freebsd-dev/module/zfs/dmu_recv.c
George Amanakis 6839ec6f10
Enable the head_errlog feature to remove errors
In case check_filesystem() does not error out and does not report
an error, remove that error block from error lists and logs
without requiring a scrub. This can happen when the original file and
all snapshots/clones referencing it have been removed.

Otherwise zpool status will still report that "Permanent errors have
been detected..." without actually reporting any of them.

To implement this change the functions introduced in corrective
receive were modified to take into account the head_errlog feature.

Before this change:
=============================
pool: test
 state: ONLINE
status: One or more devices has experienced an error resulting in data
        corruption.  Applications may be affected.
action: Restore the file in question if possible.  Otherwise restore the
        entire pool from backup.
   see: https://openzfs.github.io/openzfs-docs/msg/ZFS-8000-8A
config:

        NAME                   STATE     READ WRITE CKSUM
        test                   ONLINE       0     0     0
          /home/user/vdev_a    ONLINE       0     0     2

errors: Permanent errors have been detected in the following files:

=============================

After this change:
=============================
  pool: test
 state: ONLINE
status: One or more devices has experienced an unrecoverable error.  An
        attempt was made to correct the error.  Applications are
unaffected.
action: Determine if the device needs to be replaced, and clear the
errors
        using 'zpool clear' or replace the device with 'zpool replace'.
   see: https://openzfs.github.io/openzfs-docs/msg/ZFS-8000-9P
config:

        NAME                   STATE     READ WRITE CKSUM
        test                   ONLINE       0     0     0
          /home/user/vdev_a    ONLINE       0     0     2

errors: No known data errors
=============================

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Brian Atkinson <batkinson@lanl.gov>
Signed-off-by: George Amanakis <gamanakis@gmail.com>
Closes #14813
2023-05-09 08:53:27 -07:00

3800 lines
110 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright 2011 Nexenta Systems, Inc. All rights reserved.
* Copyright (c) 2011, 2020 by Delphix. All rights reserved.
* Copyright (c) 2014, Joyent, Inc. All rights reserved.
* Copyright 2014 HybridCluster. All rights reserved.
* Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
* Copyright (c) 2019, Klara Inc.
* Copyright (c) 2019, Allan Jude
* Copyright (c) 2019 Datto Inc.
* Copyright (c) 2022 Axcient.
*/
#include <sys/arc.h>
#include <sys/spa_impl.h>
#include <sys/dmu.h>
#include <sys/dmu_impl.h>
#include <sys/dmu_send.h>
#include <sys/dmu_recv.h>
#include <sys/dmu_tx.h>
#include <sys/dbuf.h>
#include <sys/dnode.h>
#include <sys/zfs_context.h>
#include <sys/dmu_objset.h>
#include <sys/dmu_traverse.h>
#include <sys/dsl_dataset.h>
#include <sys/dsl_dir.h>
#include <sys/dsl_prop.h>
#include <sys/dsl_pool.h>
#include <sys/dsl_synctask.h>
#include <sys/zfs_ioctl.h>
#include <sys/zap.h>
#include <sys/zvol.h>
#include <sys/zio_checksum.h>
#include <sys/zfs_znode.h>
#include <zfs_fletcher.h>
#include <sys/avl.h>
#include <sys/ddt.h>
#include <sys/zfs_onexit.h>
#include <sys/dsl_destroy.h>
#include <sys/blkptr.h>
#include <sys/dsl_bookmark.h>
#include <sys/zfeature.h>
#include <sys/bqueue.h>
#include <sys/objlist.h>
#ifdef _KERNEL
#include <sys/zfs_vfsops.h>
#endif
#include <sys/zfs_file.h>
static uint_t zfs_recv_queue_length = SPA_MAXBLOCKSIZE;
static uint_t zfs_recv_queue_ff = 20;
static uint_t zfs_recv_write_batch_size = 1024 * 1024;
static int zfs_recv_best_effort_corrective = 0;
static const void *const dmu_recv_tag = "dmu_recv_tag";
const char *const recv_clone_name = "%recv";
typedef enum {
ORNS_NO,
ORNS_YES,
ORNS_MAYBE
} or_need_sync_t;
static int receive_read_payload_and_next_header(dmu_recv_cookie_t *ra, int len,
void *buf);
struct receive_record_arg {
dmu_replay_record_t header;
void *payload; /* Pointer to a buffer containing the payload */
/*
* If the record is a WRITE or SPILL, pointer to the abd containing the
* payload.
*/
abd_t *abd;
int payload_size;
uint64_t bytes_read; /* bytes read from stream when record created */
boolean_t eos_marker; /* Marks the end of the stream */
bqueue_node_t node;
};
struct receive_writer_arg {
objset_t *os;
boolean_t byteswap;
bqueue_t q;
/*
* These three members are used to signal to the main thread when
* we're done.
*/
kmutex_t mutex;
kcondvar_t cv;
boolean_t done;
int err;
const char *tofs;
boolean_t heal;
boolean_t resumable;
boolean_t raw; /* DMU_BACKUP_FEATURE_RAW set */
boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */
boolean_t full; /* this is a full send stream */
uint64_t last_object;
uint64_t last_offset;
uint64_t max_object; /* highest object ID referenced in stream */
uint64_t bytes_read; /* bytes read when current record created */
list_t write_batch;
/* Encryption parameters for the last received DRR_OBJECT_RANGE */
boolean_t or_crypt_params_present;
uint64_t or_firstobj;
uint64_t or_numslots;
uint8_t or_salt[ZIO_DATA_SALT_LEN];
uint8_t or_iv[ZIO_DATA_IV_LEN];
uint8_t or_mac[ZIO_DATA_MAC_LEN];
boolean_t or_byteorder;
zio_t *heal_pio;
/* Keep track of DRR_FREEOBJECTS right after DRR_OBJECT_RANGE */
or_need_sync_t or_need_sync;
};
typedef struct dmu_recv_begin_arg {
const char *drba_origin;
dmu_recv_cookie_t *drba_cookie;
cred_t *drba_cred;
proc_t *drba_proc;
dsl_crypto_params_t *drba_dcp;
} dmu_recv_begin_arg_t;
static void
byteswap_record(dmu_replay_record_t *drr)
{
#define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
#define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
drr->drr_type = BSWAP_32(drr->drr_type);
drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
switch (drr->drr_type) {
case DRR_BEGIN:
DO64(drr_begin.drr_magic);
DO64(drr_begin.drr_versioninfo);
DO64(drr_begin.drr_creation_time);
DO32(drr_begin.drr_type);
DO32(drr_begin.drr_flags);
DO64(drr_begin.drr_toguid);
DO64(drr_begin.drr_fromguid);
break;
case DRR_OBJECT:
DO64(drr_object.drr_object);
DO32(drr_object.drr_type);
DO32(drr_object.drr_bonustype);
DO32(drr_object.drr_blksz);
DO32(drr_object.drr_bonuslen);
DO32(drr_object.drr_raw_bonuslen);
DO64(drr_object.drr_toguid);
DO64(drr_object.drr_maxblkid);
break;
case DRR_FREEOBJECTS:
DO64(drr_freeobjects.drr_firstobj);
DO64(drr_freeobjects.drr_numobjs);
DO64(drr_freeobjects.drr_toguid);
break;
case DRR_WRITE:
DO64(drr_write.drr_object);
DO32(drr_write.drr_type);
DO64(drr_write.drr_offset);
DO64(drr_write.drr_logical_size);
DO64(drr_write.drr_toguid);
ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
DO64(drr_write.drr_key.ddk_prop);
DO64(drr_write.drr_compressed_size);
break;
case DRR_WRITE_EMBEDDED:
DO64(drr_write_embedded.drr_object);
DO64(drr_write_embedded.drr_offset);
DO64(drr_write_embedded.drr_length);
DO64(drr_write_embedded.drr_toguid);
DO32(drr_write_embedded.drr_lsize);
DO32(drr_write_embedded.drr_psize);
break;
case DRR_FREE:
DO64(drr_free.drr_object);
DO64(drr_free.drr_offset);
DO64(drr_free.drr_length);
DO64(drr_free.drr_toguid);
break;
case DRR_SPILL:
DO64(drr_spill.drr_object);
DO64(drr_spill.drr_length);
DO64(drr_spill.drr_toguid);
DO64(drr_spill.drr_compressed_size);
DO32(drr_spill.drr_type);
break;
case DRR_OBJECT_RANGE:
DO64(drr_object_range.drr_firstobj);
DO64(drr_object_range.drr_numslots);
DO64(drr_object_range.drr_toguid);
break;
case DRR_REDACT:
DO64(drr_redact.drr_object);
DO64(drr_redact.drr_offset);
DO64(drr_redact.drr_length);
DO64(drr_redact.drr_toguid);
break;
case DRR_END:
DO64(drr_end.drr_toguid);
ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
break;
default:
break;
}
if (drr->drr_type != DRR_BEGIN) {
ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
}
#undef DO64
#undef DO32
}
static boolean_t
redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid)
{
for (int i = 0; i < num_snaps; i++) {
if (snaps[i] == guid)
return (B_TRUE);
}
return (B_FALSE);
}
/*
* Check that the new stream we're trying to receive is redacted with respect to
* a subset of the snapshots that the origin was redacted with respect to. For
* the reasons behind this, see the man page on redacted zfs sends and receives.
*/
static boolean_t
compatible_redact_snaps(uint64_t *origin_snaps, uint64_t origin_num_snaps,
uint64_t *redact_snaps, uint64_t num_redact_snaps)
{
/*
* Short circuit the comparison; if we are redacted with respect to
* more snapshots than the origin, we can't be redacted with respect
* to a subset.
*/
if (num_redact_snaps > origin_num_snaps) {
return (B_FALSE);
}
for (int i = 0; i < num_redact_snaps; i++) {
if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
redact_snaps[i])) {
return (B_FALSE);
}
}
return (B_TRUE);
}
static boolean_t
redact_check(dmu_recv_begin_arg_t *drba, dsl_dataset_t *origin)
{
uint64_t *origin_snaps;
uint64_t origin_num_snaps;
dmu_recv_cookie_t *drc = drba->drba_cookie;
struct drr_begin *drrb = drc->drc_drrb;
int featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
int err = 0;
boolean_t ret = B_TRUE;
uint64_t *redact_snaps;
uint_t numredactsnaps;
/*
* If this is a full send stream, we're safe no matter what.
*/
if (drrb->drr_fromguid == 0)
return (ret);
VERIFY(dsl_dataset_get_uint64_array_feature(origin,
SPA_FEATURE_REDACTED_DATASETS, &origin_num_snaps, &origin_snaps));
if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, &numredactsnaps) ==
0) {
/*
* If the send stream was sent from the redaction bookmark or
* the redacted version of the dataset, then we're safe. Verify
* that this is from the a compatible redaction bookmark or
* redacted dataset.
*/
if (!compatible_redact_snaps(origin_snaps, origin_num_snaps,
redact_snaps, numredactsnaps)) {
err = EINVAL;
}
} else if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
/*
* If the stream is redacted, it must be redacted with respect
* to a subset of what the origin is redacted with respect to.
