freebsd-dev/sys/dev/tx/if_tx.c
Marius Strobl 3fcb7a5365 - Remove attempts to implement setting of BMCR_LOOP/MIIF_NOLOOP
(reporting IFM_LOOP based on BMCR_LOOP is left in place though as
  it might provide useful for debugging). For most mii(4) drivers it
  was unclear whether the PHYs driven by them actually support
  loopback or not. Moreover, typically loopback mode also needs to
  be activated on the MAC, which none of the Ethernet drivers using
  mii(4) implements. Given that loopback media has no real use (and
  obviously hardly had a chance to actually work) besides for driver
  development (which just loopback mode should be sufficient for
  though, i.e one doesn't necessary need support for loopback media)
  support for it is just dropped as both NetBSD and OpenBSD already
  did quite some time ago.
- Let mii_phy_add_media() also announce the support of IFM_NONE.
- Restructure the PHY entry points to use a structure of entry points
  instead of discrete function pointers, and extend this to include
  a "reset" entry point. Make sure any PHY-specific reset routine is
  always used, and provide one for lxtphy(4) which disables MII
  interrupts (as is done for a few other PHYs we have drivers for).
  This includes changing NIC drivers which previously just called the
  generic mii_phy_reset() to now actually call the PHY-specific reset
  routine, which might be crucial in some cases. While at it, the
  redundant checks in these NIC drivers for mii->mii_instance not being
  zero before calling the reset routines were removed because as soon
  as one PHY driver attaches mii->mii_instance is incremented and we
  hardly can end up in their media change callbacks etc if no PHY driver
  has attached as mii_attach() would have failed in that case and not
  attach a miibus(4) instance.
  Consequently, NIC drivers now no longer should call mii_phy_reset()
  directly, so it was removed from EXPORT_SYMS.
- Add a mii_phy_dev_attach() as a companion helper to mii_phy_dev_probe().
  The purpose of that function is to perform the common steps to attach
  a PHY driver instance and to hook it up to the miibus(4) instance and to
  optionally also handle the probing, addition and initialization of the
  supported media. So all a PHY driver without any special requirements
  has to do in its bus attach method is to call mii_phy_dev_attach()
  along with PHY-specific MIIF_* flags, a pointer to its PHY functions
  and the add_media set to one. All PHY drivers were updated to take
  advantage of mii_phy_dev_attach() as appropriate. Along with these
  changes the capability mask was added to the mii_softc structure so
  PHY drivers taking advantage of mii_phy_dev_attach() but still
  handling media on their own do not need to fiddle with the MII attach
  arguments anyway.
- Keep track of the PHY offset in the mii_softc structure. This is done
  for compatibility with NetBSD/OpenBSD.
- Keep track of the PHY's OUI, model and revision in the mii_softc
  structure. Several PHY drivers require this information also after
  attaching and previously had to wrap their own softc around mii_softc.
  NetBSD/OpenBSD also keep track of the model and revision on their
  mii_softc structure. All PHY drivers were updated to take advantage
  as appropriate.
- Convert the mebers of the MII data structure to unsigned where
  appropriate. This is partly inspired by NetBSD/OpenBSD.
- According to IEEE 802.3-2002 the bits actually have to be reversed
  when mapping an OUI to the MII ID registers. All PHY drivers and
  miidevs where changed as necessary. Actually this now again allows to
  largely share miidevs with NetBSD, which fixed this problem already
  9 years ago. Consequently miidevs was synced as far as possible.
- Add MIIF_NOMANPAUSE and mii_phy_flowstatus() calls to drivers that
  weren't explicitly converted to support flow control before. It's
  unclear whether flow control actually works with these but typically
  it should and their net behavior should be more correct with these
  changes in place than without if the MAC driver sets MIIF_DOPAUSE.

Obtained from:	NetBSD (partially)
Reviewed by:	yongari (earlier version), silence on arch@ and net@
2011-05-03 19:51:29 +00:00

1858 lines
44 KiB
C

/*-
* Copyright (c) 1997 Semen Ustimenko (semenu@FreeBSD.org)
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* EtherPower II 10/100 Fast Ethernet (SMC 9432 serie)
*
* These cards are based on SMC83c17x (EPIC) chip and one of the various
* PHYs (QS6612, AC101 and LXT970 were seen). The media support depends on
* card model. All cards support 10baseT/UTP and 100baseTX half- and full-
* duplex (SMB9432TX). SMC9432BTX also supports 10baseT/BNC. SMC9432FTX also
* supports fibre optics.
*
* Thanks are going to Steve Bauer and Jason Wright.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/socket.h>
#include <sys/queue.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/bpf.h>
#include <net/if_vlan_var.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <sys/bus.h>
#include <sys/rman.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include "miidevs.h"
#include <dev/mii/lxtphyreg.h>
#include "miibus_if.h"
#include <dev/tx/if_txreg.h>
#include <dev/tx/if_txvar.h>
MODULE_DEPEND(tx, pci, 1, 1, 1);
MODULE_DEPEND(tx, ether, 1, 1, 1);
MODULE_DEPEND(tx, miibus, 1, 1, 1);
static int epic_ifioctl(struct ifnet *, u_long, caddr_t);
static void epic_intr(void *);
static void epic_tx_underrun(epic_softc_t *);
static void epic_ifstart(struct ifnet *);
static void epic_ifstart_locked(struct ifnet *);
static void epic_timer(void *);
static void epic_init(void *);
static void epic_init_locked(epic_softc_t *);
static void epic_stop(epic_softc_t *);
static void epic_rx_done(epic_softc_t *);
static void epic_tx_done(epic_softc_t *);
static int epic_init_rings(epic_softc_t *);
static void epic_free_rings(epic_softc_t *);
static void epic_stop_activity(epic_softc_t *);
static int epic_queue_last_packet(epic_softc_t *);
static void epic_start_activity(epic_softc_t *);
static void epic_set_rx_mode(epic_softc_t *);
static void epic_set_tx_mode(epic_softc_t *);
static void epic_set_mc_table(epic_softc_t *);
static int epic_read_eeprom(epic_softc_t *,u_int16_t);
static void epic_output_eepromw(epic_softc_t *, u_int16_t);
static u_int16_t epic_input_eepromw(epic_softc_t *);
static u_int8_t epic_eeprom_clock(epic_softc_t *,u_int8_t);
static void epic_write_eepromreg(epic_softc_t *,u_int8_t);
static u_int8_t epic_read_eepromreg(epic_softc_t *);
static int epic_read_phy_reg(epic_softc_t *, int, int);
static void epic_write_phy_reg(epic_softc_t *, int, int, int);
static int epic_miibus_readreg(device_t, int, int);
static int epic_miibus_writereg(device_t, int, int, int);
static void epic_miibus_statchg(device_t);
static void epic_miibus_mediainit(device_t);
static int epic_ifmedia_upd(struct ifnet *);
static int epic_ifmedia_upd_locked(struct ifnet *);
static void epic_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static int epic_probe(device_t);
static int epic_attach(device_t);
static int epic_shutdown(device_t);
static int epic_detach(device_t);
static void epic_release(epic_softc_t *);
static struct epic_type *epic_devtype(device_t);
static device_method_t epic_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, epic_probe),
DEVMETHOD(device_attach, epic_attach),
DEVMETHOD(device_detach, epic_detach),
DEVMETHOD(device_shutdown, epic_shutdown),
/* MII interface */
DEVMETHOD(miibus_readreg, epic_miibus_readreg),
DEVMETHOD(miibus_writereg, epic_miibus_writereg),
DEVMETHOD(miibus_statchg, epic_miibus_statchg),
DEVMETHOD(miibus_mediainit, epic_miibus_mediainit),
{ 0, 0 }
};
static driver_t epic_driver = {
"tx",
epic_methods,
sizeof(epic_softc_t)
};
static devclass_t epic_devclass;
DRIVER_MODULE(tx, pci, epic_driver, epic_devclass, 0, 0);
DRIVER_MODULE(miibus, tx, miibus_driver, miibus_devclass, 0, 0);
static struct epic_type epic_devs[] = {
{ SMC_VENDORID, SMC_DEVICEID_83C170, "SMC EtherPower II 10/100" },
{ 0, 0, NULL }
};
static int
epic_probe(device_t dev)
{
struct epic_type *t;
t = epic_devtype(dev);
if (t != NULL) {
device_set_desc(dev, t->name);
return (BUS_PROBE_DEFAULT);
}
return (ENXIO);
}
static struct epic_type *
epic_devtype(device_t dev)
{
struct epic_type *t;
t = epic_devs;
while (t->name != NULL) {
if ((pci_get_vendor(dev) == t->ven_id) &&
(pci_get_device(dev) == t->dev_id)) {
return (t);
}
t++;
}
return (NULL);
}
#ifdef EPIC_USEIOSPACE
#define EPIC_RES SYS_RES_IOPORT
#define EPIC_RID PCIR_BASEIO
#else
#define EPIC_RES SYS_RES_MEMORY
#define EPIC_RID PCIR_BASEMEM
#endif
static void
epic_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nseg, int error)
{
u_int32_t *addr;
if (error)
return;
KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg));
addr = arg;
*addr = segs->ds_addr;
}
/*
* Attach routine: map registers, allocate softc, rings and descriptors.
