freebsd-dev/sys/sparc64/sparc64/mp_machdep.c
2003-04-08 06:35:09 +00:00

468 lines
12 KiB
C

/*-
* Copyright (c) 1997 Berkeley Software Design, Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Berkeley Software Design Inc's name may not be used to endorse or
* promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY BERKELEY SOFTWARE DESIGN INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL BERKELEY SOFTWARE DESIGN INC BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from BSDI: locore.s,v 1.36.2.15 1999/08/23 22:34:41 cp Exp
*/
/*-
* Copyright (c) 2002 Jake Burkholder.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
#include "opt_ddb.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/lock.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/mutex.h>
#include <sys/pcpu.h>
#include <sys/proc.h>
#include <sys/smp.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/pmap.h>
#include <vm/vm_kern.h>
#include <vm/vm_extern.h>
#include <vm/vm_map.h>
#include <dev/ofw/openfirm.h>
#include <ddb/ddb.h>
#include <machine/asi.h>
#include <machine/atomic.h>
#include <machine/md_var.h>
#include <machine/metadata.h>
#include <machine/ofw_machdep.h>
#include <machine/smp.h>
#include <machine/tick.h>
#include <machine/tlb.h>
#include <machine/tte.h>
static ih_func_t cpu_ipi_ast;
static ih_func_t cpu_ipi_stop;
/*
* Argument area used to pass data to non-boot processors as they start up.
* This must be statically initialized with a known invalid upa module id,
* since the other processors will use it before the boot cpu enters the
* kernel.
*/
struct cpu_start_args cpu_start_args = { 0, -1, -1, 0, 0 };
struct ipi_cache_args ipi_cache_args;
struct ipi_tlb_args ipi_tlb_args;
struct mtx ipi_mtx;
vm_offset_t mp_tramp;
u_int mp_boot_mid;
static volatile u_int shutdown_cpus;
void cpu_mp_unleash(void *);
SYSINIT(cpu_mp_unleash, SI_SUB_SMP, SI_ORDER_FIRST, cpu_mp_unleash, NULL);
vm_offset_t
mp_tramp_alloc(void)
{
struct tte *tp;
char *v;
int i;
v = OF_claim(NULL, PAGE_SIZE, PAGE_SIZE);
if (v == NULL)
panic("mp_tramp_alloc");
bcopy(mp_tramp_code, v, mp_tramp_code_len);
*(u_long *)(v + mp_tramp_tlb_slots) = kernel_tlb_slots;
*(u_long *)(v + mp_tramp_func) = (u_long)mp_startup;
tp = (struct tte *)(v + mp_tramp_code_len);
for (i = 0; i < kernel_tlb_slots; i++) {
tp[i].tte_vpn = TV_VPN(kernel_tlbs[i].te_va, TS_4M);
tp[i].tte_data = TD_V | TD_4M | TD_PA(kernel_tlbs[i].te_pa) |
TD_L | TD_CP | TD_CV | TD_P | TD_W;
}
for (i = 0; i < PAGE_SIZE; i += sizeof(long))
flush(v + i);
return (vm_offset_t)v;
}
/*
* Probe for other cpus.
*/
int
cpu_mp_probe(void)
{
phandle_t child;
phandle_t root;
char buf[128];
int cpus;
all_cpus = 1 << PCPU_GET(cpuid);
mp_boot_mid = PCPU_GET(mid);
mp_ncpus = 1;
cpus = 0;
root = OF_peer(0);
for (child = OF_child(root); child != 0; child = OF_peer(child)) {
if (OF_getprop(child, "device_type", buf, sizeof(buf)) > 0 &&
strcmp(buf, "cpu") == 0)
cpus++;
}
mp_maxid = cpus;
return (cpus > 1);
}
static void
sun4u_startcpu(phandle_t cpu, void *func, u_long arg)
{
static struct {
cell_t name;
cell_t nargs;
cell_t nreturns;
cell_t cpu;
cell_t func;
cell_t arg;
} args = {
(cell_t)"SUNW,start-cpu",
3,
0,
0,
0,
0
};
args.cpu = cpu;
args.func = (cell_t)func;
args.arg = (cell_t)arg;
openfirmware(&args);
}
/*
* Stop the calling CPU.
*/
static void
sun4u_stopself(void)
{
static struct {
cell_t name;
cell_t nargs;
cell_t nreturns;
} args = {
(cell_t)"SUNW,stop-self",
0,
0,
};
openfirmware_exit(&args);
panic("sun4u_stopself: failed.");
}
/*
* Fire up any non-boot processors.