* See case number 2 in the zfs man page section on redacted zfs
* send.
*/
err = nvlist_lookup_uint64_array(drc->drc_begin_nvl,
BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps);
if (err != 0 || !compatible_redact_snaps(origin_snaps,
origin_num_snaps, redact_snaps, numredactsnaps)) {
err = EINVAL;
}
} else if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
drrb->drr_toguid)) {
/*
* If the stream isn't redacted but the origin is, this must be
* one of the snapshots the origin is redacted with respect to.
* See case number 1 in the zfs man page section on redacted zfs
* send.
*/
err = EINVAL;
}
if (err != 0)
ret = B_FALSE;
return (ret);
}
/*
* If we previously received a stream with --large-block, we don't support
* receiving an incremental on top of it without --large-block. This avoids
* forcing a read-modify-write or trying to re-aggregate a string of WRITE
* records.
*/
static int
recv_check_large_blocks(dsl_dataset_t *ds, uint64_t featureflags)
{
if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_LARGE_BLOCKS) &&
!(featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS))
return (SET_ERROR(ZFS_ERR_STREAM_LARGE_BLOCK_MISMATCH));
return (0);
}
static int
recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
uint64_t fromguid, uint64_t featureflags)
{
uint64_t obj;
uint64_t children;
int error;
dsl_dataset_t *snap;
dsl_pool_t *dp = ds->ds_dir->dd_pool;
boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0;
boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0;
boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0;
/* Temporary clone name must not exist. */
error = zap_lookup(dp->dp_meta_objset,
dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
8, 1, &obj);
if (error != ENOENT)
return (error == 0 ? SET_ERROR(EBUSY) : error);
/* Resume state must not be set. */
if (dsl_dataset_has_resume_receive_state(ds))
return (SET_ERROR(EBUSY));
/* New snapshot name must not exist if we're not healing it. */
error = zap_lookup(dp->dp_meta_objset,
dsl_dataset_phys(ds)->ds_snapnames_zapobj,
drba->drba_cookie->drc_tosnap, 8, 1, &obj);
if (drba->drba_cookie->drc_heal) {
if (error != 0)
return (error);
} else if (error != ENOENT) {
return (error == 0 ? SET_ERROR(EEXIST) : error);
}
/* Must not have children if receiving a ZVOL. */
error = zap_count(dp->dp_meta_objset,
dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, &children);
if (error != 0)
return (error);
if (drba->drba_cookie->drc_drrb->drr_type != DMU_OST_ZFS &&
children > 0)
return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
/*
* Check snapshot limit before receiving. We'll recheck again at the
* end, but might as well abort before receiving if we're already over
* the limit.
*
* Note that we do not check the file system limit with
* dsl_dir_fscount_check because the temporary %clones don't count
* against that limit.
*/
error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
NULL, drba->drba_cred, drba->drba_proc);
if (error != 0)
return (error);
if (drba->drba_cookie->drc_heal) {
/* Encryption is incompatible with embedded data. */
if (encrypted && embed)
return (SET_ERROR(EINVAL));
/* Healing is not supported when in 'force' mode. */
if (drba->drba_cookie->drc_force)
return (SET_ERROR(EINVAL));
/* Must have keys loaded if doing encrypted non-raw recv. */
if (encrypted && !raw) {
if (spa_keystore_lookup_key(dp->dp_spa, ds->ds_object,
NULL, NULL) != 0)
return (SET_ERROR(EACCES));
}
error = dsl_dataset_hold_obj(dp, obj, FTAG, &snap);
if (error != 0)
return (error);
/*
* When not doing best effort corrective recv healing can only
* be done if the send stream is for the same snapshot as the
* one we are trying to heal.
*/
if (zfs_recv_best_effort_corrective == 0 &&
drba->drba_cookie->drc_drrb->drr_toguid !=
dsl_dataset_phys(snap)->ds_guid) {
dsl_dataset_rele(snap, FTAG);
return (SET_ERROR(ENOTSUP));
}
dsl_dataset_rele(snap, FTAG);
} else if (fromguid != 0) {
/* Sanity check the incremental recv */
uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
/* Can't perform a raw receive on top of a non-raw receive */
if (!encrypted && raw)
return (SET_ERROR(EINVAL));
/* Encryption is incompatible with embedded data */
if (encrypted && embed)
return (SET_ERROR(EINVAL));
/* Find snapshot in this dir that matches fromguid. */
while (obj != 0) {
error = dsl_dataset_hold_obj(dp, obj, FTAG,
&snap);
if (error != 0)
return (SET_ERROR(ENODEV));
if (snap->ds_dir != ds->ds_dir) {
dsl_dataset_rele(snap, FTAG);
return (SET_ERROR(ENODEV));
}
if (dsl_dataset_phys(snap)->ds_guid == fromguid)
break;
obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
dsl_dataset_rele(snap, FTAG);
}
if (obj == 0)
return (SET_ERROR(ENODEV));
if (drba->drba_cookie->drc_force) {
drba->drba_cookie->drc_fromsnapobj = obj;
} else {
/*
* If we are not forcing, there must be no
* changes since fromsnap. Raw sends have an
* additional constraint that requires that
* no "noop" snapshots exist between fromsnap
* and tosnap for the IVset checking code to
* work properly.
*/
if (dsl_dataset_modified_since_snap(ds, snap) ||
(raw &&
dsl_dataset_phys(ds)->ds_prev_snap_obj !=
snap->ds_object)) {
dsl_dataset_rele(snap, FTAG);
return (SET_ERROR(ETXTBSY));
}
drba->drba_cookie->drc_fromsnapobj =
ds->ds_prev->ds_object;
}
if (dsl_dataset_feature_is_active(snap,
SPA_FEATURE_REDACTED_DATASETS) && !redact_check(drba,
snap)) {
dsl_dataset_rele(snap, FTAG);
return (SET_ERROR(EINVAL));
}
error = recv_check_large_blocks(snap, featureflags);
if (error != 0) {
dsl_dataset_rele(snap, FTAG);
return (error);
}
dsl_dataset_rele(snap, FTAG);
} else {
/* If full and not healing then must be forced. */
if (!drba->drba_cookie->drc_force)
return (SET_ERROR(EEXIST));
/*
* We don't support using zfs recv -F to blow away
* encrypted filesystems. This would require the
* dsl dir to point to the old encryption key and
* the new one at the same time during the receive.
*/
if ((!encrypted && raw) || encrypted)
return (SET_ERROR(EINVAL));
/*
* Perform the same encryption checks we would if
* we were creating a new dataset from scratch.
*/
if (!raw) {
boolean_t will_encrypt;
error = dmu_objset_create_crypt_check(
ds->ds_dir->dd_parent, drba->drba_dcp,
&will_encrypt);
if (error != 0)
return (error);
if (will_encrypt && embed)
return (SET_ERROR(EINVAL));
}
}
return (0);
}
/*
* Check that any feature flags used in the data stream we're receiving are
* supported by the pool we are receiving into.
*
* Note that some of the features we explicitly check here have additional
* (implicit) features they depend on, but those dependencies are enforced
* through the zfeature_register() calls declaring the features that we
* explicitly check.
*/
static int
recv_begin_check_feature_flags_impl(uint64_t featureflags, spa_t *spa)
{
/*
* Check if there are any unsupported feature flags.
*/
if (!DMU_STREAM_SUPPORTED(featureflags)) {
return (SET_ERROR(ZFS_ERR_UNKNOWN_SEND_STREAM_FEATURE));
}
/* Verify pool version supports SA if SA_SPILL feature set */
if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
spa_version(spa) < SPA_VERSION_SA)
return (SET_ERROR(ENOTSUP));
/*
* LZ4 compressed, ZSTD compressed, embedded, mooched, large blocks,
* and large_dnodes in the stream can only be used if those pool
* features are enabled because we don't attempt to decompress /
* un-embed / un-mooch / split up the blocks / dnodes during the
* receive process.
*/
if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
!spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS))
return (SET_ERROR(ENOTSUP));
if ((featureflags & DMU_BACKUP_FEATURE_ZSTD) &&
!spa_feature_is_enabled(spa, SPA_FEATURE_ZSTD_COMPRESS))
return (SET_ERROR(ENOTSUP));
if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
!spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA))
return (SET_ERROR(ENOTSUP));
if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
return (SET_ERROR(ENOTSUP));
if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
return (SET_ERROR(ENOTSUP));
/*
* Receiving redacted streams requires that redacted datasets are
* enabled.
*/
if ((featureflags & DMU_BACKUP_FEATURE_REDACTED) &&
!spa_feature_is_enabled(spa, SPA_FEATURE_REDACTED_DATASETS))
return (SET_ERROR(ENOTSUP));
return (0);
}
static int
dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
{
dmu_recv_begin_arg_t *drba = arg;
dsl_pool_t *dp = dmu_tx_pool(tx);
struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
uint64_t fromguid = drrb->drr_fromguid;
int flags = drrb->drr_flags;
ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
int error;
uint64_t featureflags = drba->drba_cookie->drc_featureflags;
dsl_dataset_t *ds;
const char *tofs = drba->drba_cookie->drc_tofs;
/* already checked */
ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
DMU_COMPOUNDSTREAM ||
drrb->drr_type >= DMU_OST_NUMTYPES ||
((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
return (SET_ERROR(EINVAL));
error = recv_begin_check_feature_flags_impl(featureflags, dp->dp_spa);
if (error != 0)
return (error);
/* Resumable receives require extensible datasets */
if (drba->drba_cookie->drc_resumable &&
!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
return (SET_ERROR(ENOTSUP));
if (featureflags & DMU_BACKUP_FEATURE_RAW) {
/* raw receives require the encryption feature */
if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION))
return (SET_ERROR(ENOTSUP));
/* embedded data is incompatible with encryption and raw recv */
if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
return (SET_ERROR(EINVAL));
/* raw receives require spill block allocation flag */
if (!(flags & DRR_FLAG_SPILL_BLOCK))
return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
} else {
/*
* We support unencrypted datasets below encrypted ones now,
* so add the DS_HOLD_FLAG_DECRYPT flag only if we are dealing
* with a dataset we may encrypt.
*/
if (drba->drba_dcp == NULL ||
drba->drba_dcp->cp_crypt != ZIO_CRYPT_OFF) {
dsflags |= DS_HOLD_FLAG_DECRYPT;
}
}
error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
if (error == 0) {
/* target fs already exists; recv into temp clone */
/* Can't recv a clone into an existing fs */
if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (SET_ERROR(EINVAL));
}
error = recv_begin_check_existing_impl(drba, ds, fromguid,
featureflags);
dsl_dataset_rele_flags(ds, dsflags, FTAG);
} else if (error == ENOENT) {
/* target fs does not exist; must be a full backup or clone */
char buf[ZFS_MAX_DATASET_NAME_LEN];
objset_t *os;
/* healing recv must be done "into" an existing snapshot */
if (drba->drba_cookie->drc_heal == B_TRUE)
return (SET_ERROR(ENOTSUP));
/*
* If it's a non-clone incremental, we are missing the
* target fs, so fail the recv.
