freebsd-dev/contrib/gcc/config/sparc/sparc.c
2004-07-28 03:11:36 +00:00

9432 lines
260 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Subroutines for insn-output.c for SPARC.
Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
Contributed by Michael Tiemann (tiemann@cygnus.com)
64-bit SPARC-V9 support by Michael Tiemann, Jim Wilson, and Doug Evans,
at Cygnus Support.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GCC is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to
the Free Software Foundation, 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "tree.h"
#include "rtl.h"
#include "regs.h"
#include "hard-reg-set.h"
#include "real.h"
#include "insn-config.h"
#include "conditions.h"
#include "output.h"
#include "insn-attr.h"
#include "flags.h"
#include "function.h"
#include "expr.h"
#include "optabs.h"
#include "recog.h"
#include "toplev.h"
#include "ggc.h"
#include "tm_p.h"
#include "debug.h"
#include "target.h"
#include "target-def.h"
#include "cfglayout.h"
/* 1 if the caller has placed an "unimp" insn immediately after the call.
This is used in v8 code when calling a function that returns a structure.
v9 doesn't have this. Be careful to have this test be the same as that
used on the call. */
#define SKIP_CALLERS_UNIMP_P \
(!TARGET_ARCH64 && current_function_returns_struct \
&& ! integer_zerop (DECL_SIZE (DECL_RESULT (current_function_decl))) \
&& (TREE_CODE (DECL_SIZE (DECL_RESULT (current_function_decl))) \
== INTEGER_CST))
/* Global variables for machine-dependent things. */
/* Size of frame. Need to know this to emit return insns from leaf procedures.
ACTUAL_FSIZE is set by compute_frame_size() which is called during the
reload pass. This is important as the value is later used in insn
scheduling (to see what can go in a delay slot).
APPARENT_FSIZE is the size of the stack less the register save area and less
the outgoing argument area. It is used when saving call preserved regs. */
static HOST_WIDE_INT apparent_fsize;
static HOST_WIDE_INT actual_fsize;
/* Number of live general or floating point registers needed to be
saved (as 4-byte quantities). */
static int num_gfregs;
/* Save the operands last given to a compare for use when we
generate a scc or bcc insn. */
rtx sparc_compare_op0, sparc_compare_op1;
/* Coordinate with the md file wrt special insns created by
sparc_nonflat_function_epilogue. */
bool sparc_emitting_epilogue;
/* Vector to say how input registers are mapped to output registers.
HARD_FRAME_POINTER_REGNUM cannot be remapped by this function to
eliminate it. You must use -fomit-frame-pointer to get that. */
char leaf_reg_remap[] =
{ 0, 1, 2, 3, 4, 5, 6, 7,
-1, -1, -1, -1, -1, -1, 14, -1,
-1, -1, -1, -1, -1, -1, -1, -1,
8, 9, 10, 11, 12, 13, -1, 15,
32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63,
64, 65, 66, 67, 68, 69, 70, 71,
72, 73, 74, 75, 76, 77, 78, 79,
80, 81, 82, 83, 84, 85, 86, 87,
88, 89, 90, 91, 92, 93, 94, 95,
96, 97, 98, 99, 100};
/* Vector, indexed by hard register number, which contains 1
for a register that is allowable in a candidate for leaf
function treatment. */
char sparc_leaf_regs[] =
{ 1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 0, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1};
struct machine_function GTY(())
{
/* Some local-dynamic TLS symbol name. */
const char *some_ld_name;
};
/* Name of where we pretend to think the frame pointer points.
Normally, this is "%fp", but if we are in a leaf procedure,
this is "%sp+something". We record "something" separately as it may be
too big for reg+constant addressing. */
static const char *frame_base_name;
static HOST_WIDE_INT frame_base_offset;
static void sparc_init_modes (void);
static int save_regs (FILE *, int, int, const char *, int, int, HOST_WIDE_INT);
static int restore_regs (FILE *, int, int, const char *, int, int);
static void build_big_number (FILE *, HOST_WIDE_INT, const char *);
static void scan_record_type (tree, int *, int *, int *);
static int function_arg_slotno (const CUMULATIVE_ARGS *, enum machine_mode,
tree, int, int, int *, int *);
static int supersparc_adjust_cost (rtx, rtx, rtx, int);
static int hypersparc_adjust_cost (rtx, rtx, rtx, int);
static void sparc_output_addr_vec (rtx);
static void sparc_output_addr_diff_vec (rtx);
static void sparc_output_deferred_case_vectors (void);
static int check_return_regs (rtx);
static int epilogue_renumber (rtx *, int);
static bool sparc_assemble_integer (rtx, unsigned int, int);
static int set_extends (rtx);
static void output_restore_regs (FILE *, int);
static void sparc_output_function_prologue (FILE *, HOST_WIDE_INT);
static void sparc_output_function_epilogue (FILE *, HOST_WIDE_INT);
static void sparc_flat_function_epilogue (FILE *, HOST_WIDE_INT);
static void sparc_flat_function_prologue (FILE *, HOST_WIDE_INT);
static void sparc_flat_save_restore (FILE *, const char *, int,
unsigned long, unsigned long,
const char *, const char *,
HOST_WIDE_INT);
static void sparc_nonflat_function_epilogue (FILE *, HOST_WIDE_INT, int);
static void sparc_nonflat_function_prologue (FILE *, HOST_WIDE_INT, int);
#ifdef OBJECT_FORMAT_ELF
static void sparc_elf_asm_named_section (const char *, unsigned int);
#endif
static void sparc_aout_select_section (tree, int, unsigned HOST_WIDE_INT)
ATTRIBUTE_UNUSED;
static void sparc_aout_select_rtx_section (enum machine_mode, rtx,
unsigned HOST_WIDE_INT)
ATTRIBUTE_UNUSED;
static int sparc_adjust_cost (rtx, rtx, rtx, int);
static int sparc_issue_rate (void);
static void sparc_sched_init (FILE *, int, int);
static int sparc_use_dfa_pipeline_interface (void);
static int sparc_use_sched_lookahead (void);
static void emit_soft_tfmode_libcall (const char *, int, rtx *);
static void emit_soft_tfmode_binop (enum rtx_code, rtx *);
static void emit_soft_tfmode_unop (enum rtx_code, rtx *);
static void emit_soft_tfmode_cvt (enum rtx_code, rtx *);
static void emit_hard_tfmode_operation (enum rtx_code, rtx *);
static bool sparc_function_ok_for_sibcall (tree, tree);
static void sparc_init_libfuncs (void);
static void sparc_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
HOST_WIDE_INT, tree);
static struct machine_function * sparc_init_machine_status (void);
static bool sparc_cannot_force_const_mem (rtx);
static rtx sparc_tls_get_addr (void);
static rtx sparc_tls_got (void);
static const char *get_some_local_dynamic_name (void);
static int get_some_local_dynamic_name_1 (rtx *, void *);
static bool sparc_rtx_costs (rtx, int, int, int *);
/* Option handling. */
/* Code model option as passed by user. */
const char *sparc_cmodel_string;
/* Parsed value. */
enum cmodel sparc_cmodel;
char sparc_hard_reg_printed[8];
struct sparc_cpu_select sparc_select[] =
{
/* switch name, tune arch */
{ (char *)0, "default", 1, 1 },
{ (char *)0, "-mcpu=", 1, 1 },
{ (char *)0, "-mtune=", 1, 0 },
{ 0, 0, 0, 0 }
};
/* CPU type. This is set from TARGET_CPU_DEFAULT and -m{cpu,tune}=xxx. */
enum processor_type sparc_cpu;
/* Initialize the GCC target structure. */
/* The sparc default is to use .half rather than .short for aligned
HI objects. Use .word instead of .long on non-ELF systems. */
#undef TARGET_ASM_ALIGNED_HI_OP
#define TARGET_ASM_ALIGNED_HI_OP "\t.half\t"
#ifndef OBJECT_FORMAT_ELF
#undef TARGET_ASM_ALIGNED_SI_OP
#define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
#endif
#undef TARGET_ASM_UNALIGNED_HI_OP
#define TARGET_ASM_UNALIGNED_HI_OP "\t.uahalf\t"
#undef TARGET_ASM_UNALIGNED_SI_OP
#define TARGET_ASM_UNALIGNED_SI_OP "\t.uaword\t"
#undef TARGET_ASM_UNALIGNED_DI_OP
#define TARGET_ASM_UNALIGNED_DI_OP "\t.uaxword\t"
/* The target hook has to handle DI-mode values. */
#undef TARGET_ASM_INTEGER
#define TARGET_ASM_INTEGER sparc_assemble_integer
#undef TARGET_ASM_FUNCTION_PROLOGUE
#define TARGET_ASM_FUNCTION_PROLOGUE sparc_output_function_prologue
#undef TARGET_ASM_FUNCTION_EPILOGUE
#define TARGET_ASM_FUNCTION_EPILOGUE sparc_output_function_epilogue
#undef TARGET_SCHED_ADJUST_COST
#define TARGET_SCHED_ADJUST_COST sparc_adjust_cost
#undef TARGET_SCHED_ISSUE_RATE
#define TARGET_SCHED_ISSUE_RATE sparc_issue_rate
#undef TARGET_SCHED_INIT
#define TARGET_SCHED_INIT sparc_sched_init
#undef TARGET_SCHED_USE_DFA_PIPELINE_INTERFACE
#define TARGET_SCHED_USE_DFA_PIPELINE_INTERFACE sparc_use_dfa_pipeline_interface
#undef TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD
#define TARGET_SCHED_FIRST_CYCLE_MULTIPASS_DFA_LOOKAHEAD sparc_use_sched_lookahead
#undef TARGET_FUNCTION_OK_FOR_SIBCALL
#define TARGET_FUNCTION_OK_FOR_SIBCALL sparc_function_ok_for_sibcall
#undef TARGET_INIT_LIBFUNCS
#define TARGET_INIT_LIBFUNCS sparc_init_libfuncs
#ifdef HAVE_AS_TLS
#undef TARGET_HAVE_TLS
#define TARGET_HAVE_TLS true
#endif
#undef TARGET_CANNOT_FORCE_CONST_MEM
#define TARGET_CANNOT_FORCE_CONST_MEM sparc_cannot_force_const_mem
#undef TARGET_ASM_OUTPUT_MI_THUNK
#define TARGET_ASM_OUTPUT_MI_THUNK sparc_output_mi_thunk
#undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
#define TARGET_ASM_CAN_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall
#undef TARGET_RTX_COSTS
#define TARGET_RTX_COSTS sparc_rtx_costs
#undef TARGET_ADDRESS_COST
#define TARGET_ADDRESS_COST hook_int_rtx_0
struct gcc_target targetm = TARGET_INITIALIZER;
/* Validate and override various options, and do some machine dependent
initialization. */
void
sparc_override_options (void)
{
static struct code_model {
const char *const name;
const int value;
} const cmodels[] = {
{ "32", CM_32 },
{ "medlow", CM_MEDLOW },
{ "medmid", CM_MEDMID },
{ "medany", CM_MEDANY },
{ "embmedany", CM_EMBMEDANY },
{ 0, 0 }
};
const struct code_model *cmodel;
/* Map TARGET_CPU_DEFAULT to value for -m{arch,tune}=. */
static struct cpu_default {
const int cpu;
const char *const name;
} const cpu_default[] = {
/* There must be one entry here for each TARGET_CPU value. */
{ TARGET_CPU_sparc, "cypress" },
{ TARGET_CPU_sparclet, "tsc701" },
{ TARGET_CPU_sparclite, "f930" },
{ TARGET_CPU_v8, "v8" },
{ TARGET_CPU_hypersparc, "hypersparc" },
{ TARGET_CPU_sparclite86x, "sparclite86x" },
{ TARGET_CPU_supersparc, "supersparc" },
{ TARGET_CPU_v9, "v9" },
{ TARGET_CPU_ultrasparc, "ultrasparc" },
{ TARGET_CPU_ultrasparc3, "ultrasparc3" },
{ 0, 0 }
};
const struct cpu_default *def;
/* Table of values for -m{cpu,tune}=. */
static struct cpu_table {
const char *const name;
const enum processor_type processor;
const int disable;
const int enable;
} const cpu_table[] = {
{ "v7", PROCESSOR_V7, MASK_ISA, 0 },
{ "cypress", PROCESSOR_CYPRESS, MASK_ISA, 0 },
{ "v8", PROCESSOR_V8, MASK_ISA, MASK_V8 },
/* TI TMS390Z55 supersparc */
{ "supersparc", PROCESSOR_SUPERSPARC, MASK_ISA, MASK_V8 },
{ "sparclite", PROCESSOR_SPARCLITE, MASK_ISA, MASK_SPARCLITE },
/* The Fujitsu MB86930 is the original sparclite chip, with no fpu.
The Fujitsu MB86934 is the recent sparclite chip, with an fpu. */
{ "f930", PROCESSOR_F930, MASK_ISA|MASK_FPU, MASK_SPARCLITE },
{ "f934", PROCESSOR_F934, MASK_ISA, MASK_SPARCLITE|MASK_FPU },
{ "hypersparc", PROCESSOR_HYPERSPARC, MASK_ISA, MASK_V8|MASK_FPU },
{ "sparclite86x", PROCESSOR_SPARCLITE86X, MASK_ISA|MASK_FPU,
MASK_SPARCLITE },
{ "sparclet", PROCESSOR_SPARCLET, MASK_ISA, MASK_SPARCLET },
/* TEMIC sparclet */
{ "tsc701", PROCESSOR_TSC701, MASK_ISA, MASK_SPARCLET },
{ "v9", PROCESSOR_V9, MASK_ISA, MASK_V9 },
/* TI ultrasparc I, II, IIi */
{ "ultrasparc", PROCESSOR_ULTRASPARC, MASK_ISA, MASK_V9
/* Although insns using %y are deprecated, it is a clear win on current
ultrasparcs. */
|MASK_DEPRECATED_V8_INSNS},
/* TI ultrasparc III */
/* ??? Check if %y issue still holds true in ultra3. */
{ "ultrasparc3", PROCESSOR_ULTRASPARC3, MASK_ISA, MASK_V9|MASK_DEPRECATED_V8_INSNS},
{ 0, 0, 0, 0 }
};
const struct cpu_table *cpu;
const struct sparc_cpu_select *sel;
int fpu;
#ifndef SPARC_BI_ARCH
/* Check for unsupported architecture size. */
if (! TARGET_64BIT != DEFAULT_ARCH32_P)
error ("%s is not supported by this configuration",
DEFAULT_ARCH32_P ? "-m64" : "-m32");
#endif
/* We force all 64bit archs to use 128 bit long double */
if (TARGET_64BIT && ! TARGET_LONG_DOUBLE_128)
{
error ("-mlong-double-64 not allowed with -m64");
target_flags |= MASK_LONG_DOUBLE_128;
}
/* Code model selection. */
sparc_cmodel = SPARC_DEFAULT_CMODEL;
#ifdef SPARC_BI_ARCH
if (TARGET_ARCH32)
sparc_cmodel = CM_32;
#endif
if (sparc_cmodel_string != NULL)
{
if (TARGET_ARCH64)
{
for (cmodel = &cmodels[0]; cmodel->name; cmodel++)
if (strcmp (sparc_cmodel_string, cmodel->name) == 0)
break;
if (cmodel->name == NULL)
error ("bad value (%s) for -mcmodel= switch", sparc_cmodel_string);
else
sparc_cmodel = cmodel->value;
}
else
error ("-mcmodel= is not supported on 32 bit systems");
}
fpu = TARGET_FPU; /* save current -mfpu status */
/* Set the default CPU. */
for (def = &cpu_default[0]; def->name; ++def)
if (def->cpu == TARGET_CPU_DEFAULT)
break;
if (! def->name)
abort ();
sparc_select[0].string = def->name;
for (sel = &sparc_select[0]; sel->name; ++sel)
{
if (sel->string)
{
for (cpu = &cpu_table[0]; cpu->name; ++cpu)
if (! strcmp (sel->string, cpu->name))
{
if (sel->set_tune_p)
sparc_cpu = cpu->processor;
if (sel->set_arch_p)
{
target_flags &= ~cpu->disable;
target_flags |= cpu->enable;
}
break;
}
if (! cpu->name)
error ("bad value (%s) for %s switch", sel->string, sel->name);
}
}
/* If -mfpu or -mno-fpu was explicitly used, don't override with
the processor default. Clear MASK_FPU_SET to avoid confusing
the reverse mapping from switch values to names. */
if (TARGET_FPU_SET)
{
target_flags = (target_flags & ~MASK_FPU) | fpu;
target_flags &= ~MASK_FPU_SET;
}
/* Don't allow -mvis if FPU is disabled. */
if (! TARGET_FPU)
target_flags &= ~MASK_VIS;
/* -mvis assumes UltraSPARC+, so we are sure v9 instructions
are available.
-m64 also implies v9. */
if (TARGET_VIS || TARGET_ARCH64)
{
target_flags |= MASK_V9;
target_flags &= ~(MASK_V8 | MASK_SPARCLET | MASK_SPARCLITE);
}
/* Use the deprecated v8 insns for sparc64 in 32 bit mode. */
if (TARGET_V9 && TARGET_ARCH32)
target_flags |= MASK_DEPRECATED_V8_INSNS;
/* V8PLUS requires V9, makes no sense in 64 bit mode. */
if (! TARGET_V9 || TARGET_ARCH64)
target_flags &= ~MASK_V8PLUS;
/* Don't use stack biasing in 32 bit mode. */
if (TARGET_ARCH32)
target_flags &= ~MASK_STACK_BIAS;
/* Supply a default value for align_functions. */
if (align_functions == 0
&& (sparc_cpu == PROCESSOR_ULTRASPARC
|| sparc_cpu == PROCESSOR_ULTRASPARC3))
align_functions = 32;
/* Validate PCC_STRUCT_RETURN. */
if (flag_pcc_struct_return == DEFAULT_PCC_STRUCT_RETURN)
flag_pcc_struct_return = (TARGET_ARCH64 ? 0 : 1);
/* Only use .uaxword when compiling for a 64-bit target. */
if (!TARGET_ARCH64)
targetm.asm_out.unaligned_op.di = NULL;
/* Do various machine dependent initializations. */
sparc_init_modes ();
/* Set up function hooks. */
init_machine_status = sparc_init_machine_status;
}
/* Miscellaneous utilities. */
/* Nonzero if CODE, a comparison, is suitable for use in v9 conditional move
or branch on register contents instructions. */
int
v9_regcmp_p (enum rtx_code code)
{
return (code == EQ || code == NE || code == GE || code == LT
|| code == LE || code == GT);
}
/* Operand constraints. */
/* Return nonzero only if OP is a register of mode MODE,
or const0_rtx. */
int
reg_or_0_operand (rtx op, enum machine_mode mode)
{
if (register_operand (op, mode))
return 1;
if (op == const0_rtx)
return 1;
if (GET_MODE (op) == VOIDmode && GET_CODE (op) == CONST_DOUBLE
&& CONST_DOUBLE_HIGH (op) == 0
&& CONST_DOUBLE_LOW (op) == 0)
return 1;
if (fp_zero_operand (op, mode))
return 1;
return 0;
}
/* Return nonzero only if OP is const1_rtx. */
int
const1_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
return op == const1_rtx;
}
/* Nonzero if OP is a floating point value with value 0.0. */
int
fp_zero_operand (rtx op, enum machine_mode mode)
{
if (GET_MODE_CLASS (GET_MODE (op)) != MODE_FLOAT)
return 0;
return op == CONST0_RTX (mode);
}
/* Nonzero if OP is a register operand in floating point register. */
int
fp_register_operand (rtx op, enum machine_mode mode)
{
if (! register_operand (op, mode))
return 0;
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
return GET_CODE (op) == REG && SPARC_FP_REG_P (REGNO (op));
}
/* Nonzero if OP is a floating point constant which can
be loaded into an integer register using a single
sethi instruction. */
int
fp_sethi_p (rtx op)
{
if (GET_CODE (op) == CONST_DOUBLE)
{
REAL_VALUE_TYPE r;
long i;
REAL_VALUE_FROM_CONST_DOUBLE (r, op);
if (REAL_VALUES_EQUAL (r, dconst0) &&
! REAL_VALUE_MINUS_ZERO (r))
return 0;
REAL_VALUE_TO_TARGET_SINGLE (r, i);
if (SPARC_SETHI_P (i))
return 1;
}
return 0;
}
/* Nonzero if OP is a floating point constant which can
be loaded into an integer register using a single
mov instruction. */
int
fp_mov_p (rtx op)
{
if (GET_CODE (op) == CONST_DOUBLE)
{
REAL_VALUE_TYPE r;
long i;
REAL_VALUE_FROM_CONST_DOUBLE (r, op);
if (REAL_VALUES_EQUAL (r, dconst0) &&
! REAL_VALUE_MINUS_ZERO (r))
return 0;
REAL_VALUE_TO_TARGET_SINGLE (r, i);
if (SPARC_SIMM13_P (i))
return 1;
}
return 0;
}
/* Nonzero if OP is a floating point constant which can
be loaded into an integer register using a high/losum
instruction sequence. */
int
fp_high_losum_p (rtx op)
{
/* The constraints calling this should only be in
SFmode move insns, so any constant which cannot
be moved using a single insn will do. */
if (GET_CODE (op) == CONST_DOUBLE)
{
REAL_VALUE_TYPE r;
long i;
REAL_VALUE_FROM_CONST_DOUBLE (r, op);
if (REAL_VALUES_EQUAL (r, dconst0) &&
! REAL_VALUE_MINUS_ZERO (r))
return 0;
REAL_VALUE_TO_TARGET_SINGLE (r, i);
if (! SPARC_SETHI_P (i)
&& ! SPARC_SIMM13_P (i))
return 1;
}
return 0;
}
/* Nonzero if OP is an integer register. */
int
intreg_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
return (register_operand (op, SImode)
|| (TARGET_ARCH64 && register_operand (op, DImode)));
}
/* Nonzero if OP is a floating point condition code register. */
int
fcc_reg_operand (rtx op, enum machine_mode mode)
{
/* This can happen when recog is called from combine. Op may be a MEM.
Fail instead of calling abort in this case. */
if (GET_CODE (op) != REG)
return 0;
if (mode != VOIDmode && mode != GET_MODE (op))
return 0;
if (mode == VOIDmode
&& (GET_MODE (op) != CCFPmode && GET_MODE (op) != CCFPEmode))
return 0;
#if 0 /* ??? ==> 1 when %fcc0-3 are pseudos first. See gen_compare_reg(). */
if (reg_renumber == 0)
return REGNO (op) >= FIRST_PSEUDO_REGISTER;
return REGNO_OK_FOR_CCFP_P (REGNO (op));
#else
return (unsigned) REGNO (op) - SPARC_FIRST_V9_FCC_REG < 4;
#endif
}
/* Nonzero if OP is a floating point condition code fcc0 register. */
int
fcc0_reg_operand (rtx op, enum machine_mode mode)
{
/* This can happen when recog is called from combine. Op may be a MEM.
Fail instead of calling abort in this case. */
if (GET_CODE (op) != REG)
return 0;
if (mode != VOIDmode && mode != GET_MODE (op))
return 0;
if (mode == VOIDmode
&& (GET_MODE (op) != CCFPmode && GET_MODE (op) != CCFPEmode))
return 0;
return REGNO (op) == SPARC_FCC_REG;
}
/* Nonzero if OP is an integer or floating point condition code register. */
int
icc_or_fcc_reg_operand (rtx op, enum machine_mode mode)
{
if (GET_CODE (op) == REG && REGNO (op) == SPARC_ICC_REG)
{
if (mode != VOIDmode && mode != GET_MODE (op))
return 0;
if (mode == VOIDmode
&& GET_MODE (op) != CCmode && GET_MODE (op) != CCXmode)
return 0;
return 1;
}
return fcc_reg_operand (op, mode);
}
/* Nonzero if OP can appear as the dest of a RESTORE insn. */
int
restore_operand (rtx op, enum machine_mode mode)
{
return (GET_CODE (op) == REG && GET_MODE (op) == mode
&& (REGNO (op) < 8 || (REGNO (op) >= 24 && REGNO (op) < 32)));
}
/* Call insn on SPARC can take a PC-relative constant address, or any regular
memory address. */
int
call_operand (rtx op, enum machine_mode mode)
{
if (GET_CODE (op) != MEM)
abort ();
op = XEXP (op, 0);
return (symbolic_operand (op, mode) || memory_address_p (Pmode, op));
}
int
call_operand_address (rtx op, enum machine_mode mode)
{
return (symbolic_operand (op, mode) || memory_address_p (Pmode, op));
}
/* If OP is a SYMBOL_REF of a thread-local symbol, return its TLS mode,
otherwise return 0. */
int
tls_symbolic_operand (rtx op)
{
if (GET_CODE (op) != SYMBOL_REF)
return 0;
return SYMBOL_REF_TLS_MODEL (op);
}
int
tgd_symbolic_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
return tls_symbolic_operand (op) == TLS_MODEL_GLOBAL_DYNAMIC;
}
int
tld_symbolic_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
return tls_symbolic_operand (op) == TLS_MODEL_LOCAL_DYNAMIC;
}
int
tie_symbolic_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
return tls_symbolic_operand (op) == TLS_MODEL_INITIAL_EXEC;
}
int
tle_symbolic_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
return tls_symbolic_operand (op) == TLS_MODEL_LOCAL_EXEC;
}
/* Returns 1 if OP is either a symbol reference or a sum of a symbol
reference and a constant. */
int
symbolic_operand (register rtx op, enum machine_mode mode)
{
enum machine_mode omode = GET_MODE (op);
if (omode != mode && omode != VOIDmode && mode != VOIDmode)
return 0;
switch (GET_CODE (op))
{
case SYMBOL_REF:
return !SYMBOL_REF_TLS_MODEL (op);
case LABEL_REF:
return 1;
case CONST:
op = XEXP (op, 0);
return (((GET_CODE (XEXP (op, 0)) == SYMBOL_REF
&& !SYMBOL_REF_TLS_MODEL (XEXP (op, 0)))
|| GET_CODE (XEXP (op, 0)) == LABEL_REF)
&& GET_CODE (XEXP (op, 1)) == CONST_INT);
default:
return 0;
}
}
/* Return truth value of statement that OP is a symbolic memory
operand of mode MODE. */
int
symbolic_memory_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
if (GET_CODE (op) != MEM)
return 0;
op = XEXP (op, 0);
return ((GET_CODE (op) == SYMBOL_REF && !SYMBOL_REF_TLS_MODEL (op))
|| GET_CODE (op) == CONST || GET_CODE (op) == HIGH
|| GET_CODE (op) == LABEL_REF);
}
/* Return truth value of statement that OP is a LABEL_REF of mode MODE. */
int
label_ref_operand (rtx op, enum machine_mode mode)
{
if (GET_CODE (op) != LABEL_REF)
return 0;
if (GET_MODE (op) != mode)
return 0;
return 1;
}
/* Return 1 if the operand is an argument used in generating pic references
in either the medium/low or medium/anywhere code models of sparc64. */
int
sp64_medium_pic_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
/* Check for (const (minus (symbol_ref:GOT)
(const (minus (label) (pc))))). */
if (GET_CODE (op) != CONST)
return 0;
op = XEXP (op, 0);
if (GET_CODE (op) != MINUS)
return 0;
if (GET_CODE (XEXP (op, 0)) != SYMBOL_REF)
return 0;
/* ??? Ensure symbol is GOT. */
if (GET_CODE (XEXP (op, 1)) != CONST)
return 0;
if (GET_CODE (XEXP (XEXP (op, 1), 0)) != MINUS)
return 0;
return 1;
}
/* Return 1 if the operand is a data segment reference. This includes
the readonly data segment, or in other words anything but the text segment.
This is needed in the medium/anywhere code model on v9. These values
are accessed with EMBMEDANY_BASE_REG. */
int
data_segment_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
switch (GET_CODE (op))
{
case SYMBOL_REF :
return ! SYMBOL_REF_FUNCTION_P (op);
case PLUS :
/* Assume canonical format of symbol + constant.
Fall through. */
case CONST :
return data_segment_operand (XEXP (op, 0), VOIDmode);
default :
return 0;
}
}
/* Return 1 if the operand is a text segment reference.
This is needed in the medium/anywhere code model on v9. */
int
text_segment_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
switch (GET_CODE (op))
{
case LABEL_REF :
return 1;
case SYMBOL_REF :
return SYMBOL_REF_FUNCTION_P (op);
case PLUS :
/* Assume canonical format of symbol + constant.
Fall through. */
case CONST :
return text_segment_operand (XEXP (op, 0), VOIDmode);
default :
return 0;
}
}
/* Return 1 if the operand is either a register or a memory operand that is
not symbolic. */
int
reg_or_nonsymb_mem_operand (register rtx op, enum machine_mode mode)
{
if (register_operand (op, mode))
return 1;
if (memory_operand (op, mode) && ! symbolic_memory_operand (op, mode))
return 1;
return 0;
}
int
splittable_symbolic_memory_operand (rtx op,
enum machine_mode mode ATTRIBUTE_UNUSED)
{
if (GET_CODE (op) != MEM)
return 0;
if (! symbolic_operand (XEXP (op, 0), Pmode))
return 0;
return 1;
}
int
splittable_immediate_memory_operand (rtx op,
enum machine_mode mode ATTRIBUTE_UNUSED)
{
if (GET_CODE (op) != MEM)
return 0;
if (! immediate_operand (XEXP (op, 0), Pmode))
return 0;
return 1;
}
/* Return truth value of whether OP is EQ or NE. */
int
eq_or_neq (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
return (GET_CODE (op) == EQ || GET_CODE (op) == NE);
}
/* Return 1 if this is a comparison operator, but not an EQ, NE, GEU,
or LTU for non-floating-point. We handle those specially. */
int
normal_comp_operator (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
enum rtx_code code = GET_CODE (op);
if (GET_RTX_CLASS (code) != '<')
return 0;
if (GET_MODE (XEXP (op, 0)) == CCFPmode
|| GET_MODE (XEXP (op, 0)) == CCFPEmode)
return 1;
return (code != NE && code != EQ && code != GEU && code != LTU);
}
/* Return 1 if this is a comparison operator. This allows the use of
MATCH_OPERATOR to recognize all the branch insns. */
int
noov_compare_op (register rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
enum rtx_code code = GET_CODE (op);
if (GET_RTX_CLASS (code) != '<')
return 0;
if (GET_MODE (XEXP (op, 0)) == CC_NOOVmode
|| GET_MODE (XEXP (op, 0)) == CCX_NOOVmode)
/* These are the only branches which work with CC_NOOVmode. */
return (code == EQ || code == NE || code == GE || code == LT);
return 1;
}
/* Return 1 if this is a 64-bit comparison operator. This allows the use of
MATCH_OPERATOR to recognize all the branch insns. */
int
noov_compare64_op (register rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
enum rtx_code code = GET_CODE (op);
if (! TARGET_V9)
return 0;
if (GET_RTX_CLASS (code) != '<')
return 0;
if (GET_MODE (XEXP (op, 0)) == CCX_NOOVmode)
/* These are the only branches which work with CCX_NOOVmode. */
return (code == EQ || code == NE || code == GE || code == LT);
return (GET_MODE (XEXP (op, 0)) == CCXmode);
}
/* Nonzero if OP is a comparison operator suitable for use in v9
conditional move or branch on register contents instructions. */
int
v9_regcmp_op (register rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
enum rtx_code code = GET_CODE (op);
if (GET_RTX_CLASS (code) != '<')
return 0;
return v9_regcmp_p (code);
}
/* Return 1 if this is a SIGN_EXTEND or ZERO_EXTEND operation. */
int
extend_op (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
return GET_CODE (op) == SIGN_EXTEND || GET_CODE (op) == ZERO_EXTEND;
}
/* Return nonzero if OP is an operator of mode MODE which can set
the condition codes explicitly. We do not include PLUS and MINUS
because these require CC_NOOVmode, which we handle explicitly. */
int
cc_arithop (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
if (GET_CODE (op) == AND
|| GET_CODE (op) == IOR
|| GET_CODE (op) == XOR)
return 1;
return 0;
}
/* Return nonzero if OP is an operator of mode MODE which can bitwise
complement its second operand and set the condition codes explicitly. */
int
cc_arithopn (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
/* XOR is not here because combine canonicalizes (xor (not ...) ...)
and (xor ... (not ...)) to (not (xor ...)). */
return (GET_CODE (op) == AND
|| GET_CODE (op) == IOR);
}
/* Return true if OP is a register, or is a CONST_INT that can fit in a
signed 13 bit immediate field. This is an acceptable SImode operand for
most 3 address instructions. */
int
arith_operand (rtx op, enum machine_mode mode)
{
if (register_operand (op, mode))
return 1;
if (GET_CODE (op) != CONST_INT)
return 0;
return SMALL_INT32 (op);
}
/* Return true if OP is a constant 4096 */
int
arith_4096_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
if (GET_CODE (op) != CONST_INT)
return 0;
else
return INTVAL (op) == 4096;
}
/* Return true if OP is suitable as second operand for add/sub */
int
arith_add_operand (rtx op, enum machine_mode mode)
{
return arith_operand (op, mode) || arith_4096_operand (op, mode);
}
/* Return true if OP is a CONST_INT or a CONST_DOUBLE which can fit in the
immediate field of OR and XOR instructions. Used for 64-bit
constant formation patterns. */
int
const64_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
return ((GET_CODE (op) == CONST_INT
&& SPARC_SIMM13_P (INTVAL (op)))
#if HOST_BITS_PER_WIDE_INT != 64
|| (GET_CODE (op) == CONST_DOUBLE
&& SPARC_SIMM13_P (CONST_DOUBLE_LOW (op))
&& (CONST_DOUBLE_HIGH (op) ==
((CONST_DOUBLE_LOW (op) & 0x80000000) != 0 ?