*/
void
cpu_mp_start(void)
{
volatile struct cpu_start_args *csa;
struct pcpu *pc;
phandle_t child;
phandle_t root;
vm_offset_t va;
char buf[128];
u_int clock;
int cpuid;
u_int mid;
u_long s;
mtx_init(&ipi_mtx, "ipi", NULL, MTX_SPIN);
intr_setup(PIL_AST, cpu_ipi_ast, -1, NULL, NULL);
intr_setup(PIL_RENDEZVOUS, (ih_func_t *)smp_rendezvous_action,
-1, NULL, NULL);
intr_setup(PIL_STOP, cpu_ipi_stop, -1, NULL, NULL);
root = OF_peer(0);
csa = &cpu_start_args;
for (child = OF_child(root); child != 0; child = OF_peer(child)) {
if (OF_getprop(child, "device_type", buf, sizeof(buf)) <= 0 ||
strcmp(buf, "cpu") != 0)
continue;
if (OF_getprop(child, "upa-portid", &mid, sizeof(mid)) <= 0 &&
OF_getprop(child, "portid", &mid, sizeof(mid)) <= 0)
panic("cpu_mp_start: can't get module id");
if (mid == mp_boot_mid)
continue;
if (OF_getprop(child, "clock-frequency", &clock,
sizeof(clock)) <= 0)
panic("cpu_mp_start: can't get clock");
csa->csa_state = 0;
sun4u_startcpu(child, (void *)mp_tramp, 0);
s = intr_disable();
while (csa->csa_state != CPU_CLKSYNC)
;
membar(StoreLoad);
csa->csa_tick = rd(tick);
while (csa->csa_state != CPU_INIT)
;
csa->csa_tick = 0;
intr_restore(s);
cpuid = mp_ncpus++;
cpu_identify(csa->csa_ver, clock, cpuid);
va = kmem_alloc(kernel_map, PCPU_PAGES * PAGE_SIZE);
pc = (struct pcpu *)(va + (PCPU_PAGES * PAGE_SIZE)) - 1;
pcpu_init(pc, cpuid, sizeof(*pc));
pc->pc_addr = va;
pc->pc_mid = mid;
pc->pc_node = child;
all_cpus |= 1 << cpuid;
}
PCPU_SET(other_cpus, all_cpus & ~(1 << PCPU_GET(cpuid)));
smp_active = 1;
}
void
cpu_mp_announce(void)
{
}
void
cpu_mp_unleash(void *v)
{
volatile struct cpu_start_args *csa;
struct pcpu *pc;
vm_offset_t va;
vm_paddr_t pa;
u_int ctx_min;
u_int ctx_inc;
u_long s;
int i;
ctx_min = TLB_CTX_USER_MIN;
ctx_inc = (TLB_CTX_USER_MAX - 1) / mp_ncpus;
csa = &cpu_start_args;
csa->csa_count = mp_ncpus;
SLIST_FOREACH(pc, &cpuhead, pc_allcpu) {
pc->pc_tlb_ctx = ctx_min;
pc->pc_tlb_ctx_min = ctx_min;
pc->pc_tlb_ctx_max = ctx_min + ctx_inc;
ctx_min += ctx_inc;
if (pc->pc_cpuid == PCPU_GET(cpuid))
continue;
KASSERT(pc->pc_idlethread != NULL,
("cpu_mp_unleash: idlethread"));
KASSERT(pc->pc_curthread == pc->pc_idlethread,
("cpu_mp_unleash: curthread"));
pc->pc_curpcb = pc->pc_curthread->td_pcb;
for (i = 0; i < PCPU_PAGES; i++) {
va = pc->pc_addr + i * PAGE_SIZE;
pa = pmap_kextract(va);
if (pa == 0)
panic("cpu_mp_unleash: pmap_kextract\n");
csa->csa_ttes[i].tte_vpn = TV_VPN(va, TS_8K);
csa->csa_ttes[i].tte_data = TD_V | TD_8K | TD_PA(pa) |
TD_L | TD_CP | TD_CV | TD_P | TD_W;
}
csa->csa_state = 0;
csa->csa_pcpu = pc->pc_addr;
csa->csa_mid = pc->pc_mid;
s = intr_disable();
while (csa->csa_state != CPU_BOOTSTRAP)
;
intr_restore(s);
}
membar(StoreLoad);
csa->csa_count = 0;
smp_started = 1;