*/
if (fromguid != 0 && !((flags & DRR_FLAG_CLONE) ||
drba->drba_origin))
return (SET_ERROR(ENOENT));
/*
* If we're receiving a full send as a clone, and it doesn't
* contain all the necessary free records and freeobject
* records, reject it.
*/
if (fromguid == 0 && drba->drba_origin != NULL &&
!(flags & DRR_FLAG_FREERECORDS))
return (SET_ERROR(EINVAL));
/* Open the parent of tofs */
ASSERT3U(strlen(tofs), <, sizeof (buf));
(void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
error = dsl_dataset_hold(dp, buf, FTAG, &ds);
if (error != 0)
return (error);
if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
drba->drba_origin == NULL) {
boolean_t will_encrypt;
/*
* Check that we aren't breaking any encryption rules
* and that we have all the parameters we need to
* create an encrypted dataset if necessary. If we are
* making an encrypted dataset the stream can't have
* embedded data.
*/
error = dmu_objset_create_crypt_check(ds->ds_dir,
drba->drba_dcp, &will_encrypt);
if (error != 0) {
dsl_dataset_rele(ds, FTAG);
return (error);
}
if (will_encrypt &&
(featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
dsl_dataset_rele(ds, FTAG);
return (SET_ERROR(EINVAL));
}
}
/*
* Check filesystem and snapshot limits before receiving. We'll
* recheck snapshot limits again at the end (we create the
* filesystems and increment those counts during begin_sync).
*/
error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
ZFS_PROP_FILESYSTEM_LIMIT, NULL,
drba->drba_cred, drba->drba_proc);
if (error != 0) {
dsl_dataset_rele(ds, FTAG);
return (error);
}
error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
ZFS_PROP_SNAPSHOT_LIMIT, NULL,
drba->drba_cred, drba->drba_proc);
if (error != 0) {
dsl_dataset_rele(ds, FTAG);
return (error);
}
/* can't recv below anything but filesystems (eg. no ZVOLs) */
error = dmu_objset_from_ds(ds, &os);
if (error != 0) {
dsl_dataset_rele(ds, FTAG);
return (error);
}
if (dmu_objset_type(os) != DMU_OST_ZFS) {
dsl_dataset_rele(ds, FTAG);
return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
}
if (drba->drba_origin != NULL) {
dsl_dataset_t *origin;
error = dsl_dataset_hold_flags(dp, drba->drba_origin,
dsflags, FTAG, &origin);
if (error != 0) {
dsl_dataset_rele(ds, FTAG);
return (error);
}
if (!origin->ds_is_snapshot) {
dsl_dataset_rele_flags(origin, dsflags, FTAG);
dsl_dataset_rele(ds, FTAG);
return (SET_ERROR(EINVAL));
}
if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
fromguid != 0) {
dsl_dataset_rele_flags(origin, dsflags, FTAG);
dsl_dataset_rele(ds, FTAG);
return (SET_ERROR(ENODEV));
}
if (origin->ds_dir->dd_crypto_obj != 0 &&
(featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
dsl_dataset_rele_flags(origin, dsflags, FTAG);
dsl_dataset_rele(ds, FTAG);
return (SET_ERROR(EINVAL));
}
/*
* If the origin is redacted we need to verify that this
* send stream can safely be received on top of the
* origin.
*/
if (dsl_dataset_feature_is_active(origin,
SPA_FEATURE_REDACTED_DATASETS)) {
if (!redact_check(drba, origin)) {
dsl_dataset_rele_flags(origin, dsflags,
FTAG);
dsl_dataset_rele_flags(ds, dsflags,
FTAG);
return (SET_ERROR(EINVAL));
}
}
error = recv_check_large_blocks(ds, featureflags);
if (error != 0) {
dsl_dataset_rele_flags(origin, dsflags, FTAG);
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (error);
}
dsl_dataset_rele_flags(origin, dsflags, FTAG);
}
dsl_dataset_rele(ds, FTAG);
error = 0;
}
return (error);
}
static void
dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
{
dmu_recv_begin_arg_t *drba = arg;
dsl_pool_t *dp = dmu_tx_pool(tx);
objset_t *mos = dp->dp_meta_objset;
dmu_recv_cookie_t *drc = drba->drba_cookie;
struct drr_begin *drrb = drc->drc_drrb;
const char *tofs = drc->drc_tofs;
uint64_t featureflags = drc->drc_featureflags;
dsl_dataset_t *ds, *newds;
objset_t *os;
uint64_t dsobj;
ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
int error;
uint64_t crflags = 0;
dsl_crypto_params_t dummy_dcp = { 0 };
dsl_crypto_params_t *dcp = drba->drba_dcp;
if (drrb->drr_flags & DRR_FLAG_CI_DATA)
crflags |= DS_FLAG_CI_DATASET;
if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0)
dsflags |= DS_HOLD_FLAG_DECRYPT;
/*
* Raw, non-incremental recvs always use a dummy dcp with
* the raw cmd set. Raw incremental recvs do not use a dcp
* since the encryption parameters are already set in stone.
*/
if (dcp == NULL && drrb->drr_fromguid == 0 &&
drba->drba_origin == NULL) {
ASSERT3P(dcp, ==, NULL);
dcp = &dummy_dcp;
if (featureflags & DMU_BACKUP_FEATURE_RAW)
dcp->cp_cmd = DCP_CMD_RAW_RECV;
}
error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
if (error == 0) {
/* Create temporary clone unless we're doing corrective recv */
dsl_dataset_t *snap = NULL;
if (drba->drba_cookie->drc_fromsnapobj != 0) {
VERIFY0(dsl_dataset_hold_obj(dp,
drba->drba_cookie->drc_fromsnapobj, FTAG, &snap));
ASSERT3P(dcp, ==, NULL);
}
if (drc->drc_heal) {
/* When healing we want to use the provided snapshot */
VERIFY0(dsl_dataset_snap_lookup(ds, drc->drc_tosnap,
&dsobj));
} else {
dsobj = dsl_dataset_create_sync(ds->ds_dir,
recv_clone_name, snap, crflags, drba->drba_cred,
dcp, tx);
}
if (drba->drba_cookie->drc_fromsnapobj != 0)
dsl_dataset_rele(snap, FTAG);
dsl_dataset_rele_flags(ds, dsflags, FTAG);
} else {
dsl_dir_t *dd;
const char *tail;
dsl_dataset_t *origin = NULL;
VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
if (drba->drba_origin != NULL) {
VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
FTAG, &origin));
ASSERT3P(dcp, ==, NULL);
}
/* Create new dataset. */
dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1,
origin, crflags, drba->drba_cred, dcp, tx);
if (origin != NULL)
dsl_dataset_rele(origin, FTAG);
dsl_dir_rele(dd, FTAG);
drc->drc_newfs = B_TRUE;
}
VERIFY0(dsl_dataset_own_obj_force(dp, dsobj, dsflags, dmu_recv_tag,
&newds));
if (dsl_dataset_feature_is_active(newds,
SPA_FEATURE_REDACTED_DATASETS)) {
/*
* If the origin dataset is redacted, the child will be redacted
* when we create it. We clear the new dataset's
* redaction info; if it should be redacted, we'll fill
* in its information later.
*/
dsl_dataset_deactivate_feature(newds,
SPA_FEATURE_REDACTED_DATASETS, tx);
}
VERIFY0(dmu_objset_from_ds(newds, &os));
if (drc->drc_resumable) {
dsl_dataset_zapify(newds, tx);
if (drrb->drr_fromguid != 0) {
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
8, 1, &drrb->drr_fromguid, tx));
}
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
8, 1, &drrb->drr_toguid, tx));
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
uint64_t one = 1;
uint64_t zero = 0;
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
8, 1, &one, tx));
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
8, 1, &zero, tx));
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
8, 1, &zero, tx));
if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) {
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK,
8, 1, &one, tx));
}
if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) {
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
8, 1, &one, tx));
}
if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) {
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK,
8, 1, &one, tx));
}
if (featureflags & DMU_BACKUP_FEATURE_RAW) {
VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK,
8, 1, &one, tx));
}
uint64_t *redact_snaps;
uint_t numredactsnaps;
if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
BEGINNV_REDACT_FROM_SNAPS, &redact_snaps,
&numredactsnaps) == 0) {
VERIFY0(zap_add(mos, dsobj,
DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS,
sizeof (*redact_snaps), numredactsnaps,
redact_snaps, tx));
}
}
/*
* Usually the os->os_encrypted value is tied to the presence of a
* DSL Crypto Key object in the dd. However, that will not be received
* until dmu_recv_stream(), so we set the value manually for now.
*/
if (featureflags & DMU_BACKUP_FEATURE_RAW) {
os->os_encrypted = B_TRUE;
drba->drba_cookie->drc_raw = B_TRUE;
}
if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
uint64_t *redact_snaps;
uint_t numredactsnaps;
VERIFY0(nvlist_lookup_uint64_array(drc->drc_begin_nvl,
BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps));
dsl_dataset_activate_redaction(newds, redact_snaps,
numredactsnaps, tx);
}
dmu_buf_will_dirty(newds->ds_dbuf, tx);
dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
/*
* If we actually created a non-clone, we need to create the objset
* in our new dataset. If this is a raw send we postpone this until
* dmu_recv_stream() so that we can allocate the metadnode with the
* properties from the DRR_BEGIN payload.
*/
rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG);
if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) &&
(featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
!drc->drc_heal) {
(void) dmu_objset_create_impl(dp->dp_spa,
newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
}
rrw_exit(&newds->ds_bp_rwlock, FTAG);
drba->drba_cookie->drc_ds = newds;
drba->drba_cookie->drc_os = os;
spa_history_log_internal_ds(newds, "receive", tx, " ");
}
static int
dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
{
dmu_recv_begin_arg_t *drba = arg;
dmu_recv_cookie_t *drc = drba->drba_cookie;
dsl_pool_t *dp = dmu_tx_pool(tx);
struct drr_begin *drrb = drc->drc_drrb;
int error;
ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
dsl_dataset_t *ds;
const char *tofs = drc->drc_tofs;
/* already checked */
ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
ASSERT(drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING);
if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
DMU_COMPOUNDSTREAM ||
drrb->drr_type >= DMU_OST_NUMTYPES)
return (SET_ERROR(EINVAL));
/*
* This is mostly a sanity check since we should have already done these
* checks during a previous attempt to receive the data.