* Reset to known state.
*/
static int
epic_attach(device_t dev)
{
struct ifnet *ifp;
epic_softc_t *sc;
int error;
int i, rid, tmp;
u_char eaddr[6];
sc = device_get_softc(dev);
/* Preinitialize softc structure. */
sc->dev = dev;
mtx_init(&sc->lock, device_get_nameunit(dev), MTX_NETWORK_LOCK,
MTX_DEF);
/* Fill ifnet structure. */
ifp = sc->ifp = if_alloc(IFT_ETHER);
if (ifp == NULL) {
device_printf(dev, "can not if_alloc()\n");
error = ENOSPC;
goto fail;
}
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST|IFF_SIMPLEX|IFF_MULTICAST;
ifp->if_ioctl = epic_ifioctl;
ifp->if_start = epic_ifstart;
ifp->if_init = epic_init;
IFQ_SET_MAXLEN(&ifp->if_snd, TX_RING_SIZE - 1);
/* Enable busmastering. */
pci_enable_busmaster(dev);
rid = EPIC_RID;
sc->res = bus_alloc_resource_any(dev, EPIC_RES, &rid, RF_ACTIVE);
if (sc->res == NULL) {
device_printf(dev, "couldn't map ports/memory\n");
error = ENXIO;
goto fail;
}
/* Allocate interrupt. */
rid = 0;
sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_SHAREABLE | RF_ACTIVE);
if (sc->irq == NULL) {
device_printf(dev, "couldn't map interrupt\n");
error = ENXIO;
goto fail;
}
/* Allocate DMA tags. */
error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
MCLBYTES * EPIC_MAX_FRAGS, EPIC_MAX_FRAGS, MCLBYTES, 0, NULL, NULL,
&sc->mtag);
if (error) {
device_printf(dev, "couldn't allocate dma tag\n");
goto fail;
}
error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
sizeof(struct epic_rx_desc) * RX_RING_SIZE,
1, sizeof(struct epic_rx_desc) * RX_RING_SIZE, 0, NULL,
NULL, &sc->rtag);
if (error) {
device_printf(dev, "couldn't allocate dma tag\n");
goto fail;
}
error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
sizeof(struct epic_tx_desc) * TX_RING_SIZE,
1, sizeof(struct epic_tx_desc) * TX_RING_SIZE, 0,
NULL, NULL, &sc->ttag);
if (error) {
device_printf(dev, "couldn't allocate dma tag\n");
goto fail;
}
error = bus_dma_tag_create(bus_get_dma_tag(dev), 4, 0,
BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL,
sizeof(struct epic_frag_list) * TX_RING_SIZE,
1, sizeof(struct epic_frag_list) * TX_RING_SIZE, 0,
NULL, NULL, &sc->ftag);
if (error) {
device_printf(dev, "couldn't allocate dma tag\n");
goto fail;
}
/* Allocate DMA safe memory and get the DMA addresses. */
error = bus_dmamem_alloc(sc->ftag, (void **)&sc->tx_flist,
BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->fmap);
if (error) {
device_printf(dev, "couldn't allocate dma memory\n");
goto fail;
}
error = bus_dmamap_load(sc->ftag, sc->fmap, sc->tx_flist,
sizeof(struct epic_frag_list) * TX_RING_SIZE, epic_dma_map_addr,
&sc->frag_addr, 0);
if (error) {
device_printf(dev, "couldn't map dma memory\n");
goto fail;
}
error = bus_dmamem_alloc(sc->ttag, (void **)&sc->tx_desc,
BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->tmap);
if (error) {
device_printf(dev, "couldn't allocate dma memory\n");
goto fail;
}
error = bus_dmamap_load(sc->ttag, sc->tmap, sc->tx_desc,
sizeof(struct epic_tx_desc) * TX_RING_SIZE, epic_dma_map_addr,
&sc->tx_addr, 0);
if (error) {
device_printf(dev, "couldn't map dma memory\n");
goto fail;
}
error = bus_dmamem_alloc(sc->rtag, (void **)&sc->rx_desc,
BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->rmap);
if (error) {
device_printf(dev, "couldn't allocate dma memory\n");
goto fail;
}
error = bus_dmamap_load(sc->rtag, sc->rmap, sc->rx_desc,
sizeof(struct epic_rx_desc) * RX_RING_SIZE, epic_dma_map_addr,
&sc->rx_addr, 0);
if (error) {
device_printf(dev, "couldn't map dma memory\n");
goto fail;
}
/* Bring the chip out of low-power mode. */
CSR_WRITE_4(sc, GENCTL, GENCTL_SOFT_RESET);
DELAY(500);
/* Workaround for Application Note 7-15. */
for (i = 0; i < 16; i++)
CSR_WRITE_4(sc, TEST1, TEST1_CLOCK_TEST);
/* Read MAC address from EEPROM. */
for (i = 0; i < ETHER_ADDR_LEN / sizeof(u_int16_t); i++)
((u_int16_t *)eaddr)[i] = epic_read_eeprom(sc,i);
/* Set Non-Volatile Control Register from EEPROM. */
CSR_WRITE_4(sc, NVCTL, epic_read_eeprom(sc, EEPROM_NVCTL) & 0x1F);
/* Set defaults. */
sc->tx_threshold = TRANSMIT_THRESHOLD;
sc->txcon = TXCON_DEFAULT;
sc->miicfg = MIICFG_SMI_ENABLE;
sc->phyid = EPIC_UNKN_PHY;
sc->serinst = -1;
/* Fetch card id. */
sc->cardvend = pci_read_config(dev, PCIR_SUBVEND_0, 2);
sc->cardid = pci_read_config(dev, PCIR_SUBDEV_0, 2);
if (sc->cardvend != SMC_VENDORID)
device_printf(dev, "unknown card vendor %04xh\n", sc->cardvend);
/* Do ifmedia setup. */
error = mii_attach(dev, &sc->miibus, ifp, epic_ifmedia_upd,
epic_ifmedia_sts, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
if (error != 0) {
device_printf(dev, "attaching PHYs failed\n");
goto fail;
}
/* board type and ... */
printf(" type ");
for(i = 0x2c; i < 0x32; i++) {
tmp = epic_read_eeprom(sc, i);
if (' ' == (u_int8_t)tmp)
break;
printf("%c", (u_int8_t)tmp);
tmp >>= 8;
if (' ' == (u_int8_t)tmp)
break;
printf("%c", (u_int8_t)tmp);
}
printf("\n");
/* Initialize rings. */
if (epic_init_rings(sc)) {
device_printf(dev, "failed to init rings\n");
error = ENXIO;
goto fail;
}
ifp->if_hdrlen = sizeof(struct ether_vlan_header);
ifp->if_capabilities |= IFCAP_VLAN_MTU;
ifp->if_capenable |= IFCAP_VLAN_MTU;
callout_init_mtx(&sc->timer, &sc->lock, 0);
/* Attach to OS's managers. */
ether_ifattach(ifp, eaddr);
/* Activate our interrupt handler. */
error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
NULL, epic_intr, sc, &sc->sc_ih);
if (error) {
device_printf(dev, "couldn't set up irq\n");
ether_ifdetach(ifp);
goto fail;
}
return (0);
fail:
epic_release(sc);
return (error);
}
/*
* Free any resources allocated by the driver.