(HOST_WIDE_INT)-1 : 0)))
#endif
);
}
/* The same, but only for sethi instructions. */
int
const64_high_operand (rtx op, enum machine_mode mode)
{
return ((GET_CODE (op) == CONST_INT
&& (INTVAL (op) & ~(HOST_WIDE_INT)0x3ff) != 0
&& SPARC_SETHI_P (INTVAL (op) & GET_MODE_MASK (mode))
)
|| (GET_CODE (op) == CONST_DOUBLE
&& CONST_DOUBLE_HIGH (op) == 0
&& (CONST_DOUBLE_LOW (op) & ~(HOST_WIDE_INT)0x3ff) != 0
&& SPARC_SETHI_P (CONST_DOUBLE_LOW (op))));
}
/* Return true if OP is a register, or is a CONST_INT that can fit in a
signed 11 bit immediate field. This is an acceptable SImode operand for
the movcc instructions. */
int
arith11_operand (rtx op, enum machine_mode mode)
{
return (register_operand (op, mode)
|| (GET_CODE (op) == CONST_INT && SPARC_SIMM11_P (INTVAL (op))));
}
/* Return true if OP is a register, or is a CONST_INT that can fit in a
signed 10 bit immediate field. This is an acceptable SImode operand for
the movrcc instructions. */
int
arith10_operand (rtx op, enum machine_mode mode)
{
return (register_operand (op, mode)
|| (GET_CODE (op) == CONST_INT && SPARC_SIMM10_P (INTVAL (op))));
}
/* Return true if OP is a register, is a CONST_INT that fits in a 13 bit
immediate field, or is a CONST_DOUBLE whose both parts fit in a 13 bit
immediate field.
v9: Return true if OP is a register, or is a CONST_INT or CONST_DOUBLE that
can fit in a 13 bit immediate field. This is an acceptable DImode operand
for most 3 address instructions. */
int
arith_double_operand (rtx op, enum machine_mode mode)
{
return (register_operand (op, mode)
|| (GET_CODE (op) == CONST_INT && SMALL_INT (op))
|| (! TARGET_ARCH64
&& GET_CODE (op) == CONST_DOUBLE
&& (unsigned HOST_WIDE_INT) (CONST_DOUBLE_LOW (op) + 0x1000) < 0x2000
&& (unsigned HOST_WIDE_INT) (CONST_DOUBLE_HIGH (op) + 0x1000) < 0x2000)
|| (TARGET_ARCH64
&& GET_CODE (op) == CONST_DOUBLE
&& (unsigned HOST_WIDE_INT) (CONST_DOUBLE_LOW (op) + 0x1000) < 0x2000
&& ((CONST_DOUBLE_HIGH (op) == -1
&& (CONST_DOUBLE_LOW (op) & 0x1000) == 0x1000)
|| (CONST_DOUBLE_HIGH (op) == 0
&& (CONST_DOUBLE_LOW (op) & 0x1000) == 0))));
}
/* Return true if OP is a constant 4096 for DImode on ARCH64 */
int
arith_double_4096_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
return (TARGET_ARCH64 &&
((GET_CODE (op) == CONST_INT && INTVAL (op) == 4096) ||
(GET_CODE (op) == CONST_DOUBLE &&
CONST_DOUBLE_LOW (op) == 4096 &&
CONST_DOUBLE_HIGH (op) == 0)));
}
/* Return true if OP is suitable as second operand for add/sub in DImode */
int
arith_double_add_operand (rtx op, enum machine_mode mode)
{
return arith_double_operand (op, mode) || arith_double_4096_operand (op, mode);
}
/* Return true if OP is a register, or is a CONST_INT or CONST_DOUBLE that
can fit in an 11 bit immediate field. This is an acceptable DImode
operand for the movcc instructions. */
/* ??? Replace with arith11_operand? */
int
arith11_double_operand (rtx op, enum machine_mode mode)
{
return (register_operand (op, mode)
|| (GET_CODE (op) == CONST_DOUBLE
&& (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode)
&& (unsigned HOST_WIDE_INT) (CONST_DOUBLE_LOW (op) + 0x400) < 0x800
&& ((CONST_DOUBLE_HIGH (op) == -1
&& (CONST_DOUBLE_LOW (op) & 0x400) == 0x400)
|| (CONST_DOUBLE_HIGH (op) == 0
&& (CONST_DOUBLE_LOW (op) & 0x400) == 0)))
|| (GET_CODE (op) == CONST_INT
&& (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode)
&& (unsigned HOST_WIDE_INT) (INTVAL (op) + 0x400) < 0x800));
}
/* Return true if OP is a register, or is a CONST_INT or CONST_DOUBLE that
can fit in an 10 bit immediate field. This is an acceptable DImode
operand for the movrcc instructions. */
/* ??? Replace with arith10_operand? */
int
arith10_double_operand (rtx op, enum machine_mode mode)
{
return (register_operand (op, mode)
|| (GET_CODE (op) == CONST_DOUBLE
&& (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode)
&& (unsigned) (CONST_DOUBLE_LOW (op) + 0x200) < 0x400
&& ((CONST_DOUBLE_HIGH (op) == -1
&& (CONST_DOUBLE_LOW (op) & 0x200) == 0x200)
|| (CONST_DOUBLE_HIGH (op) == 0
&& (CONST_DOUBLE_LOW (op) & 0x200) == 0)))
|| (GET_CODE (op) == CONST_INT
&& (GET_MODE (op) == mode || GET_MODE (op) == VOIDmode)
&& (unsigned HOST_WIDE_INT) (INTVAL (op) + 0x200) < 0x400));
}
/* Return truth value of whether OP is an integer which fits the
range constraining immediate operands in most three-address insns,
which have a 13 bit immediate field. */
int
small_int (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
return (GET_CODE (op) == CONST_INT && SMALL_INT (op));
}
int
small_int_or_double (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
return ((GET_CODE (op) == CONST_INT && SMALL_INT (op))
|| (GET_CODE (op) == CONST_DOUBLE
&& CONST_DOUBLE_HIGH (op) == 0
&& SPARC_SIMM13_P (CONST_DOUBLE_LOW (op))));
}
/* Recognize operand values for the umul instruction. That instruction sign
extends immediate values just like all other sparc instructions, but
interprets the extended result as an unsigned number. */
int
uns_small_int (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
#if HOST_BITS_PER_WIDE_INT > 32
/* All allowed constants will fit a CONST_INT. */
return (GET_CODE (op) == CONST_INT
&& ((INTVAL (op) >= 0 && INTVAL (op) < 0x1000)
|| (INTVAL (op) >= 0xFFFFF000
&& INTVAL (op) <= 0xFFFFFFFF)));
#else
return ((GET_CODE (op) == CONST_INT && (unsigned) INTVAL (op) < 0x1000)
|| (GET_CODE (op) == CONST_DOUBLE
&& CONST_DOUBLE_HIGH (op) == 0
&& (unsigned) CONST_DOUBLE_LOW (op) - 0xFFFFF000 < 0x1000));
#endif
}
int
uns_arith_operand (rtx op, enum machine_mode mode)
{
return register_operand (op, mode) || uns_small_int (op, mode);
}
/* Return truth value of statement that OP is a call-clobbered register. */
int
clobbered_register (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
{
return (GET_CODE (op) == REG && call_used_regs[REGNO (op)]);
}
/* Return 1 if OP is a valid operand for the source of a move insn. */
int
input_operand (rtx op, enum machine_mode mode)
{
/* If both modes are non-void they must be the same. */
if (mode != VOIDmode && GET_MODE (op) != VOIDmode && mode != GET_MODE (op))
return 0;
/* Accept CONSTANT_P_RTX, since it will be gone by CSE1 and result in 0/1. */
if (GET_CODE (op) == CONSTANT_P_RTX)
return 1;
/* Allow any one instruction integer constant, and all CONST_INT
variants when we are working in DImode and !arch64. */
if (GET_MODE_CLASS (mode) == MODE_INT
&& ((GET_CODE (op) == CONST_INT
&& (SPARC_SETHI_P (INTVAL (op) & GET_MODE_MASK (mode))
|| SPARC_SIMM13_P (INTVAL (op))
|| (mode == DImode
&& ! TARGET_ARCH64)))
|| (TARGET_ARCH64
&& GET_CODE (op) == CONST_DOUBLE
&& ((CONST_DOUBLE_HIGH (op) == 0
&& SPARC_SETHI_P (CONST_DOUBLE_LOW (op)))
||
#if HOST_BITS_PER_WIDE_INT == 64
(CONST_DOUBLE_HIGH (op) == 0
&& SPARC_SIMM13_P (CONST_DOUBLE_LOW (op)))
#else
(SPARC_SIMM13_P (CONST_DOUBLE_LOW (op))
&& (((CONST_DOUBLE_LOW (op) & 0x80000000) == 0
&& CONST_DOUBLE_HIGH (op) == 0)
|| (CONST_DOUBLE_HIGH (op) == -1
&& CONST_DOUBLE_LOW (op) & 0x80000000) != 0))
#endif
))))
return 1;
/* If !arch64 and this is a DImode const, allow it so that
the splits can be generated. */
if (! TARGET_ARCH64
&& mode == DImode
&& GET_CODE (op) == CONST_DOUBLE)
return 1;
if (register_operand (op, mode))
return 1;
if (GET_MODE_CLASS (mode) == MODE_FLOAT
&& GET_CODE (op) == CONST_DOUBLE)
return 1;
/* If this is a SUBREG, look inside so that we handle
paradoxical ones. */
if (GET_CODE (op) == SUBREG)
op = SUBREG_REG (op);
/* Check for valid MEM forms. */
if (GET_CODE (op) == MEM)
{
rtx inside = XEXP (op, 0);
if (GET_CODE (inside) == LO_SUM)
{
/* We can't allow these because all of the splits
(eventually as they trickle down into DFmode
splits) require offsettable memory references. */
if (! TARGET_V9
&& GET_MODE (op) == TFmode)
return 0;
return (register_operand (XEXP (inside, 0), Pmode)
&& CONSTANT_P (XEXP (inside, 1)));
}
return memory_address_p (mode, inside);
}
return 0;
}
/* Return 1 if OP is valid for the lhs of a compare insn. */
int
compare_operand (rtx op, enum machine_mode mode)
{
if (GET_CODE (op) == ZERO_EXTRACT)
return (register_operand (XEXP (op, 0), mode)
&& small_int_or_double (XEXP (op, 1), mode)
&& small_int_or_double (XEXP (op, 2), mode)
/* This matches cmp_zero_extract. */
&& ((mode == SImode
&& ((GET_CODE (XEXP (op, 2)) == CONST_INT
&& INTVAL (XEXP (op, 2)) > 19)
|| (GET_CODE (XEXP (op, 2)) == CONST_DOUBLE
&& CONST_DOUBLE_LOW (XEXP (op, 2)) > 19)))
/* This matches cmp_zero_extract_sp64. */
|| (mode == DImode
&& TARGET_ARCH64
&& ((GET_CODE (XEXP (op, 2)) == CONST_INT
&& INTVAL (XEXP (op, 2)) > 51)
|| (GET_CODE (XEXP (op, 2)) == CONST_DOUBLE
&& CONST_DOUBLE_LOW (XEXP (op, 2)) > 51)))));
else
return register_operand (op, mode);
}
/* We know it can't be done in one insn when we get here,
the movsi expander guarantees this. */
void
sparc_emit_set_const32 (rtx op0, rtx op1)
{
enum machine_mode mode = GET_MODE (op0);
rtx temp;
if (GET_CODE (op1) == CONST_INT)
{
HOST_WIDE_INT value = INTVAL (op1);
if (SPARC_SETHI_P (value & GET_MODE_MASK (mode))
|| SPARC_SIMM13_P (value))
abort ();
}
/* Full 2-insn decomposition is needed. */
if (reload_in_progress || reload_completed)
temp = op0;
else
temp = gen_reg_rtx (mode);
if (GET_CODE (op1) == CONST_INT)
{
/* Emit them as real moves instead of a HIGH/LO_SUM,
this way CSE can see everything and reuse intermediate
values if it wants. */
if (TARGET_ARCH64
&& HOST_BITS_PER_WIDE_INT != 64
&& (INTVAL (op1) & 0x80000000) != 0)
emit_insn (gen_rtx_SET
(VOIDmode, temp,
immed_double_const (INTVAL (op1) & ~(HOST_WIDE_INT)0x3ff,
0, DImode)));
else
emit_insn (gen_rtx_SET (VOIDmode, temp,
GEN_INT (INTVAL (op1)
& ~(HOST_WIDE_INT)0x3ff)));
emit_insn (gen_rtx_SET (VOIDmode,
op0,
gen_rtx_IOR (mode, temp,
GEN_INT (INTVAL (op1) & 0x3ff))));
}
else
{
/* A symbol, emit in the traditional way. */
emit_insn (gen_rtx_SET (VOIDmode, temp,
gen_rtx_HIGH (mode, op1)));
emit_insn (gen_rtx_SET (VOIDmode,
op0, gen_rtx_LO_SUM (mode, temp, op1)));
}
}
/* Load OP1, a symbolic 64-bit constant, into OP0, a DImode register.
If TEMP is non-zero, we are forbidden to use any other scratch
registers. Otherwise, we are allowed to generate them as needed.
Note that TEMP may have TImode if the code model is TARGET_CM_MEDANY
or TARGET_CM_EMBMEDANY (see the reload_indi and reload_outdi patterns). */
void
sparc_emit_set_symbolic_const64 (rtx op0, rtx op1, rtx temp)
{
rtx temp1, temp2, temp3, temp4, temp5;
rtx ti_temp = 0;
if (temp && GET_MODE (temp) == TImode)
{
ti_temp = temp;
temp = gen_rtx_REG (DImode, REGNO (temp));
}
/* SPARC-V9 code-model support. */
switch (sparc_cmodel)
{
case CM_MEDLOW:
/* The range spanned by all instructions in the object is less
than 2^31 bytes (2GB) and the distance from any instruction
to the location of the label _GLOBAL_OFFSET_TABLE_ is less
than 2^31 bytes (2GB).
The executable must be in the low 4TB of the virtual address
space.
sethi %hi(symbol), %temp1
or %temp1, %lo(symbol), %reg */
if (temp)
temp1 = temp; /* op0 is allowed. */
else
temp1 = gen_reg_rtx (DImode);
emit_insn (gen_rtx_SET (VOIDmode, temp1, gen_rtx_HIGH (DImode, op1)));
emit_insn (gen_rtx_SET (VOIDmode, op0, gen_rtx_LO_SUM (DImode, temp1, op1)));
break;
case CM_MEDMID:
/* The range spanned by all instructions in the object is less
than 2^31 bytes (2GB) and the distance from any instruction
to the location of the label _GLOBAL_OFFSET_TABLE_ is less
than 2^31 bytes (2GB).
The executable must be in the low 16TB of the virtual address
space.
sethi %h44(symbol), %temp1
or %temp1, %m44(symbol), %temp2
sllx %temp2, 12, %temp3
or %temp3, %l44(symbol), %reg */
if (temp)
{
temp1 = op0;
temp2 = op0;
temp3 = temp; /* op0 is allowed. */
}
else
{
temp1 = gen_reg_rtx (DImode);
temp2 = gen_reg_rtx (DImode);
temp3 = gen_reg_rtx (DImode);
}
emit_insn (gen_seth44 (temp1, op1));
emit_insn (gen_setm44 (temp2, temp1, op1));
emit_insn (gen_rtx_SET (VOIDmode, temp3,
gen_rtx_ASHIFT (DImode, temp2, GEN_INT (12))));
emit_insn (gen_setl44 (op0, temp3, op1));
break;
case CM_MEDANY:
/* The range spanned by all instructions in the object is less
than 2^31 bytes (2GB) and the distance from any instruction
to the location of the label _GLOBAL_OFFSET_TABLE_ is less
than 2^31 bytes (2GB).
The executable can be placed anywhere in the virtual address
space.
sethi %hh(symbol), %temp1
sethi %lm(symbol), %temp2
or %temp1, %hm(symbol), %temp3
sllx %temp3, 32, %temp4
or %temp4, %temp2, %temp5
or %temp5, %lo(symbol), %reg */
if (temp)
{
/* It is possible that one of the registers we got for operands[2]
might coincide with that of operands[0] (which is why we made
it TImode). Pick the other one to use as our scratch. */
if (rtx_equal_p (temp, op0))
{
if (ti_temp)
temp = gen_rtx_REG (DImode, REGNO (temp) + 1);
else
abort();
}
temp1 = op0;
temp2 = temp; /* op0 is _not_ allowed, see above. */
temp3 = op0;
temp4 = op0;
temp5 = op0;
}
else
{
temp1 = gen_reg_rtx (DImode);
temp2 = gen_reg_rtx (DImode);
temp3 = gen_reg_rtx (DImode);
temp4 = gen_reg_rtx (DImode);
temp5 = gen_reg_rtx (DImode);
}
emit_insn (gen_sethh (temp1, op1));
emit_insn (gen_setlm (temp2, op1));
emit_insn (gen_sethm (temp3, temp1, op1));
emit_insn (gen_rtx_SET (VOIDmode, temp4,
gen_rtx_ASHIFT (DImode, temp3, GEN_INT (32))));
emit_insn (gen_rtx_SET (VOIDmode, temp5,
gen_rtx_PLUS (DImode, temp4, temp2)));
emit_insn (gen_setlo (op0, temp5, op1));
break;
case CM_EMBMEDANY:
/* Old old old backwards compatibility kruft here.
Essentially it is MEDLOW with a fixed 64-bit
virtual base added to all data segment addresses.
Text-segment stuff is computed like MEDANY, we can't
reuse the code above because the relocation knobs
look different.
Data segment: sethi %hi(symbol), %temp1
add %temp1, EMBMEDANY_BASE_REG, %temp2
or %temp2, %lo(symbol), %reg */
if (data_segment_operand (op1, GET_MODE (op1)))
{
if (temp)
{
temp1 = temp; /* op0 is allowed. */
temp2 = op0;
}
else
{
temp1 = gen_reg_rtx (DImode);
temp2 = gen_reg_rtx (DImode);
}
emit_insn (gen_embmedany_sethi (temp1, op1));
emit_insn (gen_embmedany_brsum (temp2, temp1));
emit_insn (gen_embmedany_losum (op0, temp2, op1));
}
/* Text segment: sethi %uhi(symbol), %temp1
sethi %hi(symbol), %temp2
or %temp1, %ulo(symbol), %temp3
sllx %temp3, 32, %temp4
or %temp4, %temp2, %temp5
or %temp5, %lo(symbol), %reg */
else
{
if (temp)
{
/* It is possible that one of the registers we got for operands[2]
might coincide with that of operands[0] (which is why we made
it TImode). Pick the other one to use as our scratch. */
if (rtx_equal_p (temp, op0))
{
if (ti_temp)
temp = gen_rtx_REG (DImode, REGNO (temp) + 1);
else
abort();
}
temp1 = op0;
temp2 = temp; /* op0 is _not_ allowed, see above. */
temp3 = op0;
temp4 = op0;
temp5 = op0;
}
else
{
temp1 = gen_reg_rtx (DImode);
temp2 = gen_reg_rtx (DImode);
temp3 = gen_reg_rtx (DImode);
temp4 = gen_reg_rtx (DImode);
temp5 = gen_reg_rtx (DImode);
}
emit_insn (gen_embmedany_textuhi (temp1, op1));
emit_insn (gen_embmedany_texthi (temp2, op1));
emit_insn (gen_embmedany_textulo (temp3, temp1, op1));
emit_insn (gen_rtx_SET (VOIDmode, temp4,
gen_rtx_ASHIFT (DImode, temp3, GEN_INT (32))));
emit_insn (gen_rtx_SET (VOIDmode, temp5,
gen_rtx_PLUS (DImode, temp4, temp2)));
emit_insn (gen_embmedany_textlo (op0, temp5, op1));
}
break;
default:
abort();
}
}
/* These avoid problems when cross compiling. If we do not
go through all this hair then the optimizer will see
invalid REG_EQUAL notes or in some cases none at all. */
static void sparc_emit_set_safe_HIGH64 (rtx, HOST_WIDE_INT);
static rtx gen_safe_SET64 (rtx, HOST_WIDE_INT);
static rtx gen_safe_OR64 (rtx, HOST_WIDE_INT);
static rtx gen_safe_XOR64 (rtx, HOST_WIDE_INT);
#if HOST_BITS_PER_WIDE_INT == 64
#define GEN_HIGHINT64(__x) GEN_INT ((__x) & ~(HOST_WIDE_INT)0x3ff)
#define GEN_INT64(__x) GEN_INT (__x)
#else
#define GEN_HIGHINT64(__x) \
immed_double_const ((__x) & ~(HOST_WIDE_INT)0x3ff, 0, DImode)
#define GEN_INT64(__x) \
immed_double_const ((__x) & 0xffffffff, \
((__x) & 0x80000000 ? -1 : 0), DImode)
#endif
/* The optimizer is not to assume anything about exactly
which bits are set for a HIGH, they are unspecified.
Unfortunately this leads to many missed optimizations
during CSE. We mask out the non-HIGH bits, and matches
a plain movdi, to alleviate this problem. */
static void
sparc_emit_set_safe_HIGH64 (rtx dest, HOST_WIDE_INT val)
{
emit_insn (gen_rtx_SET (VOIDmode, dest, GEN_HIGHINT64 (val)));
}
static rtx
gen_safe_SET64 (rtx dest, HOST_WIDE_INT val)
{
return gen_rtx_SET (VOIDmode, dest, GEN_INT64 (val));
}
static rtx
gen_safe_OR64 (rtx src, HOST_WIDE_INT val)
{
return gen_rtx_IOR (DImode, src, GEN_INT64 (val));
}
static rtx
gen_safe_XOR64 (rtx src, HOST_WIDE_INT val)
{
return gen_rtx_XOR (DImode, src, GEN_INT64 (val));
}
/* Worker routines for 64-bit constant formation on arch64.
One of the key things to be doing in these emissions is
to create as many temp REGs as possible. This makes it
possible for half-built constants to be used later when
such values are similar to something required later on.
Without doing this, the optimizer cannot see such
opportunities. */
static void sparc_emit_set_const64_quick1 (rtx, rtx,
unsigned HOST_WIDE_INT, int);
static void
sparc_emit_set_const64_quick1 (rtx op0, rtx temp,
unsigned HOST_WIDE_INT low_bits, int is_neg)
{
unsigned HOST_WIDE_INT high_bits;
if (is_neg)
high_bits = (~low_bits) & 0xffffffff;
else
high_bits = low_bits;
sparc_emit_set_safe_HIGH64 (temp, high_bits);
if (!is_neg)
{
emit_insn (gen_rtx_SET (VOIDmode, op0,
gen_safe_OR64 (temp, (high_bits & 0x3ff))));
}
else
{
/* If we are XOR'ing with -1, then we should emit a one's complement
instead. This way the combiner will notice logical operations
such as ANDN later on and substitute. */
if ((low_bits & 0x3ff) == 0x3ff)
{
emit_insn (gen_rtx_SET (VOIDmode, op0,
gen_rtx_NOT (DImode, temp)));
}
else
{
emit_insn (gen_rtx_SET (VOIDmode, op0,
gen_safe_XOR64 (temp,
(-(HOST_WIDE_INT)0x400
| (low_bits & 0x3ff)))));
}
}
}
static void sparc_emit_set_const64_quick2 (rtx, rtx, unsigned HOST_WIDE_INT,
unsigned HOST_WIDE_INT, int);
static void
sparc_emit_set_const64_quick2 (rtx op0, rtx temp,
unsigned HOST_WIDE_INT high_bits,
unsigned HOST_WIDE_INT low_immediate,
int shift_count)
{
rtx temp2 = op0;
if ((high_bits & 0xfffffc00) != 0)
{
sparc_emit_set_safe_HIGH64 (temp, high_bits);
if ((high_bits & ~0xfffffc00) != 0)
emit_insn (gen_rtx_SET (VOIDmode, op0,
gen_safe_OR64 (temp, (high_bits & 0x3ff))));
else
temp2 = temp;
}
else
{
emit_insn (gen_safe_SET64 (temp, high_bits));
temp2 = temp;
}
/* Now shift it up into place. */
emit_insn (gen_rtx_SET (VOIDmode, op0,
gen_rtx_ASHIFT (DImode, temp2,
GEN_INT (shift_count))));
/* If there is a low immediate part piece, finish up by
putting that in as well. */
if (low_immediate != 0)
emit_insn (gen_rtx_SET (VOIDmode, op0,
gen_safe_OR64 (op0, low_immediate)));
}
static void sparc_emit_set_const64_longway (rtx, rtx, unsigned HOST_WIDE_INT,
unsigned HOST_WIDE_INT);
/* Full 64-bit constant decomposition. Even though this is the
'worst' case, we still optimize a few things away. */
static void
sparc_emit_set_const64_longway (rtx op0, rtx temp,
unsigned HOST_WIDE_INT high_bits,
unsigned HOST_WIDE_INT low_bits)
{
rtx sub_temp;
if (reload_in_progress || reload_completed)
sub_temp = op0;
else
sub_temp = gen_reg_rtx (DImode);
if ((high_bits & 0xfffffc00) != 0)
{
sparc_emit_set_safe_HIGH64 (temp, high_bits);
if ((high_bits & ~0xfffffc00) != 0)
emit_insn (gen_rtx_SET (VOIDmode,
sub_temp,
gen_safe_OR64 (temp, (high_bits & 0x3ff))));
else
sub_temp = temp;
}
else
{
emit_insn (gen_safe_SET64 (temp, high_bits));
sub_temp = temp;
}
if (!reload_in_progress && !reload_completed)
{
rtx temp2 = gen_reg_rtx (DImode);
rtx temp3 = gen_reg_rtx (DImode);
rtx temp4 = gen_reg_rtx (DImode);
emit_insn (gen_rtx_SET (VOIDmode, temp4,
gen_rtx_ASHIFT (DImode, sub_temp,
GEN_INT (32))));
sparc_emit_set_safe_HIGH64 (temp2, low_bits);
if ((low_bits & ~0xfffffc00) != 0)
{
emit_insn (gen_rtx_SET (VOIDmode, temp3,
gen_safe_OR64 (temp2, (low_bits & 0x3ff))));
emit_insn (gen_rtx_SET (VOIDmode, op0,
gen_rtx_PLUS (DImode, temp4, temp3)));
}
else
{
emit_insn (gen_rtx_SET (VOIDmode, op0,
gen_rtx_PLUS (DImode, temp4, temp2)));
}
}
else
{
rtx low1 = GEN_INT ((low_bits >> (32 - 12)) & 0xfff);
rtx low2 = GEN_INT ((low_bits >> (32 - 12 - 12)) & 0xfff);
rtx low3 = GEN_INT ((low_bits >> (32 - 12 - 12 - 8)) & 0x0ff);
int to_shift = 12;
/* We are in the middle of reload, so this is really
painful. However we do still make an attempt to
avoid emitting truly stupid code. */
if (low1 != const0_rtx)
{
emit_insn (gen_rtx_SET (VOIDmode, op0,
gen_rtx_ASHIFT (DImode, sub_temp,
GEN_INT (to_shift))));
emit_insn (gen_rtx_SET (VOIDmode, op0,
gen_rtx_IOR (DImode, op0, low1)));
sub_temp = op0;
to_shift = 12;
}
else
{
to_shift += 12;
}
if (low2 != const0_rtx)
{
emit_insn (gen_rtx_SET (VOIDmode, op0,
gen_rtx_ASHIFT (DImode, sub_temp,
GEN_INT (to_shift))));
emit_insn (gen_rtx_SET (VOIDmode, op0,
gen_rtx_IOR (DImode, op0, low2)));
sub_temp = op0;
to_shift = 8;
}
else
{
to_shift += 8;
}
emit_insn (gen_rtx_SET (VOIDmode, op0,
gen_rtx_ASHIFT (DImode, sub_temp,
GEN_INT (to_shift))));
if (low3 != const0_rtx)
emit_insn (gen_rtx_SET (VOIDmode, op0,
gen_rtx_IOR (DImode, op0, low3)));
/* phew... */
}
}
/* Analyze a 64-bit constant for certain properties. */
static void analyze_64bit_constant (unsigned HOST_WIDE_INT,
unsigned HOST_WIDE_INT,
int *, int *, int *);
static void
analyze_64bit_constant (unsigned HOST_WIDE_INT high_bits,
unsigned HOST_WIDE_INT low_bits,
int *hbsp, int *lbsp, int *abbasp)
{
int lowest_bit_set, highest_bit_set, all_bits_between_are_set;
int i;
lowest_bit_set = highest_bit_set = -1;
i = 0;
do
{
if ((lowest_bit_set == -1)
&& ((low_bits >> i) & 1))
lowest_bit_set = i;
if ((highest_bit_set == -1)
&& ((high_bits >> (32 - i - 1)) & 1))
highest_bit_set = (64 - i - 1);
}
while (++i < 32
&& ((highest_bit_set == -1)
|| (lowest_bit_set == -1)));
if (i == 32)
{
i = 0;
do
{
if ((lowest_bit_set == -1)
&& ((high_bits >> i) & 1))
lowest_bit_set = i + 32;
if ((highest_bit_set == -1)
&& ((low_bits >> (32 - i - 1)) & 1))
highest_bit_set = 32 - i - 1;
}
while (++i < 32
&& ((highest_bit_set == -1)
|| (lowest_bit_set == -1)));
}
/* If there are no bits set this should have gone out
as one instruction! */
if (lowest_bit_set == -1
|| highest_bit_set == -1)
abort ();
all_bits_between_are_set = 1;
for (i = lowest_bit_set; i <= highest_bit_set; i++)
{
if (i < 32)
{
if ((low_bits & (1 << i)) != 0)
continue;
}
else
{
if ((high_bits & (1 << (i - 32))) != 0)
continue;
}
all_bits_between_are_set = 0;
break;
}
*hbsp = highest_bit_set;
*lbsp = lowest_bit_set;
*abbasp = all_bits_between_are_set;
}
static int const64_is_2insns (unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT);
static int
const64_is_2insns (unsigned HOST_WIDE_INT high_bits,
unsigned HOST_WIDE_INT low_bits)
{
int highest_bit_set, lowest_bit_set, all_bits_between_are_set;
if (high_bits == 0
|| high_bits == 0xffffffff)
return 1;
analyze_64bit_constant (high_bits, low_bits,
&highest_bit_set, &lowest_bit_set,
&all_bits_between_are_set);
if ((highest_bit_set == 63
|| lowest_bit_set == 0)
&& all_bits_between_are_set != 0)
return 1;
if ((highest_bit_set - lowest_bit_set) < 21)
return 1;
return 0;
}
static unsigned HOST_WIDE_INT create_simple_focus_bits (unsigned HOST_WIDE_INT,
unsigned HOST_WIDE_INT,
int, int);
static unsigned HOST_WIDE_INT
create_simple_focus_bits (unsigned HOST_WIDE_INT high_bits,
unsigned HOST_WIDE_INT low_bits,
int lowest_bit_set, int shift)
{
HOST_WIDE_INT hi, lo;
if (lowest_bit_set < 32)
{
lo = (low_bits >> lowest_bit_set) << shift;
hi = ((high_bits << (32 - lowest_bit_set)) << shift);
}
else
{
lo = 0;
hi = ((high_bits >> (lowest_bit_set - 32)) << shift);
}
if (hi & lo)
abort ();
return (hi | lo);
}
/* Here we are sure to be arch64 and this is an integer constant
being loaded into a register. Emit the most efficient
insn sequence possible. Detection of all the 1-insn cases
has been done already. */
void
sparc_emit_set_const64 (rtx op0, rtx op1)
{
unsigned HOST_WIDE_INT high_bits, low_bits;
int lowest_bit_set, highest_bit_set;
int all_bits_between_are_set;
rtx temp = 0;
/* Sanity check that we know what we are working with. */
if (! TARGET_ARCH64)
abort ();
if (GET_CODE (op0) != SUBREG)
{
if (GET_CODE (op0) != REG
|| (REGNO (op0) >= SPARC_FIRST_FP_REG
&& REGNO (op0) <= SPARC_LAST_V9_FP_REG))
abort ();
}
if (reload_in_progress || reload_completed)
temp = op0;
if (GET_CODE (op1) != CONST_DOUBLE
&& GET_CODE (op1) != CONST_INT)
{
sparc_emit_set_symbolic_const64 (op0, op1, temp);
return;
}
if (! temp)
temp = gen_reg_rtx (DImode);
if (GET_CODE (op1) == CONST_DOUBLE)
{
#if HOST_BITS_PER_WIDE_INT == 64
high_bits = (CONST_DOUBLE_LOW (op1) >> 32) & 0xffffffff;
low_bits = CONST_DOUBLE_LOW (op1) & 0xffffffff;
#else
high_bits = CONST_DOUBLE_HIGH (op1);
low_bits = CONST_DOUBLE_LOW (op1);
#endif
}
else
{
#if HOST_BITS_PER_WIDE_INT == 64
high_bits = ((INTVAL (op1) >> 32) & 0xffffffff);
low_bits = (INTVAL (op1) & 0xffffffff);
#else
high_bits = ((INTVAL (op1) < 0) ?
0xffffffff :
0x00000000);
low_bits = INTVAL (op1);
#endif
}
/* low_bits bits 0 --> 31
high_bits bits 32 --> 63 */
analyze_64bit_constant (high_bits, low_bits,
&highest_bit_set, &lowest_bit_set,
&all_bits_between_are_set);
/* First try for a 2-insn sequence. */
/* These situations are preferred because the optimizer can
* do more things with them:
* 1) mov -1, %reg
* sllx %reg, shift, %reg
* 2) mov -1, %reg
* srlx %reg, shift, %reg
* 3) mov some_small_const, %reg
* sllx %reg, shift, %reg
*/
if (((highest_bit_set == 63
|| lowest_bit_set == 0)
&& all_bits_between_are_set != 0)
|| ((highest_bit_set - lowest_bit_set) < 12))
{
HOST_WIDE_INT the_const = -1;
int shift = lowest_bit_set;
if ((highest_bit_set != 63
&& lowest_bit_set != 0)
|| all_bits_between_are_set == 0)
{
the_const =
create_simple_focus_bits (high_bits, low_bits,
lowest_bit_set, 0);
}
else if (lowest_bit_set == 0)
shift = -(63 - highest_bit_set);
if (! SPARC_SIMM13_P (the_const))
abort ();
emit_insn (gen_safe_SET64 (temp, the_const));
if (shift > 0)
emit_insn (gen_rtx_SET (VOIDmode,
op0,
gen_rtx_ASHIFT (DImode,
temp,
GEN_INT (shift))));
else if (shift < 0)
emit_insn (gen_rtx_SET (VOIDmode,
op0,
gen_rtx_LSHIFTRT (DImode,
temp,
GEN_INT (-shift))));
else
abort ();
return;
}
/* Now a range of 22 or less bits set somewhere.
* 1) sethi %hi(focus_bits), %reg
* sllx %reg, shift, %reg
* 2) sethi %hi(focus_bits), %reg
* srlx %reg, shift, %reg
*/
if ((highest_bit_set - lowest_bit_set) < 21)
{
unsigned HOST_WIDE_INT focus_bits =
create_simple_focus_bits (high_bits, low_bits,
lowest_bit_set, 10);
if (! SPARC_SETHI_P (focus_bits))
abort ();
sparc_emit_set_safe_HIGH64 (temp, focus_bits);
/* If lowest_bit_set == 10 then a sethi alone could have done it. */
if (lowest_bit_set < 10)
emit_insn (gen_rtx_SET (VOIDmode,
op0,
gen_rtx_LSHIFTRT (DImode, temp,
GEN_INT (10 - lowest_bit_set))));
else if (lowest_bit_set > 10)
emit_insn (gen_rtx_SET (VOIDmode,
op0,
gen_rtx_ASHIFT (DImode, temp,
GEN_INT (lowest_bit_set - 10))));
else
abort ();
return;
}
/* 1) sethi %hi(low_bits), %reg
* or %reg, %lo(low_bits), %reg
* 2) sethi %hi(~low_bits), %reg
* xor %reg, %lo(-0x400 | (low_bits & 0x3ff)), %reg
*/
if (high_bits == 0
|| high_bits == 0xffffffff)
{
sparc_emit_set_const64_quick1 (op0, temp, low_bits,
(high_bits == 0xffffffff));
return;
}
/* Now, try 3-insn sequences. */
/* 1) sethi %hi(high_bits), %reg
* or %reg, %lo(high_bits), %reg
* sllx %reg, 32, %reg
*/
if (low_bits == 0)
{
sparc_emit_set_const64_quick2 (op0, temp, high_bits, 0, 32);
return;
}
/* We may be able to do something quick
when the constant is negated, so try that. */
if (const64_is_2insns ((~high_bits) & 0xffffffff,
(~low_bits) & 0xfffffc00))
{
/* NOTE: The trailing bits get XOR'd so we need the
non-negated bits, not the negated ones. */
unsigned HOST_WIDE_INT trailing_bits = low_bits & 0x3ff;
if ((((~high_bits) & 0xffffffff) == 0
&& ((~low_bits) & 0x80000000) == 0)
|| (((~high_bits) & 0xffffffff) == 0xffffffff
&& ((~low_bits) & 0x80000000) != 0))
{
int fast_int = (~low_bits & 0xffffffff);
if ((SPARC_SETHI_P (fast_int)
&& (~high_bits & 0xffffffff) == 0)
|| SPARC_SIMM13_P (fast_int))
emit_insn (gen_safe_SET64 (temp, fast_int));
else
sparc_emit_set_const64 (temp, GEN_INT64 (fast_int));
}
else
{
rtx negated_const;
#if HOST_BITS_PER_WIDE_INT == 64
negated_const = GEN_INT (((~low_bits) & 0xfffffc00) |
(((HOST_WIDE_INT)((~high_bits) & 0xffffffff))<<32));
#else
negated_const = immed_double_const ((~low_bits) & 0xfffffc00,
(~high_bits) & 0xffffffff,
DImode);
#endif
sparc_emit_set_const64 (temp, negated_const);
}
/* If we are XOR'ing with -1, then we should emit a one's complement
instead. This way the combiner will notice logical operations
such as ANDN later on and substitute. */
if (trailing_bits == 0x3ff)
{
emit_insn (gen_rtx_SET (VOIDmode, op0,
gen_rtx_NOT (DImode, temp)));
}
else
{
emit_insn (gen_rtx_SET (VOIDmode,
op0,
gen_safe_XOR64 (temp,
(-0x400 | trailing_bits))));
}
return;
}
/* 1) sethi %hi(xxx), %reg
* or %reg, %lo(xxx), %reg
* sllx %reg, yyy, %reg
*
* ??? This is just a generalized version of the low_bits==0
* thing above, FIXME...