*/
error = recv_begin_check_feature_flags_impl(drc->drc_featureflags,
dp->dp_spa);
if (error != 0)
return (error);
/* 6 extra bytes for /%recv */
char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
(void) snprintf(recvname, sizeof (recvname), "%s/%s",
tofs, recv_clone_name);
if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
/* raw receives require spill block allocation flag */
if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK))
return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
} else {
dsflags |= DS_HOLD_FLAG_DECRYPT;
}
boolean_t recvexist = B_TRUE;
if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
/* %recv does not exist; continue in tofs */
recvexist = B_FALSE;
error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
if (error != 0)
return (error);
}
/*
* Resume of full/newfs recv on existing dataset should be done with
* force flag
*/
if (recvexist && drrb->drr_fromguid == 0 && !drc->drc_force) {
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (SET_ERROR(ZFS_ERR_RESUME_EXISTS));
}
/* check that ds is marked inconsistent */
if (!DS_IS_INCONSISTENT(ds)) {
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (SET_ERROR(EINVAL));
}
/* check that there is resuming data, and that the toguid matches */
if (!dsl_dataset_is_zapified(ds)) {
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (SET_ERROR(EINVAL));
}
uint64_t val;
error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
if (error != 0 || drrb->drr_toguid != val) {
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (SET_ERROR(EINVAL));
}
/*
* Check if the receive is still running. If so, it will be owned.
* Note that nothing else can own the dataset (e.g. after the receive
* fails) because it will be marked inconsistent.
*/
if (dsl_dataset_has_owner(ds)) {
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (SET_ERROR(EBUSY));
}
/* There should not be any snapshots of this fs yet. */
if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (SET_ERROR(EINVAL));
}
/*
* Note: resume point will be checked when we process the first WRITE
* record.
*/
/* check that the origin matches */
val = 0;
(void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
if (drrb->drr_fromguid != val) {
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (SET_ERROR(EINVAL));
}
if (ds->ds_prev != NULL && drrb->drr_fromguid != 0)
drc->drc_fromsnapobj = ds->ds_prev->ds_object;
/*
* If we're resuming, and the send is redacted, then the original send
* must have been redacted, and must have been redacted with respect to
* the same snapshots.
*/
if (drc->drc_featureflags & DMU_BACKUP_FEATURE_REDACTED) {
uint64_t num_ds_redact_snaps;
uint64_t *ds_redact_snaps;
uint_t num_stream_redact_snaps;
uint64_t *stream_redact_snaps;
if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
BEGINNV_REDACT_SNAPS, &stream_redact_snaps,
&num_stream_redact_snaps) != 0) {
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (SET_ERROR(EINVAL));
}
if (!dsl_dataset_get_uint64_array_feature(ds,
SPA_FEATURE_REDACTED_DATASETS, &num_ds_redact_snaps,
&ds_redact_snaps)) {
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (SET_ERROR(EINVAL));
}
for (int i = 0; i < num_ds_redact_snaps; i++) {
if (!redact_snaps_contains(ds_redact_snaps,
num_ds_redact_snaps, stream_redact_snaps[i])) {
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (SET_ERROR(EINVAL));
}
}
}
error = recv_check_large_blocks(ds, drc->drc_featureflags);
if (error != 0) {
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (error);
}
dsl_dataset_rele_flags(ds, dsflags, FTAG);
return (0);
}
static void
dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
{
dmu_recv_begin_arg_t *drba = arg;
dsl_pool_t *dp = dmu_tx_pool(tx);
const char *tofs = drba->drba_cookie->drc_tofs;
uint64_t featureflags = drba->drba_cookie->drc_featureflags;
dsl_dataset_t *ds;
ds_hold_flags_t dsflags = DS_HOLD_FLAG_NONE;
/* 6 extra bytes for /%recv */
char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
(void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs,
recv_clone_name);
if (featureflags & DMU_BACKUP_FEATURE_RAW) {
drba->drba_cookie->drc_raw = B_TRUE;
} else {
dsflags |= DS_HOLD_FLAG_DECRYPT;
}
if (dsl_dataset_own_force(dp, recvname, dsflags, dmu_recv_tag, &ds)
!= 0) {
/* %recv does not exist; continue in tofs */
VERIFY0(dsl_dataset_own_force(dp, tofs, dsflags, dmu_recv_tag,
&ds));
drba->drba_cookie->drc_newfs = B_TRUE;
}
ASSERT(DS_IS_INCONSISTENT(ds));
rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) ||
drba->drba_cookie->drc_raw);
rrw_exit(&ds->ds_bp_rwlock, FTAG);
drba->drba_cookie->drc_ds = ds;
VERIFY0(dmu_objset_from_ds(ds, &drba->drba_cookie->drc_os));
drba->drba_cookie->drc_should_save = B_TRUE;
spa_history_log_internal_ds(ds, "resume receive", tx, " ");
}
/*
* NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
* succeeds; otherwise we will leak the holds on the datasets.
*/
int
dmu_recv_begin(const char *tofs, const char *tosnap,
dmu_replay_record_t *drr_begin, boolean_t force, boolean_t heal,
boolean_t resumable, nvlist_t *localprops, nvlist_t *hidden_args,
const char *origin, dmu_recv_cookie_t *drc, zfs_file_t *fp,
offset_t *voffp)
{
dmu_recv_begin_arg_t drba = { 0 };
int err = 0;
memset(drc, 0, sizeof (dmu_recv_cookie_t));
drc->drc_drr_begin = drr_begin;
drc->drc_drrb = &drr_begin->drr_u.drr_begin;
drc->drc_tosnap = tosnap;
drc->drc_tofs = tofs;
drc->drc_force = force;
drc->drc_heal = heal;
drc->drc_resumable = resumable;
drc->drc_cred = CRED();
drc->drc_proc = curproc;
drc->drc_clone = (origin != NULL);
if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
drc->drc_byteswap = B_TRUE;
(void) fletcher_4_incremental_byteswap(drr_begin,
sizeof (dmu_replay_record_t), &drc->drc_cksum);
byteswap_record(drr_begin);
} else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
(void) fletcher_4_incremental_native(drr_begin,
sizeof (dmu_replay_record_t), &drc->drc_cksum);
} else {
return (SET_ERROR(EINVAL));
}
drc->drc_fp = fp;
drc->drc_voff = *voffp;
drc->drc_featureflags =
DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
/*
* Since OpenZFS 2.0.0, we have enforced a 64MB limit in userspace
* configurable via ZFS_SENDRECV_MAX_NVLIST. We enforce 256MB as a hard
* upper limit. Systems with less than 1GB of RAM will see a lower
* limit from `arc_all_memory() / 4`.
*/
if (payloadlen > (MIN((1U << 28), arc_all_memory() / 4)))
return (E2BIG);
if (payloadlen != 0) {
void *payload = vmem_alloc(payloadlen, KM_SLEEP);
/*
* For compatibility with recursive send streams, we don't do
* this here if the stream could be part of a package. Instead,
* we'll do it in dmu_recv_stream. If we pull the next header
* too early, and it's the END record, we break the `recv_skip`
* logic.
*/
err = receive_read_payload_and_next_header(drc, payloadlen,
payload);
if (err != 0) {
vmem_free(payload, payloadlen);
return (err);
}
err = nvlist_unpack(payload, payloadlen, &drc->drc_begin_nvl,
KM_SLEEP);
vmem_free(payload, payloadlen);
if (err != 0) {
kmem_free(drc->drc_next_rrd,
sizeof (*drc->drc_next_rrd));
return (err);
}
}
if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)
drc->drc_spill = B_TRUE;
drba.drba_origin = origin;
drba.drba_cookie = drc;
drba.drba_cred = CRED();
drba.drba_proc = curproc;
if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
err = dsl_sync_task(tofs,
dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
&drba, 5, ZFS_SPACE_CHECK_NORMAL);
} else {
/*
* For non-raw, non-incremental, non-resuming receives the
* user can specify encryption parameters on the command line
* with "zfs recv -o". For these receives we create a dcp and
* pass it to the sync task. Creating the dcp will implicitly
* remove the encryption params from the localprops nvlist,
* which avoids errors when trying to set these normally
* read-only properties. Any other kind of receive that
* attempts to set these properties will fail as a result.
*/
if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
DMU_BACKUP_FEATURE_RAW) == 0 &&
origin == NULL && drc->drc_drrb->drr_fromguid == 0) {
err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
localprops, hidden_args, &drba.drba_dcp);
}
if (err == 0) {
err = dsl_sync_task(tofs,
dmu_recv_begin_check, dmu_recv_begin_sync,
&drba, 5, ZFS_SPACE_CHECK_NORMAL);
dsl_crypto_params_free(drba.drba_dcp, !!err);
}
}
if (err != 0) {
kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
nvlist_free(drc->drc_begin_nvl);
}
return (err);
}
/*
* Holds data need for corrective recv callback
*/
typedef struct cr_cb_data {
uint64_t size;
zbookmark_phys_t zb;
spa_t *spa;
} cr_cb_data_t;
static void
corrective_read_done(zio_t *zio)
{
cr_cb_data_t *data = zio->io_private;
/* Corruption corrected; update error log if needed */
if (zio->io_error == 0)
spa_remove_error(data->spa, &data->zb, &zio->io_bp->blk_birth);
kmem_free(data, sizeof (cr_cb_data_t));
abd_free(zio->io_abd);
}
/*
* zio_rewrite the data pointed to by bp with the data from the rrd's abd.
*/
static int
do_corrective_recv(struct receive_writer_arg *rwa, struct drr_write *drrw,
struct receive_record_arg *rrd, blkptr_t *bp)
{
int err;
zio_t *io;
zbookmark_phys_t zb;
dnode_t *dn;
abd_t *abd = rrd->abd;
zio_cksum_t bp_cksum = bp->blk_cksum;
zio_flag_t flags = ZIO_FLAG_SPECULATIVE |
ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_CANFAIL;
if (rwa->raw)
flags |= ZIO_FLAG_RAW;
err = dnode_hold(rwa->os, drrw->drr_object, FTAG, &dn);
if (err != 0)
return (err);
SET_BOOKMARK(&zb, dmu_objset_id(rwa->os), drrw->drr_object, 0,
dbuf_whichblock(dn, 0, drrw->drr_offset));
dnode_rele(dn, FTAG);
if (!rwa->raw && DRR_WRITE_COMPRESSED(drrw)) {
/* Decompress the stream data */
abd_t *dabd = abd_alloc_linear(
drrw->drr_logical_size, B_FALSE);
err = zio_decompress_data(drrw->drr_compressiontype,
abd, abd_to_buf(dabd), abd_get_size(abd),
abd_get_size(dabd), NULL);
if (err != 0) {
abd_free(dabd);
return (err);
}
/* Swap in the newly decompressed data into the abd */
abd_free(abd);
abd = dabd;
}
if (!rwa->raw && BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
/* Recompress the data */
abd_t *cabd = abd_alloc_linear(BP_GET_PSIZE(bp),
B_FALSE);
void *buf = abd_to_buf(cabd);
uint64_t csize = zio_compress_data(BP_GET_COMPRESS(bp),
abd, &buf, abd_get_size(abd),
rwa->os->os_complevel);
abd_zero_off(cabd, csize, BP_GET_PSIZE(bp) - csize);
/* Swap in newly compressed data into the abd */
abd_free(abd);
abd = cabd;
flags |= ZIO_FLAG_RAW_COMPRESS;
}
/*
* The stream is not encrypted but the data on-disk is.