*/
static void
epic_release(epic_softc_t *sc)
{
if (sc->ifp != NULL)
if_free(sc->ifp);
if (sc->irq)
bus_release_resource(sc->dev, SYS_RES_IRQ, 0, sc->irq);
if (sc->res)
bus_release_resource(sc->dev, EPIC_RES, EPIC_RID, sc->res);
epic_free_rings(sc);
if (sc->tx_flist) {
bus_dmamap_unload(sc->ftag, sc->fmap);
bus_dmamem_free(sc->ftag, sc->tx_flist, sc->fmap);
bus_dmamap_destroy(sc->ftag, sc->fmap);
}
if (sc->tx_desc) {
bus_dmamap_unload(sc->ttag, sc->tmap);
bus_dmamem_free(sc->ttag, sc->tx_desc, sc->tmap);
bus_dmamap_destroy(sc->ttag, sc->tmap);
}
if (sc->rx_desc) {
bus_dmamap_unload(sc->rtag, sc->rmap);
bus_dmamem_free(sc->rtag, sc->rx_desc, sc->rmap);
bus_dmamap_destroy(sc->rtag, sc->rmap);
}
if (sc->mtag)
bus_dma_tag_destroy(sc->mtag);
if (sc->ftag)
bus_dma_tag_destroy(sc->ftag);
if (sc->ttag)
bus_dma_tag_destroy(sc->ttag);
if (sc->rtag)
bus_dma_tag_destroy(sc->rtag);
mtx_destroy(&sc->lock);
}
/*
* Detach driver and free resources.
*/
static int
epic_detach(device_t dev)
{
struct ifnet *ifp;
epic_softc_t *sc;
sc = device_get_softc(dev);
ifp = sc->ifp;
EPIC_LOCK(sc);
epic_stop(sc);
EPIC_UNLOCK(sc);
callout_drain(&sc->timer);
ether_ifdetach(ifp);
bus_teardown_intr(dev, sc->irq, sc->sc_ih);
bus_generic_detach(dev);
device_delete_child(dev, sc->miibus);
epic_release(sc);
return (0);
}
#undef EPIC_RES
#undef EPIC_RID
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static int
epic_shutdown(device_t dev)
{
epic_softc_t *sc;
sc = device_get_softc(dev);
EPIC_LOCK(sc);
epic_stop(sc);
EPIC_UNLOCK(sc);
return (0);
}
/*
* This is if_ioctl handler.
*/
static int
epic_ifioctl(struct ifnet *ifp, u_long command, caddr_t data)
{
epic_softc_t *sc = ifp->if_softc;
struct mii_data *mii;
struct ifreq *ifr = (struct ifreq *) data;
int error = 0;
switch (command) {
case SIOCSIFMTU:
if (ifp->if_mtu == ifr->ifr_mtu)
break;
/* XXX Though the datasheet doesn't imply any
* limitations on RX and TX sizes beside max 64Kb
* DMA transfer, seems we can't send more then 1600
* data bytes per ethernet packet (transmitter hangs
* up if more data is sent).
*/
EPIC_LOCK(sc);
if (ifr->ifr_mtu + ifp->if_hdrlen <= EPIC_MAX_MTU) {
ifp->if_mtu = ifr->ifr_mtu;
epic_stop(sc);
epic_init_locked(sc);
} else
error = EINVAL;
EPIC_UNLOCK(sc);
break;
case SIOCSIFFLAGS:
/*
* If the interface is marked up and stopped, then start it.
* If it is marked down and running, then stop it.
*/
EPIC_LOCK(sc);
if (ifp->if_flags & IFF_UP) {
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
epic_init_locked(sc);
EPIC_UNLOCK(sc);
break;
}
} else {
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
epic_stop(sc);
EPIC_UNLOCK(sc);
break;
}
}
/* Handle IFF_PROMISC and IFF_ALLMULTI flags. */
epic_stop_activity(sc);
epic_set_mc_table(sc);
epic_set_rx_mode(sc);
epic_start_activity(sc);
EPIC_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
EPIC_LOCK(sc);
epic_set_mc_table(sc);
EPIC_UNLOCK(sc);
error = 0;
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
mii = device_get_softc(sc->miibus);
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
break;
default:
error = ether_ioctl(ifp, command, data);
break;
}
return (error);
}
static void
epic_dma_map_txbuf(void *arg, bus_dma_segment_t *segs, int nseg,
bus_size_t mapsize, int error)
{
struct epic_frag_list *flist;
int i;
if (error)
return;
KASSERT(nseg <= EPIC_MAX_FRAGS, ("too many DMA segments"));
flist = arg;
/* Fill fragments list. */
for (i = 0; i < nseg; i++) {
KASSERT(segs[i].ds_len <= MCLBYTES, ("segment size too large"));
flist->frag[i].fraglen = segs[i].ds_len;
flist->frag[i].fragaddr = segs[i].ds_addr;
}
flist->numfrags = nseg;
}
static void
epic_dma_map_rxbuf(void *arg, bus_dma_segment_t *segs, int nseg,
bus_size_t mapsize, int error)
{
struct epic_rx_desc *desc;
if (error)
return;
KASSERT(nseg == 1, ("too many DMA segments"));
desc = arg;
desc->bufaddr = segs->ds_addr;
}
/*
* This is if_start handler. It takes mbufs from if_snd queue
* and queue them for transmit, one by one, until TX ring become full
* or queue become empty.