*/
if ((highest_bit_set - lowest_bit_set) < 32)
{
unsigned HOST_WIDE_INT focus_bits =
create_simple_focus_bits (high_bits, low_bits,
lowest_bit_set, 0);
/* We can't get here in this state. */
if (highest_bit_set < 32
|| lowest_bit_set >= 32)
abort ();
/* So what we know is that the set bits straddle the
middle of the 64-bit word. */
sparc_emit_set_const64_quick2 (op0, temp,
focus_bits, 0,
lowest_bit_set);
return;
}
/* 1) sethi %hi(high_bits), %reg
* or %reg, %lo(high_bits), %reg
* sllx %reg, 32, %reg
* or %reg, low_bits, %reg
*/
if (SPARC_SIMM13_P(low_bits)
&& ((int)low_bits > 0))
{
sparc_emit_set_const64_quick2 (op0, temp, high_bits, low_bits, 32);
return;
}
/* The easiest way when all else fails, is full decomposition. */
#if 0
printf ("sparc_emit_set_const64: Hard constant [%08lx%08lx] neg[%08lx%08lx]\n",
high_bits, low_bits, ~high_bits, ~low_bits);
#endif
sparc_emit_set_const64_longway (op0, temp, high_bits, low_bits);
}
/* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
return the mode to be used for the comparison. For floating-point,
CCFP[E]mode is used. CC_NOOVmode should be used when the first operand
is a PLUS, MINUS, NEG, or ASHIFT. CCmode should be used when no special
processing is needed. */
enum machine_mode
select_cc_mode (enum rtx_code op, rtx x, rtx y ATTRIBUTE_UNUSED)
{
if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
{
switch (op)
{
case EQ:
case NE:
case UNORDERED:
case ORDERED:
case UNLT:
case UNLE:
case UNGT:
case UNGE:
case UNEQ:
case LTGT:
return CCFPmode;
case LT:
case LE:
case GT:
case GE:
return CCFPEmode;
default:
abort ();
}
}
else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
|| GET_CODE (x) == NEG || GET_CODE (x) == ASHIFT)
{
if (TARGET_ARCH64 && GET_MODE (x) == DImode)
return CCX_NOOVmode;
else
return CC_NOOVmode;
}
else
{
if (TARGET_ARCH64 && GET_MODE (x) == DImode)
return CCXmode;
else
return CCmode;
}
}
/* X and Y are two things to compare using CODE. Emit the compare insn and
return the rtx for the cc reg in the proper mode. */
rtx
gen_compare_reg (enum rtx_code code, rtx x, rtx y)
{
enum machine_mode mode = SELECT_CC_MODE (code, x, y);
rtx cc_reg;
/* ??? We don't have movcc patterns so we cannot generate pseudo regs for the
fcc regs (cse can't tell they're really call clobbered regs and will
remove a duplicate comparison even if there is an intervening function
call - it will then try to reload the cc reg via an int reg which is why
we need the movcc patterns). It is possible to provide the movcc
patterns by using the ldxfsr/stxfsr v9 insns. I tried it: you need two
registers (say %g1,%g5) and it takes about 6 insns. A better fix would be
to tell cse that CCFPE mode registers (even pseudos) are call
clobbered. */
/* ??? This is an experiment. Rather than making changes to cse which may
or may not be easy/clean, we do our own cse. This is possible because
we will generate hard registers. Cse knows they're call clobbered (it
doesn't know the same thing about pseudos). If we guess wrong, no big
deal, but if we win, great! */
if (TARGET_V9 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
#if 1 /* experiment */
{
int reg;
/* We cycle through the registers to ensure they're all exercised. */
static int next_fcc_reg = 0;
/* Previous x,y for each fcc reg. */
static rtx prev_args[4][2];
/* Scan prev_args for x,y. */
for (reg = 0; reg < 4; reg++)
if (prev_args[reg][0] == x && prev_args[reg][1] == y)
break;
if (reg == 4)
{
reg = next_fcc_reg;
prev_args[reg][0] = x;
prev_args[reg][1] = y;
next_fcc_reg = (next_fcc_reg + 1) & 3;
}
cc_reg = gen_rtx_REG (mode, reg + SPARC_FIRST_V9_FCC_REG);
}
#else
cc_reg = gen_reg_rtx (mode);
#endif /* ! experiment */
else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
cc_reg = gen_rtx_REG (mode, SPARC_FCC_REG);
else
cc_reg = gen_rtx_REG (mode, SPARC_ICC_REG);
emit_insn (gen_rtx_SET (VOIDmode, cc_reg,
gen_rtx_COMPARE (mode, x, y)));
return cc_reg;
}
/* This function is used for v9 only.
CODE is the code for an Scc's comparison.
OPERANDS[0] is the target of the Scc insn.
OPERANDS[1] is the value we compare against const0_rtx (which hasn't
been generated yet).
This function is needed to turn
(set (reg:SI 110)
(gt (reg:CCX 100 %icc)
(const_int 0)))
into
(set (reg:SI 110)
(gt:DI (reg:CCX 100 %icc)
(const_int 0)))
IE: The instruction recognizer needs to see the mode of the comparison to
find the right instruction. We could use "gt:DI" right in the
define_expand, but leaving it out allows us to handle DI, SI, etc.
We refer to the global sparc compare operands sparc_compare_op0 and
sparc_compare_op1. */
int
gen_v9_scc (enum rtx_code compare_code, register rtx *operands)
{
rtx temp, op0, op1;
if (! TARGET_ARCH64
&& (GET_MODE (sparc_compare_op0) == DImode
|| GET_MODE (operands[0]) == DImode))
return 0;
op0 = sparc_compare_op0;
op1 = sparc_compare_op1;
/* Try to use the movrCC insns. */
if (TARGET_ARCH64
&& GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
&& op1 == const0_rtx
&& v9_regcmp_p (compare_code))
{
/* Special case for op0 != 0. This can be done with one instruction if
operands[0] == sparc_compare_op0. */
if (compare_code == NE
&& GET_MODE (operands[0]) == DImode
&& rtx_equal_p (op0, operands[0]))
{
emit_insn (gen_rtx_SET (VOIDmode, operands[0],
gen_rtx_IF_THEN_ELSE (DImode,
gen_rtx_fmt_ee (compare_code, DImode,
op0, const0_rtx),
const1_rtx,
operands[0])));
return 1;
}
if (reg_overlap_mentioned_p (operands[0], op0))
{
/* Handle the case where operands[0] == sparc_compare_op0.
We "early clobber" the result. */
op0 = gen_reg_rtx (GET_MODE (sparc_compare_op0));
emit_move_insn (op0, sparc_compare_op0);
}
emit_insn (gen_rtx_SET (VOIDmode, operands[0], const0_rtx));
if (GET_MODE (op0) != DImode)
{
temp = gen_reg_rtx (DImode);
convert_move (temp, op0, 0);
}
else
temp = op0;
emit_insn (gen_rtx_SET (VOIDmode, operands[0],
gen_rtx_IF_THEN_ELSE (GET_MODE (operands[0]),
gen_rtx_fmt_ee (compare_code, DImode,
temp, const0_rtx),
const1_rtx,
operands[0])));
return 1;
}
else
{
operands[1] = gen_compare_reg (compare_code, op0, op1);
switch (GET_MODE (operands[1]))
{
case CCmode :
case CCXmode :
case CCFPEmode :
case CCFPmode :
break;
default :
abort ();
}
emit_insn (gen_rtx_SET (VOIDmode, operands[0], const0_rtx));
emit_insn (gen_rtx_SET (VOIDmode, operands[0],
gen_rtx_IF_THEN_ELSE (GET_MODE (operands[0]),
gen_rtx_fmt_ee (compare_code,
GET_MODE (operands[1]),
operands[1], const0_rtx),
const1_rtx, operands[0])));
return 1;
}
}
/* Emit a conditional jump insn for the v9 architecture using comparison code
CODE and jump target LABEL.
This function exists to take advantage of the v9 brxx insns. */
void
emit_v9_brxx_insn (enum rtx_code code, rtx op0, rtx label)
{
emit_jump_insn (gen_rtx_SET (VOIDmode,
pc_rtx,
gen_rtx_IF_THEN_ELSE (VOIDmode,
gen_rtx_fmt_ee (code, GET_MODE (op0),
op0, const0_rtx),
gen_rtx_LABEL_REF (VOIDmode, label),
pc_rtx)));
}
/* Generate a DFmode part of a hard TFmode register.
REG is the TFmode hard register, LOW is 1 for the
low 64bit of the register and 0 otherwise.
*/
rtx
gen_df_reg (rtx reg, int low)
{
int regno = REGNO (reg);
if ((WORDS_BIG_ENDIAN == 0) ^ (low != 0))
regno += (TARGET_ARCH64 && regno < 32) ? 1 : 2;
return gen_rtx_REG (DFmode, regno);
}
/* Generate a call to FUNC with OPERANDS. Operand 0 is the return value.
Unlike normal calls, TFmode operands are passed by reference. It is
assumed that no more than 3 operands are required. */
static void
emit_soft_tfmode_libcall (const char *func_name, int nargs, rtx *operands)
{
rtx ret_slot = NULL, arg[3], func_sym;
int i;
/* We only expect to be called for conversions, unary, and binary ops. */
if (nargs < 2 || nargs > 3)
abort ();
for (i = 0; i < nargs; ++i)
{
rtx this_arg = operands[i];
rtx this_slot;
/* TFmode arguments and return values are passed by reference. */
if (GET_MODE (this_arg) == TFmode)
{
int force_stack_temp;
force_stack_temp = 0;
if (TARGET_BUGGY_QP_LIB && i == 0)
force_stack_temp = 1;
if (GET_CODE (this_arg) == MEM
&& ! force_stack_temp)
this_arg = XEXP (this_arg, 0);
else if (CONSTANT_P (this_arg)
&& ! force_stack_temp)
{
this_slot = force_const_mem (TFmode, this_arg);
this_arg = XEXP (this_slot, 0);
}
else
{
this_slot = assign_stack_temp (TFmode, GET_MODE_SIZE (TFmode), 0);
/* Operand 0 is the return value. We'll copy it out later. */
if (i > 0)
emit_move_insn (this_slot, this_arg);
else
ret_slot = this_slot;
this_arg = XEXP (this_slot, 0);
}
}
arg[i] = this_arg;
}
func_sym = gen_rtx_SYMBOL_REF (Pmode, func_name);
if (GET_MODE (operands[0]) == TFmode)
{
if (nargs == 2)
emit_library_call (func_sym, LCT_NORMAL, VOIDmode, 2,
arg[0], GET_MODE (arg[0]),
arg[1], GET_MODE (arg[1]));
else
emit_library_call (func_sym, LCT_NORMAL, VOIDmode, 3,
arg[0], GET_MODE (arg[0]),
arg[1], GET_MODE (arg[1]),
arg[2], GET_MODE (arg[2]));
if (ret_slot)
emit_move_insn (operands[0], ret_slot);
}
else
{
rtx ret;
if (nargs != 2)
abort ();
ret = emit_library_call_value (func_sym, operands[0], LCT_NORMAL,
GET_MODE (operands[0]), 1,
arg[1], GET_MODE (arg[1]));
if (ret != operands[0])
emit_move_insn (operands[0], ret);
}
}
/* Expand soft-float TFmode calls to sparc abi routines. */
static void
emit_soft_tfmode_binop (enum rtx_code code, rtx *operands)
{
const char *func;
switch (code)
{
case PLUS:
func = "_Qp_add";
break;
case MINUS:
func = "_Qp_sub";
break;
case MULT:
func = "_Qp_mul";
break;
case DIV:
func = "_Qp_div";
break;
default:
abort ();
}
emit_soft_tfmode_libcall (func, 3, operands);
}
static void
emit_soft_tfmode_unop (enum rtx_code code, rtx *operands)
{
const char *func;
switch (code)
{
case SQRT:
func = "_Qp_sqrt";
break;
default:
abort ();
}
emit_soft_tfmode_libcall (func, 2, operands);
}
static void
emit_soft_tfmode_cvt (enum rtx_code code, rtx *operands)
{
const char *func;
switch (code)
{
case FLOAT_EXTEND:
switch (GET_MODE (operands[1]))
{
case SFmode:
func = "_Qp_stoq";
break;
case DFmode:
func = "_Qp_dtoq";
break;
default:
abort ();
}
break;
case FLOAT_TRUNCATE:
switch (GET_MODE (operands[0]))
{
case SFmode:
func = "_Qp_qtos";
break;
case DFmode:
func = "_Qp_qtod";
break;
default:
abort ();
}
break;
case FLOAT:
switch (GET_MODE (operands[1]))
{
case SImode:
func = "_Qp_itoq";
break;
case DImode:
func = "_Qp_xtoq";
break;
default:
abort ();
}
break;
case UNSIGNED_FLOAT:
switch (GET_MODE (operands[1]))
{
case SImode:
func = "_Qp_uitoq";
break;
case DImode:
func = "_Qp_uxtoq";
break;
default:
abort ();
}
break;
case FIX:
switch (GET_MODE (operands[0]))
{
case SImode:
func = "_Qp_qtoi";
break;
case DImode:
func = "_Qp_qtox";
break;
default:
abort ();
}
break;
case UNSIGNED_FIX:
switch (GET_MODE (operands[0]))
{
case SImode:
func = "_Qp_qtoui";
break;
case DImode:
func = "_Qp_qtoux";
break;
default:
abort ();
}
break;
default:
abort ();
}
emit_soft_tfmode_libcall (func, 2, operands);
}
/* Expand a hard-float tfmode operation. All arguments must be in
registers. */
static void
emit_hard_tfmode_operation (enum rtx_code code, rtx *operands)
{
rtx op, dest;
if (GET_RTX_CLASS (code) == '1')
{
operands[1] = force_reg (GET_MODE (operands[1]), operands[1]);
op = gen_rtx_fmt_e (code, GET_MODE (operands[0]), operands[1]);
}
else
{
operands[1] = force_reg (GET_MODE (operands[1]), operands[1]);
operands[2] = force_reg (GET_MODE (operands[2]), operands[2]);
op = gen_rtx_fmt_ee (code, GET_MODE (operands[0]),
operands[1], operands[2]);
}
if (register_operand (operands[0], VOIDmode))
dest = operands[0];
else
dest = gen_reg_rtx (GET_MODE (operands[0]));
emit_insn (gen_rtx_SET (VOIDmode, dest, op));
if (dest != operands[0])
emit_move_insn (operands[0], dest);
}
void
emit_tfmode_binop (enum rtx_code code, rtx *operands)
{
if (TARGET_HARD_QUAD)
emit_hard_tfmode_operation (code, operands);
else
emit_soft_tfmode_binop (code, operands);
}
void
emit_tfmode_unop (enum rtx_code code, rtx *operands)
{
if (TARGET_HARD_QUAD)
emit_hard_tfmode_operation (code, operands);
else
emit_soft_tfmode_unop (code, operands);
}
void
emit_tfmode_cvt (enum rtx_code code, rtx *operands)
{
if (TARGET_HARD_QUAD)
emit_hard_tfmode_operation (code, operands);
else
emit_soft_tfmode_cvt (code, operands);
}
/* Return nonzero if a return peephole merging return with
setting of output register is ok. */
int
leaf_return_peephole_ok (void)
{
return (actual_fsize == 0);
}
/* Return nonzero if a branch/jump/call instruction will be emitting
nop into its delay slot. */
int
empty_delay_slot (rtx insn)
{
rtx seq;
/* If no previous instruction (should not happen), return true. */
if (PREV_INSN (insn) == NULL)
return 1;
seq = NEXT_INSN (PREV_INSN (insn));
if (GET_CODE (PATTERN (seq)) == SEQUENCE)
return 0;
return 1;
}
/* Return nonzero if TRIAL can go into the function epilogue's
delay slot. SLOT is the slot we are trying to fill. */
int
eligible_for_epilogue_delay (rtx trial, int slot)
{
rtx pat, src;
if (slot >= 1)
return 0;
if (GET_CODE (trial) != INSN || GET_CODE (PATTERN (trial)) != SET)
return 0;
if (get_attr_length (trial) != 1)
return 0;
/* If there are any call-saved registers, we should scan TRIAL if it
does not reference them. For now just make it easy. */
if (num_gfregs)
return 0;
/* If the function uses __builtin_eh_return, the eh_return machinery
occupies the delay slot. */
if (current_function_calls_eh_return)
return 0;
/* In the case of a true leaf function, anything can go into the delay slot.
A delay slot only exists however if the frame size is zero, otherwise
we will put an insn to adjust the stack after the return. */
if (current_function_uses_only_leaf_regs)
{
if (leaf_return_peephole_ok ())
return ((get_attr_in_uncond_branch_delay (trial)
== IN_BRANCH_DELAY_TRUE));
return 0;
}
pat = PATTERN (trial);
/* Otherwise, only operations which can be done in tandem with
a `restore' or `return' insn can go into the delay slot. */
if (GET_CODE (SET_DEST (pat)) != REG
|| REGNO (SET_DEST (pat)) < 24)
return 0;
/* If this instruction sets up floating point register and we have a return
instruction, it can probably go in. But restore will not work
with FP_REGS. */
if (REGNO (SET_DEST (pat)) >= 32)
{
if (TARGET_V9 && ! epilogue_renumber (&pat, 1)
&& (get_attr_in_uncond_branch_delay (trial) == IN_BRANCH_DELAY_TRUE))
return 1;
return 0;
}
/* The set of insns matched here must agree precisely with the set of
patterns paired with a RETURN in sparc.md. */
src = SET_SRC (pat);
/* This matches "*return_[qhs]i" or even "*return_di" on TARGET_ARCH64. */
if (GET_MODE_CLASS (GET_MODE (src)) != MODE_FLOAT
&& arith_operand (src, GET_MODE (src)))
{
if (TARGET_ARCH64)
return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (DImode);
else
return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (SImode);
}
/* This matches "*return_di". */
else if (GET_MODE_CLASS (GET_MODE (src)) != MODE_FLOAT
&& arith_double_operand (src, GET_MODE (src)))
return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (DImode);
/* This matches "*return_sf_no_fpu". */
else if (! TARGET_FPU && restore_operand (SET_DEST (pat), SFmode)
&& register_operand (src, SFmode))
return 1;
/* If we have return instruction, anything that does not use
local or output registers and can go into a delay slot wins. */
else if (TARGET_V9 && ! epilogue_renumber (&pat, 1)
&& (get_attr_in_uncond_branch_delay (trial) == IN_BRANCH_DELAY_TRUE))
return 1;
/* This matches "*return_addsi". */
else if (GET_CODE (src) == PLUS
&& arith_operand (XEXP (src, 0), SImode)
&& arith_operand (XEXP (src, 1), SImode)
&& (register_operand (XEXP (src, 0), SImode)
|| register_operand (XEXP (src, 1), SImode)))
return 1;
/* This matches "*return_adddi". */
else if (GET_CODE (src) == PLUS
&& arith_double_operand (XEXP (src, 0), DImode)
&& arith_double_operand (XEXP (src, 1), DImode)
&& (register_operand (XEXP (src, 0), DImode)
|| register_operand (XEXP (src, 1), DImode)))
return 1;
/* This can match "*return_losum_[sd]i".
Catch only some cases, so that return_losum* don't have
to be too big. */
else if (GET_CODE (src) == LO_SUM
&& ! TARGET_CM_MEDMID
&& ((register_operand (XEXP (src, 0), SImode)
&& immediate_operand (XEXP (src, 1), SImode))
|| (TARGET_ARCH64
&& register_operand (XEXP (src, 0), DImode)
&& immediate_operand (XEXP (src, 1), DImode))))
return 1;
/* sll{,x} reg,1,reg2 is add reg,reg,reg2 as well. */
else if (GET_CODE (src) == ASHIFT
&& (register_operand (XEXP (src, 0), SImode)
|| register_operand (XEXP (src, 0), DImode))
&& XEXP (src, 1) == const1_rtx)
return 1;
return 0;
}
/* Return nonzero if TRIAL can go into the call delay slot. */
int
tls_call_delay (rtx trial)
{
rtx pat, unspec;
/* Binutils allows
call __tls_get_addr, %tgd_call (foo)
add %l7, %o0, %o0, %tgd_add (foo)
while Sun as/ld does not. */
if (TARGET_GNU_TLS || !TARGET_TLS)
return 1;
pat = PATTERN (trial);
if (GET_CODE (pat) != SET || GET_CODE (SET_DEST (pat)) != PLUS)
return 1;
unspec = XEXP (SET_DEST (pat), 1);
if (GET_CODE (unspec) != UNSPEC
|| (XINT (unspec, 1) != UNSPEC_TLSGD
&& XINT (unspec, 1) != UNSPEC_TLSLDM))
return 1;
return 0;
}
/* Return nonzero if TRIAL can go into the sibling call
delay slot. */
int
eligible_for_sibcall_delay (rtx trial)
{
rtx pat, src;
if (GET_CODE (trial) != INSN || GET_CODE (PATTERN (trial)) != SET)
return 0;
if (get_attr_length (trial) != 1)
return 0;
pat = PATTERN (trial);
if (current_function_uses_only_leaf_regs)
{
/* If the tail call is done using the call instruction,
we have to restore %o7 in the delay slot. */
if ((TARGET_ARCH64 && ! TARGET_CM_MEDLOW) || flag_pic)
return 0;
/* %g1 is used to build the function address */
if (reg_mentioned_p (gen_rtx_REG (Pmode, 1), pat))
return 0;
return 1;
}
/* Otherwise, only operations which can be done in tandem with
a `restore' insn can go into the delay slot. */
if (GET_CODE (SET_DEST (pat)) != REG
|| REGNO (SET_DEST (pat)) < 24
|| REGNO (SET_DEST (pat)) >= 32)
return 0;
/* If it mentions %o7, it can't go in, because sibcall will clobber it
in most cases. */
if (reg_mentioned_p (gen_rtx_REG (Pmode, 15), pat))
return 0;
src = SET_SRC (pat);
if (GET_MODE_CLASS (GET_MODE (src)) != MODE_FLOAT
&& arith_operand (src, GET_MODE (src)))
{
if (TARGET_ARCH64)
return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (DImode);
else
return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (SImode);
}
else if (GET_MODE_CLASS (GET_MODE (src)) != MODE_FLOAT
&& arith_double_operand (src, GET_MODE (src)))
return GET_MODE_SIZE (GET_MODE (src)) <= GET_MODE_SIZE (DImode);
else if (! TARGET_FPU && restore_operand (SET_DEST (pat), SFmode)
&& register_operand (src, SFmode))
return 1;
else if (GET_CODE (src) == PLUS
&& arith_operand (XEXP (src, 0), SImode)
&& arith_operand (XEXP (src, 1), SImode)
&& (register_operand (XEXP (src, 0), SImode)
|| register_operand (XEXP (src, 1), SImode)))
return 1;
else if (GET_CODE (src) == PLUS
&& arith_double_operand (XEXP (src, 0), DImode)
&& arith_double_operand (XEXP (src, 1), DImode)
&& (register_operand (XEXP (src, 0), DImode)
|| register_operand (XEXP (src, 1), DImode)))
return 1;
else if (GET_CODE (src) == LO_SUM
&& ! TARGET_CM_MEDMID
&& ((register_operand (XEXP (src, 0), SImode)
&& immediate_operand (XEXP (src, 1), SImode))
|| (TARGET_ARCH64
&& register_operand (XEXP (src, 0), DImode)
&& immediate_operand (XEXP (src, 1), DImode))))
return 1;
else if (GET_CODE (src) == ASHIFT
&& (register_operand (XEXP (src, 0), SImode)
|| register_operand (XEXP (src, 0), DImode))
&& XEXP (src, 1) == const1_rtx)
return 1;
return 0;
}
static int
check_return_regs (rtx x)
{
switch (GET_CODE (x))
{
case REG:
return IN_OR_GLOBAL_P (x);
case CONST_INT:
case CONST_DOUBLE:
case CONST:
case SYMBOL_REF:
case LABEL_REF:
return 1;
case SET:
case IOR:
case AND:
case XOR:
case PLUS:
case MINUS:
if (check_return_regs (XEXP (x, 1)) == 0)
return 0;
case NOT:
case NEG:
case MEM:
return check_return_regs (XEXP (x, 0));
default:
return 0;
}
}
int
short_branch (int uid1, int uid2)
{
int delta = INSN_ADDRESSES (uid1) - INSN_ADDRESSES (uid2);
/* Leave a few words of "slop". */
if (delta >= -1023 && delta <= 1022)
return 1;
return 0;
}
/* Return nonzero if REG is not used after INSN.
We assume REG is a reload reg, and therefore does
not live past labels or calls or jumps. */
int
reg_unused_after (rtx reg, rtx insn)
{
enum rtx_code code, prev_code = UNKNOWN;
while ((insn = NEXT_INSN (insn)))
{
if (prev_code == CALL_INSN && call_used_regs[REGNO (reg)])
return 1;
code = GET_CODE (insn);
if (GET_CODE (insn) == CODE_LABEL)
return 1;
if (GET_RTX_CLASS (code) == 'i')
{
rtx set = single_set (insn);
int in_src = set && reg_overlap_mentioned_p (reg, SET_SRC (set));
if (set && in_src)
return 0;
if (set && reg_overlap_mentioned_p (reg, SET_DEST (set)))
return 1;
if (set == 0 && reg_overlap_mentioned_p (reg, PATTERN (insn)))
return 0;
}
prev_code = code;
}
return 1;
}
/* Determine if it's legal to put X into the constant pool. This
is not possible if X contains the address of a symbol that is
not constant (TLS) or not known at final link time (PIC). */
static bool
sparc_cannot_force_const_mem (rtx x)
{
switch (GET_CODE (x))
{
case CONST_INT:
case CONST_DOUBLE:
/* Accept all non-symbolic constants. */
return false;
case LABEL_REF:
/* Labels are OK iff we are non-PIC. */
return flag_pic != 0;
case SYMBOL_REF:
/* 'Naked' TLS symbol references are never OK,
non-TLS symbols are OK iff we are non-PIC. */
if (SYMBOL_REF_TLS_MODEL (x))
return true;
else
return flag_pic != 0;
case CONST:
return sparc_cannot_force_const_mem (XEXP (x, 0));
case PLUS:
case MINUS:
return sparc_cannot_force_const_mem (XEXP (x, 0))
|| sparc_cannot_force_const_mem (XEXP (x, 1));
case UNSPEC:
return true;
default:
abort ();
}
}
/* The table we use to reference PIC data. */
static GTY(()) rtx global_offset_table;
/* The function we use to get at it. */
static GTY(()) rtx get_pc_symbol;
static GTY(()) char get_pc_symbol_name[256];
/* Ensure that we are not using patterns that are not OK with PIC. */
int
check_pic (int i)
{
switch (flag_pic)
{
case 1:
if (GET_CODE (recog_data.operand[i]) == SYMBOL_REF
|| (GET_CODE (recog_data.operand[i]) == CONST
&& ! (GET_CODE (XEXP (recog_data.operand[i], 0)) == MINUS
&& (XEXP (XEXP (recog_data.operand[i], 0), 0)
== global_offset_table)
&& (GET_CODE (XEXP (XEXP (recog_data.operand[i], 0), 1))
== CONST))))
abort ();
case 2:
default:
return 1;
}
}
/* Return true if X is an address which needs a temporary register when
reloaded while generating PIC code. */
int
pic_address_needs_scratch (rtx x)
{
/* An address which is a symbolic plus a non SMALL_INT needs a temp reg. */
if (GET_CODE (x) == CONST && GET_CODE (XEXP (x, 0)) == PLUS
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
&& ! SMALL_INT (XEXP (XEXP (x, 0), 1)))
return 1;
return 0;
}
/* Determine if a given RTX is a valid constant. We already know this
satisfies CONSTANT_P. */
bool
legitimate_constant_p (rtx x)
{
rtx inner;
switch (GET_CODE (x))
{
case SYMBOL_REF:
/* TLS symbols are not constant. */
if (SYMBOL_REF_TLS_MODEL (x))
return false;
break;
case CONST:
inner = XEXP (x, 0);
/* Offsets of TLS symbols are never valid.
Discourage CSE from creating them. */
if (GET_CODE (inner) == PLUS
&& tls_symbolic_operand (XEXP (inner, 0)))
return false;
break;
case CONST_DOUBLE:
if (GET_MODE (x) == VOIDmode)
return true;
/* Floating point constants are generally not ok.
The only exception is 0.0 in VIS. */
if (TARGET_VIS
&& (GET_MODE (x) == SFmode
|| GET_MODE (x) == DFmode
|| GET_MODE (x) == TFmode)
&& fp_zero_operand (x, GET_MODE (x)))
return true;
return false;
default:
break;
}
return true;
}
/* Determine if a given RTX is a valid constant address. */
bool
constant_address_p (rtx x)
{
switch (GET_CODE (x))
{
case LABEL_REF:
case CONST_INT:
case HIGH:
return true;
case CONST:
if (flag_pic && pic_address_needs_scratch (x))
return false;
return legitimate_constant_p (x);
case SYMBOL_REF:
return !flag_pic && legitimate_constant_p (x);
default:
return false;
}
}
/* Nonzero if the constant value X is a legitimate general operand
when generating PIC code. It is given that flag_pic is on and
that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
bool
legitimate_pic_operand_p (rtx x)
{
if (pic_address_needs_scratch (x))
return false;
if (tls_symbolic_operand (x)
|| (GET_CODE (x) == CONST
&& GET_CODE (XEXP (x, 0)) == PLUS
&& tls_symbolic_operand (XEXP (XEXP (x, 0), 0))))
return false;
return true;
}
/* Return nonzero if ADDR is a valid memory address.