* We need to re-encrypt the buf using the same
* encryption type, salt, iv, and mac that was used to encrypt
* the block previosly.
*/
if (!rwa->raw && BP_USES_CRYPT(bp)) {
dsl_dataset_t *ds;
dsl_crypto_key_t *dck = NULL;
uint8_t salt[ZIO_DATA_SALT_LEN];
uint8_t iv[ZIO_DATA_IV_LEN];
uint8_t mac[ZIO_DATA_MAC_LEN];
boolean_t no_crypt = B_FALSE;
dsl_pool_t *dp = dmu_objset_pool(rwa->os);
abd_t *eabd = abd_alloc_linear(BP_GET_PSIZE(bp), B_FALSE);
zio_crypt_decode_params_bp(bp, salt, iv);
zio_crypt_decode_mac_bp(bp, mac);
dsl_pool_config_enter(dp, FTAG);
err = dsl_dataset_hold_flags(dp, rwa->tofs,
DS_HOLD_FLAG_DECRYPT, FTAG, &ds);
if (err != 0) {
dsl_pool_config_exit(dp, FTAG);
abd_free(eabd);
return (SET_ERROR(EACCES));
}
/* Look up the key from the spa's keystore */
err = spa_keystore_lookup_key(rwa->os->os_spa,
zb.zb_objset, FTAG, &dck);
if (err != 0) {
dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT,
FTAG);
dsl_pool_config_exit(dp, FTAG);
abd_free(eabd);
return (SET_ERROR(EACCES));
}
err = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
BP_GET_TYPE(bp), BP_SHOULD_BYTESWAP(bp), salt, iv,
mac, abd_get_size(abd), abd, eabd, &no_crypt);
spa_keystore_dsl_key_rele(rwa->os->os_spa, dck, FTAG);
dsl_dataset_rele_flags(ds, DS_HOLD_FLAG_DECRYPT, FTAG);
dsl_pool_config_exit(dp, FTAG);
ASSERT0(no_crypt);
if (err != 0) {
abd_free(eabd);
return (err);
}
/* Swap in the newly encrypted data into the abd */
abd_free(abd);
abd = eabd;
/*
* We want to prevent zio_rewrite() from trying to
* encrypt the data again
*/
flags |= ZIO_FLAG_RAW_ENCRYPT;
}
rrd->abd = abd;
io = zio_rewrite(NULL, rwa->os->os_spa, bp->blk_birth, bp, abd,
BP_GET_PSIZE(bp), NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, flags, &zb);
ASSERT(abd_get_size(abd) == BP_GET_LSIZE(bp) ||
abd_get_size(abd) == BP_GET_PSIZE(bp));
/* compute new bp checksum value and make sure it matches the old one */
zio_checksum_compute(io, BP_GET_CHECKSUM(bp), abd, abd_get_size(abd));
if (!ZIO_CHECKSUM_EQUAL(bp_cksum, io->io_bp->blk_cksum)) {
zio_destroy(io);
if (zfs_recv_best_effort_corrective != 0)
return (0);
return (SET_ERROR(ECKSUM));
}
/* Correct the corruption in place */
err = zio_wait(io);
if (err == 0) {
cr_cb_data_t *cb_data =
kmem_alloc(sizeof (cr_cb_data_t), KM_SLEEP);
cb_data->spa = rwa->os->os_spa;
cb_data->size = drrw->drr_logical_size;
cb_data->zb = zb;
/* Test if healing worked by re-reading the bp */
err = zio_wait(zio_read(rwa->heal_pio, rwa->os->os_spa, bp,
abd_alloc_for_io(drrw->drr_logical_size, B_FALSE),
drrw->drr_logical_size, corrective_read_done,
cb_data, ZIO_PRIORITY_ASYNC_READ, flags, NULL));
}
if (err != 0 && zfs_recv_best_effort_corrective != 0)
err = 0;
return (err);
}
static int
receive_read(dmu_recv_cookie_t *drc, int len, void *buf)
{
int done = 0;
/*
* The code doesn't rely on this (lengths being multiples of 8). See
* comment in dump_bytes.
*/
ASSERT(len % 8 == 0 ||
(drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) != 0);
while (done < len) {
ssize_t resid = len - done;
zfs_file_t *fp = drc->drc_fp;
int err = zfs_file_read(fp, (char *)buf + done,
len - done, &resid);
if (err == 0 && resid == len - done) {
/*
* Note: ECKSUM or ZFS_ERR_STREAM_TRUNCATED indicates
* that the receive was interrupted and can
* potentially be resumed.
*/
err = SET_ERROR(ZFS_ERR_STREAM_TRUNCATED);
}
drc->drc_voff += len - done - resid;
done = len - resid;
if (err != 0)
return (err);
}
drc->drc_bytes_read += len;
ASSERT3U(done, ==, len);
return (0);
}
static inline uint8_t
deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
{
if (bonus_type == DMU_OT_SA) {
return (1);
} else {
return (1 +
((DN_OLD_MAX_BONUSLEN -
MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT));
}
}
static void
save_resume_state(struct receive_writer_arg *rwa,
uint64_t object, uint64_t offset, dmu_tx_t *tx)
{
int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
if (!rwa->resumable)
return;
/*
* We use ds_resume_bytes[] != 0 to indicate that we need to
* update this on disk, so it must not be 0.
*/
ASSERT(rwa->bytes_read != 0);
/*
* We only resume from write records, which have a valid
* (non-meta-dnode) object number.
*/
ASSERT(object != 0);
/*
* For resuming to work correctly, we must receive records in order,
* sorted by object,offset. This is checked by the callers, but
* assert it here for good measure.
*/
ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
ASSERT3U(rwa->bytes_read, >=,
rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
}
static int
receive_object_is_same_generation(objset_t *os, uint64_t object,
dmu_object_type_t old_bonus_type, dmu_object_type_t new_bonus_type,
const void *new_bonus, boolean_t *samegenp)
{
zfs_file_info_t zoi;
int err;
dmu_buf_t *old_bonus_dbuf;
err = dmu_bonus_hold(os, object, FTAG, &old_bonus_dbuf);
if (err != 0)
return (err);
err = dmu_get_file_info(os, old_bonus_type, old_bonus_dbuf->db_data,
&zoi);
dmu_buf_rele(old_bonus_dbuf, FTAG);
if (err != 0)
return (err);
uint64_t old_gen = zoi.zfi_generation;
err = dmu_get_file_info(os, new_bonus_type, new_bonus, &zoi);
if (err != 0)
return (err);
uint64_t new_gen = zoi.zfi_generation;
*samegenp = (old_gen == new_gen);
return (0);
}
static int
receive_handle_existing_object(const struct receive_writer_arg *rwa,
const struct drr_object *drro, const dmu_object_info_t *doi,
const void *bonus_data,
uint64_t *object_to_hold, uint32_t *new_blksz)
{
uint32_t indblksz = drro->drr_indblkshift ?
1ULL << drro->drr_indblkshift : 0;
int nblkptr = deduce_nblkptr(drro->drr_bonustype,
drro->drr_bonuslen);
uint8_t dn_slots = drro->drr_dn_slots != 0 ?
drro->drr_dn_slots : DNODE_MIN_SLOTS;
boolean_t do_free_range = B_FALSE;
int err;
*object_to_hold = drro->drr_object;
/* nblkptr should be bounded by the bonus size and type */
if (rwa->raw && nblkptr != drro->drr_nblkptr)
return (SET_ERROR(EINVAL));
/*
* After the previous send stream, the sending system may
* have freed this object, and then happened to re-allocate
* this object number in a later txg. In this case, we are
* receiving a different logical file, and the block size may
* appear to be different. i.e. we may have a different
* block size for this object than what the send stream says.
* In this case we need to remove the object's contents,
* so that its structure can be changed and then its contents
* entirely replaced by subsequent WRITE records.
*
* If this is a -L (--large-block) incremental stream, and
* the previous stream was not -L, the block size may appear
* to increase. i.e. we may have a smaller block size for
* this object than what the send stream says. In this case
* we need to keep the object's contents and block size
* intact, so that we don't lose parts of the object's
* contents that are not changed by this incremental send
* stream.
*
* We can distinguish between the two above cases by using
* the ZPL's generation number (see
* receive_object_is_same_generation()). However, we only
* want to rely on the generation number when absolutely
* necessary, because with raw receives, the generation is
* encrypted. We also want to minimize dependence on the
* ZPL, so that other types of datasets can also be received
* (e.g. ZVOLs, although note that ZVOLS currently do not
* reallocate their objects or change their structure).
* Therefore, we check a number of different cases where we
* know it is safe to discard the object's contents, before
* using the ZPL's generation number to make the above
* distinction.
*/
if (drro->drr_blksz != doi->doi_data_block_size) {
if (rwa->raw) {
/*
* RAW streams always have large blocks, so
* we are sure that the data is not needed
* due to changing --large-block to be on.
* Which is fortunate since the bonus buffer
* (which contains the ZPL generation) is
* encrypted, and the key might not be
* loaded.
*/
do_free_range = B_TRUE;
} else if (rwa->full) {
/*
* This is a full send stream, so it always
* replaces what we have. Even if the
* generation numbers happen to match, this
* can not actually be the same logical file.
* This is relevant when receiving a full
* send as a clone.
*/
do_free_range = B_TRUE;
} else if (drro->drr_type !=
DMU_OT_PLAIN_FILE_CONTENTS ||
doi->doi_type != DMU_OT_PLAIN_FILE_CONTENTS) {
/*
* PLAIN_FILE_CONTENTS are the only type of
* objects that have ever been stored with
* large blocks, so we don't need the special
* logic below. ZAP blocks can shrink (when
* there's only one block), so we don't want
* to hit the error below about block size
* only increasing.
*/
do_free_range = B_TRUE;
} else if (doi->doi_max_offset <=
doi->doi_data_block_size) {
/*
* There is only one block. We can free it,
* because its contents will be replaced by a
* WRITE record. This can not be the no-L ->
* -L case, because the no-L case would have
* resulted in multiple blocks. If we
* supported -L -> no-L, it would not be safe
* to free the file's contents. Fortunately,
* that is not allowed (see
* recv_check_large_blocks()).
*/
do_free_range = B_TRUE;
} else {
boolean_t is_same_gen;
err = receive_object_is_same_generation(rwa->os,
drro->drr_object, doi->doi_bonus_type,
drro->drr_bonustype, bonus_data, &is_same_gen);
if (err != 0)
return (SET_ERROR(EINVAL));
if (is_same_gen) {
/*
* This is the same logical file, and
* the block size must be increasing.
* It could only decrease if
* --large-block was changed to be
* off, which is checked in
* recv_check_large_blocks().
*/
if (drro->drr_blksz <=
doi->doi_data_block_size)
return (SET_ERROR(EINVAL));
/*
* We keep the existing blocksize and
* contents.