}
void
cpu_mp_bootstrap(struct pcpu *pc)
{
volatile struct cpu_start_args *csa;
csa = &cpu_start_args;
pmap_map_tsb();
cpu_setregs(pc);
tick_start_ap();
smp_cpus++;
PCPU_SET(other_cpus, all_cpus & ~(1 << PCPU_GET(cpuid)));
printf("SMP: AP CPU #%d Launched!\n", PCPU_GET(cpuid));
csa->csa_count--;
membar(StoreLoad);
csa->csa_state = CPU_BOOTSTRAP;
while (csa->csa_count != 0)
;
binuptime(PCPU_PTR(switchtime));
PCPU_SET(switchticks, ticks);
/* ok, now grab sched_lock and enter the scheduler */
mtx_lock_spin(&sched_lock);
cpu_throw(NULL, choosethread()); /* doesn't return */
}
void
cpu_mp_shutdown(void)
{
int i;
critical_enter();
shutdown_cpus = PCPU_GET(other_cpus);
if (stopped_cpus != PCPU_GET(other_cpus)) /* XXX */
stop_cpus(stopped_cpus ^ PCPU_GET(other_cpus));
i = 0;
while (shutdown_cpus != 0) {
if (i++ > 100000) {
printf("timeout shutting down CPUs.\n");
break;
}
}
/* XXX: delay a bit to allow the CPUs to actually enter the PROM. */
DELAY(100000);
critical_exit();
}
static void
cpu_ipi_ast(struct trapframe *tf)
{
}
static void
cpu_ipi_stop(struct trapframe *tf)
{
CTR1(KTR_SMP, "cpu_ipi_stop: stopped %d", PCPU_GET(cpuid));
atomic_set_acq_int(&stopped_cpus, PCPU_GET(cpumask));
while ((started_cpus & PCPU_GET(cpumask)) == 0) {
if ((shutdown_cpus & PCPU_GET(cpumask)) != 0) {
atomic_clear_int(&shutdown_cpus, PCPU_GET(cpumask));
sun4u_stopself();
}
}
atomic_clear_rel_int(&started_cpus, PCPU_GET(cpumask));
atomic_clear_rel_int(&stopped_cpus, PCPU_GET(cpumask));
CTR1(KTR_SMP, "cpu_ipi_stop: restarted %d", PCPU_GET(cpuid));
}
void
cpu_ipi_selected(u_int cpus, u_long d0, u_long d1, u_long d2)
{
struct pcpu *pc;
u_int cpu;
while (cpus) {
cpu = ffs(cpus) - 1;
cpus &= ~(1 << cpu);
pc = pcpu_find(cpu);
cpu_ipi_send(pc->pc_mid, d0, d1, d2);
}
}
void
cpu_ipi_send(u_int mid, u_long d0, u_long d1, u_long d2)
{
u_long s;
int i;
KASSERT((ldxa(0, ASI_INTR_DISPATCH_STATUS) & IDR_BUSY) == 0,
("ipi_send: outstanding dispatch"));
for (i = 0; i < IPI_RETRIES; i++) {
s = intr_disable();
stxa(AA_SDB_INTR_D0, ASI_SDB_INTR_W, d0);
stxa(AA_SDB_INTR_D1, ASI_SDB_INTR_W, d1);
stxa(AA_SDB_INTR_D2, ASI_SDB_INTR_W, d2);
stxa(AA_INTR_SEND | (mid << 14), ASI_SDB_INTR_W, 0);
membar(Sync);
while (ldxa(0, ASI_INTR_DISPATCH_STATUS) & IDR_BUSY)
;
intr_restore(s);
if ((ldxa(0, ASI_INTR_DISPATCH_STATUS) & IDR_NACK) == 0)
return;
}
if (
#ifdef DDB
db_active ||
#endif
panicstr != NULL)
printf("ipi_send: couldn't send ipi to module %u\n", mid);
else
panic("ipi_send: couldn't send ipi");
}
void
ipi_selected(u_int cpus, u_int ipi)
{
cpu_ipi_selected(cpus, 0, (u_long)tl_ipi_level, ipi);
}
void
ipi_all(u_int ipi)
{
panic("ipi_all");
}
void
ipi_all_but_self(u_int ipi)
{
cpu_ipi_selected(PCPU_GET(other_cpus), 0, (u_long)tl_ipi_level, ipi);
}