*/
static void
epic_ifstart(struct ifnet * ifp)
{
epic_softc_t *sc = ifp->if_softc;
EPIC_LOCK(sc);
epic_ifstart_locked(ifp);
EPIC_UNLOCK(sc);
}
static void
epic_ifstart_locked(struct ifnet * ifp)
{
epic_softc_t *sc = ifp->if_softc;
struct epic_tx_buffer *buf;
struct epic_tx_desc *desc;
struct epic_frag_list *flist;
struct mbuf *m0, *m;
int error;
while (sc->pending_txs < TX_RING_SIZE) {
buf = sc->tx_buffer + sc->cur_tx;
desc = sc->tx_desc + sc->cur_tx;
flist = sc->tx_flist + sc->cur_tx;
/* Get next packet to send. */
IF_DEQUEUE(&ifp->if_snd, m0);
/* If nothing to send, return. */
if (m0 == NULL)
return;
error = bus_dmamap_load_mbuf(sc->mtag, buf->map, m0,
epic_dma_map_txbuf, flist, 0);
if (error && error != EFBIG) {
m_freem(m0);
ifp->if_oerrors++;
continue;
}
/*
* If packet was more than EPIC_MAX_FRAGS parts,
* recopy packet to a newly allocated mbuf cluster.
*/
if (error) {
m = m_defrag(m0, M_DONTWAIT);
if (m == NULL) {
m_freem(m0);
ifp->if_oerrors++;
continue;
}
m_freem(m0);
m0 = m;
error = bus_dmamap_load_mbuf(sc->mtag, buf->map, m,
epic_dma_map_txbuf, flist, 0);
if (error) {
m_freem(m);
ifp->if_oerrors++;
continue;
}
}
bus_dmamap_sync(sc->mtag, buf->map, BUS_DMASYNC_PREWRITE);
buf->mbuf = m0;
sc->pending_txs++;
sc->cur_tx = (sc->cur_tx + 1) & TX_RING_MASK;
desc->control = 0x01;
desc->txlength =
max(m0->m_pkthdr.len, ETHER_MIN_LEN - ETHER_CRC_LEN);
desc->status = 0x8000;
bus_dmamap_sync(sc->ttag, sc->tmap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->ftag, sc->fmap, BUS_DMASYNC_PREWRITE);
CSR_WRITE_4(sc, COMMAND, COMMAND_TXQUEUED);
/* Set watchdog timer. */
sc->tx_timeout = 8;
BPF_MTAP(ifp, m0);
}
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
}
/*
* Synopsis: Finish all received frames.
*/
static void
epic_rx_done(epic_softc_t *sc)
{
struct ifnet *ifp = sc->ifp;
u_int16_t len;
struct epic_rx_buffer *buf;
struct epic_rx_desc *desc;
struct mbuf *m;
bus_dmamap_t map;
int error;
bus_dmamap_sync(sc->rtag, sc->rmap, BUS_DMASYNC_POSTREAD);
while ((sc->rx_desc[sc->cur_rx].status & 0x8000) == 0) {
buf = sc->rx_buffer + sc->cur_rx;
desc = sc->rx_desc + sc->cur_rx;
/* Switch to next descriptor. */
sc->cur_rx = (sc->cur_rx + 1) & RX_RING_MASK;
/*
* Check for RX errors. This should only happen if
* SAVE_ERRORED_PACKETS is set. RX errors generate
* RXE interrupt usually.
*/
if ((desc->status & 1) == 0) {
ifp->if_ierrors++;
desc->status = 0x8000;
continue;
}
/* Save packet length and mbuf contained packet. */
bus_dmamap_sync(sc->mtag, buf->map, BUS_DMASYNC_POSTREAD);
len = desc->rxlength - ETHER_CRC_LEN;
m = buf->mbuf;
/* Try to get an mbuf cluster. */
buf->mbuf = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (buf->mbuf == NULL) {
buf->mbuf = m;
desc->status = 0x8000;
ifp->if_ierrors++;
continue;
}
buf->mbuf->m_len = buf->mbuf->m_pkthdr.len = MCLBYTES;
m_adj(buf->mbuf, ETHER_ALIGN);
/* Point to new mbuf, and give descriptor to chip. */
error = bus_dmamap_load_mbuf(sc->mtag, sc->sparemap, buf->mbuf,
epic_dma_map_rxbuf, desc, 0);
if (error) {
buf->mbuf = m;
desc->status = 0x8000;
ifp->if_ierrors++;
continue;
}
desc->status = 0x8000;
bus_dmamap_unload(sc->mtag, buf->map);
map = buf->map;
buf->map = sc->sparemap;
sc->sparemap = map;
bus_dmamap_sync(sc->mtag, buf->map, BUS_DMASYNC_PREREAD);
/* First mbuf in packet holds the ethernet and packet headers */
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = len;
/* Give mbuf to OS. */
EPIC_UNLOCK(sc);
(*ifp->if_input)(ifp, m);
EPIC_LOCK(sc);
/* Successfuly received frame */
ifp->if_ipackets++;
}
bus_dmamap_sync(sc->rtag, sc->rmap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
/*
* Synopsis: Do last phase of transmission. I.e. if desc is
* transmitted, decrease pending_txs counter, free mbuf contained
* packet, switch to next descriptor and repeat until no packets
* are pending or descriptor is not transmitted yet.
*/
static void
epic_tx_done(epic_softc_t *sc)
{
struct epic_tx_buffer *buf;
struct epic_tx_desc *desc;
u_int16_t status;
bus_dmamap_sync(sc->ttag, sc->tmap, BUS_DMASYNC_POSTREAD);
while (sc->pending_txs > 0) {
buf = sc->tx_buffer + sc->dirty_tx;
desc = sc->tx_desc + sc->dirty_tx;
status = desc->status;
/*
* If packet is not transmitted, thou followed
* packets are not transmitted too.