*/
*new_blksz =
doi->doi_data_block_size;
} else {
do_free_range = B_TRUE;
}
}
}
/* nblkptr can only decrease if the object was reallocated */
if (nblkptr < doi->doi_nblkptr)
do_free_range = B_TRUE;
/* number of slots can only change on reallocation */
if (dn_slots != doi->doi_dnodesize >> DNODE_SHIFT)
do_free_range = B_TRUE;
/*
* For raw sends we also check a few other fields to
* ensure we are preserving the objset structure exactly
* as it was on the receive side:
* - A changed indirect block size
* - A smaller nlevels
*/
if (rwa->raw) {
if (indblksz != doi->doi_metadata_block_size)
do_free_range = B_TRUE;
if (drro->drr_nlevels < doi->doi_indirection)
do_free_range = B_TRUE;
}
if (do_free_range) {
err = dmu_free_long_range(rwa->os, drro->drr_object,
0, DMU_OBJECT_END);
if (err != 0)
return (SET_ERROR(EINVAL));
}
/*
* The dmu does not currently support decreasing nlevels
* or changing the number of dnode slots on an object. For
* non-raw sends, this does not matter and the new object
* can just use the previous one's nlevels. For raw sends,
* however, the structure of the received dnode (including
* nlevels and dnode slots) must match that of the send
* side. Therefore, instead of using dmu_object_reclaim(),
* we must free the object completely and call
* dmu_object_claim_dnsize() instead.
*/
if ((rwa->raw && drro->drr_nlevels < doi->doi_indirection) ||
dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) {
err = dmu_free_long_object(rwa->os, drro->drr_object);
if (err != 0)
return (SET_ERROR(EINVAL));
txg_wait_synced(dmu_objset_pool(rwa->os), 0);
*object_to_hold = DMU_NEW_OBJECT;
}
/*
* For raw receives, free everything beyond the new incoming
* maxblkid. Normally this would be done with a DRR_FREE
* record that would come after this DRR_OBJECT record is
* processed. However, for raw receives we manually set the
* maxblkid from the drr_maxblkid and so we must first free
* everything above that blkid to ensure the DMU is always
* consistent with itself. We will never free the first block
* of the object here because a maxblkid of 0 could indicate
* an object with a single block or one with no blocks. This
* free may be skipped when dmu_free_long_range() was called
* above since it covers the entire object's contents.
*/
if (rwa->raw && *object_to_hold != DMU_NEW_OBJECT && !do_free_range) {
err = dmu_free_long_range(rwa->os, drro->drr_object,
(drro->drr_maxblkid + 1) * doi->doi_data_block_size,
DMU_OBJECT_END);
if (err != 0)
return (SET_ERROR(EINVAL));
}
return (0);
}
noinline static int
receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
void *data)
{
dmu_object_info_t doi;
dmu_tx_t *tx;
int err;
uint32_t new_blksz = drro->drr_blksz;
uint8_t dn_slots = drro->drr_dn_slots != 0 ?
drro->drr_dn_slots : DNODE_MIN_SLOTS;
if (drro->drr_type == DMU_OT_NONE ||
!DMU_OT_IS_VALID(drro->drr_type) ||
!DMU_OT_IS_VALID(drro->drr_bonustype) ||
drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
drro->drr_blksz < SPA_MINBLOCKSIZE ||
drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
drro->drr_bonuslen >
DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) ||
dn_slots >
(spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) {
return (SET_ERROR(EINVAL));
}
if (rwa->raw) {
/*
* We should have received a DRR_OBJECT_RANGE record
* containing this block and stored it in rwa.
*/
if (drro->drr_object < rwa->or_firstobj ||
drro->drr_object >= rwa->or_firstobj + rwa->or_numslots ||
drro->drr_raw_bonuslen < drro->drr_bonuslen ||
drro->drr_indblkshift > SPA_MAXBLOCKSHIFT ||
drro->drr_nlevels > DN_MAX_LEVELS ||
drro->drr_nblkptr > DN_MAX_NBLKPTR ||
DN_SLOTS_TO_BONUSLEN(dn_slots) <
drro->drr_raw_bonuslen)
return (SET_ERROR(EINVAL));
} else {
/*
* The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN
* record indicates this by setting DRR_FLAG_SPILL_BLOCK.
*/
if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) ||
(!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) {
return (SET_ERROR(EINVAL));
}
if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 ||
drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) {
return (SET_ERROR(EINVAL));
}
}
err = dmu_object_info(rwa->os, drro->drr_object, &doi);
if (err != 0 && err != ENOENT && err != EEXIST)
return (SET_ERROR(EINVAL));
if (drro->drr_object > rwa->max_object)
rwa->max_object = drro->drr_object;
/*
* If we are losing blkptrs or changing the block size this must
* be a new file instance. We must clear out the previous file
* contents before we can change this type of metadata in the dnode.
* Raw receives will also check that the indirect structure of the
* dnode hasn't changed.
*/
uint64_t object_to_hold;
if (err == 0) {
err = receive_handle_existing_object(rwa, drro, &doi, data,
&object_to_hold, &new_blksz);
if (err != 0)
return (err);
} else if (err == EEXIST) {
/*
* The object requested is currently an interior slot of a
* multi-slot dnode. This will be resolved when the next txg
* is synced out, since the send stream will have told us
* to free this slot when we freed the associated dnode
* earlier in the stream.
*/
txg_wait_synced(dmu_objset_pool(rwa->os), 0);
if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT)
return (SET_ERROR(EINVAL));
/* object was freed and we are about to allocate a new one */
object_to_hold = DMU_NEW_OBJECT;
} else {
/*
* If the only record in this range so far was DRR_FREEOBJECTS
* with at least one actually freed object, it's possible that
* the block will now be converted to a hole. We need to wait
* for the txg to sync to prevent races.
*/
if (rwa->or_need_sync == ORNS_YES)
txg_wait_synced(dmu_objset_pool(rwa->os), 0);
/* object is free and we are about to allocate a new one */
object_to_hold = DMU_NEW_OBJECT;
}
/* Only relevant for the first object in the range */
rwa->or_need_sync = ORNS_NO;
/*
* If this is a multi-slot dnode there is a chance that this
* object will expand into a slot that is already used by
* another object from the previous snapshot. We must free
* these objects before we attempt to allocate the new dnode.
*/
if (dn_slots > 1) {
boolean_t need_sync = B_FALSE;
for (uint64_t slot = drro->drr_object + 1;
slot < drro->drr_object + dn_slots;
slot++) {
dmu_object_info_t slot_doi;
err = dmu_object_info(rwa->os, slot, &slot_doi);
if (err == ENOENT || err == EEXIST)
continue;
else if (err != 0)
return (err);
err = dmu_free_long_object(rwa->os, slot);
if (err != 0)
return (err);
need_sync = B_TRUE;
}
if (need_sync)
txg_wait_synced(dmu_objset_pool(rwa->os), 0);
}
tx = dmu_tx_create(rwa->os);
dmu_tx_hold_bonus(tx, object_to_hold);
dmu_tx_hold_write(tx, object_to_hold, 0, 0);
err = dmu_tx_assign(tx, TXG_WAIT);
if (err != 0) {
dmu_tx_abort(tx);
return (err);
}
if (object_to_hold == DMU_NEW_OBJECT) {
/* Currently free, wants to be allocated */
err = dmu_object_claim_dnsize(rwa->os, drro->drr_object,
drro->drr_type, new_blksz,
drro->drr_bonustype, drro->drr_bonuslen,
dn_slots << DNODE_SHIFT, tx);
} else if (drro->drr_type != doi.doi_type ||
new_blksz != doi.doi_data_block_size ||
drro->drr_bonustype != doi.doi_bonus_type ||
drro->drr_bonuslen != doi.doi_bonus_size) {
/* Currently allocated, but with different properties */
err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object,
drro->drr_type, new_blksz,
drro->drr_bonustype, drro->drr_bonuslen,
dn_slots << DNODE_SHIFT, rwa->spill ?
DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx);
} else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) {
/*
* Currently allocated, the existing version of this object
* may reference a spill block that is no longer allocated
* at the source and needs to be freed.
*/
err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx);
}
if (err != 0) {
dmu_tx_commit(tx);
return (SET_ERROR(EINVAL));
}
if (rwa->or_crypt_params_present) {
/*
* Set the crypt params for the buffer associated with this
* range of dnodes. This causes the blkptr_t to have the
* same crypt params (byteorder, salt, iv, mac) as on the
* sending side.
*
* Since we are committing this tx now, it is possible for
* the dnode block to end up on-disk with the incorrect MAC,
* if subsequent objects in this block are received in a
* different txg. However, since the dataset is marked as
* inconsistent, no code paths will do a non-raw read (or
* decrypt the block / verify the MAC). The receive code and
* scrub code can safely do raw reads and verify the
* checksum. They don't need to verify the MAC.
*/
dmu_buf_t *db = NULL;
uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE;
err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os),
offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT);
if (err != 0) {
dmu_tx_commit(tx);
return (SET_ERROR(EINVAL));
}
dmu_buf_set_crypt_params(db, rwa->or_byteorder,
rwa->or_salt, rwa->or_iv, rwa->or_mac, tx);
dmu_buf_rele(db, FTAG);
rwa->or_crypt_params_present = B_FALSE;
}
dmu_object_set_checksum(rwa->os, drro->drr_object,
drro->drr_checksumtype, tx);
dmu_object_set_compress(rwa->os, drro->drr_object,
drro->drr_compress, tx);
/* handle more restrictive dnode structuring for raw recvs */
if (rwa->raw) {
/*
* Set the indirect block size, block shift, nlevels.
* This will not fail because we ensured all of the
* blocks were freed earlier if this is a new object.
* For non-new objects block size and indirect block
* shift cannot change and nlevels can only increase.
*/
ASSERT3U(new_blksz, ==, drro->drr_blksz);
VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object,
drro->drr_blksz, drro->drr_indblkshift, tx));
VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object,
drro->drr_nlevels, tx));
/*
* Set the maxblkid. This will always succeed because
* we freed all blocks beyond the new maxblkid above.
*/
VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object,
drro->drr_maxblkid, tx));
}
if (data != NULL) {
dmu_buf_t *db;
dnode_t *dn;
uint32_t flags = DMU_READ_NO_PREFETCH;
if (rwa->raw)
flags |= DMU_READ_NO_DECRYPT;
VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn));
VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags));
dmu_buf_will_dirty(db, tx);
ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
memcpy(db->db_data, data, DRR_OBJECT_PAYLOAD_SIZE(drro));
/*
* Raw bonus buffers have their byteorder determined by the
* DRR_OBJECT_RANGE record.