STRICT specifies whether strict register checking applies. */
int
legitimate_address_p (enum machine_mode mode, rtx addr, int strict)
{
rtx rs1 = NULL, rs2 = NULL, imm1 = NULL, imm2;
if (REG_P (addr) || GET_CODE (addr) == SUBREG)
rs1 = addr;
else if (GET_CODE (addr) == PLUS)
{
rs1 = XEXP (addr, 0);
rs2 = XEXP (addr, 1);
/* Canonicalize. REG comes first, if there are no regs,
LO_SUM comes first. */
if (!REG_P (rs1)
&& GET_CODE (rs1) != SUBREG
&& (REG_P (rs2)
|| GET_CODE (rs2) == SUBREG
|| (GET_CODE (rs2) == LO_SUM && GET_CODE (rs1) != LO_SUM)))
{
rs1 = XEXP (addr, 1);
rs2 = XEXP (addr, 0);
}
if ((flag_pic == 1
&& rs1 == pic_offset_table_rtx
&& !REG_P (rs2)
&& GET_CODE (rs2) != SUBREG
&& GET_CODE (rs2) != LO_SUM
&& GET_CODE (rs2) != MEM
&& !tls_symbolic_operand (rs2)
&& (! symbolic_operand (rs2, VOIDmode) || mode == Pmode)
&& (GET_CODE (rs2) != CONST_INT || SMALL_INT (rs2)))
|| ((REG_P (rs1)
|| GET_CODE (rs1) == SUBREG)
&& RTX_OK_FOR_OFFSET_P (rs2)))
{
imm1 = rs2;
rs2 = NULL;
}
else if ((REG_P (rs1) || GET_CODE (rs1) == SUBREG)
&& (REG_P (rs2) || GET_CODE (rs2) == SUBREG))
{
/* We prohibit REG + REG for TFmode when there are no instructions
which accept REG+REG instructions. We do this because REG+REG
is not an offsetable address. If we get the situation in reload
where source and destination of a movtf pattern are both MEMs with
REG+REG address, then only one of them gets converted to an
offsetable address. */
if (mode == TFmode
&& !(TARGET_FPU && TARGET_ARCH64 && TARGET_V9
&& TARGET_HARD_QUAD))
return 0;
/* We prohibit REG + REG on ARCH32 if not optimizing for
DFmode/DImode because then mem_min_alignment is likely to be zero
after reload and the forced split would lack a matching splitter
pattern. */
if (TARGET_ARCH32 && !optimize
&& (mode == DFmode || mode == DImode))
return 0;
}
else if (USE_AS_OFFSETABLE_LO10
&& GET_CODE (rs1) == LO_SUM
&& TARGET_ARCH64
&& ! TARGET_CM_MEDMID
&& RTX_OK_FOR_OLO10_P (rs2))
{
imm2 = rs2;
rs2 = NULL;
imm1 = XEXP (rs1, 1);
rs1 = XEXP (rs1, 0);
if (! CONSTANT_P (imm1) || tls_symbolic_operand (rs1))
return 0;
}
}
else if (GET_CODE (addr) == LO_SUM)
{
rs1 = XEXP (addr, 0);
imm1 = XEXP (addr, 1);
if (! CONSTANT_P (imm1) || tls_symbolic_operand (rs1))
return 0;
/* We can't allow TFmode, because an offset greater than or equal to the
alignment (8) may cause the LO_SUM to overflow if !v9. */
if (mode == TFmode && !TARGET_V9)
return 0;
}
else if (GET_CODE (addr) == CONST_INT && SMALL_INT (addr))
return 1;
else
return 0;
if (GET_CODE (rs1) == SUBREG)
rs1 = SUBREG_REG (rs1);
if (!REG_P (rs1))
return 0;
if (rs2)
{
if (GET_CODE (rs2) == SUBREG)
rs2 = SUBREG_REG (rs2);
if (!REG_P (rs2))
return 0;
}
if (strict)
{
if (!REGNO_OK_FOR_BASE_P (REGNO (rs1))
|| (rs2 && !REGNO_OK_FOR_BASE_P (REGNO (rs2))))
return 0;
}
else
{
if ((REGNO (rs1) >= 32
&& REGNO (rs1) != FRAME_POINTER_REGNUM
&& REGNO (rs1) < FIRST_PSEUDO_REGISTER)
|| (rs2
&& (REGNO (rs2) >= 32
&& REGNO (rs2) != FRAME_POINTER_REGNUM
&& REGNO (rs2) < FIRST_PSEUDO_REGISTER)))
return 0;
}
return 1;
}
/* Construct the SYMBOL_REF for the tls_get_offset function. */
static GTY(()) rtx sparc_tls_symbol;
static rtx
sparc_tls_get_addr (void)
{
if (!sparc_tls_symbol)
sparc_tls_symbol = gen_rtx_SYMBOL_REF (Pmode, "__tls_get_addr");
return sparc_tls_symbol;
}
static rtx
sparc_tls_got (void)
{
rtx temp;
if (flag_pic)
{
current_function_uses_pic_offset_table = 1;
return pic_offset_table_rtx;
}
if (!global_offset_table)
global_offset_table = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");
temp = gen_reg_rtx (Pmode);
emit_move_insn (temp, global_offset_table);
return temp;
}
/* ADDR contains a thread-local SYMBOL_REF. Generate code to compute
this (thread-local) address. */
rtx
legitimize_tls_address (rtx addr)
{
rtx temp1, temp2, temp3, ret, o0, got, insn;
if (no_new_pseudos)
abort ();
if (GET_CODE (addr) == SYMBOL_REF)
switch (SYMBOL_REF_TLS_MODEL (addr))
{
case TLS_MODEL_GLOBAL_DYNAMIC:
start_sequence ();
temp1 = gen_reg_rtx (SImode);
temp2 = gen_reg_rtx (SImode);
ret = gen_reg_rtx (Pmode);
o0 = gen_rtx_REG (Pmode, 8);
got = sparc_tls_got ();
emit_insn (gen_tgd_hi22 (temp1, addr));
emit_insn (gen_tgd_lo10 (temp2, temp1, addr));
if (TARGET_ARCH32)
{
emit_insn (gen_tgd_add32 (o0, got, temp2, addr));
insn = emit_call_insn (gen_tgd_call32 (o0, sparc_tls_get_addr (),
addr, const1_rtx));
}
else
{
emit_insn (gen_tgd_add64 (o0, got, temp2, addr));
insn = emit_call_insn (gen_tgd_call64 (o0, sparc_tls_get_addr (),
addr, const1_rtx));
}
CALL_INSN_FUNCTION_USAGE (insn)
= gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_USE (VOIDmode, o0),
CALL_INSN_FUNCTION_USAGE (insn));
insn = get_insns ();
end_sequence ();
emit_libcall_block (insn, ret, o0, addr);
break;
case TLS_MODEL_LOCAL_DYNAMIC:
start_sequence ();
temp1 = gen_reg_rtx (SImode);
temp2 = gen_reg_rtx (SImode);
temp3 = gen_reg_rtx (Pmode);
ret = gen_reg_rtx (Pmode);
o0 = gen_rtx_REG (Pmode, 8);
got = sparc_tls_got ();
emit_insn (gen_tldm_hi22 (temp1));
emit_insn (gen_tldm_lo10 (temp2, temp1));
if (TARGET_ARCH32)
{
emit_insn (gen_tldm_add32 (o0, got, temp2));
insn = emit_call_insn (gen_tldm_call32 (o0, sparc_tls_get_addr (),
const1_rtx));
}
else
{
emit_insn (gen_tldm_add64 (o0, got, temp2));
insn = emit_call_insn (gen_tldm_call64 (o0, sparc_tls_get_addr (),
const1_rtx));
}
CALL_INSN_FUNCTION_USAGE (insn)
= gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_USE (VOIDmode, o0),
CALL_INSN_FUNCTION_USAGE (insn));
insn = get_insns ();
end_sequence ();
emit_libcall_block (insn, temp3, o0,
gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
UNSPEC_TLSLD_BASE));
temp1 = gen_reg_rtx (SImode);
temp2 = gen_reg_rtx (SImode);
emit_insn (gen_tldo_hix22 (temp1, addr));
emit_insn (gen_tldo_lox10 (temp2, temp1, addr));
if (TARGET_ARCH32)
emit_insn (gen_tldo_add32 (ret, temp3, temp2, addr));
else
emit_insn (gen_tldo_add64 (ret, temp3, temp2, addr));
break;
case TLS_MODEL_INITIAL_EXEC:
temp1 = gen_reg_rtx (SImode);
temp2 = gen_reg_rtx (SImode);
temp3 = gen_reg_rtx (Pmode);
got = sparc_tls_got ();
emit_insn (gen_tie_hi22 (temp1, addr));
emit_insn (gen_tie_lo10 (temp2, temp1, addr));
if (TARGET_ARCH32)
emit_insn (gen_tie_ld32 (temp3, got, temp2, addr));
else
emit_insn (gen_tie_ld64 (temp3, got, temp2, addr));
if (TARGET_SUN_TLS)
{
ret = gen_reg_rtx (Pmode);
if (TARGET_ARCH32)
emit_insn (gen_tie_add32 (ret, gen_rtx_REG (Pmode, 7),
temp3, addr));
else
emit_insn (gen_tie_add64 (ret, gen_rtx_REG (Pmode, 7),
temp3, addr));
}
else
ret = gen_rtx_PLUS (Pmode, gen_rtx_REG (Pmode, 7), temp3);
break;
case TLS_MODEL_LOCAL_EXEC:
temp1 = gen_reg_rtx (Pmode);
temp2 = gen_reg_rtx (Pmode);
if (TARGET_ARCH32)
{
emit_insn (gen_tle_hix22_sp32 (temp1, addr));
emit_insn (gen_tle_lox10_sp32 (temp2, temp1, addr));
}
else
{
emit_insn (gen_tle_hix22_sp64 (temp1, addr));
emit_insn (gen_tle_lox10_sp64 (temp2, temp1, addr));
}
ret = gen_rtx_PLUS (Pmode, gen_rtx_REG (Pmode, 7), temp2);
break;
default:
abort ();
}
else
abort (); /* for now ... */
return ret;
}
/* Legitimize PIC addresses. If the address is already position-independent,
we return ORIG. Newly generated position-independent addresses go into a
reg. This is REG if nonzero, otherwise we allocate register(s) as
necessary. */
rtx
legitimize_pic_address (rtx orig, enum machine_mode mode ATTRIBUTE_UNUSED,
rtx reg)
{
if (GET_CODE (orig) == SYMBOL_REF)
{
rtx pic_ref, address;
rtx insn;
if (reg == 0)
{
if (reload_in_progress || reload_completed)
abort ();
else
reg = gen_reg_rtx (Pmode);
}
if (flag_pic == 2)
{
/* If not during reload, allocate another temp reg here for loading
in the address, so that these instructions can be optimized
properly. */
rtx temp_reg = ((reload_in_progress || reload_completed)
? reg : gen_reg_rtx (Pmode));
/* Must put the SYMBOL_REF inside an UNSPEC here so that cse
won't get confused into thinking that these two instructions
are loading in the true address of the symbol. If in the
future a PIC rtx exists, that should be used instead. */
if (Pmode == SImode)
{
emit_insn (gen_movsi_high_pic (temp_reg, orig));
emit_insn (gen_movsi_lo_sum_pic (temp_reg, temp_reg, orig));
}
else
{
emit_insn (gen_movdi_high_pic (temp_reg, orig));
emit_insn (gen_movdi_lo_sum_pic (temp_reg, temp_reg, orig));
}
address = temp_reg;
}
else
address = orig;
pic_ref = gen_rtx_MEM (Pmode,
gen_rtx_PLUS (Pmode,
pic_offset_table_rtx, address));
current_function_uses_pic_offset_table = 1;
RTX_UNCHANGING_P (pic_ref) = 1;
insn = emit_move_insn (reg, pic_ref);
/* Put a REG_EQUAL note on this insn, so that it can be optimized
by loop. */
REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EQUAL, orig,
REG_NOTES (insn));
return reg;
}
else if (GET_CODE (orig) == CONST)
{
rtx base, offset;
if (GET_CODE (XEXP (orig, 0)) == PLUS
&& XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx)
return orig;
if (reg == 0)
{
if (reload_in_progress || reload_completed)
abort ();
else
reg = gen_reg_rtx (Pmode);
}
if (GET_CODE (XEXP (orig, 0)) == PLUS)
{
base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
offset = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
base == reg ? 0 : reg);
}
else
abort ();
if (GET_CODE (offset) == CONST_INT)
{
if (SMALL_INT (offset))
return plus_constant (base, INTVAL (offset));
else if (! reload_in_progress && ! reload_completed)
offset = force_reg (Pmode, offset);
else
/* If we reach here, then something is seriously wrong. */
abort ();
}
return gen_rtx_PLUS (Pmode, base, offset);
}
else if (GET_CODE (orig) == LABEL_REF)
/* ??? Why do we do this? */
/* Now movsi_pic_label_ref uses it, but we ought to be checking that
the register is live instead, in case it is eliminated. */
current_function_uses_pic_offset_table = 1;
return orig;
}
/* Try machine-dependent ways of modifying an illegitimate address X
to be legitimate. If we find one, return the new, valid address.
OLDX is the address as it was before break_out_memory_refs was called.
In some cases it is useful to look at this to decide what needs to be done.
MODE is the mode of the operand pointed to by X. */
rtx
legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED, enum machine_mode mode)
{
rtx orig_x = x;
if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == MULT)
x = gen_rtx_PLUS (Pmode, XEXP (x, 1),
force_operand (XEXP (x, 0), NULL_RTX));
if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == MULT)
x = gen_rtx_PLUS (Pmode, XEXP (x, 0),
force_operand (XEXP (x, 1), NULL_RTX));
if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 0)) == PLUS)
x = gen_rtx_PLUS (Pmode, force_operand (XEXP (x, 0), NULL_RTX),
XEXP (x, 1));
if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == PLUS)
x = gen_rtx_PLUS (Pmode, XEXP (x, 0),
force_operand (XEXP (x, 1), NULL_RTX));
if (x != orig_x && legitimate_address_p (mode, x, FALSE))
return x;
if (tls_symbolic_operand (x))
x = legitimize_tls_address (x);
else if (flag_pic)
x = legitimize_pic_address (x, mode, 0);
else if (GET_CODE (x) == PLUS && CONSTANT_ADDRESS_P (XEXP (x, 1)))
x = gen_rtx_PLUS (Pmode, XEXP (x, 0),
copy_to_mode_reg (Pmode, XEXP (x, 1)));
else if (GET_CODE (x) == PLUS && CONSTANT_ADDRESS_P (XEXP (x, 0)))
x = gen_rtx_PLUS (Pmode, XEXP (x, 1),
copy_to_mode_reg (Pmode, XEXP (x, 0)));
else if (GET_CODE (x) == SYMBOL_REF
|| GET_CODE (x) == CONST
|| GET_CODE (x) == LABEL_REF)
x = copy_to_suggested_reg (x, NULL_RTX, Pmode);
return x;
}
/* Emit special PIC prologues. */
void
load_pic_register (void)
{
/* Labels to get the PC in the prologue of this function. */
int orig_flag_pic = flag_pic;
if (! flag_pic)
abort ();
/* If we haven't emitted the special get_pc helper function, do so now. */
if (get_pc_symbol_name[0] == 0)
{
int align;
ASM_GENERATE_INTERNAL_LABEL (get_pc_symbol_name, "LGETPC", 0);
text_section ();
align = floor_log2 (FUNCTION_BOUNDARY / BITS_PER_UNIT);
if (align > 0)
ASM_OUTPUT_ALIGN (asm_out_file, align);
(*targetm.asm_out.internal_label) (asm_out_file, "LGETPC", 0);
fputs ("\tretl\n\tadd\t%o7, %l7, %l7\n", asm_out_file);
}
/* Initialize every time through, since we can't easily
know this to be permanent. */
global_offset_table = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");
get_pc_symbol = gen_rtx_SYMBOL_REF (Pmode, get_pc_symbol_name);
flag_pic = 0;
emit_insn (gen_get_pc (pic_offset_table_rtx, global_offset_table,
get_pc_symbol));
flag_pic = orig_flag_pic;
/* Need to emit this whether or not we obey regdecls,
since setjmp/longjmp can cause life info to screw up.
??? In the case where we don't obey regdecls, this is not sufficient
since we may not fall out the bottom. */
emit_insn (gen_rtx_USE (VOIDmode, pic_offset_table_rtx));
}
/* Return 1 if RTX is a MEM which is known to be aligned to at
least a DESIRED byte boundary. */
int
mem_min_alignment (rtx mem, int desired)
{
rtx addr, base, offset;
/* If it's not a MEM we can't accept it. */
if (GET_CODE (mem) != MEM)
return 0;
addr = XEXP (mem, 0);
base = offset = NULL_RTX;
if (GET_CODE (addr) == PLUS)
{
if (GET_CODE (XEXP (addr, 0)) == REG)
{
base = XEXP (addr, 0);
/* What we are saying here is that if the base
REG is aligned properly, the compiler will make
sure any REG based index upon it will be so
as well. */
if (GET_CODE (XEXP (addr, 1)) == CONST_INT)
offset = XEXP (addr, 1);
else
offset = const0_rtx;
}
}
else if (GET_CODE (addr) == REG)
{
base = addr;
offset = const0_rtx;
}
if (base != NULL_RTX)
{
int regno = REGNO (base);
if (regno != HARD_FRAME_POINTER_REGNUM && regno != STACK_POINTER_REGNUM)
{
/* Check if the compiler has recorded some information
about the alignment of the base REG. If reload has
completed, we already matched with proper alignments.
If not running global_alloc, reload might give us
unaligned pointer to local stack though. */
if (((cfun != 0
&& REGNO_POINTER_ALIGN (regno) >= desired * BITS_PER_UNIT)
|| (optimize && reload_completed))
&& (INTVAL (offset) & (desired - 1)) == 0)
return 1;
}
else
{
if (((INTVAL (offset) - SPARC_STACK_BIAS) & (desired - 1)) == 0)
return 1;
}
}
else if (! TARGET_UNALIGNED_DOUBLES
|| CONSTANT_P (addr)
|| GET_CODE (addr) == LO_SUM)
{
/* Anything else we know is properly aligned unless TARGET_UNALIGNED_DOUBLES
is true, in which case we can only assume that an access is aligned if
it is to a constant address, or the address involves a LO_SUM. */
return 1;
}
/* An obviously unaligned address. */
return 0;
}
/* Vectors to keep interesting information about registers where it can easily
be got. We used to use the actual mode value as the bit number, but there
are more than 32 modes now. Instead we use two tables: one indexed by
hard register number, and one indexed by mode. */
/* The purpose of sparc_mode_class is to shrink the range of modes so that
they all fit (as bit numbers) in a 32 bit word (again). Each real mode is
mapped into one sparc_mode_class mode. */
enum sparc_mode_class {
S_MODE, D_MODE, T_MODE, O_MODE,
SF_MODE, DF_MODE, TF_MODE, OF_MODE,
CC_MODE, CCFP_MODE
};
/* Modes for single-word and smaller quantities. */
#define S_MODES ((1 << (int) S_MODE) | (1 << (int) SF_MODE))
/* Modes for double-word and smaller quantities. */
#define D_MODES (S_MODES | (1 << (int) D_MODE) | (1 << DF_MODE))
/* Modes for quad-word and smaller quantities. */
#define T_MODES (D_MODES | (1 << (int) T_MODE) | (1 << (int) TF_MODE))
/* Modes for 8-word and smaller quantities. */
#define O_MODES (T_MODES | (1 << (int) O_MODE) | (1 << (int) OF_MODE))
/* Modes for single-float quantities. We must allow any single word or
smaller quantity. This is because the fix/float conversion instructions
take integer inputs/outputs from the float registers. */
#define SF_MODES (S_MODES)
/* Modes for double-float and smaller quantities. */
#define DF_MODES (S_MODES | D_MODES)
/* Modes for double-float only quantities. */
#define DF_MODES_NO_S ((1 << (int) D_MODE) | (1 << (int) DF_MODE))
/* Modes for quad-float only quantities. */
#define TF_ONLY_MODES (1 << (int) TF_MODE)
/* Modes for quad-float and smaller quantities. */
#define TF_MODES (DF_MODES | TF_ONLY_MODES)
/* Modes for quad-float and double-float quantities. */
#define TF_MODES_NO_S (DF_MODES_NO_S | TF_ONLY_MODES)
/* Modes for quad-float pair only quantities. */
#define OF_ONLY_MODES (1 << (int) OF_MODE)
/* Modes for quad-float pairs and smaller quantities. */
#define OF_MODES (TF_MODES | OF_ONLY_MODES)
#define OF_MODES_NO_S (TF_MODES_NO_S | OF_ONLY_MODES)
/* Modes for condition codes. */
#define CC_MODES (1 << (int) CC_MODE)
#define CCFP_MODES (1 << (int) CCFP_MODE)
/* Value is 1 if register/mode pair is acceptable on sparc.
The funny mixture of D and T modes is because integer operations
do not specially operate on tetra quantities, so non-quad-aligned
registers can hold quadword quantities (except %o4 and %i4 because
they cross fixed registers). */
/* This points to either the 32 bit or the 64 bit version. */
const int *hard_regno_mode_classes;
static const int hard_32bit_mode_classes[] = {
S_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES,
T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, D_MODES, S_MODES,
T_MODES, S_MODES, T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES,
T_MODES, S_MODES, T_MODES, S_MODES, D_MODES, S_MODES, D_MODES, S_MODES,
OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES,
OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES,
OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES,
OF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES,
/* FP regs f32 to f63. Only the even numbered registers actually exist,
and none can hold SFmode/SImode values. */
OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0,
OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0,
OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0,
OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, TF_MODES_NO_S, 0, DF_MODES_NO_S, 0,
/* %fcc[0123] */
CCFP_MODES, CCFP_MODES, CCFP_MODES, CCFP_MODES,
/* %icc */
CC_MODES
};
static const int hard_64bit_mode_classes[] = {
D_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES,
O_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES,
T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES,
O_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES, T_MODES, D_MODES,
OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES,
OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES,
OF_MODES, SF_MODES, DF_MODES, SF_MODES, OF_MODES, SF_MODES, DF_MODES, SF_MODES,
OF_MODES, SF_MODES, DF_MODES, SF_MODES, TF_MODES, SF_MODES, DF_MODES, SF_MODES,
/* FP regs f32 to f63. Only the even numbered registers actually exist,
and none can hold SFmode/SImode values. */
OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0,
OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0,
OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, OF_MODES_NO_S, 0, DF_MODES_NO_S, 0,
OF_MODES_NO_S, 0, DF_MODES_NO_S, 0, TF_MODES_NO_S, 0, DF_MODES_NO_S, 0,
/* %fcc[0123] */
CCFP_MODES, CCFP_MODES, CCFP_MODES, CCFP_MODES,
/* %icc */
CC_MODES
};
int sparc_mode_class [NUM_MACHINE_MODES];
enum reg_class sparc_regno_reg_class[FIRST_PSEUDO_REGISTER];
static void
sparc_init_modes (void)
{
int i;
for (i = 0; i < NUM_MACHINE_MODES; i++)
{
switch (GET_MODE_CLASS (i))
{
case MODE_INT:
case MODE_PARTIAL_INT:
case MODE_COMPLEX_INT:
if (GET_MODE_SIZE (i) <= 4)
sparc_mode_class[i] = 1 << (int) S_MODE;
else if (GET_MODE_SIZE (i) == 8)
sparc_mode_class[i] = 1 << (int) D_MODE;
else if (GET_MODE_SIZE (i) == 16)
sparc_mode_class[i] = 1 << (int) T_MODE;
else if (GET_MODE_SIZE (i) == 32)
sparc_mode_class[i] = 1 << (int) O_MODE;
else
sparc_mode_class[i] = 0;
break;
case MODE_FLOAT:
case MODE_COMPLEX_FLOAT:
if (GET_MODE_SIZE (i) <= 4)
sparc_mode_class[i] = 1 << (int) SF_MODE;
else if (GET_MODE_SIZE (i) == 8)
sparc_mode_class[i] = 1 << (int) DF_MODE;
else if (GET_MODE_SIZE (i) == 16)
sparc_mode_class[i] = 1 << (int) TF_MODE;
else if (GET_MODE_SIZE (i) == 32)
sparc_mode_class[i] = 1 << (int) OF_MODE;
else
sparc_mode_class[i] = 0;
break;
case MODE_CC:
if (i == (int) CCFPmode || i == (int) CCFPEmode)
sparc_mode_class[i] = 1 << (int) CCFP_MODE;
else
sparc_mode_class[i] = 1 << (int) CC_MODE;
break;
default:
sparc_mode_class[i] = 0;
break;
}
}
if (TARGET_ARCH64)
hard_regno_mode_classes = hard_64bit_mode_classes;
else
hard_regno_mode_classes = hard_32bit_mode_classes;
/* Initialize the array used by REGNO_REG_CLASS. */
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
{
if (i < 16 && TARGET_V8PLUS)
sparc_regno_reg_class[i] = I64_REGS;
else if (i < 32 || i == FRAME_POINTER_REGNUM)
sparc_regno_reg_class[i] = GENERAL_REGS;
else if (i < 64)
sparc_regno_reg_class[i] = FP_REGS;
else if (i < 96)
sparc_regno_reg_class[i] = EXTRA_FP_REGS;
else if (i < 100)
sparc_regno_reg_class[i] = FPCC_REGS;
else
sparc_regno_reg_class[i] = NO_REGS;
}
}
/* Save non call used registers from LOW to HIGH at BASE+OFFSET.
N_REGS is the number of 4-byte regs saved thus far. This applies even to
v9 int regs as it simplifies the code. */
static int
save_regs (FILE *file, int low, int high, const char *base,
int offset, int n_regs, HOST_WIDE_INT real_offset)
{
int i;
if (TARGET_ARCH64 && high <= 32)
{
for (i = low; i < high; i++)
{
if (regs_ever_live[i] && ! call_used_regs[i])
{
fprintf (file, "\tstx\t%s, [%s+%d]\n",
reg_names[i], base, offset + 4 * n_regs);
if (dwarf2out_do_frame ())
dwarf2out_reg_save ("", i, real_offset + 4 * n_regs);
n_regs += 2;
}
}
}
else
{
for (i = low; i < high; i += 2)
{
if (regs_ever_live[i] && ! call_used_regs[i])
{
if (regs_ever_live[i+1] && ! call_used_regs[i+1])
{
fprintf (file, "\tstd\t%s, [%s+%d]\n",
reg_names[i], base, offset + 4 * n_regs);
if (dwarf2out_do_frame ())
{
char *l = dwarf2out_cfi_label ();
dwarf2out_reg_save (l, i, real_offset + 4 * n_regs);
dwarf2out_reg_save (l, i+1, real_offset + 4 * n_regs + 4);
}
n_regs += 2;
}
else
{
fprintf (file, "\tst\t%s, [%s+%d]\n",
reg_names[i], base, offset + 4 * n_regs);
if (dwarf2out_do_frame ())
dwarf2out_reg_save ("", i, real_offset + 4 * n_regs);
n_regs += 2;
}
}
else
{
if (regs_ever_live[i+1] && ! call_used_regs[i+1])
{
fprintf (file, "\tst\t%s, [%s+%d]\n",
reg_names[i+1], base, offset + 4 * n_regs + 4);
if (dwarf2out_do_frame ())
dwarf2out_reg_save ("", i + 1, real_offset + 4 * n_regs + 4);
n_regs += 2;
}
}
}
}
return n_regs;
}
/* Restore non call used registers from LOW to HIGH at BASE+OFFSET.
N_REGS is the number of 4-byte regs saved thus far. This applies even to
v9 int regs as it simplifies the code. */
static int
restore_regs (FILE *file, int low, int high, const char *base,
int offset, int n_regs)
{
int i;
if (TARGET_ARCH64 && high <= 32)
{
for (i = low; i < high; i++)
{
if (regs_ever_live[i] && ! call_used_regs[i])
fprintf (file, "\tldx\t[%s+%d], %s\n",
base, offset + 4 * n_regs, reg_names[i]),
n_regs += 2;
}
}
else
{
for (i = low; i < high; i += 2)
{
if (regs_ever_live[i] && ! call_used_regs[i])
if (regs_ever_live[i+1] && ! call_used_regs[i+1])
fprintf (file, "\tldd\t[%s+%d], %s\n",
base, offset + 4 * n_regs, reg_names[i]),
n_regs += 2;
else
fprintf (file, "\tld\t[%s+%d], %s\n",
base, offset + 4 * n_regs, reg_names[i]),
n_regs += 2;
else if (regs_ever_live[i+1] && ! call_used_regs[i+1])
fprintf (file, "\tld\t[%s+%d], %s\n",
base, offset + 4 * n_regs + 4, reg_names[i+1]),
n_regs += 2;
}
}
return n_regs;
}
/* Compute the frame size required by the function. This function is called
during the reload pass and also by output_function_prologue(). */
HOST_WIDE_INT
compute_frame_size (HOST_WIDE_INT size, int leaf_function)
{
int n_regs = 0, i;
int outgoing_args_size = (current_function_outgoing_args_size
+ REG_PARM_STACK_SPACE (current_function_decl));
/* N_REGS is the number of 4-byte regs saved thus far. This applies
even to v9 int regs to be consistent with save_regs/restore_regs. */
if (TARGET_ARCH64)
{
for (i = 0; i < 8; i++)
if (regs_ever_live[i] && ! call_used_regs[i])
n_regs += 2;
}
else
{
for (i = 0; i < 8; i += 2)
if ((regs_ever_live[i] && ! call_used_regs[i])
|| (regs_ever_live[i+1] && ! call_used_regs[i+1]))
n_regs += 2;
}
for (i = 32; i < (TARGET_V9 ? 96 : 64); i += 2)
if ((regs_ever_live[i] && ! call_used_regs[i])
|| (regs_ever_live[i+1] && ! call_used_regs[i+1]))
n_regs += 2;
/* Set up values for use in `function_epilogue'. */
num_gfregs = n_regs;
if (leaf_function && n_regs == 0
&& size == 0 && current_function_outgoing_args_size == 0)
{
actual_fsize = apparent_fsize = 0;
}
else
{
/* We subtract STARTING_FRAME_OFFSET, remember it's negative. */
apparent_fsize = (size - STARTING_FRAME_OFFSET + 7) & -8;
apparent_fsize += n_regs * 4;
actual_fsize = apparent_fsize + ((outgoing_args_size + 7) & -8);
}
/* Make sure nothing can clobber our register windows.
If a SAVE must be done, or there is a stack-local variable,
the register window area must be allocated.
??? For v8 we apparently need an additional 8 bytes of reserved space. */
if (leaf_function == 0 || size > 0)
actual_fsize += (16 * UNITS_PER_WORD) + (TARGET_ARCH64 ? 0 : 8);
return SPARC_STACK_ALIGN (actual_fsize);
}
/* Build big number NUM in register REG and output the result to FILE.
REG is guaranteed to be the only clobbered register. The function
will very likely emit several instructions, so it must not be called
from within a delay slot. */
static void
build_big_number (FILE *file, HOST_WIDE_INT num, const char *reg)
{
#if HOST_BITS_PER_WIDE_INT == 64
HOST_WIDE_INT high_bits = (num >> 32) & 0xffffffff;
if (high_bits == 0
#else
if (num >= 0
#endif
|| ! TARGET_ARCH64)
{
/* We don't use the 'set' macro because it appears to be broken
in the Solaris 7 assembler. */
fprintf (file, "\tsethi\t%%hi("HOST_WIDE_INT_PRINT_DEC"), %s\n",
num, reg);
if ((num & 0x3ff) != 0)
fprintf (file, "\tor\t%s, %%lo("HOST_WIDE_INT_PRINT_DEC"), %s\n",
reg, num, reg);
}
#if HOST_BITS_PER_WIDE_INT == 64
else if (high_bits == 0xffffffff) /* && TARGET_ARCH64 */
#else
else /* num < 0 && TARGET_ARCH64 */
#endif
{
/* Sethi does not sign extend, so we must use a little trickery
to use it for negative numbers. Invert the constant before
loading it in, then use xor immediate to invert the loaded bits
(along with the upper 32 bits) to the desired constant. This
works because the sethi and immediate fields overlap. */
HOST_WIDE_INT inv = ~num;
HOST_WIDE_INT low = -0x400 + (num & 0x3ff);
fprintf (file, "\tsethi\t%%hi("HOST_WIDE_INT_PRINT_DEC"), %s\n",
inv, reg);
fprintf (file, "\txor\t%s, "HOST_WIDE_INT_PRINT_DEC", %s\n",
reg, low, reg);
}
#if HOST_BITS_PER_WIDE_INT == 64
else /* TARGET_ARCH64 */
{
/* We don't use the 'setx' macro because if requires a scratch register.
This is the translation of sparc_emit_set_const64_longway into asm.
Hopefully we will soon have prologue/epilogue emitted as RTL. */
HOST_WIDE_INT low1 = (num >> (32 - 12)) & 0xfff;
HOST_WIDE_INT low2 = (num >> (32 - 12 - 12)) & 0xfff;
HOST_WIDE_INT low3 = (num >> (32 - 12 - 12 - 8)) & 0x0ff;
int to_shift = 12;
/* We don't use the 'set' macro because it appears to be broken
in the Solaris 7 assembler. */
fprintf (file, "\tsethi\t%%hi("HOST_WIDE_INT_PRINT_DEC"), %s\n",
high_bits, reg);
if ((high_bits & 0x3ff) != 0)
fprintf (file, "\tor\t%s, %%lo("HOST_WIDE_INT_PRINT_DEC"), %s\n",
reg, high_bits, reg);
if (low1 != 0)
{
fprintf (file, "\tsllx\t%s, %d, %s\n", reg, to_shift, reg);
fprintf (file, "\tor\t%s, "HOST_WIDE_INT_PRINT_DEC", %s\n",
reg, low1, reg);
to_shift = 12;
}
else
{
to_shift += 12;
}
if (low2 != 0)
{
fprintf (file, "\tsllx\t%s, %d, %s\n", reg, to_shift, reg);
fprintf (file, "\tor\t%s, "HOST_WIDE_INT_PRINT_DEC", %s\n",
reg, low2, reg);
to_shift = 8;
}
else
{
to_shift += 8;
}
fprintf (file, "\tsllx\t%s, %d, %s\n", reg, to_shift, reg);
if (low3 != 0)
fprintf (file, "\tor\t%s, "HOST_WIDE_INT_PRINT_DEC", %s\n",
reg, low3, reg);
}
#endif
}
/* Output any necessary .register pseudo-ops. */
void
sparc_output_scratch_registers (FILE *file ATTRIBUTE_UNUSED)
{
#ifdef HAVE_AS_REGISTER_PSEUDO_OP
int i;
if (TARGET_ARCH32)
return;
/* Check if %g[2367] were used without
.register being printed for them already. */
for (i = 2; i < 8; i++)
{
if (regs_ever_live [i]
&& ! sparc_hard_reg_printed [i])
{
sparc_hard_reg_printed [i] = 1;
fprintf (file, "\t.register\t%%g%d, #scratch\n", i);
}
if (i == 3) i = 5;
}
#endif
}
/* This function generates the assembly code for function entry.
FILE is a stdio stream to output the code to.
SIZE is an int: how many units of temporary storage to allocate.
Refer to the array `regs_ever_live' to determine which registers
to save; `regs_ever_live[I]' is nonzero if register number I
is ever used in the function. This macro is responsible for
knowing which registers should not be saved even if used. */
/* On SPARC, move-double insns between fpu and cpu need an 8-byte block
of memory. If any fpu reg is used in the function, we allocate
such a block here, at the bottom of the frame, just in case it's needed.
If this function is a leaf procedure, then we may choose not
to do a "save" insn. The decision about whether or not
to do this is made in regclass.c. */
static void
sparc_output_function_prologue (FILE *file, HOST_WIDE_INT size)
{
if (TARGET_FLAT)
sparc_flat_function_prologue (file, size);
else
sparc_nonflat_function_prologue (file, size,
current_function_uses_only_leaf_regs);
}
/* Output code for the function prologue. */
static void
sparc_nonflat_function_prologue (FILE *file, HOST_WIDE_INT size,
int leaf_function)
{
sparc_output_scratch_registers (file);
/* Need to use actual_fsize, since we are also allocating
space for our callee (and our own register save area). */
actual_fsize = compute_frame_size (size, leaf_function);
if (leaf_function)
{
frame_base_name = "%sp";
frame_base_offset = actual_fsize + SPARC_STACK_BIAS;
}
else
{
frame_base_name = "%fp";
frame_base_offset = SPARC_STACK_BIAS;
}
/* This is only for the human reader. */
fprintf (file, "\t%s#PROLOGUE# 0\n", ASM_COMMENT_START);
if (actual_fsize == 0)
/* do nothing. */ ;
else if (! leaf_function)
{
if (actual_fsize <= 4096)
fprintf (file, "\tsave\t%%sp, -"HOST_WIDE_INT_PRINT_DEC", %%sp\n",
actual_fsize);
else if (actual_fsize <= 8192)
{
fprintf (file, "\tsave\t%%sp, -4096, %%sp\n");
fprintf (file, "\tadd\t%%sp, -"HOST_WIDE_INT_PRINT_DEC", %%sp\n",
actual_fsize - 4096);
}
else
{
build_big_number (file, -actual_fsize, "%g1");
fprintf (file, "\tsave\t%%sp, %%g1, %%sp\n");
}
}
else /* leaf function */
{
if (actual_fsize <= 4096)
fprintf (file, "\tadd\t%%sp, -"HOST_WIDE_INT_PRINT_DEC", %%sp\n",
actual_fsize);
else if (actual_fsize <= 8192)
{
fprintf (file, "\tadd\t%%sp, -4096, %%sp\n");
fprintf (file, "\tadd\t%%sp, -"HOST_WIDE_INT_PRINT_DEC", %%sp\n",
actual_fsize - 4096);
}
else
{
build_big_number (file, -actual_fsize, "%g1");
fprintf (file, "\tadd\t%%sp, %%g1, %%sp\n");
}
}
if (dwarf2out_do_frame () && actual_fsize)
{
char *label = dwarf2out_cfi_label ();
/* The canonical frame address refers to the top of the frame. */
dwarf2out_def_cfa (label, (leaf_function ? STACK_POINTER_REGNUM
: HARD_FRAME_POINTER_REGNUM),
frame_base_offset);
if (! leaf_function)
{
/* Note the register window save. This tells the unwinder that
it needs to restore the window registers from the previous
frame's window save area at 0(cfa). */
dwarf2out_window_save (label);
/* The return address (-8) is now in %i7. */
dwarf2out_return_reg (label, 31);
}
}
/* If doing anything with PIC, do it now. */
if (! flag_pic)
fprintf (file, "\t%s#PROLOGUE# 1\n", ASM_COMMENT_START);
/* Call saved registers are saved just above the outgoing argument area. */
if (num_gfregs)
{
HOST_WIDE_INT offset, real_offset;
int n_regs;
const char *base;
real_offset = -apparent_fsize;
offset = -apparent_fsize + frame_base_offset;
if (offset < -4096 || offset + num_gfregs * 4 > 4096)
{
/* ??? This might be optimized a little as %g1 might already have a
value close enough that a single add insn will do. */
/* ??? Although, all of this is probably only a temporary fix
because if %g1 can hold a function result, then
output_function_epilogue will lose (the result will get
clobbered). */
build_big_number (file, offset, "%g1");
fprintf (file, "\tadd\t%s, %%g1, %%g1\n", frame_base_name);
base = "%g1";
offset = 0;
}
else
{
base = frame_base_name;
}
n_regs = save_regs (file, 0, 8, base, offset, 0, real_offset);
save_regs (file, 32, TARGET_V9 ? 96 : 64, base, offset, n_regs,
real_offset);
}
}
/* Output code to restore any call saved registers. */
static void
output_restore_regs (FILE *file, int leaf_function ATTRIBUTE_UNUSED)
{
HOST_WIDE_INT offset;
int n_regs;
const char *base;
offset = -apparent_fsize + frame_base_offset;
if (offset < -4096 || offset + num_gfregs * 4 > 4096 - 8 /*double*/)
{
build_big_number (file, offset, "%g1");
fprintf (file, "\tadd\t%s, %%g1, %%g1\n", frame_base_name);
base = "%g1";
offset = 0;
}
else
{
base = frame_base_name;
}
n_regs = restore_regs (file, 0, 8, base, offset, 0);
restore_regs (file, 32, TARGET_V9 ? 96 : 64, base, offset, n_regs);
}
/* This function generates the assembly code for function exit,
on machines that need it.
The function epilogue should not depend on the current stack pointer!
It should use the frame pointer only. This is mandatory because
of alloca; we also take advantage of it to omit stack adjustments
before returning. */
static void
sparc_output_function_epilogue (FILE *file, HOST_WIDE_INT size)
{
if (TARGET_FLAT)
sparc_flat_function_epilogue (file, size);
else
sparc_nonflat_function_epilogue (file, size,
current_function_uses_only_leaf_regs);
}
/* Output code for the function epilogue. */
static void
sparc_nonflat_function_epilogue (FILE *file,
HOST_WIDE_INT size ATTRIBUTE_UNUSED,
int leaf_function)
{
const char *ret;
if (current_function_epilogue_delay_list == 0)
{
/* If code does not drop into the epilogue, we need
do nothing except output pending case vectors.