*/
if (status & 0x8000)
break;
/* Packet is transmitted. Switch to next and free mbuf. */
sc->pending_txs--;
sc->dirty_tx = (sc->dirty_tx + 1) & TX_RING_MASK;
bus_dmamap_sync(sc->mtag, buf->map, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->mtag, buf->map);
m_freem(buf->mbuf);
buf->mbuf = NULL;
/* Check for errors and collisions. */
if (status & 0x0001)
sc->ifp->if_opackets++;
else
sc->ifp->if_oerrors++;
sc->ifp->if_collisions += (status >> 8) & 0x1F;
#ifdef EPIC_DIAG
if ((status & 0x1001) == 0x1001)
device_printf(sc->dev,
"Tx ERROR: excessive coll. number\n");
#endif
}
if (sc->pending_txs < TX_RING_SIZE)
sc->ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
bus_dmamap_sync(sc->ttag, sc->tmap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
/*
* Interrupt function
*/
static void
epic_intr(void *arg)
{
epic_softc_t *sc;
int status, i;
sc = arg;
i = 4;
EPIC_LOCK(sc);
while (i-- && ((status = CSR_READ_4(sc, INTSTAT)) & INTSTAT_INT_ACTV)) {
CSR_WRITE_4(sc, INTSTAT, status);
if (status & (INTSTAT_RQE|INTSTAT_RCC|INTSTAT_OVW)) {
epic_rx_done(sc);
if (status & (INTSTAT_RQE|INTSTAT_OVW)) {
#ifdef EPIC_DIAG
if (status & INTSTAT_OVW)
device_printf(sc->dev, "RX buffer overflow\n");
if (status & INTSTAT_RQE)
device_printf(sc->dev, "RX FIFO overflow\n");
#endif
if ((CSR_READ_4(sc, COMMAND) & COMMAND_RXQUEUED) == 0)
CSR_WRITE_4(sc, COMMAND, COMMAND_RXQUEUED);
sc->ifp->if_ierrors++;
}
}
if (status & (INTSTAT_TXC|INTSTAT_TCC|INTSTAT_TQE)) {
epic_tx_done(sc);
if (sc->ifp->if_snd.ifq_head != NULL)
epic_ifstart_locked(sc->ifp);
}
/* Check for rare errors */
if (status & (INTSTAT_FATAL|INTSTAT_PMA|INTSTAT_PTA|
INTSTAT_APE|INTSTAT_DPE|INTSTAT_TXU|INTSTAT_RXE)) {
if (status & (INTSTAT_FATAL|INTSTAT_PMA|INTSTAT_PTA|
INTSTAT_APE|INTSTAT_DPE)) {
device_printf(sc->dev, "PCI fatal errors occured: %s%s%s%s\n",
(status & INTSTAT_PMA) ? "PMA " : "",
(status & INTSTAT_PTA) ? "PTA " : "",
(status & INTSTAT_APE) ? "APE " : "",
(status & INTSTAT_DPE) ? "DPE" : "");
epic_stop(sc);
epic_init_locked(sc);
break;
}
if (status & INTSTAT_RXE) {
#ifdef EPIC_DIAG
device_printf(sc->dev, "CRC/Alignment error\n");
#endif
sc->ifp->if_ierrors++;
}
if (status & INTSTAT_TXU) {
epic_tx_underrun(sc);
sc->ifp->if_oerrors++;
}
}
}
/* If no packets are pending, then no timeouts. */
if (sc->pending_txs == 0)
sc->tx_timeout = 0;
EPIC_UNLOCK(sc);
}
/*
* Handle the TX underrun error: increase the TX threshold
* and restart the transmitter.
*/
static void
epic_tx_underrun(epic_softc_t *sc)
{
if (sc->tx_threshold > TRANSMIT_THRESHOLD_MAX) {
sc->txcon &= ~TXCON_EARLY_TRANSMIT_ENABLE;
#ifdef EPIC_DIAG
device_printf(sc->dev, "Tx UNDERRUN: early TX disabled\n");
#endif
} else {
sc->tx_threshold += 0x40;
#ifdef EPIC_DIAG
device_printf(sc->dev,
"Tx UNDERRUN: TX threshold increased to %d\n",
sc->tx_threshold);
#endif
}
/* We must set TXUGO to reset the stuck transmitter. */
CSR_WRITE_4(sc, COMMAND, COMMAND_TXUGO);
/* Update the TX threshold */
epic_stop_activity(sc);
epic_set_tx_mode(sc);
epic_start_activity(sc);
}
/*
* This function is called once a second when the interface is running
* and performs two functions. First, it provides a timer for the mii
* to help with autonegotiation. Second, it checks for transmit
* timeouts.
*/
static void
epic_timer(void *arg)
{
epic_softc_t *sc = arg;
struct mii_data *mii;
struct ifnet *ifp;
ifp = sc->ifp;
EPIC_ASSERT_LOCKED(sc);
if (sc->tx_timeout && --sc->tx_timeout == 0) {
device_printf(sc->dev, "device timeout %d packets\n",
sc->pending_txs);
/* Try to finish queued packets. */
epic_tx_done(sc);
/* If not successful. */
if (sc->pending_txs > 0) {
ifp->if_oerrors += sc->pending_txs;
/* Reinitialize board. */
device_printf(sc->dev, "reinitialization\n");
epic_stop(sc);
epic_init_locked(sc);
} else
device_printf(sc->dev,
"seems we can continue normaly\n");
/* Start output. */
if (ifp->if_snd.ifq_head)
epic_ifstart_locked(ifp);
}
mii = device_get_softc(sc->miibus);
mii_tick(mii);
callout_reset(&sc->timer, hz, epic_timer, sc);
}
/*
* Set media options.
*/
static int
epic_ifmedia_upd(struct ifnet *ifp)
{
epic_softc_t *sc;
int error;
sc = ifp->if_softc;
EPIC_LOCK(sc);
error = epic_ifmedia_upd_locked(ifp);
EPIC_UNLOCK(sc);
return (error);
}
static int
epic_ifmedia_upd_locked(struct ifnet *ifp)
{
epic_softc_t *sc;
struct mii_data *mii;
struct ifmedia *ifm;
struct mii_softc *miisc;
int cfg, media;
sc = ifp->if_softc;
mii = device_get_softc(sc->miibus);
ifm = &mii->mii_media;
media = ifm->ifm_cur->ifm_media;
/* Do not do anything if interface is not up. */
if ((ifp->if_flags & IFF_UP) == 0)
return (0);
/*
* Lookup current selected PHY.
*/
if (IFM_INST(media) == sc->serinst) {
sc->phyid = EPIC_SERIAL;
sc->physc = NULL;
} else {
/* If we're not selecting serial interface, select MII mode. */
sc->miicfg &= ~MIICFG_SERIAL_ENABLE;
CSR_WRITE_4(sc, MIICFG, sc->miicfg);
/* Default to unknown PHY. */
sc->phyid = EPIC_UNKN_PHY;
/* Lookup selected PHY. */
LIST_FOREACH(miisc, &mii->mii_phys, mii_list) {
if (IFM_INST(media) == miisc->mii_inst) {
sc->physc = miisc;
break;
}
}
/* Identify selected PHY. */
if (sc->physc) {
int id1, id2, model, oui;
id1 = PHY_READ(sc->physc, MII_PHYIDR1);
id2 = PHY_READ(sc->physc, MII_PHYIDR2);
oui = MII_OUI(id1, id2);
model = MII_MODEL(id2);
switch (oui) {
case MII_OUI_xxQUALSEMI:
if (model == MII_MODEL_xxQUALSEMI_QS6612)
sc->phyid = EPIC_QS6612_PHY;
break;
case MII_OUI_ALTIMA:
if (model == MII_MODEL_ALTIMA_AC101)
sc->phyid = EPIC_AC101_PHY;
break;
case MII_OUI_xxLEVEL1:
if (model == MII_MODEL_xxLEVEL1_LXT970)
sc->phyid = EPIC_LXT970_PHY;
break;
}
}
}
/*
* Do PHY specific card setup.
*/
/*
* Call this, to isolate all not selected PHYs and
* set up selected.
*/
mii_mediachg(mii);
/* Do our own setup. */
switch (sc->phyid) {
case EPIC_QS6612_PHY:
break;
case EPIC_AC101_PHY:
/* We have to powerup fiber tranceivers. */
if (IFM_SUBTYPE(media) == IFM_100_FX)
sc->miicfg |= MIICFG_694_ENABLE;
else
sc->miicfg &= ~MIICFG_694_ENABLE;
CSR_WRITE_4(sc, MIICFG, sc->miicfg);
break;
case EPIC_LXT970_PHY:
/* We have to powerup fiber tranceivers. */
cfg = PHY_READ(sc->physc, MII_LXTPHY_CONFIG);
if (IFM_SUBTYPE(media) == IFM_100_FX)
cfg |= CONFIG_LEDC1 | CONFIG_LEDC0;
else
cfg &= ~(CONFIG_LEDC1 | CONFIG_LEDC0);
PHY_WRITE(sc->physc, MII_LXTPHY_CONFIG, cfg);
break;
case EPIC_SERIAL:
/* Select serial PHY (10base2/BNC usually). */
sc->miicfg |= MIICFG_694_ENABLE | MIICFG_SERIAL_ENABLE;
CSR_WRITE_4(sc, MIICFG, sc->miicfg);
/* There is no driver to fill this. */
mii->mii_media_active = media;
mii->mii_media_status = 0;
/*
* We need to call this manually as it wasn't called
* in mii_mediachg().
