ret : 0);
return (0);
}
static int fw6_cqe_handler(struct adapter *sc, const __be64 *rpl)
{
struct cqe_list_entry *cle;
unsigned long flag;
cle = malloc(sizeof(*cle), M_CXGBE, M_NOWAIT);
cle->rhp = sc->iwarp_softc;
cle->err_cqe = *(const struct t4_cqe *)(&rpl[0]);
spin_lock_irqsave(&err_cqe_lock, flag);
list_add_tail(&cle->entry, &err_cqe_list);
queue_work(c4iw_taskq, &c4iw_task);
spin_unlock_irqrestore(&err_cqe_lock, flag);
return (0);
}
static int
process_terminate(struct c4iw_ep *ep)
{
struct c4iw_qp_attributes attrs = {0};
CTR2(KTR_IW_CXGBE, "%s:tB %p %d", __func__, ep);
if (ep && ep->com.qp) {
printk(KERN_WARNING MOD "TERM received tid %u qpid %u\n",
ep->hwtid, ep->com.qp->wq.sq.qid);
attrs.next_state = C4IW_QP_STATE_TERMINATE;
c4iw_modify_qp(ep->com.dev, ep->com.qp, C4IW_QP_ATTR_NEXT_STATE, &attrs,
1);
} else
printk(KERN_WARNING MOD "TERM received tid %u no ep/qp\n",
ep->hwtid);
CTR2(KTR_IW_CXGBE, "%s:tE %p %d", __func__, ep);
return 0;
}
int __init c4iw_cm_init(void)
{
t4_register_cpl_handler(CPL_RDMA_TERMINATE, terminate);
t4_register_fw_msg_handler(FW6_TYPE_WR_RPL, fw6_wr_rpl);
t4_register_fw_msg_handler(FW6_TYPE_CQE, fw6_cqe_handler);
t4_register_an_handler(c4iw_ev_handler);
TAILQ_INIT(&req_list);
spin_lock_init(&req_lock);
INIT_LIST_HEAD(&err_cqe_list);
spin_lock_init(&err_cqe_lock);
INIT_WORK(&c4iw_task, process_req);
c4iw_taskq = create_singlethread_workqueue("iw_cxgbe");
if (!c4iw_taskq)
return -ENOMEM;
return 0;
}
void __exit c4iw_cm_term(void)
{
WARN_ON(!TAILQ_EMPTY(&req_list));
WARN_ON(!list_empty(&err_cqe_list));
flush_workqueue(c4iw_taskq);
destroy_workqueue(c4iw_taskq);
t4_register_cpl_handler(CPL_RDMA_TERMINATE, NULL);
t4_register_fw_msg_handler(FW6_TYPE_WR_RPL, NULL);
t4_register_fw_msg_handler(FW6_TYPE_CQE, NULL);
t4_register_an_handler(NULL);
}
#endif