We have to still output a dummy nop for the sake of
sane backtraces. Otherwise, if the last two instructions
of a function were call foo; dslot; this can make the return
PC of foo (ie. address of call instruction plus 8) point to
the first instruction in the next function. */
rtx insn, last_real_insn;
insn = get_last_insn ();
last_real_insn = prev_real_insn (insn);
if (last_real_insn
&& GET_CODE (last_real_insn) == INSN
&& GET_CODE (PATTERN (last_real_insn)) == SEQUENCE)
last_real_insn = XVECEXP (PATTERN (last_real_insn), 0, 0);
if (last_real_insn && GET_CODE (last_real_insn) == CALL_INSN)
fputs("\tnop\n", file);
if (GET_CODE (insn) == NOTE)
insn = prev_nonnote_insn (insn);
if (insn && GET_CODE (insn) == BARRIER)
goto output_vectors;
}
if (num_gfregs)
output_restore_regs (file, leaf_function);
/* Work out how to skip the caller's unimp instruction if required. */
if (leaf_function)
ret = (SKIP_CALLERS_UNIMP_P ? "jmp\t%o7+12" : "retl");
else
ret = (SKIP_CALLERS_UNIMP_P ? "jmp\t%i7+12" : "ret");
if (! leaf_function)
{
if (current_function_calls_eh_return)
{
if (current_function_epilogue_delay_list)
abort ();
if (SKIP_CALLERS_UNIMP_P)
abort ();
fputs ("\trestore\n\tretl\n\tadd\t%sp, %g1, %sp\n", file);
}
/* If we wound up with things in our delay slot, flush them here. */
else if (current_function_epilogue_delay_list)
{
rtx delay = PATTERN (XEXP (current_function_epilogue_delay_list, 0));
if (TARGET_V9 && ! epilogue_renumber (&delay, 1))
{
epilogue_renumber (&delay, 0);
fputs (SKIP_CALLERS_UNIMP_P
? "\treturn\t%i7+12\n"
: "\treturn\t%i7+8\n", file);
final_scan_insn (XEXP (current_function_epilogue_delay_list, 0),
file, 1, 0, 0, NULL);
}
else
{
rtx insn, src;
if (GET_CODE (delay) != SET)
abort();
src = SET_SRC (delay);
if (GET_CODE (src) == ASHIFT)
{
if (XEXP (src, 1) != const1_rtx)
abort();
SET_SRC (delay)
= gen_rtx_PLUS (GET_MODE (src), XEXP (src, 0),
XEXP (src, 0));
}
insn = gen_rtx_PARALLEL (VOIDmode,
gen_rtvec (2, delay,
gen_rtx_RETURN (VOIDmode)));
insn = emit_jump_insn (insn);
sparc_emitting_epilogue = true;
final_scan_insn (insn, file, 1, 0, 1, NULL);
sparc_emitting_epilogue = false;
}
}
else if (TARGET_V9 && ! SKIP_CALLERS_UNIMP_P)
fputs ("\treturn\t%i7+8\n\tnop\n", file);
else
fprintf (file, "\t%s\n\trestore\n", ret);
}
/* All of the following cases are for leaf functions. */
else if (current_function_calls_eh_return)
abort ();
else if (current_function_epilogue_delay_list)
{
/* eligible_for_epilogue_delay_slot ensures that if this is a
leaf function, then we will only have insn in the delay slot
if the frame size is zero, thus no adjust for the stack is
needed here. */
if (actual_fsize != 0)
abort ();
fprintf (file, "\t%s\n", ret);
final_scan_insn (XEXP (current_function_epilogue_delay_list, 0),
file, 1, 0, 1, NULL);
}
/* Output 'nop' instead of 'sub %sp,-0,%sp' when no frame, so as to
avoid generating confusing assembly language output. */
else if (actual_fsize == 0)
fprintf (file, "\t%s\n\tnop\n", ret);
else if (actual_fsize <= 4096)
fprintf (file, "\t%s\n\tsub\t%%sp, -"HOST_WIDE_INT_PRINT_DEC", %%sp\n",
ret, actual_fsize);
else if (actual_fsize <= 8192)
fprintf (file, "\tsub\t%%sp, -4096, %%sp\n\t%s\n\tsub\t%%sp, -"HOST_WIDE_INT_PRINT_DEC", %%sp\n",
ret, actual_fsize - 4096);
else
{
build_big_number (file, actual_fsize, "%g1");
fprintf (file, "\t%s\n\tadd\t%%sp, %%g1, %%sp\n", ret);
}
output_vectors:
sparc_output_deferred_case_vectors ();
}
/* Output a sibling call. */
const char *
output_sibcall (rtx insn, rtx call_operand)
{
int leaf_regs = current_function_uses_only_leaf_regs;
rtx operands[3];
int delay_slot = dbr_sequence_length () > 0;
if (num_gfregs)
{
/* Call to restore global regs might clobber
the delay slot. Instead of checking for this
output the delay slot now. */
if (delay_slot)
{
rtx delay = NEXT_INSN (insn);
if (! delay)
abort ();
final_scan_insn (delay, asm_out_file, 1, 0, 1, NULL);
PATTERN (delay) = gen_blockage ();
INSN_CODE (delay) = -1;
delay_slot = 0;
}
output_restore_regs (asm_out_file, leaf_regs);
}
operands[0] = call_operand;
if (leaf_regs)
{
#ifdef HAVE_AS_RELAX_OPTION
/* If as and ld are relaxing tail call insns into branch always,
use or %o7,%g0,X; call Y; or X,%g0,%o7 always, so that it can
be optimized. With sethi/jmpl as nor ld has no easy way how to
find out if somebody does not branch between the sethi and jmpl. */
int spare_slot = 0;
#else
int spare_slot = ((TARGET_ARCH32 || TARGET_CM_MEDLOW) && ! flag_pic);
#endif
HOST_WIDE_INT size = 0;
if ((actual_fsize || ! spare_slot) && delay_slot)
{
rtx delay = NEXT_INSN (insn);
if (! delay)
abort ();
final_scan_insn (delay, asm_out_file, 1, 0, 1, NULL);
PATTERN (delay) = gen_blockage ();
INSN_CODE (delay) = -1;
delay_slot = 0;
}
if (actual_fsize)
{
if (actual_fsize <= 4096)
size = actual_fsize;
else if (actual_fsize <= 8192)
{
fputs ("\tsub\t%sp, -4096, %sp\n", asm_out_file);
size = actual_fsize - 4096;
}
else
{
build_big_number (asm_out_file, actual_fsize, "%g1");
fputs ("\tadd\t%%sp, %%g1, %%sp\n", asm_out_file);
}
}
if (spare_slot)
{
output_asm_insn ("sethi\t%%hi(%a0), %%g1", operands);
output_asm_insn ("jmpl\t%%g1 + %%lo(%a0), %%g0", operands);
if (size)
fprintf (asm_out_file, "\t sub\t%%sp, -"HOST_WIDE_INT_PRINT_DEC", %%sp\n", size);
else if (! delay_slot)
fputs ("\t nop\n", asm_out_file);
}
else
{
if (size)
fprintf (asm_out_file, "\tsub\t%%sp, -"HOST_WIDE_INT_PRINT_DEC", %%sp\n", size);
/* Use or with rs2 %%g0 instead of mov, so that as/ld can optimize
it into branch if possible. */
output_asm_insn ("or\t%%o7, %%g0, %%g1", operands);
output_asm_insn ("call\t%a0, 0", operands);
output_asm_insn (" or\t%%g1, %%g0, %%o7", operands);
}
return "";
}
output_asm_insn ("call\t%a0, 0", operands);
if (delay_slot)
{
rtx delay = NEXT_INSN (insn), pat;
if (! delay)
abort ();
pat = PATTERN (delay);
if (GET_CODE (pat) != SET)
abort ();
operands[0] = SET_DEST (pat);
pat = SET_SRC (pat);
switch (GET_CODE (pat))
{
case PLUS:
operands[1] = XEXP (pat, 0);
operands[2] = XEXP (pat, 1);
output_asm_insn (" restore %r1, %2, %Y0", operands);
break;
case LO_SUM:
operands[1] = XEXP (pat, 0);
operands[2] = XEXP (pat, 1);
output_asm_insn (" restore %r1, %%lo(%a2), %Y0", operands);
break;
case ASHIFT:
operands[1] = XEXP (pat, 0);
output_asm_insn (" restore %r1, %r1, %Y0", operands);
break;
default:
operands[1] = pat;
output_asm_insn (" restore %%g0, %1, %Y0", operands);
break;
}
PATTERN (delay) = gen_blockage ();
INSN_CODE (delay) = -1;
}
else
fputs ("\t restore\n", asm_out_file);
return "";
}
/* Functions for handling argument passing.
For v8 the first six args are normally in registers and the rest are
pushed. Any arg that starts within the first 6 words is at least
partially passed in a register unless its data type forbids.
For v9, the argument registers are laid out as an array of 16 elements
and arguments are added sequentially. The first 6 int args and up to the
first 16 fp args (depending on size) are passed in regs.
Slot Stack Integral Float Float in structure Double Long Double
---- ----- -------- ----- ------------------ ------ -----------
15 [SP+248] %f31 %f30,%f31 %d30
14 [SP+240] %f29 %f28,%f29 %d28 %q28
13 [SP+232] %f27 %f26,%f27 %d26
12 [SP+224] %f25 %f24,%f25 %d24 %q24
11 [SP+216] %f23 %f22,%f23 %d22
10 [SP+208] %f21 %f20,%f21 %d20 %q20
9 [SP+200] %f19 %f18,%f19 %d18
8 [SP+192] %f17 %f16,%f17 %d16 %q16
7 [SP+184] %f15 %f14,%f15 %d14
6 [SP+176] %f13 %f12,%f13 %d12 %q12
5 [SP+168] %o5 %f11 %f10,%f11 %d10
4 [SP+160] %o4 %f9 %f8,%f9 %d8 %q8
3 [SP+152] %o3 %f7 %f6,%f7 %d6
2 [SP+144] %o2 %f5 %f4,%f5 %d4 %q4
1 [SP+136] %o1 %f3 %f2,%f3 %d2
0 [SP+128] %o0 %f1 %f0,%f1 %d0 %q0
Here SP = %sp if -mno-stack-bias or %sp+stack_bias otherwise.
Integral arguments are always passed as 64 bit quantities appropriately
extended.
Passing of floating point values is handled as follows.
If a prototype is in scope:
If the value is in a named argument (i.e. not a stdarg function or a
value not part of the `...') then the value is passed in the appropriate
fp reg.
If the value is part of the `...' and is passed in one of the first 6
slots then the value is passed in the appropriate int reg.
If the value is part of the `...' and is not passed in one of the first 6
slots then the value is passed in memory.
If a prototype is not in scope:
If the value is one of the first 6 arguments the value is passed in the
appropriate integer reg and the appropriate fp reg.
If the value is not one of the first 6 arguments the value is passed in
the appropriate fp reg and in memory.
*/
/* Maximum number of int regs for args. */
#define SPARC_INT_ARG_MAX 6
/* Maximum number of fp regs for args. */
#define SPARC_FP_ARG_MAX 16
#define ROUND_ADVANCE(SIZE) (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
/* Handle the INIT_CUMULATIVE_ARGS macro.
Initialize a variable CUM of type CUMULATIVE_ARGS
for a call to a function whose data type is FNTYPE.
For a library call, FNTYPE is 0. */
void
init_cumulative_args (struct sparc_args *cum, tree fntype,
rtx libname ATTRIBUTE_UNUSED,
tree fndecl ATTRIBUTE_UNUSED)
{
cum->words = 0;
cum->prototype_p = fntype && TYPE_ARG_TYPES (fntype);
cum->libcall_p = fntype == 0;
}
/* Scan the record type TYPE and return the following predicates:
- INTREGS_P: the record contains at least one field or sub-field
that is eligible for promotion in integer registers.
- FP_REGS_P: the record contains at least one field or sub-field
that is eligible for promotion in floating-point registers.
- PACKED_P: the record contains at least one field that is packed.
Sub-fields are not taken into account for the PACKED_P predicate. */
static void
scan_record_type (tree type, int *intregs_p, int *fpregs_p, int *packed_p)
{
tree field;
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
{
if (TREE_CODE (field) == FIELD_DECL)
{
if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE)
scan_record_type (TREE_TYPE (field), intregs_p, fpregs_p, 0);
else if (FLOAT_TYPE_P (TREE_TYPE (field)) && TARGET_FPU)
*fpregs_p = 1;
else
*intregs_p = 1;
if (packed_p && DECL_PACKED (field))
*packed_p = 1;
}
}
}
/* Compute the slot number to pass an argument in.
Return the slot number or -1 if passing on the stack.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
MODE is the argument's machine mode.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
NAMED is nonzero if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis).
INCOMING_P is zero for FUNCTION_ARG, nonzero for FUNCTION_INCOMING_ARG.
*PREGNO records the register number to use if scalar type.
*PPADDING records the amount of padding needed in words. */
static int
function_arg_slotno (const struct sparc_args *cum, enum machine_mode mode,
tree type, int named, int incoming_p,
int *pregno, int *ppadding)
{
int regbase = (incoming_p
? SPARC_INCOMING_INT_ARG_FIRST
: SPARC_OUTGOING_INT_ARG_FIRST);
int slotno = cum->words;
int regno;
*ppadding = 0;
if (type != 0 && TREE_ADDRESSABLE (type))
return -1;
if (TARGET_ARCH32
&& type != 0 && mode == BLKmode
&& TYPE_ALIGN (type) % PARM_BOUNDARY != 0)
return -1;
switch (mode)
{
case VOIDmode :
/* MODE is VOIDmode when generating the actual call.
See emit_call_1. */
return -1;
case TImode : case CTImode :
if (TARGET_ARCH64 && (slotno & 1) != 0)
slotno++, *ppadding = 1;
/* fallthrough */
case QImode : case CQImode :
case HImode : case CHImode :
case SImode : case CSImode :
case DImode : case CDImode :
if (slotno >= SPARC_INT_ARG_MAX)
return -1;
regno = regbase + slotno;
break;
case TFmode : case TCmode :
if (TARGET_ARCH64 && (slotno & 1) != 0)
slotno++, *ppadding = 1;
/* fallthrough */
case SFmode : case SCmode :
case DFmode : case DCmode :
if (TARGET_ARCH32)
{
if (slotno >= SPARC_INT_ARG_MAX)
return -1;
regno = regbase + slotno;
}
else
{
if (TARGET_FPU && named)
{
if (slotno >= SPARC_FP_ARG_MAX)
return -1;
regno = SPARC_FP_ARG_FIRST + slotno * 2;
if (mode == SFmode)
regno++;
}
else
{
if (slotno >= SPARC_INT_ARG_MAX)
return -1;
regno = regbase + slotno;
}
}
break;
case BLKmode :
/* For sparc64, objects requiring 16 byte alignment get it. */
if (TARGET_ARCH64)
{
if (type && TYPE_ALIGN (type) == 128 && (slotno & 1) != 0)
slotno++, *ppadding = 1;
}
if (TARGET_ARCH32
|| (type && TREE_CODE (type) == UNION_TYPE))
{
if (slotno >= SPARC_INT_ARG_MAX)
return -1;
regno = regbase + slotno;
}
else
{
int intregs_p = 0, fpregs_p = 0, packed_p = 0;
/* First see what kinds of registers we would need. */
scan_record_type (type, &intregs_p, &fpregs_p, &packed_p);
/* The ABI obviously doesn't specify how packed structures
are passed. These are defined to be passed in int regs
if possible, otherwise memory. */
if (packed_p || !named)
fpregs_p = 0, intregs_p = 1;
/* If all arg slots are filled, then must pass on stack. */
if (fpregs_p && slotno >= SPARC_FP_ARG_MAX)
return -1;
/* If there are only int args and all int arg slots are filled,
then must pass on stack. */
if (!fpregs_p && intregs_p && slotno >= SPARC_INT_ARG_MAX)
return -1;
/* Note that even if all int arg slots are filled, fp members may
still be passed in regs if such regs are available.
*PREGNO isn't set because there may be more than one, it's up
to the caller to compute them. */
return slotno;
}
break;
default :
abort ();
}
*pregno = regno;
return slotno;
}
/* Handle recursive register counting for structure field layout. */
struct function_arg_record_value_parms
{
rtx ret; /* return expression being built. */
int slotno; /* slot number of the argument. */
int named; /* whether the argument is named. */
int regbase; /* regno of the base register. */
int stack; /* 1 if part of the argument is on the stack. */
int intoffset; /* offset of the first pending integer field. */
unsigned int nregs; /* number of words passed in registers. */
};
static void function_arg_record_value_3
(HOST_WIDE_INT, struct function_arg_record_value_parms *);
static void function_arg_record_value_2
(tree, HOST_WIDE_INT, struct function_arg_record_value_parms *, bool);
static void function_arg_record_value_1
(tree, HOST_WIDE_INT, struct function_arg_record_value_parms *, bool);
static rtx function_arg_record_value (tree, enum machine_mode, int, int, int);
static rtx function_arg_union_value (int, enum machine_mode, int);
/* A subroutine of function_arg_record_value. Traverse the structure
recursively and determine how many registers will be required. */
static void
function_arg_record_value_1 (tree type, HOST_WIDE_INT startbitpos,
struct function_arg_record_value_parms *parms,
bool packed_p)
{
tree field;
/* We need to compute how many registers are needed so we can
allocate the PARALLEL but before we can do that we need to know
whether there are any packed fields. The ABI obviously doesn't
specify how structures are passed in this case, so they are
defined to be passed in int regs if possible, otherwise memory,
regardless of whether there are fp values present. */
if (! packed_p)
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
{
if (TREE_CODE (field) == FIELD_DECL && DECL_PACKED (field))
{
packed_p = true;
break;
}
}
/* Compute how many registers we need. */
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
{
if (TREE_CODE (field) == FIELD_DECL)
{
HOST_WIDE_INT bitpos = startbitpos;
if (DECL_SIZE (field) != 0
&& host_integerp (bit_position (field), 1))
bitpos += int_bit_position (field);
/* ??? FIXME: else assume zero offset. */
if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE)
function_arg_record_value_1 (TREE_TYPE (field),
bitpos,
parms,
packed_p);
else if (FLOAT_TYPE_P (TREE_TYPE (field))
&& TARGET_FPU
&& parms->named
&& ! packed_p)
{
if (parms->intoffset != -1)
{
unsigned int startbit, endbit;
int intslots, this_slotno;
startbit = parms->intoffset & -BITS_PER_WORD;
endbit = (bitpos + BITS_PER_WORD - 1) & -BITS_PER_WORD;
intslots = (endbit - startbit) / BITS_PER_WORD;
this_slotno = parms->slotno + parms->intoffset
/ BITS_PER_WORD;
if (intslots > 0 && intslots > SPARC_INT_ARG_MAX - this_slotno)
{
intslots = MAX (0, SPARC_INT_ARG_MAX - this_slotno);
/* We need to pass this field on the stack. */
parms->stack = 1;
}
parms->nregs += intslots;
parms->intoffset = -1;
}
/* There's no need to check this_slotno < SPARC_FP_ARG MAX.
If it wasn't true we wouldn't be here. */
parms->nregs += 1;
if (TREE_CODE (TREE_TYPE (field)) == COMPLEX_TYPE)
parms->nregs += 1;
}
else
{
if (parms->intoffset == -1)
parms->intoffset = bitpos;
}
}
}
}
/* A subroutine of function_arg_record_value. Assign the bits of the
structure between parms->intoffset and bitpos to integer registers. */
static void
function_arg_record_value_3 (HOST_WIDE_INT bitpos,
struct function_arg_record_value_parms *parms)
{
enum machine_mode mode;
unsigned int regno;
unsigned int startbit, endbit;
int this_slotno, intslots, intoffset;
rtx reg;
if (parms->intoffset == -1)
return;
intoffset = parms->intoffset;
parms->intoffset = -1;
startbit = intoffset & -BITS_PER_WORD;
endbit = (bitpos + BITS_PER_WORD - 1) & -BITS_PER_WORD;
intslots = (endbit - startbit) / BITS_PER_WORD;
this_slotno = parms->slotno + intoffset / BITS_PER_WORD;
intslots = MIN (intslots, SPARC_INT_ARG_MAX - this_slotno);
if (intslots <= 0)
return;
/* If this is the trailing part of a word, only load that much into
the register. Otherwise load the whole register. Note that in
the latter case we may pick up unwanted bits. It's not a problem
at the moment but may wish to revisit. */
if (intoffset % BITS_PER_WORD != 0)
mode = mode_for_size (BITS_PER_WORD - intoffset % BITS_PER_WORD,
MODE_INT, 0);
else
mode = word_mode;
intoffset /= BITS_PER_UNIT;
do
{
regno = parms->regbase + this_slotno;
reg = gen_rtx_REG (mode, regno);
XVECEXP (parms->ret, 0, parms->stack + parms->nregs)
= gen_rtx_EXPR_LIST (VOIDmode, reg, GEN_INT (intoffset));
this_slotno += 1;
intoffset = (intoffset | (UNITS_PER_WORD-1)) + 1;
mode = word_mode;
parms->nregs += 1;
intslots -= 1;
}
while (intslots > 0);
}
/* A subroutine of function_arg_record_value. Traverse the structure
recursively and assign bits to floating point registers. Track which
bits in between need integer registers; invoke function_arg_record_value_3
to make that happen. */
static void
function_arg_record_value_2 (tree type, HOST_WIDE_INT startbitpos,
struct function_arg_record_value_parms *parms,
bool packed_p)
{
tree field;
if (! packed_p)
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
{
if (TREE_CODE (field) == FIELD_DECL && DECL_PACKED (field))
{
packed_p = true;
break;
}
}
for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
{
if (TREE_CODE (field) == FIELD_DECL)
{
HOST_WIDE_INT bitpos = startbitpos;
if (DECL_SIZE (field) != 0
&& host_integerp (bit_position (field), 1))
bitpos += int_bit_position (field);
/* ??? FIXME: else assume zero offset. */
if (TREE_CODE (TREE_TYPE (field)) == RECORD_TYPE)
function_arg_record_value_2 (TREE_TYPE (field),
bitpos,
parms,
packed_p);
else if (FLOAT_TYPE_P (TREE_TYPE (field))
&& TARGET_FPU
&& parms->named
&& ! packed_p)
{
int this_slotno = parms->slotno + bitpos / BITS_PER_WORD;
int regno;
enum machine_mode mode = DECL_MODE (field);
rtx reg;
function_arg_record_value_3 (bitpos, parms);
regno = SPARC_FP_ARG_FIRST + this_slotno * 2
+ ((mode == SFmode || mode == SCmode)
&& (bitpos & 32) != 0);
switch (mode)
{
case SCmode: mode = SFmode; break;
case DCmode: mode = DFmode; break;
case TCmode: mode = TFmode; break;
default: break;
}
reg = gen_rtx_REG (mode, regno);
XVECEXP (parms->ret, 0, parms->stack + parms->nregs)
= gen_rtx_EXPR_LIST (VOIDmode, reg,
GEN_INT (bitpos / BITS_PER_UNIT));
parms->nregs += 1;
if (TREE_CODE (TREE_TYPE (field)) == COMPLEX_TYPE)
{
regno += GET_MODE_SIZE (mode) / 4;
reg = gen_rtx_REG (mode, regno);
XVECEXP (parms->ret, 0, parms->stack + parms->nregs)
= gen_rtx_EXPR_LIST (VOIDmode, reg,
GEN_INT ((bitpos + GET_MODE_BITSIZE (mode))
/ BITS_PER_UNIT));
parms->nregs += 1;
}
}
else
{
if (parms->intoffset == -1)
parms->intoffset = bitpos;
}
}
}
}
/* Used by function_arg and function_value to implement the complex
conventions of the 64-bit ABI for passing and returning structures.
Return an expression valid as a return value for the two macros
FUNCTION_ARG and FUNCTION_VALUE.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
MODE is the argument's machine mode.
SLOTNO is the index number of the argument's slot in the parameter array.
NAMED is nonzero if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis).
REGBASE is the regno of the base register for the parameter array. */
static rtx
function_arg_record_value (tree type, enum machine_mode mode,
int slotno, int named, int regbase)
{
HOST_WIDE_INT typesize = int_size_in_bytes (type);
struct function_arg_record_value_parms parms;
unsigned int nregs;
parms.ret = NULL_RTX;
parms.slotno = slotno;
parms.named = named;
parms.regbase = regbase;
parms.stack = 0;
/* Compute how many registers we need. */
parms.nregs = 0;
parms.intoffset = 0;
function_arg_record_value_1 (type, 0, &parms, false);
/* Take into account pending integer fields. */
if (parms.intoffset != -1)
{
unsigned int startbit, endbit;
int intslots, this_slotno;
startbit = parms.intoffset & -BITS_PER_WORD;
endbit = (typesize*BITS_PER_UNIT + BITS_PER_WORD - 1) & -BITS_PER_WORD;
intslots = (endbit - startbit) / BITS_PER_WORD;
this_slotno = slotno + parms.intoffset / BITS_PER_WORD;
if (intslots > 0 && intslots > SPARC_INT_ARG_MAX - this_slotno)
{
intslots = MAX (0, SPARC_INT_ARG_MAX - this_slotno);
/* We need to pass this field on the stack. */
parms.stack = 1;
}
parms.nregs += intslots;
}
nregs = parms.nregs;
/* Allocate the vector and handle some annoying special cases. */
if (nregs == 0)
{
/* ??? Empty structure has no value? Duh? */
if (typesize <= 0)
{
/* Though there's nothing really to store, return a word register
anyway so the rest of gcc doesn't go nuts. Returning a PARALLEL
leads to breakage due to the fact that there are zero bytes to
load. */
return gen_rtx_REG (mode, regbase);
}
else
{
/* ??? C++ has structures with no fields, and yet a size. Give up
for now and pass everything back in integer registers. */
nregs = (typesize + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
}
if (nregs + slotno > SPARC_INT_ARG_MAX)
nregs = SPARC_INT_ARG_MAX - slotno;
}
if (nregs == 0)
abort ();
parms.ret = gen_rtx_PARALLEL (mode, rtvec_alloc (parms.stack + nregs));
/* If at least one field must be passed on the stack, generate
(parallel [(expr_list (nil) ...) ...]) so that all fields will
also be passed on the stack. We can't do much better because the
semantics of FUNCTION_ARG_PARTIAL_NREGS doesn't handle the case
of structures for which the fields passed exclusively in registers
are not at the beginning of the structure. */
if (parms.stack)
XVECEXP (parms.ret, 0, 0)
= gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx);
/* Fill in the entries. */
parms.nregs = 0;
parms.intoffset = 0;
function_arg_record_value_2 (type, 0, &parms, false);
function_arg_record_value_3 (typesize * BITS_PER_UNIT, &parms);
if (parms.nregs != nregs)
abort ();
return parms.ret;
}
/* Used by function_arg and function_value to implement the conventions
of the 64-bit ABI for passing and returning unions.
Return an expression valid as a return value for the two macros
FUNCTION_ARG and FUNCTION_VALUE.
SIZE is the size in bytes of the union.
MODE is the argument's machine mode.
REGNO is the hard register the union will be passed in. */
static rtx
function_arg_union_value (int size, enum machine_mode mode, int regno)
{
int nwords = ROUND_ADVANCE (size), i;
rtx regs;
/* Unions are passed left-justified. */
regs = gen_rtx_PARALLEL (mode, rtvec_alloc (nwords));
for (i = 0; i < nwords; i++)
XVECEXP (regs, 0, i)
= gen_rtx_EXPR_LIST (VOIDmode,
gen_rtx_REG (word_mode, regno + i),
GEN_INT (UNITS_PER_WORD * i));
return regs;
}
/* Handle the FUNCTION_ARG macro.
Determine where to put an argument to a function.
Value is zero to push the argument on the stack,
or a hard register in which to store the argument.
CUM is a variable of type CUMULATIVE_ARGS which gives info about
the preceding args and about the function being called.
MODE is the argument's machine mode.
TYPE is the data type of the argument (as a tree).
This is null for libcalls where that information may
not be available.
NAMED is nonzero if this argument is a named parameter
(otherwise it is an extra parameter matching an ellipsis).
INCOMING_P is zero for FUNCTION_ARG, nonzero for FUNCTION_INCOMING_ARG. */
rtx
function_arg (const struct sparc_args *cum, enum machine_mode mode,
tree type, int named, int incoming_p)
{
int regbase = (incoming_p
? SPARC_INCOMING_INT_ARG_FIRST
: SPARC_OUTGOING_INT_ARG_FIRST);
int slotno, regno, padding;
rtx reg;
slotno = function_arg_slotno (cum, mode, type, named, incoming_p,
&regno, &padding);
if (slotno == -1)
return 0;
if (TARGET_ARCH32)
{
reg = gen_rtx_REG (mode, regno);
return reg;
}
if (type && TREE_CODE (type) == RECORD_TYPE)
{
/* Structures up to 16 bytes in size are passed in arg slots on the
stack and are promoted to registers where possible. */
if (int_size_in_bytes (type) > 16)
abort (); /* shouldn't get here */
return function_arg_record_value (type, mode, slotno, named, regbase);
}
else if (type && TREE_CODE (type) == UNION_TYPE)
{
HOST_WIDE_INT size = int_size_in_bytes (type);
if (size > 16)
abort (); /* shouldn't get here */
return function_arg_union_value (size, mode, regno);
}
/* v9 fp args in reg slots beyond the int reg slots get passed in regs
but also have the slot allocated for them.
If no prototype is in scope fp values in register slots get passed
in two places, either fp regs and int regs or fp regs and memory. */
else if ((GET_MODE_CLASS (mode) == MODE_FLOAT
|| GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
&& SPARC_FP_REG_P (regno))
{
reg = gen_rtx_REG (mode, regno);
if (cum->prototype_p || cum->libcall_p)
{
/* "* 2" because fp reg numbers are recorded in 4 byte
quantities. */
#if 0
/* ??? This will cause the value to be passed in the fp reg and
in the stack. When a prototype exists we want to pass the
value in the reg but reserve space on the stack. That's an
optimization, and is deferred [for a bit]. */
if ((regno - SPARC_FP_ARG_FIRST) >= SPARC_INT_ARG_MAX * 2)
return gen_rtx_PARALLEL (mode,
gen_rtvec (2,
gen_rtx_EXPR_LIST (VOIDmode,
NULL_RTX, const0_rtx),
gen_rtx_EXPR_LIST (VOIDmode,
reg, const0_rtx)));
else
#else
/* ??? It seems that passing back a register even when past
the area declared by REG_PARM_STACK_SPACE will allocate
space appropriately, and will not copy the data onto the
stack, exactly as we desire.
This is due to locate_and_pad_parm being called in
expand_call whenever reg_parm_stack_space > 0, which
while beneficial to our example here, would seem to be
in error from what had been intended. Ho hum... -- r~ */
#endif
return reg;
}
else
{
rtx v0, v1;
if ((regno - SPARC_FP_ARG_FIRST) < SPARC_INT_ARG_MAX * 2)
{
int intreg;
/* On incoming, we don't need to know that the value
is passed in %f0 and %i0, and it confuses other parts
causing needless spillage even on the simplest cases. */
if (incoming_p)
return reg;
intreg = (SPARC_OUTGOING_INT_ARG_FIRST
+ (regno - SPARC_FP_ARG_FIRST) / 2);
v0 = gen_rtx_EXPR_LIST (VOIDmode, reg, const0_rtx);
v1 = gen_rtx_EXPR_LIST (VOIDmode, gen_rtx_REG (mode, intreg),
const0_rtx);
return gen_rtx_PARALLEL (mode, gen_rtvec (2, v0, v1));
}
else
{
v0 = gen_rtx_EXPR_LIST (VOIDmode, NULL_RTX, const0_rtx);
v1 = gen_rtx_EXPR_LIST (VOIDmode, reg, const0_rtx);
return gen_rtx_PARALLEL (mode, gen_rtvec (2, v0, v1));
}
}
}
else
{
/* Scalar or complex int. */
reg = gen_rtx_REG (mode, regno);
}
return reg;
}
/* Handle the FUNCTION_ARG_PARTIAL_NREGS macro.
For an arg passed partly in registers and partly in memory,
this is the number of registers used.
For args passed entirely in registers or entirely in memory, zero.
Any arg that starts in the first 6 regs but won't entirely fit in them
needs partial registers on v8. On v9, structures with integer
values in arg slots 5,6 will be passed in %o5 and SP+176, and complex fp
values that begin in the last fp reg [where "last fp reg" varies with the
mode] will be split between that reg and memory. */
int
function_arg_partial_nregs (const struct sparc_args *cum,
enum machine_mode mode, tree type, int named)
{
int slotno, regno, padding;
/* We pass 0 for incoming_p here, it doesn't matter. */
slotno = function_arg_slotno (cum, mode, type, named, 0, &regno, &padding);
if (slotno == -1)
return 0;
if (TARGET_ARCH32)
{
if ((slotno + (mode == BLKmode
? ROUND_ADVANCE (int_size_in_bytes (type))
: ROUND_ADVANCE (GET_MODE_SIZE (mode))))
> NPARM_REGS (SImode))
return NPARM_REGS (SImode) - slotno;
return 0;
}
else
{
if (type && AGGREGATE_TYPE_P (type))
{
int size = int_size_in_bytes (type);
int align = TYPE_ALIGN (type);
if (align == 16)
slotno += slotno & 1;
if (size > 8 && size <= 16
&& slotno == SPARC_INT_ARG_MAX - 1)
return 1;
}
else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_INT
|| (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
&& ! (TARGET_FPU && named)))
{
/* The complex types are passed as packed types. */
if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
return 0;
if (GET_MODE_ALIGNMENT (mode) == 128)
{
slotno += slotno & 1;
/* ??? The mode needs 3 slots? */
if (slotno == SPARC_INT_ARG_MAX - 2)
return 1;
}
else
{
if (slotno == SPARC_INT_ARG_MAX - 1)
return 1;
}
}
else if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT)
{
if (GET_MODE_ALIGNMENT (mode) == 128)
slotno += slotno & 1;
if ((slotno + GET_MODE_SIZE (mode) / UNITS_PER_WORD)
> SPARC_FP_ARG_MAX)
return 1;
}
return 0;
}
}
/* Handle the FUNCTION_ARG_PASS_BY_REFERENCE macro.
!v9: The SPARC ABI stipulates passing struct arguments (of any size) and
quad-precision floats by invisible reference.
v9: Aggregates greater than 16 bytes are passed by reference.
For Pascal, also pass arrays by reference. */
int
function_arg_pass_by_reference (const struct sparc_args *cum ATTRIBUTE_UNUSED,
enum machine_mode mode, tree type,
int named ATTRIBUTE_UNUSED)
{
if (TARGET_ARCH32)
{
return ((type && AGGREGATE_TYPE_P (type))
|| mode == SCmode
|| GET_MODE_SIZE (mode) > 8);
}
else
{
return ((type && TREE_CODE (type) == ARRAY_TYPE)
/* Consider complex values as aggregates, so care
for CTImode and TCmode. */
|| GET_MODE_SIZE (mode) > 16
|| (type
&& AGGREGATE_TYPE_P (type)
&& (unsigned HOST_WIDE_INT) int_size_in_bytes (type) > 16));
}
}
/* Handle the FUNCTION_ARG_ADVANCE macro.
Update the data in CUM to advance over an argument
of mode MODE and data type TYPE.
TYPE is null for libcalls where that information may not be available. */
void
function_arg_advance (struct sparc_args *cum, enum machine_mode mode,
tree type, int named)
{
int slotno, regno, padding;
/* We pass 0 for incoming_p here, it doesn't matter. */
slotno = function_arg_slotno (cum, mode, type, named, 0, &regno, &padding);
/* If register required leading padding, add it. */
if (slotno != -1)
cum->words += padding;
if (TARGET_ARCH32)
{
cum->words += (mode != BLKmode
? ROUND_ADVANCE (GET_MODE_SIZE (mode))
: ROUND_ADVANCE (int_size_in_bytes (type)));
}
else
{
if (type && AGGREGATE_TYPE_P (type))
{
int size = int_size_in_bytes (type);
if (size <= 8)
++cum->words;
else if (size <= 16)
cum->words += 2;
else /* passed by reference */
++cum->words;
}
else
{
cum->words += (mode != BLKmode
? ROUND_ADVANCE (GET_MODE_SIZE (mode))
: ROUND_ADVANCE (int_size_in_bytes (type)));
}
}
}
/* Handle the FUNCTION_ARG_PADDING macro.
For the 64 bit ABI structs are always stored left shifted in their
argument slot. */
enum direction
function_arg_padding (enum machine_mode mode, tree type)
{
if (TARGET_ARCH64 && type != 0 && AGGREGATE_TYPE_P (type))
return upward;
/* Fall back to the default. */
return DEFAULT_FUNCTION_ARG_PADDING (mode, type);
}
/* Handle FUNCTION_VALUE, FUNCTION_OUTGOING_VALUE, and LIBCALL_VALUE macros.