*/
epic_miibus_statchg(sc->dev);
break;
default:
device_printf(sc->dev, "ERROR! Unknown PHY selected\n");
return (EINVAL);
}
return (0);
}
/*
* Report current media status.
*/
static void
epic_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
epic_softc_t *sc;
struct mii_data *mii;
struct ifmedia *ifm;
sc = ifp->if_softc;
mii = device_get_softc(sc->miibus);
EPIC_LOCK(sc);
ifm = &mii->mii_media;
/* Nothing should be selected if interface is down. */
if ((ifp->if_flags & IFF_UP) == 0) {
ifmr->ifm_active = IFM_NONE;
ifmr->ifm_status = 0;
EPIC_UNLOCK(sc);
return;
}
/* Call underlying pollstat, if not serial PHY. */
if (sc->phyid != EPIC_SERIAL)
mii_pollstat(mii);
/* Simply copy media info. */
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
EPIC_UNLOCK(sc);
}
/*
* Callback routine, called on media change.
*/
static void
epic_miibus_statchg(device_t dev)
{
epic_softc_t *sc;
struct mii_data *mii;
int media;
sc = device_get_softc(dev);
mii = device_get_softc(sc->miibus);
media = mii->mii_media_active;
sc->txcon &= ~(TXCON_LOOPBACK_MODE | TXCON_FULL_DUPLEX);
/*
* If we are in full-duplex mode or loopback operation,
* we need to decouple receiver and transmitter.
*/
if (IFM_OPTIONS(media) & (IFM_FDX | IFM_LOOP))
sc->txcon |= TXCON_FULL_DUPLEX;
/* On some cards we need manualy set fullduplex led. */
if (sc->cardid == SMC9432FTX ||
sc->cardid == SMC9432FTX_SC) {
if (IFM_OPTIONS(media) & IFM_FDX)
sc->miicfg |= MIICFG_694_ENABLE;
else
sc->miicfg &= ~MIICFG_694_ENABLE;
CSR_WRITE_4(sc, MIICFG, sc->miicfg);
}
epic_stop_activity(sc);
epic_set_tx_mode(sc);
epic_start_activity(sc);
}
static void
epic_miibus_mediainit(device_t dev)
{
epic_softc_t *sc;
struct mii_data *mii;
struct ifmedia *ifm;
int media;
sc = device_get_softc(dev);
mii = device_get_softc(sc->miibus);
ifm = &mii->mii_media;
/*
* Add Serial Media Interface if present, this applies to
* SMC9432BTX serie.
*/
if (CSR_READ_4(sc, MIICFG) & MIICFG_PHY_PRESENT) {
/* Store its instance. */
sc->serinst = mii->mii_instance++;
/* Add as 10base2/BNC media. */
media = IFM_MAKEWORD(IFM_ETHER, IFM_10_2, 0, sc->serinst);
ifmedia_add(ifm, media, 0, NULL);
/* Report to user. */
device_printf(sc->dev, "serial PHY detected (10Base2/BNC)\n");
}
}
/*
* Reset chip and update media.
*/
static void
epic_init(void *xsc)
{
epic_softc_t *sc = xsc;
EPIC_LOCK(sc);
epic_init_locked(sc);
EPIC_UNLOCK(sc);
}
static void
epic_init_locked(epic_softc_t *sc)
{
struct ifnet *ifp = sc->ifp;
int i;
/* If interface is already running, then we need not do anything. */
if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
return;
}
/* Soft reset the chip (we have to power up card before). */
CSR_WRITE_4(sc, GENCTL, 0);
CSR_WRITE_4(sc, GENCTL, GENCTL_SOFT_RESET);
/*
* Reset takes 15 pci ticks which depends on PCI bus speed.
* Assuming it >= 33000000 hz, we have wait at least 495e-6 sec.
*/
DELAY(500);
/* Wake up */
CSR_WRITE_4(sc, GENCTL, 0);
/* Workaround for Application Note 7-15 */
for (i = 0; i < 16; i++)
CSR_WRITE_4(sc, TEST1, TEST1_CLOCK_TEST);
/* Give rings to EPIC */
CSR_WRITE_4(sc, PRCDAR, sc->rx_addr);
CSR_WRITE_4(sc, PTCDAR, sc->tx_addr);
/* Put node address to EPIC. */
CSR_WRITE_4(sc, LAN0, ((u_int16_t *)IF_LLADDR(sc->ifp))[0]);
CSR_WRITE_4(sc, LAN1, ((u_int16_t *)IF_LLADDR(sc->ifp))[1]);
CSR_WRITE_4(sc, LAN2, ((u_int16_t *)IF_LLADDR(sc->ifp))[2]);
/* Set tx mode, includeing transmit threshold. */
epic_set_tx_mode(sc);
/* Compute and set RXCON. */
epic_set_rx_mode(sc);
/* Set multicast table. */
epic_set_mc_table(sc);
/* Enable interrupts by setting the interrupt mask. */
CSR_WRITE_4(sc, INTMASK,
INTSTAT_RCC | /* INTSTAT_RQE | INTSTAT_OVW | INTSTAT_RXE | */
/* INTSTAT_TXC | */ INTSTAT_TCC | INTSTAT_TQE | INTSTAT_TXU |
INTSTAT_FATAL);
/* Acknowledge all pending interrupts. */
CSR_WRITE_4(sc, INTSTAT, CSR_READ_4(sc, INTSTAT));
/* Enable interrupts, set for PCI read multiple and etc */
CSR_WRITE_4(sc, GENCTL,
GENCTL_ENABLE_INTERRUPT | GENCTL_MEMORY_READ_MULTIPLE |
GENCTL_ONECOPY | GENCTL_RECEIVE_FIFO_THRESHOLD64);
/* Mark interface running ... */
if (ifp->if_flags & IFF_UP)
ifp->if_drv_flags |= IFF_DRV_RUNNING;
else
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
/* ... and free */
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
/* Start Rx process */
epic_start_activity(sc);
/* Set appropriate media */
epic_ifmedia_upd_locked(ifp);
callout_reset(&sc->timer, hz, epic_timer, sc);
}
/*
* Synopsis: calculate and set Rx mode. Chip must be in idle state to
* access RXCON.
*/
static void
epic_set_rx_mode(epic_softc_t *sc)
{
u_int32_t flags;
u_int32_t rxcon;
flags = sc->ifp->if_flags;
rxcon = RXCON_DEFAULT;
#ifdef EPIC_EARLY_RX
rxcon |= RXCON_EARLY_RX;
#endif
rxcon |= (flags & IFF_PROMISC) ? RXCON_PROMISCUOUS_MODE : 0;
CSR_WRITE_4(sc, RXCON, rxcon);
}
/*
* Synopsis: Set transmit control register. Chip must be in idle state to
* access TXCON.