*/
if (rwa->byteswap && !rwa->raw) {
dmu_object_byteswap_t byteswap =
DMU_OT_BYTESWAP(drro->drr_bonustype);
dmu_ot_byteswap[byteswap].ob_func(db->db_data,
DRR_OBJECT_PAYLOAD_SIZE(drro));
}
dmu_buf_rele(db, FTAG);
dnode_rele(dn, FTAG);
}
dmu_tx_commit(tx);
return (0);
}
noinline static int
receive_freeobjects(struct receive_writer_arg *rwa,
struct drr_freeobjects *drrfo)
{
uint64_t obj;
int next_err = 0;
if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
return (SET_ERROR(EINVAL));
for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj;
obj < drrfo->drr_firstobj + drrfo->drr_numobjs &&
obj < DN_MAX_OBJECT && next_err == 0;
next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
dmu_object_info_t doi;
int err;
err = dmu_object_info(rwa->os, obj, &doi);
if (err == ENOENT)
continue;
else if (err != 0)
return (err);
err = dmu_free_long_object(rwa->os, obj);
if (err != 0)
return (err);
if (rwa->or_need_sync == ORNS_MAYBE)
rwa->or_need_sync = ORNS_YES;
}
if (next_err != ESRCH)
return (next_err);
return (0);
}
/*
* Note: if this fails, the caller will clean up any records left on the
* rwa->write_batch list.
*/
static int
flush_write_batch_impl(struct receive_writer_arg *rwa)
{
dnode_t *dn;
int err;
if (dnode_hold(rwa->os, rwa->last_object, FTAG, &dn) != 0)
return (SET_ERROR(EINVAL));
struct receive_record_arg *last_rrd = list_tail(&rwa->write_batch);
struct drr_write *last_drrw = &last_rrd->header.drr_u.drr_write;
struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
ASSERT3U(rwa->last_object, ==, last_drrw->drr_object);
ASSERT3U(rwa->last_offset, ==, last_drrw->drr_offset);
dmu_tx_t *tx = dmu_tx_create(rwa->os);
dmu_tx_hold_write_by_dnode(tx, dn, first_drrw->drr_offset,
last_drrw->drr_offset - first_drrw->drr_offset +
last_drrw->drr_logical_size);
err = dmu_tx_assign(tx, TXG_WAIT);
if (err != 0) {
dmu_tx_abort(tx);
dnode_rele(dn, FTAG);
return (err);
}
struct receive_record_arg *rrd;
while ((rrd = list_head(&rwa->write_batch)) != NULL) {
struct drr_write *drrw = &rrd->header.drr_u.drr_write;
abd_t *abd = rrd->abd;
ASSERT3U(drrw->drr_object, ==, rwa->last_object);
if (drrw->drr_logical_size != dn->dn_datablksz) {
/*
* The WRITE record is larger than the object's block
* size. We must be receiving an incremental
* large-block stream into a dataset that previously did
* a non-large-block receive. Lightweight writes must
* be exactly one block, so we need to decompress the
* data (if compressed) and do a normal dmu_write().
*/
ASSERT3U(drrw->drr_logical_size, >, dn->dn_datablksz);
if (DRR_WRITE_COMPRESSED(drrw)) {
abd_t *decomp_abd =
abd_alloc_linear(drrw->drr_logical_size,
B_FALSE);
err = zio_decompress_data(
drrw->drr_compressiontype,
abd, abd_to_buf(decomp_abd),
abd_get_size(abd),
abd_get_size(decomp_abd), NULL);
if (err == 0) {
dmu_write_by_dnode(dn,
drrw->drr_offset,
drrw->drr_logical_size,
abd_to_buf(decomp_abd), tx);
}
abd_free(decomp_abd);
} else {
dmu_write_by_dnode(dn,
drrw->drr_offset,
drrw->drr_logical_size,
abd_to_buf(abd), tx);
}
if (err == 0)
abd_free(abd);
} else {
zio_prop_t zp = {0};
dmu_write_policy(rwa->os, dn, 0, 0, &zp);
zio_flag_t zio_flags = 0;
if (rwa->raw) {
zp.zp_encrypt = B_TRUE;
zp.zp_compress = drrw->drr_compressiontype;
zp.zp_byteorder = ZFS_HOST_BYTEORDER ^
!!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^
rwa->byteswap;
memcpy(zp.zp_salt, drrw->drr_salt,
ZIO_DATA_SALT_LEN);
memcpy(zp.zp_iv, drrw->drr_iv,
ZIO_DATA_IV_LEN);
memcpy(zp.zp_mac, drrw->drr_mac,
ZIO_DATA_MAC_LEN);
if (DMU_OT_IS_ENCRYPTED(zp.zp_type)) {
zp.zp_nopwrite = B_FALSE;
zp.zp_copies = MIN(zp.zp_copies,
SPA_DVAS_PER_BP - 1);
}
zio_flags |= ZIO_FLAG_RAW;
} else if (DRR_WRITE_COMPRESSED(drrw)) {
ASSERT3U(drrw->drr_compressed_size, >, 0);
ASSERT3U(drrw->drr_logical_size, >=,
drrw->drr_compressed_size);
zp.zp_compress = drrw->drr_compressiontype;
zio_flags |= ZIO_FLAG_RAW_COMPRESS;
} else if (rwa->byteswap) {
/*
* Note: compressed blocks never need to be
* byteswapped, because WRITE records for
* metadata blocks are never compressed. The
* exception is raw streams, which are written
* in the original byteorder, and the byteorder
* bit is preserved in the BP by setting
* zp_byteorder above.
*/
dmu_object_byteswap_t byteswap =
DMU_OT_BYTESWAP(drrw->drr_type);
dmu_ot_byteswap[byteswap].ob_func(
abd_to_buf(abd),
DRR_WRITE_PAYLOAD_SIZE(drrw));
}
/*
* Since this data can't be read until the receive
* completes, we can do a "lightweight" write for
* improved performance.
*/
err = dmu_lightweight_write_by_dnode(dn,
drrw->drr_offset, abd, &zp, zio_flags, tx);
}
if (err != 0) {
/*
* This rrd is left on the list, so the caller will
* free it (and the abd).
*/
break;
}
/*
* Note: If the receive fails, we want the resume stream to
* start with the same record that we last successfully
* received (as opposed to the next record), so that we can
* verify that we are resuming from the correct location.
*/
save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
list_remove(&rwa->write_batch, rrd);
kmem_free(rrd, sizeof (*rrd));
}
dmu_tx_commit(tx);
dnode_rele(dn, FTAG);
return (err);
}
noinline static int
flush_write_batch(struct receive_writer_arg *rwa)
{
if (list_is_empty(&rwa->write_batch))
return (0);
int err = rwa->err;
if (err == 0)
err = flush_write_batch_impl(rwa);
if (err != 0) {
struct receive_record_arg *rrd;
while ((rrd = list_remove_head(&rwa->write_batch)) != NULL) {
abd_free(rrd->abd);
kmem_free(rrd, sizeof (*rrd));
}
}
ASSERT(list_is_empty(&rwa->write_batch));
return (err);
}
noinline static int
receive_process_write_record(struct receive_writer_arg *rwa,
struct receive_record_arg *rrd)
{
int err = 0;
ASSERT3U(rrd->header.drr_type, ==, DRR_WRITE);
struct drr_write *drrw = &rrd->header.drr_u.drr_write;
if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset ||
!DMU_OT_IS_VALID(drrw->drr_type))
return (SET_ERROR(EINVAL));
if (rwa->heal) {
blkptr_t *bp;
dmu_buf_t *dbp;
dnode_t *dn;
int flags = DB_RF_CANFAIL;
if (rwa->raw)
flags |= DB_RF_NO_DECRYPT;
if (rwa->byteswap) {
dmu_object_byteswap_t byteswap =
DMU_OT_BYTESWAP(drrw->drr_type);
dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(rrd->abd),
DRR_WRITE_PAYLOAD_SIZE(drrw));
}
err = dmu_buf_hold_noread(rwa->os, drrw->drr_object,
drrw->drr_offset, FTAG, &dbp);
if (err != 0)
return (err);
/* Try to read the object to see if it needs healing */
err = dbuf_read((dmu_buf_impl_t *)dbp, NULL, flags);
/*
* We only try to heal when dbuf_read() returns a ECKSUMs.
* Other errors (even EIO) get returned to caller.
* EIO indicates that the device is not present/accessible,
* so writing to it will likely fail.
* If the block is healthy, we don't want to overwrite it
* unnecessarily.
*/
if (err != ECKSUM) {
dmu_buf_rele(dbp, FTAG);
return (err);
}
dn = dmu_buf_dnode_enter(dbp);
/* Make sure the on-disk block and recv record sizes match */
if (drrw->drr_logical_size !=
dn->dn_datablkszsec << SPA_MINBLOCKSHIFT) {
err = ENOTSUP;
dmu_buf_dnode_exit(dbp);
dmu_buf_rele(dbp, FTAG);
return (err);
}
/* Get the block pointer for the corrupted block */
bp = dmu_buf_get_blkptr(dbp);
err = do_corrective_recv(rwa, drrw, rrd, bp);
dmu_buf_dnode_exit(dbp);
dmu_buf_rele(dbp, FTAG);
return (err);
}
/*
* For resuming to work, records must be in increasing order
* by (object, offset).
*/
if (drrw->drr_object < rwa->last_object ||
(drrw->drr_object == rwa->last_object &&
drrw->drr_offset < rwa->last_offset)) {
return (SET_ERROR(EINVAL));
}
struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
uint64_t batch_size =
MIN(zfs_recv_write_batch_size, DMU_MAX_ACCESS / 2);
if (first_rrd != NULL &&
(drrw->drr_object != first_drrw->drr_object ||
drrw->drr_offset >= first_drrw->drr_offset + batch_size)) {
err = flush_write_batch(rwa);
if (err != 0)
return (err);
}
rwa->last_object = drrw->drr_object;
rwa->last_offset = drrw->drr_offset;
if (rwa->last_object > rwa->max_object)
rwa->max_object = rwa->last_object;
list_insert_tail(&rwa->write_batch, rrd);
/*
* Return EAGAIN to indicate that we will use this rrd again,
* so the caller should not free it
*/
return (EAGAIN);
}
static int
receive_write_embedded(struct receive_writer_arg *rwa,
struct drr_write_embedded *drrwe, void *data)
{
dmu_tx_t *tx;
int err;
if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
return (SET_ERROR(EINVAL));
if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
return (SET_ERROR(EINVAL));
if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
return (SET_ERROR(EINVAL));
if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
return (SET_ERROR(EINVAL));
if (rwa->raw)
return (SET_ERROR(EINVAL));
if (drrwe->drr_object > rwa->max_object)
rwa->max_object = drrwe->drr_object;
tx = dmu_tx_create(rwa->os);
dmu_tx_hold_write(tx, drrwe->drr_object,
drrwe->drr_offset, drrwe->drr_length);
err = dmu_tx_assign(tx, TXG_WAIT);
if (err != 0) {
dmu_tx_abort(tx);
return (err);
}
dmu_write_embedded(rwa->os, drrwe->drr_object,
drrwe->drr_offset, data, drrwe->drr_etype,
drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
/* See comment in restore_write. */
save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
dmu_tx_commit(tx);
return (0);
}
static int
receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
abd_t *abd)
{
dmu_buf_t *db, *db_spill;
int err;
if (drrs->drr_length < SPA_MINBLOCKSIZE ||
drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
return (SET_ERROR(EINVAL));
/*
* This is an unmodified spill block which was added to the stream
* to resolve an issue with incorrectly removing spill blocks. It
* should be ignored by current versions of the code which support
* the DRR_FLAG_SPILL_BLOCK flag.