For v9, function return values are subject to the same rules as arguments,
except that up to 32-bytes may be returned in registers. */
rtx
function_value (tree type, enum machine_mode mode, int incoming_p)
{
int regno;
if (TARGET_ARCH64 && type)
{
int regbase = (incoming_p
? SPARC_OUTGOING_INT_ARG_FIRST
: SPARC_INCOMING_INT_ARG_FIRST);
if (TREE_CODE (type) == RECORD_TYPE)
{
/* Structures up to 32 bytes in size are passed in registers,
promoted to fp registers where possible. */
if (int_size_in_bytes (type) > 32)
abort (); /* shouldn't get here */
return function_arg_record_value (type, mode, 0, 1, regbase);
}
else if (TREE_CODE (type) == UNION_TYPE)
{
HOST_WIDE_INT size = int_size_in_bytes (type);
if (size > 32)
abort (); /* shouldn't get here */
return function_arg_union_value (size, mode, regbase);
}
else if (AGGREGATE_TYPE_P (type))
{
/* All other aggregate types are passed in an integer register
in a mode corresponding to the size of the type. */
HOST_WIDE_INT bytes = int_size_in_bytes (type);
if (bytes > 32)
abort ();
mode = mode_for_size (bytes * BITS_PER_UNIT, MODE_INT, 0);
/* ??? We probably should have made the same ABI change in
3.4.0 as the one we made for unions. The latter was
required by the SCD though, while the former is not
specified, so we favored compatibility and efficiency.
Now we're stuck for aggregates larger than 16 bytes,
because OImode vanished in the meantime. Let's not
try to be unduly clever, and simply follow the ABI
for unions in that case. */
if (mode == BLKmode)
return function_arg_union_value (bytes, mode, regbase);
}
else if (GET_MODE_CLASS (mode) == MODE_INT
&& GET_MODE_SIZE (mode) < UNITS_PER_WORD)
mode = word_mode;
}
if (incoming_p)
regno = BASE_RETURN_VALUE_REG (mode);
else
regno = BASE_OUTGOING_VALUE_REG (mode);
return gen_rtx_REG (mode, regno);
}
/* Do what is necessary for `va_start'. We look at the current function
to determine if stdarg or varargs is used and return the address of
the first unnamed parameter. */
rtx
sparc_builtin_saveregs (void)
{
int first_reg = current_function_args_info.words;
rtx address;
int regno;
for (regno = first_reg; regno < NPARM_REGS (word_mode); regno++)
emit_move_insn (gen_rtx_MEM (word_mode,
gen_rtx_PLUS (Pmode,
frame_pointer_rtx,
GEN_INT (FIRST_PARM_OFFSET (0)
+ (UNITS_PER_WORD
* regno)))),
gen_rtx_REG (word_mode,
BASE_INCOMING_ARG_REG (word_mode) + regno));
address = gen_rtx_PLUS (Pmode,
frame_pointer_rtx,
GEN_INT (FIRST_PARM_OFFSET (0)
+ UNITS_PER_WORD * first_reg));
return address;
}
/* Implement `va_start' for varargs and stdarg. */
void
sparc_va_start (tree valist, rtx nextarg)
{
nextarg = expand_builtin_saveregs ();
std_expand_builtin_va_start (valist, nextarg);
}
/* Implement `va_arg'. */
rtx
sparc_va_arg (tree valist, tree type)
{
HOST_WIDE_INT size, rsize, align;
tree addr, incr;
rtx addr_rtx;
int indirect = 0;
/* Round up sizeof(type) to a word. */
size = int_size_in_bytes (type);
rsize = (size + UNITS_PER_WORD - 1) & -UNITS_PER_WORD;
align = 0;
if (TARGET_ARCH64)
{
if (TYPE_ALIGN (type) >= 2 * (unsigned) BITS_PER_WORD)
align = 2 * UNITS_PER_WORD;
/* Consider complex values as aggregates, so care
for CTImode and TCmode. */
if ((unsigned HOST_WIDE_INT) size > 16)
{
indirect = 1;
size = rsize = UNITS_PER_WORD;
align = 0;
}
else if (AGGREGATE_TYPE_P (type))
{
/* SPARC-V9 ABI states that structures up to 16 bytes in size
are given whole slots as needed. */
if (size == 0)
size = rsize = UNITS_PER_WORD;
else
size = rsize;
}
}
else
{
if (AGGREGATE_TYPE_P (type)
|| TYPE_MODE (type) == SCmode
|| GET_MODE_SIZE (TYPE_MODE (type)) > 8)
{
indirect = 1;
size = rsize = UNITS_PER_WORD;
}
}
incr = valist;
if (align)
{
incr = fold (build (PLUS_EXPR, ptr_type_node, incr,
build_int_2 (align - 1, 0)));
incr = fold (build (BIT_AND_EXPR, ptr_type_node, incr,
build_int_2 (-align, -1)));
}
addr = incr = save_expr (incr);
if (BYTES_BIG_ENDIAN && size < rsize)
{
addr = fold (build (PLUS_EXPR, ptr_type_node, incr,
build_int_2 (rsize - size, 0)));
}
incr = fold (build (PLUS_EXPR, ptr_type_node, incr,
build_int_2 (rsize, 0)));
incr = build (MODIFY_EXPR, ptr_type_node, valist, incr);
TREE_SIDE_EFFECTS (incr) = 1;
expand_expr (incr, const0_rtx, VOIDmode, EXPAND_NORMAL);
addr_rtx = expand_expr (addr, NULL, Pmode, EXPAND_NORMAL);
/* If the address isn't aligned properly for the type,
we may need to copy to a temporary.
FIXME: This is inefficient. Usually we can do this
in registers. */
if (align == 0
&& TYPE_ALIGN (type) > BITS_PER_WORD
&& !indirect)
{
/* FIXME: We really need to specify that the temporary is live
for the whole function because expand_builtin_va_arg wants
the alias set to be get_varargs_alias_set (), but in this
case the alias set is that for TYPE and if the memory gets
reused it will be reused with alias set TYPE. */
rtx tmp = assign_temp (type, 0, 1, 0);
rtx dest_addr;
addr_rtx = force_reg (Pmode, addr_rtx);
addr_rtx = gen_rtx_MEM (BLKmode, addr_rtx);
set_mem_alias_set (addr_rtx, get_varargs_alias_set ());
set_mem_align (addr_rtx, BITS_PER_WORD);
tmp = shallow_copy_rtx (tmp);
PUT_MODE (tmp, BLKmode);
set_mem_alias_set (tmp, 0);
dest_addr = emit_block_move (tmp, addr_rtx, GEN_INT (rsize),
BLOCK_OP_NORMAL);
if (dest_addr != NULL_RTX)
addr_rtx = dest_addr;
else
addr_rtx = XCEXP (tmp, 0, MEM);
}
if (indirect)
{
addr_rtx = force_reg (Pmode, addr_rtx);
addr_rtx = gen_rtx_MEM (Pmode, addr_rtx);
set_mem_alias_set (addr_rtx, get_varargs_alias_set ());
}
return addr_rtx;
}
/* Return the string to output an unconditional branch to LABEL, which is
the operand number of the label.
DEST is the destination insn (i.e. the label), INSN is the source. */
const char *
output_ubranch (rtx dest, int label, rtx insn)
{
static char string[64];
bool noop = false;
char *p;
/* TurboSPARC is reported to have problems with
with
foo: b,a foo
i.e. an empty loop with the annul bit set. The workaround is to use
foo: b foo; nop
instead. */
if (! TARGET_V9 && flag_delayed_branch
&& (INSN_ADDRESSES (INSN_UID (dest))
== INSN_ADDRESSES (INSN_UID (insn))))
{
strcpy (string, "b\t");
noop = true;
}
else
{
bool v9_form = false;
if (TARGET_V9 && INSN_ADDRESSES_SET_P ())
{
int delta = (INSN_ADDRESSES (INSN_UID (dest))
- INSN_ADDRESSES (INSN_UID (insn)));
/* Leave some instructions for "slop". */
if (delta >= -260000 && delta < 260000)
v9_form = true;
}
if (v9_form)
strcpy (string, "ba%*,pt\t%%xcc, ");
else
strcpy (string, "b%*\t");
}
p = strchr (string, '\0');
*p++ = '%';
*p++ = 'l';
*p++ = '0' + label;
*p++ = '%';
if (noop)
*p++ = '#';
else
*p++ = '(';
*p = '\0';
return string;
}
/* Return the string to output a conditional branch to LABEL, which is
the operand number of the label. OP is the conditional expression.
XEXP (OP, 0) is assumed to be a condition code register (integer or
floating point) and its mode specifies what kind of comparison we made.
DEST is the destination insn (i.e. the label), INSN is the source.
REVERSED is nonzero if we should reverse the sense of the comparison.
ANNUL is nonzero if we should generate an annulling branch.
NOOP is nonzero if we have to follow this branch by a noop. */
char *
output_cbranch (rtx op, rtx dest, int label, int reversed, int annul,
int noop, rtx insn)
{
static char string[50];
enum rtx_code code = GET_CODE (op);
rtx cc_reg = XEXP (op, 0);
enum machine_mode mode = GET_MODE (cc_reg);
const char *labelno, *branch;
int spaces = 8, far;
char *p;
/* v9 branches are limited to +-1MB. If it is too far away,
change
bne,pt %xcc, .LC30
to
be,pn %xcc, .+12
nop
ba .LC30
and
fbne,a,pn %fcc2, .LC29
to
fbe,pt %fcc2, .+16
nop
ba .LC29 */
far = TARGET_V9 && (get_attr_length (insn) >= 3);
if (reversed ^ far)
{
/* Reversal of FP compares takes care -- an ordered compare
becomes an unordered compare and vice versa. */
if (mode == CCFPmode || mode == CCFPEmode)
code = reverse_condition_maybe_unordered (code);
else
code = reverse_condition (code);
}
/* Start by writing the branch condition. */
if (mode == CCFPmode || mode == CCFPEmode)
{
switch (code)
{
case NE:
branch = "fbne";
break;
case EQ:
branch = "fbe";
break;
case GE:
branch = "fbge";
break;
case GT:
branch = "fbg";
break;
case LE:
branch = "fble";
break;
case LT:
branch = "fbl";
break;
case UNORDERED:
branch = "fbu";
break;
case ORDERED:
branch = "fbo";
break;
case UNGT:
branch = "fbug";
break;
case UNLT:
branch = "fbul";
break;
case UNEQ:
branch = "fbue";
break;
case UNGE:
branch = "fbuge";
break;
case UNLE:
branch = "fbule";
break;
case LTGT:
branch = "fblg";
break;
default:
abort ();
}
/* ??? !v9: FP branches cannot be preceded by another floating point
insn. Because there is currently no concept of pre-delay slots,
we can fix this only by always emitting a nop before a floating
point branch. */
string[0] = '\0';
if (! TARGET_V9)
strcpy (string, "nop\n\t");
strcat (string, branch);
}
else
{
switch (code)
{
case NE:
branch = "bne";
break;
case EQ:
branch = "be";
break;
case GE:
if (mode == CC_NOOVmode || mode == CCX_NOOVmode)
branch = "bpos";
else
branch = "bge";
break;
case GT:
branch = "bg";
break;
case LE:
branch = "ble";
break;
case LT:
if (mode == CC_NOOVmode || mode == CCX_NOOVmode)
branch = "bneg";
else
branch = "bl";
break;
case GEU:
branch = "bgeu";
break;
case GTU:
branch = "bgu";
break;
case LEU:
branch = "bleu";
break;
case LTU:
branch = "blu";
break;
default:
abort ();
}
strcpy (string, branch);
}
spaces -= strlen (branch);
p = strchr (string, '\0');
/* Now add the annulling, the label, and a possible noop. */
if (annul && ! far)
{
strcpy (p, ",a");
p += 2;
spaces -= 2;
}
if (TARGET_V9)
{
rtx note;
int v8 = 0;
if (! far && insn && INSN_ADDRESSES_SET_P ())
{
int delta = (INSN_ADDRESSES (INSN_UID (dest))
- INSN_ADDRESSES (INSN_UID (insn)));
/* Leave some instructions for "slop". */
if (delta < -260000 || delta >= 260000)
v8 = 1;
}
if (mode == CCFPmode || mode == CCFPEmode)
{
static char v9_fcc_labelno[] = "%%fccX, ";
/* Set the char indicating the number of the fcc reg to use. */
v9_fcc_labelno[5] = REGNO (cc_reg) - SPARC_FIRST_V9_FCC_REG + '0';
labelno = v9_fcc_labelno;
if (v8)
{
if (REGNO (cc_reg) == SPARC_FCC_REG)
labelno = "";
else
abort ();
}
}
else if (mode == CCXmode || mode == CCX_NOOVmode)
{
labelno = "%%xcc, ";
if (v8)
abort ();
}
else
{
labelno = "%%icc, ";
if (v8)
labelno = "";
}
if (*labelno && insn && (note = find_reg_note (insn, REG_BR_PROB, NULL_RTX)))
{
strcpy (p,
((INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2) ^ far)
? ",pt" : ",pn");
p += 3;
spaces -= 3;
}
}
else
labelno = "";
if (spaces > 0)
*p++ = '\t';
else
*p++ = ' ';
strcpy (p, labelno);
p = strchr (p, '\0');
if (far)
{
strcpy (p, ".+12\n\tnop\n\tb\t");
if (annul || noop)
p[3] = '6';
p += 13;
}
*p++ = '%';
*p++ = 'l';
/* Set the char indicating the number of the operand containing the
label_ref. */
*p++ = label + '0';
*p = '\0';
if (noop)
strcpy (p, "\n\tnop");
return string;
}
/* Emit a library call comparison between floating point X and Y.
COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
TARGET_ARCH64 uses _Qp_* functions, which use pointers to TFmode
values as arguments instead of the TFmode registers themselves,
that's why we cannot call emit_float_lib_cmp. */
void
sparc_emit_float_lib_cmp (rtx x, rtx y, enum rtx_code comparison)
{
const char *qpfunc;
rtx slot0, slot1, result, tem, tem2;
enum machine_mode mode;
switch (comparison)
{
case EQ:
qpfunc = (TARGET_ARCH64) ? "_Qp_feq" : "_Q_feq";
break;
case NE:
qpfunc = (TARGET_ARCH64) ? "_Qp_fne" : "_Q_fne";
break;
case GT:
qpfunc = (TARGET_ARCH64) ? "_Qp_fgt" : "_Q_fgt";
break;
case GE:
qpfunc = (TARGET_ARCH64) ? "_Qp_fge" : "_Q_fge";
break;
case LT:
qpfunc = (TARGET_ARCH64) ? "_Qp_flt" : "_Q_flt";
break;
case LE:
qpfunc = (TARGET_ARCH64) ? "_Qp_fle" : "_Q_fle";
break;
case ORDERED:
case UNORDERED:
case UNGT:
case UNLT:
case UNEQ:
case UNGE:
case UNLE:
case LTGT:
qpfunc = (TARGET_ARCH64) ? "_Qp_cmp" : "_Q_cmp";
break;
default:
abort();
break;
}
if (TARGET_ARCH64)
{
if (GET_CODE (x) != MEM)
{
slot0 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode), 0);
emit_insn (gen_rtx_SET (VOIDmode, slot0, x));
}
else
slot0 = x;
if (GET_CODE (y) != MEM)
{
slot1 = assign_stack_temp (TFmode, GET_MODE_SIZE(TFmode), 0);
emit_insn (gen_rtx_SET (VOIDmode, slot1, y));
}
else
slot1 = y;
emit_library_call (gen_rtx_SYMBOL_REF (Pmode, qpfunc), LCT_NORMAL,
DImode, 2,
XEXP (slot0, 0), Pmode,
XEXP (slot1, 0), Pmode);
mode = DImode;
}
else
{
emit_library_call (gen_rtx_SYMBOL_REF (Pmode, qpfunc), LCT_NORMAL,
SImode, 2,
x, TFmode, y, TFmode);
mode = SImode;
}
/* Immediately move the result of the libcall into a pseudo
register so reload doesn't clobber the value if it needs
the return register for a spill reg. */
result = gen_reg_rtx (mode);
emit_move_insn (result, hard_libcall_value (mode));
switch (comparison)
{
default:
emit_cmp_insn (result, const0_rtx, NE, NULL_RTX, mode, 0);
break;
case ORDERED:
case UNORDERED:
emit_cmp_insn (result, GEN_INT(3), comparison == UNORDERED ? EQ : NE,
NULL_RTX, mode, 0);
break;
case UNGT:
case UNGE:
emit_cmp_insn (result, const1_rtx,
comparison == UNGT ? GT : NE, NULL_RTX, mode, 0);
break;
case UNLE:
emit_cmp_insn (result, const2_rtx, NE, NULL_RTX, mode, 0);
break;
case UNLT:
tem = gen_reg_rtx (mode);
if (TARGET_ARCH32)
emit_insn (gen_andsi3 (tem, result, const1_rtx));
else
emit_insn (gen_anddi3 (tem, result, const1_rtx));
emit_cmp_insn (tem, const0_rtx, NE, NULL_RTX, mode, 0);
break;
case UNEQ:
case LTGT:
tem = gen_reg_rtx (mode);
if (TARGET_ARCH32)
emit_insn (gen_addsi3 (tem, result, const1_rtx));
else
emit_insn (gen_adddi3 (tem, result, const1_rtx));
tem2 = gen_reg_rtx (mode);
if (TARGET_ARCH32)
emit_insn (gen_andsi3 (tem2, tem, const2_rtx));
else
emit_insn (gen_anddi3 (tem2, tem, const2_rtx));
emit_cmp_insn (tem2, const0_rtx, comparison == UNEQ ? EQ : NE,
NULL_RTX, mode, 0);
break;
}
}
/* Generate an unsigned DImode to FP conversion. This is the same code
optabs would emit if we didn't have TFmode patterns. */
void
sparc_emit_floatunsdi (rtx *operands)
{
rtx neglab, donelab, i0, i1, f0, in, out;
enum machine_mode mode;
out = operands[0];
in = force_reg (DImode, operands[1]);
mode = GET_MODE (out);
neglab = gen_label_rtx ();
donelab = gen_label_rtx ();
i0 = gen_reg_rtx (DImode);
i1 = gen_reg_rtx (DImode);
f0 = gen_reg_rtx (mode);
emit_cmp_and_jump_insns (in, const0_rtx, LT, const0_rtx, DImode, 0, neglab);
emit_insn (gen_rtx_SET (VOIDmode, out, gen_rtx_FLOAT (mode, in)));
emit_jump_insn (gen_jump (donelab));
emit_barrier ();
emit_label (neglab);
emit_insn (gen_lshrdi3 (i0, in, const1_rtx));
emit_insn (gen_anddi3 (i1, in, const1_rtx));
emit_insn (gen_iordi3 (i0, i0, i1));
emit_insn (gen_rtx_SET (VOIDmode, f0, gen_rtx_FLOAT (mode, i0)));
emit_insn (gen_rtx_SET (VOIDmode, out, gen_rtx_PLUS (mode, f0, f0)));
emit_label (donelab);
}
/* Return the string to output a conditional branch to LABEL, testing
register REG. LABEL is the operand number of the label; REG is the
operand number of the reg. OP is the conditional expression. The mode
of REG says what kind of comparison we made.
DEST is the destination insn (i.e. the label), INSN is the source.
REVERSED is nonzero if we should reverse the sense of the comparison.
ANNUL is nonzero if we should generate an annulling branch.
NOOP is nonzero if we have to follow this branch by a noop. */
char *
output_v9branch (rtx op, rtx dest, int reg, int label, int reversed,
int annul, int noop, rtx insn)
{
static char string[50];
enum rtx_code code = GET_CODE (op);
enum machine_mode mode = GET_MODE (XEXP (op, 0));
rtx note;
int far;
char *p;
/* branch on register are limited to +-128KB. If it is too far away,
change
brnz,pt %g1, .LC30
to
brz,pn %g1, .+12
nop
ba,pt %xcc, .LC30
and
brgez,a,pn %o1, .LC29
to
brlz,pt %o1, .+16
nop
ba,pt %xcc, .LC29 */
far = get_attr_length (insn) >= 3;
/* If not floating-point or if EQ or NE, we can just reverse the code. */
if (reversed ^ far)
code = reverse_condition (code);
/* Only 64 bit versions of these instructions exist. */
if (mode != DImode)
abort ();
/* Start by writing the branch condition. */
switch (code)
{
case NE:
strcpy (string, "brnz");
break;
case EQ:
strcpy (string, "brz");
break;
case GE:
strcpy (string, "brgez");
break;
case LT:
strcpy (string, "brlz");
break;
case LE:
strcpy (string, "brlez");
break;
case GT:
strcpy (string, "brgz");
break;
default:
abort ();
}
p = strchr (string, '\0');
/* Now add the annulling, reg, label, and nop. */
if (annul && ! far)
{
strcpy (p, ",a");
p += 2;
}
if (insn && (note = find_reg_note (insn, REG_BR_PROB, NULL_RTX)))
{
strcpy (p,
((INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2) ^ far)
? ",pt" : ",pn");
p += 3;
}
*p = p < string + 8 ? '\t' : ' ';
p++;
*p++ = '%';
*p++ = '0' + reg;
*p++ = ',';
*p++ = ' ';
if (far)
{
int veryfar = 1, delta;
if (INSN_ADDRESSES_SET_P ())
{
delta = (INSN_ADDRESSES (INSN_UID (dest))
- INSN_ADDRESSES (INSN_UID (insn)));
/* Leave some instructions for "slop". */
if (delta >= -260000 && delta < 260000)
veryfar = 0;
}
strcpy (p, ".+12\n\tnop\n\t");
if (annul || noop)
p[3] = '6';
p += 11;
if (veryfar)
{
strcpy (p, "b\t");
p += 2;
}
else
{
strcpy (p, "ba,pt\t%%xcc, ");
p += 13;
}
}
*p++ = '%';
*p++ = 'l';
*p++ = '0' + label;
*p = '\0';
if (noop)
strcpy (p, "\n\tnop");
return string;
}
/* Return 1, if any of the registers of the instruction are %l[0-7] or %o[0-7].
Such instructions cannot be used in the delay slot of return insn on v9.
If TEST is 0, also rename all %i[0-7] registers to their %o[0-7] counterparts.
*/
static int
epilogue_renumber (register rtx *where, int test)
{
register const char *fmt;
register int i;
register enum rtx_code code;
if (*where == 0)
return 0;
code = GET_CODE (*where);
switch (code)
{
case REG:
if (REGNO (*where) >= 8 && REGNO (*where) < 24) /* oX or lX */
return 1;
if (! test && REGNO (*where) >= 24 && REGNO (*where) < 32)
*where = gen_rtx (REG, GET_MODE (*where), OUTGOING_REGNO (REGNO(*where)));
case SCRATCH:
case CC0:
case PC:
case CONST_INT:
case CONST_DOUBLE:
return 0;
/* Do not replace the frame pointer with the stack pointer because
it can cause the delayed instruction to load below the stack.
This occurs when instructions like:
(set (reg/i:SI 24 %i0)
(mem/f:SI (plus:SI (reg/f:SI 30 %fp)
(const_int -20 [0xffffffec])) 0))
are in the return delayed slot. */
case PLUS:
if (GET_CODE (XEXP (*where, 0)) == REG
&& REGNO (XEXP (*where, 0)) == HARD_FRAME_POINTER_REGNUM
&& (GET_CODE (XEXP (*where, 1)) != CONST_INT
|| INTVAL (XEXP (*where, 1)) < SPARC_STACK_BIAS))
return 1;
break;
case MEM:
if (SPARC_STACK_BIAS
&& GET_CODE (XEXP (*where, 0)) == REG
&& REGNO (XEXP (*where, 0)) == HARD_FRAME_POINTER_REGNUM)
return 1;
break;
default:
break;
}
fmt = GET_RTX_FORMAT (code);
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
{
if (fmt[i] == 'E')
{
register int j;
for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
if (epilogue_renumber (&(XVECEXP (*where, i, j)), test))
return 1;
}
else if (fmt[i] == 'e'
&& epilogue_renumber (&(XEXP (*where, i)), test))
return 1;
}
return 0;
}
/* Leaf functions and non-leaf functions have different needs. */
static const int
reg_leaf_alloc_order[] = REG_LEAF_ALLOC_ORDER;
static const int
reg_nonleaf_alloc_order[] = REG_ALLOC_ORDER;
static const int *const reg_alloc_orders[] = {
reg_leaf_alloc_order,
reg_nonleaf_alloc_order};
void
order_regs_for_local_alloc (void)
{
static int last_order_nonleaf = 1;
if (regs_ever_live[15] != last_order_nonleaf)
{
last_order_nonleaf = !last_order_nonleaf;
memcpy ((char *) reg_alloc_order,
(const char *) reg_alloc_orders[last_order_nonleaf],
FIRST_PSEUDO_REGISTER * sizeof (int));
}
}
/* Return 1 if REG and MEM are legitimate enough to allow the various
mem<-->reg splits to be run. */
int
sparc_splitdi_legitimate (rtx reg, rtx mem)
{
/* Punt if we are here by mistake. */
if (! reload_completed)
abort ();
/* We must have an offsettable memory reference. */
if (! offsettable_memref_p (mem))
return 0;
/* If we have legitimate args for ldd/std, we do not want
the split to happen. */
if ((REGNO (reg) % 2) == 0
&& mem_min_alignment (mem, 8))
return 0;
/* Success. */
return 1;
}
/* Return 1 if x and y are some kind of REG and they refer to
different hard registers. This test is guaranteed to be
run after reload. */
int
sparc_absnegfloat_split_legitimate (rtx x, rtx y)
{
if (GET_CODE (x) != REG)
return 0;
if (GET_CODE (y) != REG)
return 0;
if (REGNO (x) == REGNO (y))
return 0;
return 1;
}
/* Return 1 if REGNO (reg1) is even and REGNO (reg1) == REGNO (reg2) - 1.
This makes them candidates for using ldd and std insns.
Note reg1 and reg2 *must* be hard registers. */
int
registers_ok_for_ldd_peep (rtx reg1, rtx reg2)
{
/* We might have been passed a SUBREG. */
if (GET_CODE (reg1) != REG || GET_CODE (reg2) != REG)
return 0;
if (REGNO (reg1) % 2 != 0)
return 0;
/* Integer ldd is deprecated in SPARC V9 */
if (TARGET_V9 && REGNO (reg1) < 32)
return 0;
return (REGNO (reg1) == REGNO (reg2) - 1);
}
/* Return 1 if the addresses in mem1 and mem2 are suitable for use in
an ldd or std insn.
This can only happen when addr1 and addr2, the addresses in mem1
and mem2, are consecutive memory locations (addr1 + 4 == addr2).
addr1 must also be aligned on a 64-bit boundary.
Also iff dependent_reg_rtx is not null it should not be used to
compute the address for mem1, i.e. we cannot optimize a sequence
like:
ld [%o0], %o0
ld [%o0 + 4], %o1
to
ldd [%o0], %o0
nor:
ld [%g3 + 4], %g3
ld [%g3], %g2
to
ldd [%g3], %g2
But, note that the transformation from:
ld [%g2 + 4], %g3
ld [%g2], %g2
to
ldd [%g2], %g2
is perfectly fine. Thus, the peephole2 patterns always pass us
the destination register of the first load, never the second one.
For stores we don't have a similar problem, so dependent_reg_rtx is
NULL_RTX. */
int
mems_ok_for_ldd_peep (rtx mem1, rtx mem2, rtx dependent_reg_rtx)
{
rtx addr1, addr2;
unsigned int reg1;
HOST_WIDE_INT offset1;
/* The mems cannot be volatile. */
if (MEM_VOLATILE_P (mem1) || MEM_VOLATILE_P (mem2))
return 0;
/* MEM1 should be aligned on a 64-bit boundary. */
if (MEM_ALIGN (mem1) < 64)
return 0;
addr1 = XEXP (mem1, 0);
addr2 = XEXP (mem2, 0);
/* Extract a register number and offset (if used) from the first addr. */
if (GET_CODE (addr1) == PLUS)
{
/* If not a REG, return zero. */
if (GET_CODE (XEXP (addr1, 0)) != REG)
return 0;
else
{
reg1 = REGNO (XEXP (addr1, 0));
/* The offset must be constant! */
if (GET_CODE (XEXP (addr1, 1)) != CONST_INT)
return 0;
offset1 = INTVAL (XEXP (addr1, 1));
}
}
else if (GET_CODE (addr1) != REG)
return 0;
else
{
reg1 = REGNO (addr1);
/* This was a simple (mem (reg)) expression. Offset is 0. */
offset1 = 0;
}
/* Make sure the second address is a (mem (plus (reg) (const_int). */
if (GET_CODE (addr2) != PLUS)
return 0;
if (GET_CODE (XEXP (addr2, 0)) != REG
|| GET_CODE (XEXP (addr2, 1)) != CONST_INT)
return 0;
if (reg1 != REGNO (XEXP (addr2, 0)))
return 0;
if (dependent_reg_rtx != NULL_RTX && reg1 == REGNO (dependent_reg_rtx))
return 0;
/* The first offset must be evenly divisible by 8 to ensure the
address is 64 bit aligned. */
if (offset1 % 8 != 0)
return 0;
/* The offset for the second addr must be 4 more than the first addr. */
if (INTVAL (XEXP (addr2, 1)) != offset1 + 4)
return 0;
/* All the tests passed. addr1 and addr2 are valid for ldd and std
instructions. */
return 1;
}
/* Return 1 if reg is a pseudo, or is the first register in
a hard register pair. This makes it a candidate for use in
ldd and std insns. */
int
register_ok_for_ldd (rtx reg)
{
/* We might have been passed a SUBREG. */
if (GET_CODE (reg) != REG)
return 0;
if (REGNO (reg) < FIRST_PSEUDO_REGISTER)
return (REGNO (reg) % 2 == 0);
else
return 1;
}
/* Print operand X (an rtx) in assembler syntax to file FILE.
CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
For `%' followed by punctuation, CODE is the punctuation and X is null. */
void
print_operand (FILE *file, rtx x, int code)
{
switch (code)
{
case '#':
/* Output a 'nop' if there's nothing for the delay slot. */
if (dbr_sequence_length () == 0)
fputs ("\n\t nop", file);
return;
case '*':
/* Output an annul flag if there's nothing for the delay slot and we
are optimizing. This is always used with '(' below. */
/* Sun OS 4.1.1 dbx can't handle an annulled unconditional branch;
this is a dbx bug. So, we only do this when optimizing. */
/* On UltraSPARC, a branch in a delay slot causes a pipeline flush.
Always emit a nop in case the next instruction is a branch. */
if (dbr_sequence_length () == 0
&& (optimize && (int)sparc_cpu < PROCESSOR_V9))
fputs (",a", file);
return;
case '(':
/* Output a 'nop' if there's nothing for the delay slot and we are
not optimizing. This is always used with '*' above. */
if (dbr_sequence_length () == 0
&& ! (optimize && (int)sparc_cpu < PROCESSOR_V9))
fputs ("\n\t nop", file);
return;
case '_':
/* Output the Embedded Medium/Anywhere code model base register. */
fputs (EMBMEDANY_BASE_REG, file);
return;
case '@':
/* Print out what we are using as the frame pointer. This might
be %fp, or might be %sp+offset. */
/* ??? What if offset is too big? Perhaps the caller knows it isn't? */
fprintf (file, "%s+"HOST_WIDE_INT_PRINT_DEC, frame_base_name, frame_base_offset);
return;
case '&':
/* Print some local dynamic TLS name. */
assemble_name (file, get_some_local_dynamic_name ());
return;
case 'Y':
/* Adjust the operand to take into account a RESTORE operation. */
if (GET_CODE (x) == CONST_INT)
break;
else if (GET_CODE (x) != REG)
output_operand_lossage ("invalid %%Y operand");
else if (REGNO (x) < 8)
fputs (reg_names[REGNO (x)], file);
else if (REGNO (x) >= 24 && REGNO (x) < 32)
fputs (reg_names[REGNO (x)-16], file);
else
output_operand_lossage ("invalid %%Y operand");
return;
case 'L':
/* Print out the low order register name of a register pair. */
if (WORDS_BIG_ENDIAN)
fputs (reg_names[REGNO (x)+1], file);
else
fputs (reg_names[REGNO (x)], file);
return;
case 'H':
/* Print out the high order register name of a register pair. */
if (WORDS_BIG_ENDIAN)
fputs (reg_names[REGNO (x)], file);
else
fputs (reg_names[REGNO (x)+1], file);
return;
case 'R':
/* Print out the second register name of a register pair or quad.
I.e., R (%o0) => %o1. */
fputs (reg_names[REGNO (x)+1], file);
return;
case 'S':
/* Print out the third register name of a register quad.
I.e., S (%o0) => %o2. */
fputs (reg_names[REGNO (x)+2], file);
return;
case 'T':
/* Print out the fourth register name of a register quad.