*/
static void
epic_set_tx_mode(epic_softc_t *sc)
{
if (sc->txcon & TXCON_EARLY_TRANSMIT_ENABLE)
CSR_WRITE_4(sc, ETXTHR, sc->tx_threshold);
CSR_WRITE_4(sc, TXCON, sc->txcon);
}
/*
* Synopsis: Program multicast filter honoring IFF_ALLMULTI and IFF_PROMISC
* flags (note that setting PROMISC bit in EPIC's RXCON will only touch
* individual frames, multicast filter must be manually programmed).
*
* Note: EPIC must be in idle state.
*/
static void
epic_set_mc_table(epic_softc_t *sc)
{
struct ifnet *ifp;
struct ifmultiaddr *ifma;
u_int16_t filter[4];
u_int8_t h;
ifp = sc->ifp;
if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
CSR_WRITE_4(sc, MC0, 0xFFFF);
CSR_WRITE_4(sc, MC1, 0xFFFF);
CSR_WRITE_4(sc, MC2, 0xFFFF);
CSR_WRITE_4(sc, MC3, 0xFFFF);
return;
}
filter[0] = 0;
filter[1] = 0;
filter[2] = 0;
filter[3] = 0;
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
filter[h >> 4] |= 1 << (h & 0xF);
}
if_maddr_runlock(ifp);
CSR_WRITE_4(sc, MC0, filter[0]);
CSR_WRITE_4(sc, MC1, filter[1]);
CSR_WRITE_4(sc, MC2, filter[2]);
CSR_WRITE_4(sc, MC3, filter[3]);
}
/*
* Synopsis: Start receive process and transmit one, if they need.
*/
static void
epic_start_activity(epic_softc_t *sc)
{
/* Start rx process. */
CSR_WRITE_4(sc, COMMAND, COMMAND_RXQUEUED | COMMAND_START_RX |
(sc->pending_txs ? COMMAND_TXQUEUED : 0));
}
/*
* Synopsis: Completely stop Rx and Tx processes. If TQE is set additional
* packet needs to be queued to stop Tx DMA.
*/
static void
epic_stop_activity(epic_softc_t *sc)
{
int status, i;
/* Stop Tx and Rx DMA. */
CSR_WRITE_4(sc, COMMAND,
COMMAND_STOP_RX | COMMAND_STOP_RDMA | COMMAND_STOP_TDMA);
/* Wait Rx and Tx DMA to stop (why 1 ms ??? XXX). */
for (i = 0; i < 0x1000; i++) {
status = CSR_READ_4(sc, INTSTAT) &
(INTSTAT_TXIDLE | INTSTAT_RXIDLE);
if (status == (INTSTAT_TXIDLE | INTSTAT_RXIDLE))
break;
DELAY(1);
}
/* Catch all finished packets. */
epic_rx_done(sc);
epic_tx_done(sc);
status = CSR_READ_4(sc, INTSTAT);
if ((status & INTSTAT_RXIDLE) == 0)
device_printf(sc->dev, "ERROR! Can't stop Rx DMA\n");
if ((status & INTSTAT_TXIDLE) == 0)
device_printf(sc->dev, "ERROR! Can't stop Tx DMA\n");
/*
* May need to queue one more packet if TQE, this is rare
* but existing case.
*/
if ((status & INTSTAT_TQE) && !(status & INTSTAT_TXIDLE))
(void)epic_queue_last_packet(sc);
}
/*
* The EPIC transmitter may stuck in TQE state. It will not go IDLE until
* a packet from current descriptor will be copied to internal RAM. We
* compose a dummy packet here and queue it for transmission.
*
* XXX the packet will then be actually sent over network...
*/
static int
epic_queue_last_packet(epic_softc_t *sc)
{
struct epic_tx_desc *desc;
struct epic_frag_list *flist;
struct epic_tx_buffer *buf;
struct mbuf *m0;
int error, i;
device_printf(sc->dev, "queue last packet\n");
desc = sc->tx_desc + sc->cur_tx;
flist = sc->tx_flist + sc->cur_tx;
buf = sc->tx_buffer + sc->cur_tx;
if ((desc->status & 0x8000) || (buf->mbuf != NULL))
return (EBUSY);
MGETHDR(m0, M_DONTWAIT, MT_DATA);
if (m0 == NULL)
return (ENOBUFS);
/* Prepare mbuf. */
m0->m_len = min(MHLEN, ETHER_MIN_LEN - ETHER_CRC_LEN);
m0->m_pkthdr.len = m0->m_len;
m0->m_pkthdr.rcvif = sc->ifp;
bzero(mtod(m0, caddr_t), m0->m_len);
/* Fill fragments list. */
error = bus_dmamap_load_mbuf(sc->mtag, buf->map, m0,
epic_dma_map_txbuf, flist, 0);
if (error) {
m_freem(m0);
return (error);
}
bus_dmamap_sync(sc->mtag, buf->map, BUS_DMASYNC_PREWRITE);
/* Fill in descriptor. */
buf->mbuf = m0;
sc->pending_txs++;
sc->cur_tx = (sc->cur_tx + 1) & TX_RING_MASK;
desc->control = 0x01;
desc->txlength = max(m0->m_pkthdr.len, ETHER_MIN_LEN - ETHER_CRC_LEN);
desc->status = 0x8000;
bus_dmamap_sync(sc->ttag, sc->tmap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->ftag, sc->fmap, BUS_DMASYNC_PREWRITE);
/* Launch transmission. */
CSR_WRITE_4(sc, COMMAND, COMMAND_STOP_TDMA | COMMAND_TXQUEUED);
/* Wait Tx DMA to stop (for how long??? XXX) */
for (i = 0; i < 1000; i++) {
if (CSR_READ_4(sc, INTSTAT) & INTSTAT_TXIDLE)
break;
DELAY(1);
}
if ((CSR_READ_4(sc, INTSTAT) & INTSTAT_TXIDLE) == 0)
device_printf(sc->dev, "ERROR! can't stop Tx DMA (2)\n");
else
epic_tx_done(sc);
return (0);
}
/*
* Synopsis: Shut down board and deallocates rings.
*/
static void
epic_stop(epic_softc_t *sc)
{
EPIC_ASSERT_LOCKED(sc);
sc->tx_timeout = 0;
callout_stop(&sc->timer);
/* Disable interrupts */
CSR_WRITE_4(sc, INTMASK, 0);
CSR_WRITE_4(sc, GENCTL, 0);
/* Try to stop Rx and TX processes */
epic_stop_activity(sc);
/* Reset chip */
CSR_WRITE_4(sc, GENCTL, GENCTL_SOFT_RESET);
DELAY(1000);
/* Make chip go to bed */
CSR_WRITE_4(sc, GENCTL, GENCTL_POWER_DOWN);
/* Mark as stopped */
sc->ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
}
/*
* Synopsis: This function should free all memory allocated for rings.