I.e., T (%o0) => %o3. */
fputs (reg_names[REGNO (x)+3], file);
return;
case 'x':
/* Print a condition code register. */
if (REGNO (x) == SPARC_ICC_REG)
{
/* We don't handle CC[X]_NOOVmode because they're not supposed
to occur here. */
if (GET_MODE (x) == CCmode)
fputs ("%icc", file);
else if (GET_MODE (x) == CCXmode)
fputs ("%xcc", file);
else
abort ();
}
else
/* %fccN register */
fputs (reg_names[REGNO (x)], file);
return;
case 'm':
/* Print the operand's address only. */
output_address (XEXP (x, 0));
return;
case 'r':
/* In this case we need a register. Use %g0 if the
operand is const0_rtx. */
if (x == const0_rtx
|| (GET_MODE (x) != VOIDmode && x == CONST0_RTX (GET_MODE (x))))
{
fputs ("%g0", file);
return;
}
else
break;
case 'A':
switch (GET_CODE (x))
{
case IOR: fputs ("or", file); break;
case AND: fputs ("and", file); break;
case XOR: fputs ("xor", file); break;
default: output_operand_lossage ("invalid %%A operand");
}
return;
case 'B':
switch (GET_CODE (x))
{
case IOR: fputs ("orn", file); break;
case AND: fputs ("andn", file); break;
case XOR: fputs ("xnor", file); break;
default: output_operand_lossage ("invalid %%B operand");
}
return;
/* These are used by the conditional move instructions. */
case 'c' :
case 'C':
{
enum rtx_code rc = GET_CODE (x);
if (code == 'c')
{
enum machine_mode mode = GET_MODE (XEXP (x, 0));
if (mode == CCFPmode || mode == CCFPEmode)
rc = reverse_condition_maybe_unordered (GET_CODE (x));
else
rc = reverse_condition (GET_CODE (x));
}
switch (rc)
{
case NE: fputs ("ne", file); break;
case EQ: fputs ("e", file); break;
case GE: fputs ("ge", file); break;
case GT: fputs ("g", file); break;
case LE: fputs ("le", file); break;
case LT: fputs ("l", file); break;
case GEU: fputs ("geu", file); break;
case GTU: fputs ("gu", file); break;
case LEU: fputs ("leu", file); break;
case LTU: fputs ("lu", file); break;
case LTGT: fputs ("lg", file); break;
case UNORDERED: fputs ("u", file); break;
case ORDERED: fputs ("o", file); break;
case UNLT: fputs ("ul", file); break;
case UNLE: fputs ("ule", file); break;
case UNGT: fputs ("ug", file); break;
case UNGE: fputs ("uge", file); break;
case UNEQ: fputs ("ue", file); break;
default: output_operand_lossage (code == 'c'
? "invalid %%c operand"
: "invalid %%C operand");
}
return;
}
/* These are used by the movr instruction pattern. */
case 'd':
case 'D':
{
enum rtx_code rc = (code == 'd'
? reverse_condition (GET_CODE (x))
: GET_CODE (x));
switch (rc)
{
case NE: fputs ("ne", file); break;
case EQ: fputs ("e", file); break;
case GE: fputs ("gez", file); break;
case LT: fputs ("lz", file); break;
case LE: fputs ("lez", file); break;
case GT: fputs ("gz", file); break;
default: output_operand_lossage (code == 'd'
? "invalid %%d operand"
: "invalid %%D operand");
}
return;
}
case 'b':
{
/* Print a sign-extended character. */
int i = trunc_int_for_mode (INTVAL (x), QImode);
fprintf (file, "%d", i);
return;
}
case 'f':
/* Operand must be a MEM; write its address. */
if (GET_CODE (x) != MEM)
output_operand_lossage ("invalid %%f operand");
output_address (XEXP (x, 0));
return;
case 's':
{
/* Print a sign-extended 32-bit value. */
HOST_WIDE_INT i;
if (GET_CODE(x) == CONST_INT)
i = INTVAL (x);
else if (GET_CODE(x) == CONST_DOUBLE)
i = CONST_DOUBLE_LOW (x);
else
{
output_operand_lossage ("invalid %%s operand");
return;
}
i = trunc_int_for_mode (i, SImode);
fprintf (file, HOST_WIDE_INT_PRINT_DEC, i);
return;
}
case 0:
/* Do nothing special. */
break;
default:
/* Undocumented flag. */
output_operand_lossage ("invalid operand output code");
}
if (GET_CODE (x) == REG)
fputs (reg_names[REGNO (x)], file);
else if (GET_CODE (x) == MEM)
{
fputc ('[', file);
/* Poor Sun assembler doesn't understand absolute addressing. */
if (CONSTANT_P (XEXP (x, 0)))
fputs ("%g0+", file);
output_address (XEXP (x, 0));
fputc (']', file);
}
else if (GET_CODE (x) == HIGH)
{
fputs ("%hi(", file);
output_addr_const (file, XEXP (x, 0));
fputc (')', file);
}
else if (GET_CODE (x) == LO_SUM)
{
print_operand (file, XEXP (x, 0), 0);
if (TARGET_CM_MEDMID)
fputs ("+%l44(", file);
else
fputs ("+%lo(", file);
output_addr_const (file, XEXP (x, 1));
fputc (')', file);
}
else if (GET_CODE (x) == CONST_DOUBLE
&& (GET_MODE (x) == VOIDmode
|| GET_MODE_CLASS (GET_MODE (x)) == MODE_INT))
{
if (CONST_DOUBLE_HIGH (x) == 0)
fprintf (file, "%u", (unsigned int) CONST_DOUBLE_LOW (x));
else if (CONST_DOUBLE_HIGH (x) == -1
&& CONST_DOUBLE_LOW (x) < 0)
fprintf (file, "%d", (int) CONST_DOUBLE_LOW (x));
else
output_operand_lossage ("long long constant not a valid immediate operand");
}
else if (GET_CODE (x) == CONST_DOUBLE)
output_operand_lossage ("floating point constant not a valid immediate operand");
else { output_addr_const (file, x); }
}
/* Target hook for assembling integer objects. The sparc version has
special handling for aligned DI-mode objects. */
static bool
sparc_assemble_integer (rtx x, unsigned int size, int aligned_p)
{
/* ??? We only output .xword's for symbols and only then in environments
where the assembler can handle them. */
if (aligned_p && size == 8
&& (GET_CODE (x) != CONST_INT && GET_CODE (x) != CONST_DOUBLE))
{
if (TARGET_V9)
{
assemble_integer_with_op ("\t.xword\t", x);
return true;
}
else
{
assemble_aligned_integer (4, const0_rtx);
assemble_aligned_integer (4, x);
return true;
}
}
return default_assemble_integer (x, size, aligned_p);
}
/* Return the value of a code used in the .proc pseudo-op that says
what kind of result this function returns. For non-C types, we pick
the closest C type. */
#ifndef SHORT_TYPE_SIZE
#define SHORT_TYPE_SIZE (BITS_PER_UNIT * 2)
#endif
#ifndef INT_TYPE_SIZE
#define INT_TYPE_SIZE BITS_PER_WORD
#endif
#ifndef LONG_TYPE_SIZE
#define LONG_TYPE_SIZE BITS_PER_WORD
#endif
#ifndef LONG_LONG_TYPE_SIZE
#define LONG_LONG_TYPE_SIZE (BITS_PER_WORD * 2)
#endif
#ifndef FLOAT_TYPE_SIZE
#define FLOAT_TYPE_SIZE BITS_PER_WORD
#endif
#ifndef DOUBLE_TYPE_SIZE
#define DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
#endif
#ifndef LONG_DOUBLE_TYPE_SIZE
#define LONG_DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
#endif
unsigned long
sparc_type_code (register tree type)
{
register unsigned long qualifiers = 0;
register unsigned shift;
/* Only the first 30 bits of the qualifier are valid. We must refrain from
setting more, since some assemblers will give an error for this. Also,
we must be careful to avoid shifts of 32 bits or more to avoid getting
unpredictable results. */
for (shift = 6; shift < 30; shift += 2, type = TREE_TYPE (type))
{
switch (TREE_CODE (type))
{
case ERROR_MARK:
return qualifiers;
case ARRAY_TYPE:
qualifiers |= (3 << shift);
break;
case FUNCTION_TYPE:
case METHOD_TYPE:
qualifiers |= (2 << shift);
break;
case POINTER_TYPE:
case REFERENCE_TYPE:
case OFFSET_TYPE:
qualifiers |= (1 << shift);
break;
case RECORD_TYPE:
return (qualifiers | 8);
case UNION_TYPE:
case QUAL_UNION_TYPE:
return (qualifiers | 9);
case ENUMERAL_TYPE:
return (qualifiers | 10);
case VOID_TYPE:
return (qualifiers | 16);
case INTEGER_TYPE:
/* If this is a range type, consider it to be the underlying
type. */
if (TREE_TYPE (type) != 0)
break;
/* Carefully distinguish all the standard types of C,
without messing up if the language is not C. We do this by
testing TYPE_PRECISION and TREE_UNSIGNED. The old code used to
look at both the names and the above fields, but that's redundant.
Any type whose size is between two C types will be considered
to be the wider of the two types. Also, we do not have a
special code to use for "long long", so anything wider than
long is treated the same. Note that we can't distinguish
between "int" and "long" in this code if they are the same
size, but that's fine, since neither can the assembler. */
if (TYPE_PRECISION (type) <= CHAR_TYPE_SIZE)
return (qualifiers | (TREE_UNSIGNED (type) ? 12 : 2));
else if (TYPE_PRECISION (type) <= SHORT_TYPE_SIZE)
return (qualifiers | (TREE_UNSIGNED (type) ? 13 : 3));
else if (TYPE_PRECISION (type) <= INT_TYPE_SIZE)
return (qualifiers | (TREE_UNSIGNED (type) ? 14 : 4));
else
return (qualifiers | (TREE_UNSIGNED (type) ? 15 : 5));
case REAL_TYPE:
/* If this is a range type, consider it to be the underlying
type. */
if (TREE_TYPE (type) != 0)
break;
/* Carefully distinguish all the standard types of C,
without messing up if the language is not C. */
if (TYPE_PRECISION (type) == FLOAT_TYPE_SIZE)
return (qualifiers | 6);
else
return (qualifiers | 7);
case COMPLEX_TYPE: /* GNU Fortran COMPLEX type. */
/* ??? We need to distinguish between double and float complex types,
but I don't know how yet because I can't reach this code from
existing front-ends. */
return (qualifiers | 7); /* Who knows? */
case CHAR_TYPE: /* GNU Pascal CHAR type. Not used in C. */
case BOOLEAN_TYPE: /* GNU Fortran BOOLEAN type. */
case FILE_TYPE: /* GNU Pascal FILE type. */
case SET_TYPE: /* GNU Pascal SET type. */
case LANG_TYPE: /* ? */
return qualifiers;
default:
abort (); /* Not a type! */
}
}
return qualifiers;
}
/* Nested function support. */
/* Emit RTL insns to initialize the variable parts of a trampoline.
FNADDR is an RTX for the address of the function's pure code.
CXT is an RTX for the static chain value for the function.
This takes 16 insns: 2 shifts & 2 ands (to split up addresses), 4 sethi
(to load in opcodes), 4 iors (to merge address and opcodes), and 4 writes
(to store insns). This is a bit excessive. Perhaps a different
mechanism would be better here.
Emit enough FLUSH insns to synchronize the data and instruction caches. */
void
sparc_initialize_trampoline (rtx tramp, rtx fnaddr, rtx cxt)
{
/* SPARC 32-bit trampoline:
sethi %hi(fn), %g1
sethi %hi(static), %g2
jmp %g1+%lo(fn)
or %g2, %lo(static), %g2
SETHI i,r = 00rr rrr1 00ii iiii iiii iiii iiii iiii
JMPL r+i,d = 10dd ddd1 1100 0rrr rr1i iiii iiii iiii
*/
emit_move_insn
(gen_rtx_MEM (SImode, plus_constant (tramp, 0)),
expand_binop (SImode, ior_optab,
expand_shift (RSHIFT_EXPR, SImode, fnaddr,
size_int (10), 0, 1),
GEN_INT (trunc_int_for_mode (0x03000000, SImode)),
NULL_RTX, 1, OPTAB_DIRECT));
emit_move_insn
(gen_rtx_MEM (SImode, plus_constant (tramp, 4)),
expand_binop (SImode, ior_optab,
expand_shift (RSHIFT_EXPR, SImode, cxt,
size_int (10), 0, 1),
GEN_INT (trunc_int_for_mode (0x05000000, SImode)),
NULL_RTX, 1, OPTAB_DIRECT));
emit_move_insn
(gen_rtx_MEM (SImode, plus_constant (tramp, 8)),
expand_binop (SImode, ior_optab,
expand_and (SImode, fnaddr, GEN_INT (0x3ff), NULL_RTX),
GEN_INT (trunc_int_for_mode (0x81c06000, SImode)),
NULL_RTX, 1, OPTAB_DIRECT));
emit_move_insn
(gen_rtx_MEM (SImode, plus_constant (tramp, 12)),
expand_binop (SImode, ior_optab,
expand_and (SImode, cxt, GEN_INT (0x3ff), NULL_RTX),
GEN_INT (trunc_int_for_mode (0x8410a000, SImode)),
NULL_RTX, 1, OPTAB_DIRECT));
/* On UltraSPARC a flush flushes an entire cache line. The trampoline is
aligned on a 16 byte boundary so one flush clears it all. */
emit_insn (gen_flush (validize_mem (gen_rtx_MEM (SImode, tramp))));
if (sparc_cpu != PROCESSOR_ULTRASPARC
&& sparc_cpu != PROCESSOR_ULTRASPARC3)
emit_insn (gen_flush (validize_mem (gen_rtx_MEM (SImode,
plus_constant (tramp, 8)))));
/* Call __enable_execute_stack after writing onto the stack to make sure
the stack address is accessible. */
#ifdef ENABLE_EXECUTE_STACK
emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "__enable_execute_stack"),
LCT_NORMAL, VOIDmode, 1, tramp, Pmode);
#endif
}
/* The 64-bit version is simpler because it makes more sense to load the
values as "immediate" data out of the trampoline. It's also easier since
we can read the PC without clobbering a register. */
void
sparc64_initialize_trampoline (rtx tramp, rtx fnaddr, rtx cxt)
{
/* SPARC 64-bit trampoline:
rd %pc, %g1
ldx [%g1+24], %g5
jmp %g5
ldx [%g1+16], %g5
+16 bytes data
*/
emit_move_insn (gen_rtx_MEM (SImode, tramp),
GEN_INT (trunc_int_for_mode (0x83414000, SImode)));
emit_move_insn (gen_rtx_MEM (SImode, plus_constant (tramp, 4)),
GEN_INT (trunc_int_for_mode (0xca586018, SImode)));
emit_move_insn (gen_rtx_MEM (SImode, plus_constant (tramp, 8)),
GEN_INT (trunc_int_for_mode (0x81c14000, SImode)));
emit_move_insn (gen_rtx_MEM (SImode, plus_constant (tramp, 12)),
GEN_INT (trunc_int_for_mode (0xca586010, SImode)));
emit_move_insn (gen_rtx_MEM (DImode, plus_constant (tramp, 16)), cxt);
emit_move_insn (gen_rtx_MEM (DImode, plus_constant (tramp, 24)), fnaddr);
emit_insn (gen_flushdi (validize_mem (gen_rtx_MEM (DImode, tramp))));
if (sparc_cpu != PROCESSOR_ULTRASPARC
&& sparc_cpu != PROCESSOR_ULTRASPARC3)
emit_insn (gen_flushdi (validize_mem (gen_rtx_MEM (DImode, plus_constant (tramp, 8)))));
/* Call __enable_execute_stack after writing onto the stack to make sure
the stack address is accessible. */
#ifdef ENABLE_EXECUTE_STACK
emit_library_call (gen_rtx (SYMBOL_REF, Pmode, "__enable_execute_stack"),
LCT_NORMAL, VOIDmode, 1, tramp, Pmode);
#endif
}
/* Subroutines to support a flat (single) register window calling
convention. */
/* Single-register window sparc stack frames look like:
Before call After call
+-----------------------+ +-----------------------+
high | | | |
mem | caller's temps. | | caller's temps. |
| | | |
+-----------------------+ +-----------------------+
| | | |
| arguments on stack. | | arguments on stack. |
| | | |
+-----------------------+FP+92->+-----------------------+
| 6 words to save | | 6 words to save |
| arguments passed | | arguments passed |
| in registers, even | | in registers, even |
| if not passed. | | if not passed. |
SP+68->+-----------------------+FP+68->+-----------------------+
| 1 word struct addr | | 1 word struct addr |
+-----------------------+FP+64->+-----------------------+
| | | |
| 16 word reg save area | | 16 word reg save area |
| | | |
SP->+-----------------------+ FP->+-----------------------+
| 4 word area for |
| fp/alu reg moves |
FP-16->+-----------------------+
| |
| local variables |
| |
+-----------------------+
| |
| fp register save |
| |
+-----------------------+
| |
| gp register save |
| |
+-----------------------+
| |
| alloca allocations |
| |
+-----------------------+
| |
| arguments on stack |
| |
SP+92->+-----------------------+
| 6 words to save |
| arguments passed |
| in registers, even |
low | if not passed. |
memory SP+68->+-----------------------+
| 1 word struct addr |
SP+64->+-----------------------+
| |
I 16 word reg save area |
| |
SP->+-----------------------+ */
/* Structure to be filled in by sparc_flat_compute_frame_size with register
save masks, and offsets for the current function. */
struct sparc_frame_info
{
HOST_WIDE_INT total_size; /* # bytes that the entire frame takes up. */
HOST_WIDE_INT var_size; /* # bytes that variables take up. */
int args_size; /* # bytes that outgoing arguments take up. */
int extra_size; /* # bytes of extra gunk. */
int gp_reg_size; /* # bytes needed to store gp regs. */
int fp_reg_size; /* # bytes needed to store fp regs. */
unsigned long gmask; /* Mask of saved gp registers. */
unsigned long fmask; /* Mask of saved fp registers. */
int reg_offset; /* Offset from new sp to store regs. */
int initialized; /* Nonzero if frame size already calculated. */
};
/* Current frame information calculated by sparc_flat_compute_frame_size. */
struct sparc_frame_info current_frame_info;
/* Zero structure to initialize current_frame_info. */
struct sparc_frame_info zero_frame_info;
#define RETURN_ADDR_REGNUM 15
#define HARD_FRAME_POINTER_MASK (1 << (HARD_FRAME_POINTER_REGNUM))
#define RETURN_ADDR_MASK (1 << (RETURN_ADDR_REGNUM))
/* Tell prologue and epilogue if register REGNO should be saved / restored. */
static bool
sparc_flat_must_save_register_p (int regno)
{
/* General case: call-saved registers live at some point. */
if (!call_used_regs[regno] && regs_ever_live[regno])
return true;
/* Frame pointer register (%i7) if needed. */
if (regno == HARD_FRAME_POINTER_REGNUM && frame_pointer_needed)
return true;
/* PIC register (%l7) if needed. */
if (regno == (int) PIC_OFFSET_TABLE_REGNUM
&& flag_pic && current_function_uses_pic_offset_table)
return true;
/* Return address register (%o7) if needed. */
if (regno == RETURN_ADDR_REGNUM
&& (regs_ever_live[RETURN_ADDR_REGNUM]
/* When the PIC offset table is used, the PIC register
is set by using a bare call that clobbers %o7. */
|| (flag_pic && current_function_uses_pic_offset_table)))
return true;
return false;
}
/* Return the bytes needed to compute the frame pointer from the current
stack pointer. */
HOST_WIDE_INT
sparc_flat_compute_frame_size (HOST_WIDE_INT size)
/* # of var. bytes allocated. */
{
int regno;
HOST_WIDE_INT total_size; /* # bytes that the entire frame takes up. */
HOST_WIDE_INT var_size; /* # bytes that variables take up. */
int args_size; /* # bytes that outgoing arguments take up. */
int extra_size; /* # extra bytes. */
int gp_reg_size; /* # bytes needed to store gp regs. */
int fp_reg_size; /* # bytes needed to store fp regs. */
unsigned long gmask; /* Mask of saved gp registers. */
unsigned long fmask; /* Mask of saved fp registers. */
int reg_offset; /* Offset to register save area. */
int need_aligned_p; /* 1 if need the save area 8 byte aligned. */
/* This is the size of the 16 word reg save area, 1 word struct addr
area, and 4 word fp/alu register copy area. */
extra_size = -STARTING_FRAME_OFFSET + FIRST_PARM_OFFSET(0);
var_size = size;
gp_reg_size = 0;
fp_reg_size = 0;
gmask = 0;
fmask = 0;
reg_offset = 0;
need_aligned_p = 0;
args_size = 0;
if (!leaf_function_p ())
{
/* Also include the size needed for the 6 parameter registers. */
args_size = current_function_outgoing_args_size + 24;
}
total_size = var_size + args_size;
/* Calculate space needed for gp registers. */
for (regno = 1; regno <= 31; regno++)
{
if (sparc_flat_must_save_register_p (regno))
{
/* If we need to save two regs in a row, ensure there's room to bump
up the address to align it to a doubleword boundary. */
if ((regno & 0x1) == 0 && sparc_flat_must_save_register_p (regno+1))
{
if (gp_reg_size % 8 != 0)
gp_reg_size += 4;
gp_reg_size += 2 * UNITS_PER_WORD;
gmask |= 3 << regno;
regno++;
need_aligned_p = 1;
}
else
{
gp_reg_size += UNITS_PER_WORD;
gmask |= 1 << regno;
}
}
}
/* Calculate space needed for fp registers. */
for (regno = 32; regno <= 63; regno++)
{
if (regs_ever_live[regno] && !call_used_regs[regno])
{
fp_reg_size += UNITS_PER_WORD;
fmask |= 1 << (regno - 32);
}
}
if (gmask || fmask)
{
int n;
reg_offset = FIRST_PARM_OFFSET(0) + args_size;
/* Ensure save area is 8 byte aligned if we need it. */
n = reg_offset % 8;
if (need_aligned_p && n != 0)
{
total_size += 8 - n;
reg_offset += 8 - n;
}
total_size += gp_reg_size + fp_reg_size;
}
/* If we must allocate a stack frame at all, we must also allocate
room for register window spillage, so as to be binary compatible
with libraries and operating systems that do not use -mflat. */
if (total_size > 0)
total_size += extra_size;
else
extra_size = 0;
total_size = SPARC_STACK_ALIGN (total_size);
/* Save other computed information. */
current_frame_info.total_size = total_size;
current_frame_info.var_size = var_size;
current_frame_info.args_size = args_size;
current_frame_info.extra_size = extra_size;
current_frame_info.gp_reg_size = gp_reg_size;
current_frame_info.fp_reg_size = fp_reg_size;
current_frame_info.gmask = gmask;
current_frame_info.fmask = fmask;
current_frame_info.reg_offset = reg_offset;
current_frame_info.initialized = reload_completed;
/* Ok, we're done. */
return total_size;
}
/* Save/restore registers in GMASK and FMASK at register BASE_REG plus offset
OFFSET.
BASE_REG must be 8 byte aligned. This allows us to test OFFSET for
appropriate alignment and use DOUBLEWORD_OP when we can. We assume
[BASE_REG+OFFSET] will always be a valid address.
WORD_OP is either "st" for save, "ld" for restore.
DOUBLEWORD_OP is either "std" for save, "ldd" for restore. */
static void
sparc_flat_save_restore (FILE *file, const char *base_reg, int offset,
unsigned long gmask, unsigned long fmask,
const char *word_op, const char *doubleword_op,
HOST_WIDE_INT base_offset)
{
int regno;
if (gmask == 0 && fmask == 0)
return;
/* Save registers starting from high to low. We've already saved the
previous frame pointer and previous return address for the debugger's
sake. The debugger allows us to not need a nop in the epilog if at least
one register is reloaded in addition to return address. */
if (gmask)
{
for (regno = 1; regno <= 31; regno++)
{
if ((gmask & (1L << regno)) != 0)
{
if ((regno & 0x1) == 0 && ((gmask & (1L << (regno+1))) != 0))
{
/* We can save two registers in a row. If we're not at a
double word boundary, move to one.
sparc_flat_compute_frame_size ensures there's room to do
this. */
if (offset % 8 != 0)
offset += UNITS_PER_WORD;
if (word_op[0] == 's')
{
fprintf (file, "\t%s\t%s, [%s+%d]\n",
doubleword_op, reg_names[regno],
base_reg, offset);
if (dwarf2out_do_frame ())
{
char *l = dwarf2out_cfi_label ();
dwarf2out_reg_save (l, regno, offset + base_offset);
dwarf2out_reg_save
(l, regno+1, offset+base_offset + UNITS_PER_WORD);
}
}
else
fprintf (file, "\t%s\t[%s+%d], %s\n",
doubleword_op, base_reg, offset,
reg_names[regno]);
offset += 2 * UNITS_PER_WORD;
regno++;
}
else
{
if (word_op[0] == 's')
{
fprintf (file, "\t%s\t%s, [%s+%d]\n",
word_op, reg_names[regno],
base_reg, offset);
if (dwarf2out_do_frame ())
dwarf2out_reg_save ("", regno, offset + base_offset);
}
else
fprintf (file, "\t%s\t[%s+%d], %s\n",
word_op, base_reg, offset, reg_names[regno]);
offset += UNITS_PER_WORD;
}
}
}
}
if (fmask)
{
for (regno = 32; regno <= 63; regno++)
{
if ((fmask & (1L << (regno - 32))) != 0)
{
if (word_op[0] == 's')
{
fprintf (file, "\t%s\t%s, [%s+%d]\n",
word_op, reg_names[regno],
base_reg, offset);
if (dwarf2out_do_frame ())
dwarf2out_reg_save ("", regno, offset + base_offset);
}
else
fprintf (file, "\t%s\t[%s+%d], %s\n",
word_op, base_reg, offset, reg_names[regno]);
offset += UNITS_PER_WORD;
}
}
}
}
/* Set up the stack and frame (if desired) for the function. */
static void
sparc_flat_function_prologue (FILE *file, HOST_WIDE_INT size)
{
const char *sp_str = reg_names[STACK_POINTER_REGNUM];
unsigned long gmask = current_frame_info.gmask;
sparc_output_scratch_registers (file);
/* This is only for the human reader. */
fprintf (file, "\t%s#PROLOGUE# 0\n", ASM_COMMENT_START);
fprintf (file, "\t%s# vars= "HOST_WIDE_INT_PRINT_DEC", "
"regs= %d/%d, args= %d, extra= %d\n",
ASM_COMMENT_START,
current_frame_info.var_size,
current_frame_info.gp_reg_size / 4,
current_frame_info.fp_reg_size / 4,
current_function_outgoing_args_size,
current_frame_info.extra_size);
size = SPARC_STACK_ALIGN (size);
size = (! current_frame_info.initialized
? sparc_flat_compute_frame_size (size)
: current_frame_info.total_size);
/* These cases shouldn't happen. Catch them now. */
if (size == 0 && (gmask || current_frame_info.fmask))
abort ();
/* Allocate our stack frame by decrementing %sp.
At present, the only algorithm gdb can use to determine if this is a
flat frame is if we always set %i7 if we set %sp. This can be optimized
in the future by putting in some sort of debugging information that says
this is a `flat' function. However, there is still the case of debugging
code without such debugging information (including cases where most fns
have such info, but there is one that doesn't). So, always do this now
so we don't get a lot of code out there that gdb can't handle.
If the frame pointer isn't needn't then that's ok - gdb won't be able to
distinguish us from a non-flat function but there won't (and shouldn't)
be any differences anyway. The return pc is saved (if necessary) right
after %i7 so gdb won't have to look too far to find it. */
if (size > 0)
{
int reg_offset = current_frame_info.reg_offset;
const char *const fp_str = reg_names[HARD_FRAME_POINTER_REGNUM];
static const char *const t1_str = "%g1";
/* Things get a little tricky if local variables take up more than ~4096
bytes and outgoing arguments take up more than ~4096 bytes. When that
happens, the register save area can't be accessed from either end of
the frame. Handle this by decrementing %sp to the start of the gp
register save area, save the regs, update %i7, and then set %sp to its
final value. Given that we only have one scratch register to play
with it is the cheapest solution, and it helps gdb out as it won't
slow down recognition of flat functions.
Don't change the order of insns emitted here without checking with
the gdb folk first. */
/* Is the entire register save area offsettable from %sp? */
if (reg_offset < 4096 - 64 * UNITS_PER_WORD)
{
if (size <= 4096)
{
fprintf (file, "\tadd\t%s, -"HOST_WIDE_INT_PRINT_DEC", %s\n",
sp_str, size, sp_str);
if (gmask & HARD_FRAME_POINTER_MASK)
{
fprintf (file, "\tst\t%s, [%s+%d]\n",
fp_str, sp_str, reg_offset);
fprintf (file, "\tsub\t%s, -"HOST_WIDE_INT_PRINT_DEC", %s"
"\t%s# set up frame pointer\n",
sp_str, size, fp_str, ASM_COMMENT_START);
reg_offset += 4;
}
}
else
{
build_big_number (file, size, t1_str);
fprintf (file, "\tsub\t%s, %s, %s\n", sp_str, t1_str, sp_str);
if (gmask & HARD_FRAME_POINTER_MASK)
{
fprintf (file, "\tst\t%s, [%s+%d]\n",
fp_str, sp_str, reg_offset);
fprintf (file, "\tadd\t%s, %s, %s\t%s# set up frame pointer\n",
sp_str, t1_str, fp_str, ASM_COMMENT_START);
reg_offset += 4;
}
}
if (dwarf2out_do_frame ())
{
char *l = dwarf2out_cfi_label ();
if (gmask & HARD_FRAME_POINTER_MASK)
{
dwarf2out_reg_save (l, HARD_FRAME_POINTER_REGNUM,
reg_offset - 4 - size);
dwarf2out_def_cfa (l, HARD_FRAME_POINTER_REGNUM, 0);
}
else
dwarf2out_def_cfa (l, STACK_POINTER_REGNUM, size);
}
if (gmask & RETURN_ADDR_MASK)
{
fprintf (file, "\tst\t%s, [%s+%d]\n",
reg_names[RETURN_ADDR_REGNUM], sp_str, reg_offset);
if (dwarf2out_do_frame ())
dwarf2out_return_save ("", reg_offset - size);
reg_offset += 4;
}
sparc_flat_save_restore (file, sp_str, reg_offset,
gmask & ~(HARD_FRAME_POINTER_MASK | RETURN_ADDR_MASK),
current_frame_info.fmask,
"st", "std", -size);
}
else
{
/* Subtract %sp in two steps, but make sure there is always a
64-byte register save area, and %sp is properly aligned. */
/* Amount to decrement %sp by, the first time. */
HOST_WIDE_INT size1 = ((size - reg_offset + 64) + 15) & -16;
/* Amount to decrement %sp by, the second time. */
HOST_WIDE_INT size2 = size - size1;
/* Offset to register save area from %sp after first decrement. */
int offset = (int)(size1 - (size - reg_offset));
if (size1 <= 4096)
{
fprintf (file, "\tadd\t%s, -"HOST_WIDE_INT_PRINT_DEC", %s\n",
sp_str, size1, sp_str);
if (gmask & HARD_FRAME_POINTER_MASK)
{
fprintf (file, "\tst\t%s, [%s+%d]\n"
"\tsub\t%s, -"HOST_WIDE_INT_PRINT_DEC", %s"
"\t%s# set up frame pointer\n",
fp_str, sp_str, offset, sp_str, size1,
fp_str, ASM_COMMENT_START);
offset += 4;
}
}
else
{
build_big_number (file, size1, t1_str);
fprintf (file, "\tsub\t%s, %s, %s\n", sp_str, t1_str, sp_str);
if (gmask & HARD_FRAME_POINTER_MASK)
{
fprintf (file, "\tst\t%s, [%s+%d]\n"
"\tadd\t%s, %s, %s\t%s# set up frame pointer\n",
fp_str, sp_str, offset, sp_str, t1_str,
fp_str, ASM_COMMENT_START);
offset += 4;
}
}
if (dwarf2out_do_frame ())
{
char *l = dwarf2out_cfi_label ();
if (gmask & HARD_FRAME_POINTER_MASK)
{
dwarf2out_reg_save (l, HARD_FRAME_POINTER_REGNUM,
offset - 4 - size1);
dwarf2out_def_cfa (l, HARD_FRAME_POINTER_REGNUM, 0);
}
else
dwarf2out_def_cfa (l, STACK_POINTER_REGNUM, size1);
}
if (gmask & RETURN_ADDR_MASK)
{
fprintf (file, "\tst\t%s, [%s+%d]\n",
reg_names[RETURN_ADDR_REGNUM], sp_str, offset);
if (dwarf2out_do_frame ())
/* offset - size1 == reg_offset - size
if reg_offset were updated above like offset. */
dwarf2out_return_save ("", offset - size1);
offset += 4;
}
sparc_flat_save_restore (file, sp_str, offset,
gmask & ~(HARD_FRAME_POINTER_MASK | RETURN_ADDR_MASK),
current_frame_info.fmask,
"st", "std", -size1);
if (size2 <= 4096)
fprintf (file, "\tadd\t%s, -"HOST_WIDE_INT_PRINT_DEC", %s\n",
sp_str, size2, sp_str);
else
{
build_big_number (file, size2, t1_str);
fprintf (file, "\tsub\t%s, %s, %s\n", sp_str, t1_str, sp_str);
}
if (dwarf2out_do_frame ())
if (! (gmask & HARD_FRAME_POINTER_MASK))
dwarf2out_def_cfa ("", STACK_POINTER_REGNUM, size);
}
}
fprintf (file, "\t%s#PROLOGUE# 1\n", ASM_COMMENT_START);
}
/* Do any necessary cleanup after a function to restore stack, frame,
and regs. */
static void
sparc_flat_function_epilogue (FILE *file, HOST_WIDE_INT size)
{
rtx epilogue_delay = current_function_epilogue_delay_list;
int noepilogue = FALSE;
/* This is only for the human reader. */
fprintf (file, "\t%s#EPILOGUE#\n", ASM_COMMENT_START);
/* The epilogue does not depend on any registers, but the stack
registers, so we assume that if we have 1 pending nop, it can be
ignored, and 2 it must be filled (2 nops occur for integer
multiply and divide). */
size = SPARC_STACK_ALIGN (size);
size = (!current_frame_info.initialized
? sparc_flat_compute_frame_size (size)
: current_frame_info.total_size);
if (size == 0 && epilogue_delay == 0)
{
rtx insn = get_last_insn ();
/* If the last insn was a BARRIER, we don't have to write any code
because a jump (aka return) was put there. */
if (GET_CODE (insn) == NOTE)
insn = prev_nonnote_insn (insn);
if (insn && GET_CODE (insn) == BARRIER)
noepilogue = TRUE;
}
if (!noepilogue)
{
int reg_offset = current_frame_info.reg_offset;
int reg_offset1;
const char *const sp_str = reg_names[STACK_POINTER_REGNUM];
const char *const fp_str = reg_names[HARD_FRAME_POINTER_REGNUM];
static const char *const t1_str = "%g1";
/* In the reload sequence, we don't need to fill the load delay
slots for most of the loads, also see if we can fill the final
delay slot if not otherwise filled by the reload sequence. */
if (size > 4096)
build_big_number (file, size, t1_str);
if (frame_pointer_needed)
{
if (size > 4096)
fprintf (file,"\tsub\t%s, %s, %s\t\t%s# sp not trusted here\n",
fp_str, t1_str, sp_str, ASM_COMMENT_START);
else
fprintf (file,"\tadd\t%s, -"HOST_WIDE_INT_PRINT_DEC", %s"
"\t\t%s# sp not trusted here\n",
fp_str, size, sp_str, ASM_COMMENT_START);
}
/* Is the entire register save area offsettable from %sp? */
if (reg_offset < 4096 - 64 * UNITS_PER_WORD)
{
reg_offset1 = 0;
}
else
{
/* Restore %sp in two steps, but make sure there is always a
64-byte register save area, and %sp is properly aligned. */
/* Amount to increment %sp by, the first time. */
reg_offset1 = ((reg_offset - 64 - 16) + 15) & -16;
/* Offset to register save area from %sp. */
reg_offset = reg_offset1 - reg_offset;
if (reg_offset1 > 4096)
{
build_big_number (file, reg_offset1, t1_str);
fprintf (file, "\tadd\t%s, %s, %s\n", sp_str, t1_str, sp_str);
}
else
fprintf (file, "\tsub\t%s, -%d, %s\n", sp_str, reg_offset1, sp_str);
}
/* We must restore the frame pointer and return address reg first
because they are treated specially by the prologue output code. */
if (current_frame_info.gmask & HARD_FRAME_POINTER_MASK)
{
fprintf (file, "\tld\t[%s+%d], %s\n",
sp_str, reg_offset, fp_str);
reg_offset += 4;
}
if (current_frame_info.gmask & RETURN_ADDR_MASK)
{
fprintf (file, "\tld\t[%s+%d], %s\n",
sp_str, reg_offset, reg_names[RETURN_ADDR_REGNUM]);
reg_offset += 4;
}
/* Restore any remaining saved registers. */
sparc_flat_save_restore (file, sp_str, reg_offset,
current_frame_info.gmask & ~(HARD_FRAME_POINTER_MASK | RETURN_ADDR_MASK),
current_frame_info.fmask,
"ld", "ldd", 0);
/* If we had to increment %sp in two steps, record it so the second
restoration in the epilogue finishes up. */
if (reg_offset1 > 0)
{
size -= reg_offset1;
if (size > 4096)
build_big_number (file, size, t1_str);
}
if (current_function_returns_struct)
fprintf (file, "\tjmp\t%%o7+12\n");
else
fprintf (file, "\tretl\n");
/* If the only register saved is the return address, we need a
nop, unless we have an instruction to put into it. Otherwise
we don't since reloading multiple registers doesn't reference
the register being loaded. */
if (epilogue_delay)
{
if (size)
abort ();
final_scan_insn (XEXP (epilogue_delay, 0), file, 1, -2, 1, NULL);
}
else if (size > 4096)
fprintf (file, "\tadd\t%s, %s, %s\n", sp_str, t1_str, sp_str);
else if (size > 0)
fprintf (file, "\tsub\t%s, -"HOST_WIDE_INT_PRINT_DEC", %s\n",
sp_str, size, sp_str);
else
fprintf (file, "\tnop\n");
}
/* Reset state info for each function. */
current_frame_info = zero_frame_info;
sparc_output_deferred_case_vectors ();
}
/* Define the number of delay slots needed for the function epilogue.
On the sparc, we need a slot if either no stack has been allocated,
or the only register saved is the return register. */
int
sparc_flat_epilogue_delay_slots (void)
{
if (!current_frame_info.initialized)
(void) sparc_flat_compute_frame_size (get_frame_size ());
if (current_frame_info.total_size == 0)
return 1;
return 0;
}
/* Return true if TRIAL is a valid insn for the epilogue delay slot.