*/
static void
epic_free_rings(epic_softc_t *sc)
{
int i;
for (i = 0; i < RX_RING_SIZE; i++) {
struct epic_rx_buffer *buf = sc->rx_buffer + i;
struct epic_rx_desc *desc = sc->rx_desc + i;
desc->status = 0;
desc->buflength = 0;
desc->bufaddr = 0;
if (buf->mbuf) {
bus_dmamap_unload(sc->mtag, buf->map);
bus_dmamap_destroy(sc->mtag, buf->map);
m_freem(buf->mbuf);
}
buf->mbuf = NULL;
}
if (sc->sparemap != NULL)
bus_dmamap_destroy(sc->mtag, sc->sparemap);
for (i = 0; i < TX_RING_SIZE; i++) {
struct epic_tx_buffer *buf = sc->tx_buffer + i;
struct epic_tx_desc *desc = sc->tx_desc + i;
desc->status = 0;
desc->buflength = 0;
desc->bufaddr = 0;
if (buf->mbuf) {
bus_dmamap_unload(sc->mtag, buf->map);
bus_dmamap_destroy(sc->mtag, buf->map);
m_freem(buf->mbuf);
}
buf->mbuf = NULL;
}
}
/*
* Synopsis: Allocates mbufs for Rx ring and point Rx descs to them.
* Point Tx descs to fragment lists. Check that all descs and fraglists
* are bounded and aligned properly.
*/
static int
epic_init_rings(epic_softc_t *sc)
{
int error, i;
sc->cur_rx = sc->cur_tx = sc->dirty_tx = sc->pending_txs = 0;
/* Initialize the RX descriptor ring. */
for (i = 0; i < RX_RING_SIZE; i++) {
struct epic_rx_buffer *buf = sc->rx_buffer + i;
struct epic_rx_desc *desc = sc->rx_desc + i;
desc->status = 0; /* Owned by driver */
desc->next = sc->rx_addr +
((i + 1) & RX_RING_MASK) * sizeof(struct epic_rx_desc);
if ((desc->next & 3) ||
((desc->next & PAGE_MASK) + sizeof *desc) > PAGE_SIZE) {
epic_free_rings(sc);
return (EFAULT);
}
buf->mbuf = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
if (buf->mbuf == NULL) {
epic_free_rings(sc);
return (ENOBUFS);
}
buf->mbuf->m_len = buf->mbuf->m_pkthdr.len = MCLBYTES;
m_adj(buf->mbuf, ETHER_ALIGN);
error = bus_dmamap_create(sc->mtag, 0, &buf->map);
if (error) {
epic_free_rings(sc);
return (error);
}
error = bus_dmamap_load_mbuf(sc->mtag, buf->map, buf->mbuf,
epic_dma_map_rxbuf, desc, 0);
if (error) {
epic_free_rings(sc);
return (error);
}
bus_dmamap_sync(sc->mtag, buf->map, BUS_DMASYNC_PREREAD);
desc->buflength = buf->mbuf->m_len; /* Max RX buffer length */
desc->status = 0x8000; /* Set owner bit to NIC */
}
bus_dmamap_sync(sc->rtag, sc->rmap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* Create the spare DMA map. */
error = bus_dmamap_create(sc->mtag, 0, &sc->sparemap);
if (error) {
epic_free_rings(sc);
return (error);
}
/* Initialize the TX descriptor ring. */
for (i = 0; i < TX_RING_SIZE; i++) {
struct epic_tx_buffer *buf = sc->tx_buffer + i;
struct epic_tx_desc *desc = sc->tx_desc + i;
desc->status = 0;
desc->next = sc->tx_addr +
((i + 1) & TX_RING_MASK) * sizeof(struct epic_tx_desc);
if ((desc->next & 3) ||
((desc->next & PAGE_MASK) + sizeof *desc) > PAGE_SIZE) {
epic_free_rings(sc);
return (EFAULT);
}
buf->mbuf = NULL;
desc->bufaddr = sc->frag_addr +
i * sizeof(struct epic_frag_list);
if ((desc->bufaddr & 3) ||
((desc->bufaddr & PAGE_MASK) +
sizeof(struct epic_frag_list)) > PAGE_SIZE) {
epic_free_rings(sc);
return (EFAULT);
}
error = bus_dmamap_create(sc->mtag, 0, &buf->map);
if (error) {
epic_free_rings(sc);
return (error);
}
}
bus_dmamap_sync(sc->ttag, sc->tmap,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->ftag, sc->fmap, BUS_DMASYNC_PREWRITE);
return (0);
}
/*
* EEPROM operation functions
*/
static void
epic_write_eepromreg(epic_softc_t *sc, u_int8_t val)
{
u_int16_t i;
CSR_WRITE_1(sc, EECTL, val);
for (i = 0; i < 0xFF; i++) {
if ((CSR_READ_1(sc, EECTL) & 0x20) == 0)
break;
}
}
static u_int8_t
epic_read_eepromreg(epic_softc_t *sc)
{
return (CSR_READ_1(sc, EECTL));
}
static u_int8_t
epic_eeprom_clock(epic_softc_t *sc, u_int8_t val)
{
epic_write_eepromreg(sc, val);
epic_write_eepromreg(sc, (val | 0x4));
epic_write_eepromreg(sc, val);
return (epic_read_eepromreg(sc));
}
static void
epic_output_eepromw(epic_softc_t *sc, u_int16_t val)
{
int i;
for (i = 0xF; i >= 0; i--) {
if (val & (1 << i))
epic_eeprom_clock(sc, 0x0B);
else
epic_eeprom_clock(sc, 0x03);
}
}
static u_int16_t
epic_input_eepromw(epic_softc_t *sc)
{
u_int16_t retval = 0;
int i;
for (i = 0xF; i >= 0; i--) {
if (epic_eeprom_clock(sc, 0x3) & 0x10)
retval |= (1 << i);
}
return (retval);
}
static int
epic_read_eeprom(epic_softc_t *sc, u_int16_t loc)
{
u_int16_t dataval;
u_int16_t read_cmd;
epic_write_eepromreg(sc, 3);
if (epic_read_eepromreg(sc) & 0x40)
read_cmd = (loc & 0x3F) | 0x180;
else
read_cmd = (loc & 0xFF) | 0x600;
epic_output_eepromw(sc, read_cmd);
dataval = epic_input_eepromw(sc);
epic_write_eepromreg(sc, 1);
return (dataval);
}
/*
* Here goes MII read/write routines.
*/
static int
epic_read_phy_reg(epic_softc_t *sc, int phy, int reg)
{
int i;
CSR_WRITE_4(sc, MIICTL, ((reg << 4) | (phy << 9) | 0x01));
for (i = 0; i < 0x100; i++) {
if ((CSR_READ_4(sc, MIICTL) & 0x01) == 0)
break;
DELAY(1);
}
return (CSR_READ_4(sc, MIIDATA));
}
static void
epic_write_phy_reg(epic_softc_t *sc, int phy, int reg, int val)
{
int i;
CSR_WRITE_4(sc, MIIDATA, val);
CSR_WRITE_4(sc, MIICTL, ((reg << 4) | (phy << 9) | 0x02));
for(i = 0; i < 0x100; i++) {
if ((CSR_READ_4(sc, MIICTL) & 0x02) == 0)
break;
DELAY(1);
}
}
static int
epic_miibus_readreg(device_t dev, int phy, int reg)
{
epic_softc_t *sc;
sc = device_get_softc(dev);
return (PHY_READ_2(sc, phy, reg));
}
static int
epic_miibus_writereg(device_t dev, int phy, int reg, int data)
{
epic_softc_t *sc;
sc = device_get_softc(dev);
PHY_WRITE_2(sc, phy, reg, data);
return (0);
}