Any single length instruction which doesn't reference the stack or frame
pointer is OK. */
int
sparc_flat_eligible_for_epilogue_delay (rtx trial, int slot ATTRIBUTE_UNUSED)
{
rtx pat = PATTERN (trial);
if (get_attr_length (trial) != 1)
return 0;
if (! reg_mentioned_p (stack_pointer_rtx, pat)
&& ! reg_mentioned_p (frame_pointer_rtx, pat))
return 1;
return 0;
}
/* Adjust the cost of a scheduling dependency. Return the new cost of
a dependency LINK or INSN on DEP_INSN. COST is the current cost. */
static int
supersparc_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost)
{
enum attr_type insn_type;
if (! recog_memoized (insn))
return 0;
insn_type = get_attr_type (insn);
if (REG_NOTE_KIND (link) == 0)
{
/* Data dependency; DEP_INSN writes a register that INSN reads some
cycles later. */
/* if a load, then the dependence must be on the memory address;
add an extra "cycle". Note that the cost could be two cycles
if the reg was written late in an instruction group; we ca not tell
here. */
if (insn_type == TYPE_LOAD || insn_type == TYPE_FPLOAD)
return cost + 3;
/* Get the delay only if the address of the store is the dependence. */
if (insn_type == TYPE_STORE || insn_type == TYPE_FPSTORE)
{
rtx pat = PATTERN(insn);
rtx dep_pat = PATTERN (dep_insn);
if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET)
return cost; /* This should not happen! */
/* The dependency between the two instructions was on the data that
is being stored. Assume that this implies that the address of the
store is not dependent. */
if (rtx_equal_p (SET_DEST (dep_pat), SET_SRC (pat)))
return cost;
return cost + 3; /* An approximation. */
}
/* A shift instruction cannot receive its data from an instruction
in the same cycle; add a one cycle penalty. */
if (insn_type == TYPE_SHIFT)
return cost + 3; /* Split before cascade into shift. */
}
else
{
/* Anti- or output- dependency; DEP_INSN reads/writes a register that
INSN writes some cycles later. */
/* These are only significant for the fpu unit; writing a fp reg before
the fpu has finished with it stalls the processor. */
/* Reusing an integer register causes no problems. */
if (insn_type == TYPE_IALU || insn_type == TYPE_SHIFT)
return 0;
}
return cost;
}
static int
hypersparc_adjust_cost (rtx insn, rtx link, rtx dep_insn, int cost)
{
enum attr_type insn_type, dep_type;
rtx pat = PATTERN(insn);
rtx dep_pat = PATTERN (dep_insn);
if (recog_memoized (insn) < 0 || recog_memoized (dep_insn) < 0)
return cost;
insn_type = get_attr_type (insn);
dep_type = get_attr_type (dep_insn);
switch (REG_NOTE_KIND (link))
{
case 0:
/* Data dependency; DEP_INSN writes a register that INSN reads some
cycles later. */
switch (insn_type)
{
case TYPE_STORE:
case TYPE_FPSTORE:
/* Get the delay iff the address of the store is the dependence. */
if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET)
return cost;
if (rtx_equal_p (SET_DEST (dep_pat), SET_SRC (pat)))
return cost;
return cost + 3;
case TYPE_LOAD:
case TYPE_SLOAD:
case TYPE_FPLOAD:
/* If a load, then the dependence must be on the memory address. If
the addresses aren't equal, then it might be a false dependency */
if (dep_type == TYPE_STORE || dep_type == TYPE_FPSTORE)
{
if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET
|| GET_CODE (SET_DEST (dep_pat)) != MEM
|| GET_CODE (SET_SRC (pat)) != MEM
|| ! rtx_equal_p (XEXP (SET_DEST (dep_pat), 0),
XEXP (SET_SRC (pat), 0)))
return cost + 2;
return cost + 8;
}
break;
case TYPE_BRANCH:
/* Compare to branch latency is 0. There is no benefit from
separating compare and branch. */
if (dep_type == TYPE_COMPARE)
return 0;
/* Floating point compare to branch latency is less than
compare to conditional move. */
if (dep_type == TYPE_FPCMP)
return cost - 1;
break;
default:
break;
}
break;
case REG_DEP_ANTI:
/* Anti-dependencies only penalize the fpu unit. */
if (insn_type == TYPE_IALU || insn_type == TYPE_SHIFT)
return 0;
break;
default:
break;
}
return cost;
}
static int
sparc_adjust_cost(rtx insn, rtx link, rtx dep, int cost)
{
switch (sparc_cpu)
{
case PROCESSOR_SUPERSPARC:
cost = supersparc_adjust_cost (insn, link, dep, cost);
break;
case PROCESSOR_HYPERSPARC:
case PROCESSOR_SPARCLITE86X:
cost = hypersparc_adjust_cost (insn, link, dep, cost);
break;
default:
break;
}
return cost;
}
static void
sparc_sched_init (FILE *dump ATTRIBUTE_UNUSED,
int sched_verbose ATTRIBUTE_UNUSED,
int max_ready ATTRIBUTE_UNUSED)
{
}
static int
sparc_use_dfa_pipeline_interface (void)
{
if ((1 << sparc_cpu) &
((1 << PROCESSOR_ULTRASPARC) | (1 << PROCESSOR_CYPRESS) |
(1 << PROCESSOR_SUPERSPARC) | (1 << PROCESSOR_HYPERSPARC) |
(1 << PROCESSOR_SPARCLITE86X) | (1 << PROCESSOR_TSC701) |
(1 << PROCESSOR_ULTRASPARC3)))
return 1;
return 0;
}
static int
sparc_use_sched_lookahead (void)
{
if (sparc_cpu == PROCESSOR_ULTRASPARC
|| sparc_cpu == PROCESSOR_ULTRASPARC3)
return 4;
if ((1 << sparc_cpu) &
((1 << PROCESSOR_SUPERSPARC) | (1 << PROCESSOR_HYPERSPARC) |
(1 << PROCESSOR_SPARCLITE86X)))
return 3;
return 0;
}
static int
sparc_issue_rate (void)
{
switch (sparc_cpu)
{
default:
return 1;
case PROCESSOR_V9:
/* Assume V9 processors are capable of at least dual-issue. */
return 2;
case PROCESSOR_SUPERSPARC:
return 3;
case PROCESSOR_HYPERSPARC:
case PROCESSOR_SPARCLITE86X:
return 2;
case PROCESSOR_ULTRASPARC:
case PROCESSOR_ULTRASPARC3:
return 4;
}
}
static int
set_extends (rtx insn)
{
register rtx pat = PATTERN (insn);
switch (GET_CODE (SET_SRC (pat)))
{
/* Load and some shift instructions zero extend. */
case MEM:
case ZERO_EXTEND:
/* sethi clears the high bits */
case HIGH:
/* LO_SUM is used with sethi. sethi cleared the high
bits and the values used with lo_sum are positive */
case LO_SUM:
/* Store flag stores 0 or 1 */
case LT: case LTU:
case GT: case GTU:
case LE: case LEU:
case GE: case GEU:
case EQ:
case NE:
return 1;
case AND:
{
rtx op0 = XEXP (SET_SRC (pat), 0);
rtx op1 = XEXP (SET_SRC (pat), 1);
if (GET_CODE (op1) == CONST_INT)
return INTVAL (op1) >= 0;
if (GET_CODE (op0) != REG)
return 0;
if (sparc_check_64 (op0, insn) == 1)
return 1;
return (GET_CODE (op1) == REG && sparc_check_64 (op1, insn) == 1);
}
case IOR:
case XOR:
{
rtx op0 = XEXP (SET_SRC (pat), 0);
rtx op1 = XEXP (SET_SRC (pat), 1);
if (GET_CODE (op0) != REG || sparc_check_64 (op0, insn) <= 0)
return 0;
if (GET_CODE (op1) == CONST_INT)
return INTVAL (op1) >= 0;
return (GET_CODE (op1) == REG && sparc_check_64 (op1, insn) == 1);
}
case LSHIFTRT:
return GET_MODE (SET_SRC (pat)) == SImode;
/* Positive integers leave the high bits zero. */
case CONST_DOUBLE:
return ! (CONST_DOUBLE_LOW (SET_SRC (pat)) & 0x80000000);
case CONST_INT:
return ! (INTVAL (SET_SRC (pat)) & 0x80000000);
case ASHIFTRT:
case SIGN_EXTEND:
return - (GET_MODE (SET_SRC (pat)) == SImode);
case REG:
return sparc_check_64 (SET_SRC (pat), insn);
default:
return 0;
}
}
/* We _ought_ to have only one kind per function, but... */
static GTY(()) rtx sparc_addr_diff_list;
static GTY(()) rtx sparc_addr_list;
void
sparc_defer_case_vector (rtx lab, rtx vec, int diff)
{
vec = gen_rtx_EXPR_LIST (VOIDmode, lab, vec);
if (diff)
sparc_addr_diff_list
= gen_rtx_EXPR_LIST (VOIDmode, vec, sparc_addr_diff_list);
else
sparc_addr_list = gen_rtx_EXPR_LIST (VOIDmode, vec, sparc_addr_list);
}
static void
sparc_output_addr_vec (rtx vec)
{
rtx lab = XEXP (vec, 0), body = XEXP (vec, 1);
int idx, vlen = XVECLEN (body, 0);
#ifdef ASM_OUTPUT_ADDR_VEC_START
ASM_OUTPUT_ADDR_VEC_START (asm_out_file);
#endif
#ifdef ASM_OUTPUT_CASE_LABEL
ASM_OUTPUT_CASE_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (lab),
NEXT_INSN (lab));
#else
(*targetm.asm_out.internal_label) (asm_out_file, "L", CODE_LABEL_NUMBER (lab));
#endif
for (idx = 0; idx < vlen; idx++)
{
ASM_OUTPUT_ADDR_VEC_ELT
(asm_out_file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
}
#ifdef ASM_OUTPUT_ADDR_VEC_END
ASM_OUTPUT_ADDR_VEC_END (asm_out_file);
#endif
}
static void
sparc_output_addr_diff_vec (rtx vec)
{
rtx lab = XEXP (vec, 0), body = XEXP (vec, 1);
rtx base = XEXP (XEXP (body, 0), 0);
int idx, vlen = XVECLEN (body, 1);
#ifdef ASM_OUTPUT_ADDR_VEC_START
ASM_OUTPUT_ADDR_VEC_START (asm_out_file);
#endif
#ifdef ASM_OUTPUT_CASE_LABEL
ASM_OUTPUT_CASE_LABEL (asm_out_file, "L", CODE_LABEL_NUMBER (lab),
NEXT_INSN (lab));
#else
(*targetm.asm_out.internal_label) (asm_out_file, "L", CODE_LABEL_NUMBER (lab));
#endif
for (idx = 0; idx < vlen; idx++)
{
ASM_OUTPUT_ADDR_DIFF_ELT
(asm_out_file,
body,
CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
CODE_LABEL_NUMBER (base));
}
#ifdef ASM_OUTPUT_ADDR_VEC_END
ASM_OUTPUT_ADDR_VEC_END (asm_out_file);
#endif
}
static void
sparc_output_deferred_case_vectors (void)
{
rtx t;
int align;
if (sparc_addr_list == NULL_RTX
&& sparc_addr_diff_list == NULL_RTX)
return;
/* Align to cache line in the function's code section. */
function_section (current_function_decl);
align = floor_log2 (FUNCTION_BOUNDARY / BITS_PER_UNIT);
if (align > 0)
ASM_OUTPUT_ALIGN (asm_out_file, align);
for (t = sparc_addr_list; t ; t = XEXP (t, 1))
sparc_output_addr_vec (XEXP (t, 0));
for (t = sparc_addr_diff_list; t ; t = XEXP (t, 1))
sparc_output_addr_diff_vec (XEXP (t, 0));
sparc_addr_list = sparc_addr_diff_list = NULL_RTX;
}
/* Return 0 if the high 32 bits of X (the low word of X, if DImode) are
unknown. Return 1 if the high bits are zero, -1 if the register is
sign extended. */
int
sparc_check_64 (rtx x, rtx insn)
{
/* If a register is set only once it is safe to ignore insns this
code does not know how to handle. The loop will either recognize
the single set and return the correct value or fail to recognize
it and return 0. */
int set_once = 0;
rtx y = x;
if (GET_CODE (x) != REG)
abort ();
if (GET_MODE (x) == DImode)
y = gen_rtx_REG (SImode, REGNO (x) + WORDS_BIG_ENDIAN);
if (flag_expensive_optimizations
&& REG_N_SETS (REGNO (y)) == 1)
set_once = 1;
if (insn == 0)
{
if (set_once)
insn = get_last_insn_anywhere ();
else
return 0;
}
while ((insn = PREV_INSN (insn)))
{
switch (GET_CODE (insn))
{
case JUMP_INSN:
case NOTE:
break;
case CODE_LABEL:
case CALL_INSN:
default:
if (! set_once)
return 0;
break;
case INSN:
{
rtx pat = PATTERN (insn);
if (GET_CODE (pat) != SET)
return 0;
if (rtx_equal_p (x, SET_DEST (pat)))
return set_extends (insn);
if (y && rtx_equal_p (y, SET_DEST (pat)))
return set_extends (insn);
if (reg_overlap_mentioned_p (SET_DEST (pat), y))
return 0;
}
}
}
return 0;
}
/* Returns assembly code to perform a DImode shift using
a 64-bit global or out register on SPARC-V8+. */
char *
sparc_v8plus_shift (rtx *operands, rtx insn, const char *opcode)
{
static char asm_code[60];
/* The scratch register is only required when the destination
register is not a 64-bit global or out register. */
if (which_alternative != 2)
operands[3] = operands[0];
/* We can only shift by constants <= 63. */
if (GET_CODE (operands[2]) == CONST_INT)
operands[2] = GEN_INT (INTVAL (operands[2]) & 0x3f);
if (GET_CODE (operands[1]) == CONST_INT)
{
output_asm_insn ("mov\t%1, %3", operands);
}
else
{
output_asm_insn ("sllx\t%H1, 32, %3", operands);
if (sparc_check_64 (operands[1], insn) <= 0)
output_asm_insn ("srl\t%L1, 0, %L1", operands);
output_asm_insn ("or\t%L1, %3, %3", operands);
}
strcpy(asm_code, opcode);
if (which_alternative != 2)
return strcat (asm_code, "\t%0, %2, %L0\n\tsrlx\t%L0, 32, %H0");
else
return strcat (asm_code, "\t%3, %2, %3\n\tsrlx\t%3, 32, %H0\n\tmov\t%3, %L0");
}
/* Output rtl to increment the profiler label LABELNO
for profiling a function entry. */
void
sparc_profile_hook (int labelno)
{
char buf[32];
rtx lab, fun;
ASM_GENERATE_INTERNAL_LABEL (buf, "LP", labelno);
lab = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (buf));
fun = gen_rtx_SYMBOL_REF (Pmode, MCOUNT_FUNCTION);
emit_library_call (fun, LCT_NORMAL, VOIDmode, 1, lab, Pmode);
}
#ifdef OBJECT_FORMAT_ELF
static void
sparc_elf_asm_named_section (const char *name, unsigned int flags)
{
if (flags & SECTION_MERGE)
{
/* entsize cannot be expressed in this section attributes
encoding style. */
default_elf_asm_named_section (name, flags);
return;
}
fprintf (asm_out_file, "\t.section\t\"%s\"", name);
if (!(flags & SECTION_DEBUG))
fputs (",#alloc", asm_out_file);
if (flags & SECTION_WRITE)
fputs (",#write", asm_out_file);
if (flags & SECTION_TLS)
fputs (",#tls", asm_out_file);
if (flags & SECTION_CODE)
fputs (",#execinstr", asm_out_file);
/* ??? Handle SECTION_BSS. */
fputc ('\n', asm_out_file);
}
#endif /* OBJECT_FORMAT_ELF */
/* We do not allow sibling calls if -mflat, nor
we do not allow indirect calls to be optimized into sibling calls.
Also, on sparc 32-bit we cannot emit a sibling call when the
current function returns a structure. This is because the "unimp
after call" convention would cause the callee to return to the
wrong place. The generic code already disallows cases where the
function being called returns a structure.
It may seem strange how this last case could occur. Usually there
is code after the call which jumps to epilogue code which dumps the
return value into the struct return area. That ought to invalidate
the sibling call right? Well, in the c++ case we can end up passing
the pointer to the struct return area to a constructor (which returns
void) and then nothing else happens. Such a sibling call would look
valid without the added check here. */
static bool
sparc_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED)
{
return (decl
&& ! TARGET_FLAT
&& (TARGET_ARCH64 || ! current_function_returns_struct));
}
/* libfunc renaming. */
#include "config/gofast.h"
static void
sparc_init_libfuncs (void)
{
if (TARGET_ARCH32)
{
/* Use the subroutines that Sun's library provides for integer
multiply and divide. The `*' prevents an underscore from
being prepended by the compiler. .umul is a little faster
than .mul. */
set_optab_libfunc (smul_optab, SImode, "*.umul");
set_optab_libfunc (sdiv_optab, SImode, "*.div");
set_optab_libfunc (udiv_optab, SImode, "*.udiv");
set_optab_libfunc (smod_optab, SImode, "*.rem");
set_optab_libfunc (umod_optab, SImode, "*.urem");
/* TFmode arithmetic. These names are part of the SPARC 32bit ABI. */
set_optab_libfunc (add_optab, TFmode, "_Q_add");
set_optab_libfunc (sub_optab, TFmode, "_Q_sub");
set_optab_libfunc (neg_optab, TFmode, "_Q_neg");
set_optab_libfunc (smul_optab, TFmode, "_Q_mul");
set_optab_libfunc (sdiv_optab, TFmode, "_Q_div");
/* We can define the TFmode sqrt optab only if TARGET_FPU. This
is because with soft-float, the SFmode and DFmode sqrt
instructions will be absent, and the compiler will notice and
try to use the TFmode sqrt instruction for calls to the
builtin function sqrt, but this fails. */
if (TARGET_FPU)
set_optab_libfunc (sqrt_optab, TFmode, "_Q_sqrt");
set_optab_libfunc (eq_optab, TFmode, "_Q_feq");
set_optab_libfunc (ne_optab, TFmode, "_Q_fne");
set_optab_libfunc (gt_optab, TFmode, "_Q_fgt");
set_optab_libfunc (ge_optab, TFmode, "_Q_fge");
set_optab_libfunc (lt_optab, TFmode, "_Q_flt");
set_optab_libfunc (le_optab, TFmode, "_Q_fle");
set_conv_libfunc (sext_optab, TFmode, SFmode, "_Q_stoq");
set_conv_libfunc (sext_optab, TFmode, DFmode, "_Q_dtoq");
set_conv_libfunc (trunc_optab, SFmode, TFmode, "_Q_qtos");
set_conv_libfunc (trunc_optab, DFmode, TFmode, "_Q_qtod");
set_conv_libfunc (sfix_optab, SImode, TFmode, "_Q_qtoi");
set_conv_libfunc (ufix_optab, SImode, TFmode, "_Q_qtou");
set_conv_libfunc (sfloat_optab, TFmode, SImode, "_Q_itoq");
if (DITF_CONVERSION_LIBFUNCS)
{
set_conv_libfunc (sfix_optab, DImode, TFmode, "_Q_qtoll");
set_conv_libfunc (ufix_optab, DImode, TFmode, "_Q_qtoull");
set_conv_libfunc (sfloat_optab, TFmode, DImode, "_Q_lltoq");
}
if (SUN_CONVERSION_LIBFUNCS)
{
set_conv_libfunc (sfix_optab, DImode, SFmode, "__ftoll");
set_conv_libfunc (ufix_optab, DImode, SFmode, "__ftoull");
set_conv_libfunc (sfix_optab, DImode, DFmode, "__dtoll");
set_conv_libfunc (ufix_optab, DImode, DFmode, "__dtoull");
}
}
if (TARGET_ARCH64)
{
/* In the SPARC 64bit ABI, SImode multiply and divide functions
do not exist in the library. Make sure the compiler does not
emit calls to them by accident. (It should always use the
hardware instructions.) */
set_optab_libfunc (smul_optab, SImode, 0);
set_optab_libfunc (sdiv_optab, SImode, 0);
set_optab_libfunc (udiv_optab, SImode, 0);
set_optab_libfunc (smod_optab, SImode, 0);
set_optab_libfunc (umod_optab, SImode, 0);
if (SUN_INTEGER_MULTIPLY_64)
{
set_optab_libfunc (smul_optab, DImode, "__mul64");
set_optab_libfunc (sdiv_optab, DImode, "__div64");
set_optab_libfunc (udiv_optab, DImode, "__udiv64");
set_optab_libfunc (smod_optab, DImode, "__rem64");
set_optab_libfunc (umod_optab, DImode, "__urem64");
}
if (SUN_CONVERSION_LIBFUNCS)
{
set_conv_libfunc (sfix_optab, DImode, SFmode, "__ftol");
set_conv_libfunc (ufix_optab, DImode, SFmode, "__ftoul");
set_conv_libfunc (sfix_optab, DImode, DFmode, "__dtol");
set_conv_libfunc (ufix_optab, DImode, DFmode, "__dtoul");
}
}
gofast_maybe_init_libfuncs ();
}
/* ??? Similar to the standard section selection, but force reloc-y-ness
if SUNOS4_SHARED_LIBRARIES. Unclear why this helps (as opposed to
pretending PIC always on), but that's what the old code did. */
static void
sparc_aout_select_section (tree t, int reloc, unsigned HOST_WIDE_INT align)
{
default_select_section (t, reloc | SUNOS4_SHARED_LIBRARIES, align);
}
/* Use text section for a constant unless we need more alignment than
that offers. */
static void
sparc_aout_select_rtx_section (enum machine_mode mode, rtx x,
unsigned HOST_WIDE_INT align)
{
if (align <= MAX_TEXT_ALIGN
&& ! (flag_pic && (symbolic_operand (x, mode)
|| SUNOS4_SHARED_LIBRARIES)))
readonly_data_section ();
else
data_section ();
}
int
sparc_extra_constraint_check (rtx op, int c, int strict)
{
int reload_ok_mem;
if (TARGET_ARCH64
&& (c == 'T' || c == 'U'))
return 0;
switch (c)
{
case 'Q':
return fp_sethi_p (op);
case 'R':
return fp_mov_p (op);
case 'S':
return fp_high_losum_p (op);
case 'U':
if (! strict
|| (GET_CODE (op) == REG
&& (REGNO (op) < FIRST_PSEUDO_REGISTER
|| reg_renumber[REGNO (op)] >= 0)))
return register_ok_for_ldd (op);
return 0;
case 'W':
case 'T':
break;
default:
return 0;
}
/* Our memory extra constraints have to emulate the
behavior of 'm' and 'o' in order for reload to work
correctly. */
if (GET_CODE (op) == MEM)
{
reload_ok_mem = 0;
if ((TARGET_ARCH64 || mem_min_alignment (op, 8))
&& (! strict
|| strict_memory_address_p (Pmode, XEXP (op, 0))))
reload_ok_mem = 1;
}
else
{
reload_ok_mem = (reload_in_progress
&& GET_CODE (op) == REG
&& REGNO (op) >= FIRST_PSEUDO_REGISTER
&& reg_renumber [REGNO (op)] < 0);
}
return reload_ok_mem;
}
/* ??? This duplicates information provided to the compiler by the
??? scheduler description. Some day, teach genautomata to output
??? the latencies and then CSE will just use that. */
static bool
sparc_rtx_costs (rtx x, int code, int outer_code, int *total)
{
switch (code)
{
case PLUS: case MINUS: case ABS: case NEG:
case FLOAT: case UNSIGNED_FLOAT:
case FIX: case UNSIGNED_FIX:
case FLOAT_EXTEND: case FLOAT_TRUNCATE:
if (FLOAT_MODE_P (GET_MODE (x)))
{
switch (sparc_cpu)
{
case PROCESSOR_ULTRASPARC:
case PROCESSOR_ULTRASPARC3:
*total = COSTS_N_INSNS (4);
return true;
case PROCESSOR_SUPERSPARC:
*total = COSTS_N_INSNS (3);
return true;
case PROCESSOR_CYPRESS:
*total = COSTS_N_INSNS (5);
return true;
case PROCESSOR_HYPERSPARC:
case PROCESSOR_SPARCLITE86X:
default:
*total = COSTS_N_INSNS (1);
return true;
}
}
*total = COSTS_N_INSNS (1);
return true;
case SQRT:
switch (sparc_cpu)
{
case PROCESSOR_ULTRASPARC:
if (GET_MODE (x) == SFmode)
*total = COSTS_N_INSNS (13);
else
*total = COSTS_N_INSNS (23);
return true;
case PROCESSOR_ULTRASPARC3:
if (GET_MODE (x) == SFmode)
*total = COSTS_N_INSNS (20);
else
*total = COSTS_N_INSNS (29);
return true;
case PROCESSOR_SUPERSPARC:
*total = COSTS_N_INSNS (12);
return true;
case PROCESSOR_CYPRESS:
*total = COSTS_N_INSNS (63);
return true;
case PROCESSOR_HYPERSPARC:
case PROCESSOR_SPARCLITE86X:
*total = COSTS_N_INSNS (17);
return true;
default:
*total = COSTS_N_INSNS (30);
return true;
}
case COMPARE:
if (FLOAT_MODE_P (GET_MODE (x)))
{
switch (sparc_cpu)
{
case PROCESSOR_ULTRASPARC:
case PROCESSOR_ULTRASPARC3:
*total = COSTS_N_INSNS (1);
return true;
case PROCESSOR_SUPERSPARC:
*total = COSTS_N_INSNS (3);
return true;
case PROCESSOR_CYPRESS:
*total = COSTS_N_INSNS (5);
return true;
case PROCESSOR_HYPERSPARC:
case PROCESSOR_SPARCLITE86X:
default:
*total = COSTS_N_INSNS (1);
return true;
}
}
/* ??? Maybe mark integer compares as zero cost on
??? all UltraSPARC processors because the result
??? can be bypassed to a branch in the same group. */
*total = COSTS_N_INSNS (1);
return true;
case MULT:
if (FLOAT_MODE_P (GET_MODE (x)))
{
switch (sparc_cpu)
{
case PROCESSOR_ULTRASPARC:
case PROCESSOR_ULTRASPARC3:
*total = COSTS_N_INSNS (4);
return true;
case PROCESSOR_SUPERSPARC:
*total = COSTS_N_INSNS (3);
return true;
case PROCESSOR_CYPRESS:
*total = COSTS_N_INSNS (7);
return true;
case PROCESSOR_HYPERSPARC:
case PROCESSOR_SPARCLITE86X:
*total = COSTS_N_INSNS (1);
return true;
default:
*total = COSTS_N_INSNS (5);
return true;
}
}
/* The latency is actually variable for Ultra-I/II
And if one of the inputs have a known constant
value, we could calculate this precisely.
However, for that to be useful we would need to
add some machine description changes which would
make sure small constants ended up in rs1 of the
multiply instruction. This is because the multiply
latency is determined by the number of clear (or
set if the value is negative) bits starting from
the most significant bit of the first input.
The algorithm for computing num_cycles of a multiply
on Ultra-I/II is:
if (rs1 < 0)
highest_bit = highest_clear_bit(rs1);
else
highest_bit = highest_set_bit(rs1);
if (num_bits < 3)
highest_bit = 3;
num_cycles = 4 + ((highest_bit - 3) / 2);
If we did that we would have to also consider register
allocation issues that would result from forcing such
a value into a register.
There are other similar tricks we could play if we
knew, for example, that one input was an array index.
Since we do not play any such tricks currently the
safest thing to do is report the worst case latency. */
if (sparc_cpu == PROCESSOR_ULTRASPARC)
{
*total = (GET_MODE (x) == DImode
? COSTS_N_INSNS (34) : COSTS_N_INSNS (19));
return true;
}
/* Multiply latency on Ultra-III, fortunately, is constant. */
if (sparc_cpu == PROCESSOR_ULTRASPARC3)
{
*total = COSTS_N_INSNS (6);
return true;
}
if (sparc_cpu == PROCESSOR_HYPERSPARC
|| sparc_cpu == PROCESSOR_SPARCLITE86X)
{
*total = COSTS_N_INSNS (17);
return true;
}
*total = (TARGET_HARD_MUL ? COSTS_N_INSNS (5) : COSTS_N_INSNS (25));
return true;
case DIV:
case UDIV:
case MOD:
case UMOD:
if (FLOAT_MODE_P (GET_MODE (x)))
{
switch (sparc_cpu)
{
case PROCESSOR_ULTRASPARC:
if (GET_MODE (x) == SFmode)
*total = COSTS_N_INSNS (13);
else
*total = COSTS_N_INSNS (23);
return true;
case PROCESSOR_ULTRASPARC3:
if (GET_MODE (x) == SFmode)
*total = COSTS_N_INSNS (17);
else
*total = COSTS_N_INSNS (20);
return true;
case PROCESSOR_SUPERSPARC:
if (GET_MODE (x) == SFmode)
*total = COSTS_N_INSNS (6);
else
*total = COSTS_N_INSNS (9);
return true;
case PROCESSOR_HYPERSPARC:
case PROCESSOR_SPARCLITE86X:
if (GET_MODE (x) == SFmode)
*total = COSTS_N_INSNS (8);
else
*total = COSTS_N_INSNS (12);
return true;
default:
*total = COSTS_N_INSNS (7);
return true;
}
}
if (sparc_cpu == PROCESSOR_ULTRASPARC)
*total = (GET_MODE (x) == DImode
? COSTS_N_INSNS (68) : COSTS_N_INSNS (37));
else if (sparc_cpu == PROCESSOR_ULTRASPARC3)
*total = (GET_MODE (x) == DImode
? COSTS_N_INSNS (71) : COSTS_N_INSNS (40));
else
*total = COSTS_N_INSNS (25);
return true;
case IF_THEN_ELSE:
/* Conditional moves. */
switch (sparc_cpu)
{
case PROCESSOR_ULTRASPARC:
*total = COSTS_N_INSNS (2);
return true;
case PROCESSOR_ULTRASPARC3:
if (FLOAT_MODE_P (GET_MODE (x)))
*total = COSTS_N_INSNS (3);
else
*total = COSTS_N_INSNS (2);
return true;
default:
*total = COSTS_N_INSNS (1);
return true;
}
case MEM:
/* If outer-code is SIGN/ZERO extension we have to subtract
out COSTS_N_INSNS (1) from whatever we return in determining
the cost. */
switch (sparc_cpu)
{
case PROCESSOR_ULTRASPARC:
if (outer_code == ZERO_EXTEND)
*total = COSTS_N_INSNS (1);
else
*total = COSTS_N_INSNS (2);
return true;
case PROCESSOR_ULTRASPARC3:
if (outer_code == ZERO_EXTEND)
{
if (GET_MODE (x) == QImode
|| GET_MODE (x) == HImode
|| outer_code == SIGN_EXTEND)
*total = COSTS_N_INSNS (2);
else
*total = COSTS_N_INSNS (1);
}
else
{
/* This handles sign extension (3 cycles)
and everything else (2 cycles). */
*total = COSTS_N_INSNS (2);
}
return true;
case PROCESSOR_SUPERSPARC:
if (FLOAT_MODE_P (GET_MODE (x))
|| outer_code == ZERO_EXTEND
|| outer_code == SIGN_EXTEND)
*total = COSTS_N_INSNS (0);
else
*total = COSTS_N_INSNS (1);
return true;
case PROCESSOR_TSC701:
if (outer_code == ZERO_EXTEND
|| outer_code == SIGN_EXTEND)
*total = COSTS_N_INSNS (2);
else
*total = COSTS_N_INSNS (3);
return true;
case PROCESSOR_CYPRESS:
if (outer_code == ZERO_EXTEND
|| outer_code == SIGN_EXTEND)
*total = COSTS_N_INSNS (1);
else
*total = COSTS_N_INSNS (2);
return true;
case PROCESSOR_HYPERSPARC:
case PROCESSOR_SPARCLITE86X:
default:
if (outer_code == ZERO_EXTEND
|| outer_code == SIGN_EXTEND)
*total = COSTS_N_INSNS (0);
else
*total = COSTS_N_INSNS (1);
return true;
}
case CONST_INT:
if (INTVAL (x) < 0x1000 && INTVAL (x) >= -0x1000)
{
*total = 0;
return true;
}
/* FALLTHRU */
case HIGH:
*total = 2;
return true;
case CONST:
case LABEL_REF:
case SYMBOL_REF:
*total = 4;
return true;
case CONST_DOUBLE:
if (GET_MODE (x) == DImode
&& ((XINT (x, 3) == 0
&& (unsigned HOST_WIDE_INT) XINT (x, 2) < 0x1000)
|| (XINT (x, 3) == -1
&& XINT (x, 2) < 0
&& XINT (x, 2) >= -0x1000)))
*total = 0;
else
*total = 8;
return true;
default:
return false;
}
}
/* Output code to add DELTA to the first argument, and then jump to FUNCTION.
Used for C++ multiple inheritance. */
static void
sparc_output_mi_thunk (FILE *file, tree thunk_fndecl ATTRIBUTE_UNUSED,
HOST_WIDE_INT delta,
HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED,
tree function)
{
rtx this, insn, funexp, delta_rtx, tmp;
reload_completed = 1;
epilogue_completed = 1;
no_new_pseudos = 1;
current_function_uses_only_leaf_regs = 1;
emit_note (NOTE_INSN_PROLOGUE_END);
/* Find the "this" pointer. Normally in %o0, but in ARCH64 if the function
returns a structure, the structure return pointer is there instead. */
if (TARGET_ARCH64 && aggregate_value_p (TREE_TYPE (TREE_TYPE (function)), function))
this = gen_rtx_REG (Pmode, SPARC_INCOMING_INT_ARG_FIRST + 1);
else
this = gen_rtx_REG (Pmode, SPARC_INCOMING_INT_ARG_FIRST);
/* Add DELTA. When possible use a plain add, otherwise load it into
a register first. */
delta_rtx = GEN_INT (delta);
if (!SPARC_SIMM13_P (delta))
{
rtx scratch = gen_rtx_REG (Pmode, 1);
if (input_operand (delta_rtx, GET_MODE (scratch)))
emit_insn (gen_rtx_SET (VOIDmode, scratch, delta_rtx));
else
{
if (TARGET_ARCH64)
sparc_emit_set_const64 (scratch, delta_rtx);
else
sparc_emit_set_const32 (scratch, delta_rtx);
}
delta_rtx = scratch;
}
tmp = gen_rtx_PLUS (Pmode, this, delta_rtx);
emit_insn (gen_rtx_SET (VOIDmode, this, tmp));
/* Generate a tail call to the target function. */
if (! TREE_USED (function))
{
assemble_external (function);
TREE_USED (function) = 1;
}
funexp = XEXP (DECL_RTL (function), 0);
funexp = gen_rtx_MEM (FUNCTION_MODE, funexp);
insn = emit_call_insn (gen_sibcall (funexp));
SIBLING_CALL_P (insn) = 1;
emit_barrier ();
/* Run just enough of rest_of_compilation to get the insns emitted.
There's not really enough bulk here to make other passes such as
instruction scheduling worth while. Note that use_thunk calls
assemble_start_function and assemble_end_function. */
insn = get_insns ();
insn_locators_initialize ();
shorten_branches (insn);
final_start_function (insn, file, 1);
final (insn, file, 1, 0);
final_end_function ();
reload_completed = 0;
epilogue_completed = 0;
no_new_pseudos = 0;
}
/* How to allocate a 'struct machine_function'. */
static struct machine_function *
sparc_init_machine_status (void)
{
return ggc_alloc_cleared (sizeof (struct machine_function));
}
/* Locate some local-dynamic symbol still in use by this function
so that we can print its name in local-dynamic base patterns. */
static const char *
get_some_local_dynamic_name (void)
{
rtx insn;
if (cfun->machine->some_ld_name)
return cfun->machine->some_ld_name;
for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
if (INSN_P (insn)
&& for_each_rtx (&PATTERN (insn), get_some_local_dynamic_name_1, 0))
return cfun->machine->some_ld_name;
abort ();
}
static int
get_some_local_dynamic_name_1 (rtx *px, void *data ATTRIBUTE_UNUSED)
{
rtx x = *px;
if (x
&& GET_CODE (x) == SYMBOL_REF
&& SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC)
{
cfun->machine->some_ld_name = XSTR (x, 0);
return 1;
}
return 0;
}
/* This is called from dwarf2out.c via ASM_OUTPUT_DWARF_DTPREL.
We need to emit DTP-relative relocations. */
void
sparc_output_dwarf_dtprel (FILE *file, int size, rtx x)
{
switch (size)
{
case 4:
fputs ("\t.word\t%r_tls_dtpoff32(", file);
break;
case 8:
fputs ("\t.xword\t%r_tls_dtpoff64(", file);
break;
default:
abort ();
}
output_addr_const (file, x);
fputs (")", file);
}
#include "gt-sparc.h"