*/
if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) {
abd_free(abd);
return (0);
}
if (rwa->raw) {
if (!DMU_OT_IS_VALID(drrs->drr_type) ||
drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS ||
drrs->drr_compressed_size == 0)
return (SET_ERROR(EINVAL));
}
if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
return (SET_ERROR(EINVAL));
if (drrs->drr_object > rwa->max_object)
rwa->max_object = drrs->drr_object;
VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG,
&db_spill)) != 0) {
dmu_buf_rele(db, FTAG);
return (err);
}
dmu_tx_t *tx = dmu_tx_create(rwa->os);
dmu_tx_hold_spill(tx, db->db_object);
err = dmu_tx_assign(tx, TXG_WAIT);
if (err != 0) {
dmu_buf_rele(db, FTAG);
dmu_buf_rele(db_spill, FTAG);
dmu_tx_abort(tx);
return (err);
}
/*
* Spill blocks may both grow and shrink. When a change in size
* occurs any existing dbuf must be updated to match the logical
* size of the provided arc_buf_t.
*/
if (db_spill->db_size != drrs->drr_length) {
dmu_buf_will_fill(db_spill, tx);
VERIFY0(dbuf_spill_set_blksz(db_spill,
drrs->drr_length, tx));
}
arc_buf_t *abuf;
if (rwa->raw) {
boolean_t byteorder = ZFS_HOST_BYTEORDER ^
!!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^
rwa->byteswap;
abuf = arc_loan_raw_buf(dmu_objset_spa(rwa->os),
drrs->drr_object, byteorder, drrs->drr_salt,
drrs->drr_iv, drrs->drr_mac, drrs->drr_type,
drrs->drr_compressed_size, drrs->drr_length,
drrs->drr_compressiontype, 0);
} else {
abuf = arc_loan_buf(dmu_objset_spa(rwa->os),
DMU_OT_IS_METADATA(drrs->drr_type),
drrs->drr_length);
if (rwa->byteswap) {
dmu_object_byteswap_t byteswap =
DMU_OT_BYTESWAP(drrs->drr_type);
dmu_ot_byteswap[byteswap].ob_func(abd_to_buf(abd),
DRR_SPILL_PAYLOAD_SIZE(drrs));
}
}
memcpy(abuf->b_data, abd_to_buf(abd), DRR_SPILL_PAYLOAD_SIZE(drrs));
abd_free(abd);
dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx);
dmu_buf_rele(db, FTAG);
dmu_buf_rele(db_spill, FTAG);
dmu_tx_commit(tx);
return (0);
}
noinline static int
receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
{
int err;
if (drrf->drr_length != -1ULL &&
drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
return (SET_ERROR(EINVAL));
if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
return (SET_ERROR(EINVAL));
if (drrf->drr_object > rwa->max_object)
rwa->max_object = drrf->drr_object;
err = dmu_free_long_range(rwa->os, drrf->drr_object,
drrf->drr_offset, drrf->drr_length);
return (err);
}
static int
receive_object_range(struct receive_writer_arg *rwa,
struct drr_object_range *drror)
{
/*
* By default, we assume this block is in our native format
* (ZFS_HOST_BYTEORDER). We then take into account whether
* the send stream is byteswapped (rwa->byteswap). Finally,
* we need to byteswap again if this particular block was
* in non-native format on the send side.
*/
boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^
!!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags);
/*
* Since dnode block sizes are constant, we should not need to worry
* about making sure that the dnode block size is the same on the
* sending and receiving sides for the time being. For non-raw sends,
* this does not matter (and in fact we do not send a DRR_OBJECT_RANGE
* record at all). Raw sends require this record type because the
* encryption parameters are used to protect an entire block of bonus
* buffers. If the size of dnode blocks ever becomes variable,
* handling will need to be added to ensure that dnode block sizes
* match on the sending and receiving side.
*/
if (drror->drr_numslots != DNODES_PER_BLOCK ||
P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 ||
!rwa->raw)
return (SET_ERROR(EINVAL));
if (drror->drr_firstobj > rwa->max_object)
rwa->max_object = drror->drr_firstobj;
/*
* The DRR_OBJECT_RANGE handling must be deferred to receive_object()
* so that the block of dnodes is not written out when it's empty,
* and converted to a HOLE BP.
*/
rwa->or_crypt_params_present = B_TRUE;
rwa->or_firstobj = drror->drr_firstobj;
rwa->or_numslots = drror->drr_numslots;
memcpy(rwa->or_salt, drror->drr_salt, ZIO_DATA_SALT_LEN);
memcpy(rwa->or_iv, drror->drr_iv, ZIO_DATA_IV_LEN);
memcpy(rwa->or_mac, drror->drr_mac, ZIO_DATA_MAC_LEN);
rwa->or_byteorder = byteorder;
rwa->or_need_sync = ORNS_MAYBE;
return (0);
}
/*
* Until we have the ability to redact large ranges of data efficiently, we
* process these records as frees.
*/
noinline static int
receive_redact(struct receive_writer_arg *rwa, struct drr_redact *drrr)
{
struct drr_free drrf = {0};
drrf.drr_length = drrr->drr_length;
drrf.drr_object = drrr->drr_object;
drrf.drr_offset = drrr->drr_offset;
drrf.drr_toguid = drrr->drr_toguid;
return (receive_free(rwa, &drrf));
}
/* used to destroy the drc_ds on error */
static void
dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
{
dsl_dataset_t *ds = drc->drc_ds;
ds_hold_flags_t dsflags;
dsflags = (drc->drc_raw) ? DS_HOLD_FLAG_NONE : DS_HOLD_FLAG_DECRYPT;
/*
* Wait for the txg sync before cleaning up the receive. For
* resumable receives, this ensures that our resume state has
* been written out to disk. For raw receives, this ensures
* that the user accounting code will not attempt to do anything
* after we stopped receiving the dataset.
*/
txg_wait_synced(ds->ds_dir->dd_pool, 0);
ds->ds_objset->os_raw_receive = B_FALSE;
rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
if (drc->drc_resumable && drc->drc_should_save &&
!BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) {
rrw_exit(&ds->ds_bp_rwlock, FTAG);
dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
} else {
char name[ZFS_MAX_DATASET_NAME_LEN];
rrw_exit(&ds->ds_bp_rwlock, FTAG);
dsl_dataset_name(ds, name);
dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
if (!drc->drc_heal)
(void) dsl_destroy_head(name);
}
}
static void
receive_cksum(dmu_recv_cookie_t *drc, int len, void *buf)
{
if (drc->drc_byteswap) {
(void) fletcher_4_incremental_byteswap(buf, len,
&drc->drc_cksum);
} else {
(void) fletcher_4_incremental_native(buf, len, &drc->drc_cksum);
}
}
/*
* Read the payload into a buffer of size len, and update the current record's
* payload field.
* Allocate drc->drc_next_rrd and read the next record's header into
* drc->drc_next_rrd->header.
* Verify checksum of payload and next record.
*/
static int
receive_read_payload_and_next_header(dmu_recv_cookie_t *drc, int len, void *buf)
{
int err;
if (len != 0) {
ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
err = receive_read(drc, len, buf);
if (err != 0)
return (err);
receive_cksum(drc, len, buf);
/* note: rrd is NULL when reading the begin record's payload */
if (drc->drc_rrd != NULL) {
drc->drc_rrd->payload = buf;
drc->drc_rrd->payload_size = len;
drc->drc_rrd->bytes_read = drc->drc_bytes_read;
}
} else {
ASSERT3P(buf, ==, NULL);
}
drc->drc_prev_cksum = drc->drc_cksum;
drc->drc_next_rrd = kmem_zalloc(sizeof (*drc->drc_next_rrd), KM_SLEEP);
err = receive_read(drc, sizeof (drc->drc_next_rrd->header),
&drc->drc_next_rrd->header);
drc->drc_next_rrd->bytes_read = drc->drc_bytes_read;
if (err != 0) {
kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
drc->drc_next_rrd = NULL;
return (err);
}
if (drc->drc_next_rrd->header.drr_type == DRR_BEGIN) {
kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
drc->drc_next_rrd = NULL;
return (SET_ERROR(EINVAL));
}
/*
* Note: checksum is of everything up to but not including the
* checksum itself.
*/
ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
receive_cksum(drc,
offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
&drc->drc_next_rrd->header);
zio_cksum_t cksum_orig =
drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
zio_cksum_t *cksump =
&drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
if (drc->drc_byteswap)
byteswap_record(&drc->drc_next_rrd->header);
if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
!ZIO_CHECKSUM_EQUAL(drc->drc_cksum, *cksump)) {
kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
drc->drc_next_rrd = NULL;
return (SET_ERROR(ECKSUM));
}
receive_cksum(drc, sizeof (cksum_orig), &cksum_orig);
return (0);
}
/*
* Issue the prefetch reads for any necessary indirect blocks.
*
* We use the object ignore list to tell us whether or not to issue prefetches
* for a given object. We do this for both correctness (in case the blocksize
* of an object has changed) and performance (if the object doesn't exist, don't
* needlessly try to issue prefetches). We also trim the list as we go through
* the stream to prevent it from growing to an unbounded size.
*
* The object numbers within will always be in sorted order, and any write
* records we see will also be in sorted order, but they're not sorted with
* respect to each other (i.e. we can get several object records before
* receiving each object's write records). As a result, once we've reached a
* given object number, we can safely remove any reference to lower object
* numbers in the ignore list. In practice, we receive up to 32 object records
* before receiving write records, so the list can have up to 32 nodes in it.
*/
static void
receive_read_prefetch(dmu_recv_cookie_t *drc, uint64_t object, uint64_t offset,
uint64_t length)
{
if (!objlist_exists(drc->drc_ignore_objlist, object)) {
dmu_prefetch(drc->drc_os, object, 1, offset, length,
ZIO_PRIORITY_SYNC_READ);
}
}
/*
* Read records off the stream, issuing any necessary prefetches.
*/
static int
receive_read_record(dmu_recv_cookie_t *drc)
{
int err;
switch (drc->drc_rrd->header.drr_type) {
case DRR_OBJECT:
{
struct drr_object *drro =
&drc->drc_rrd->header.drr_u.drr_object;
uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro);
void *buf = NULL;
dmu_object_info_t doi;
if (size != 0)
buf = kmem_zalloc(size, KM_SLEEP);
err = receive_read_payload_and_next_header(drc, size, buf);
if (err != 0) {
kmem_free(buf, size);
return (err);
}
err = dmu_object_info(drc->drc_os, drro->drr_object, &doi);
/*
* See receive_read_prefetch for an explanation why we're
* storing this object in the ignore_obj_list.
*/
if (err == ENOENT || err == EEXIST ||
(err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
objlist_insert(drc->drc_ignore_objlist,
drro->drr_object);
err = 0;
}
return (err);
}
case DRR_FREEOBJECTS:
{
err = receive_read_payload_and_next_header(drc, 0, NULL);
return (err);
}
case DRR_WRITE:
{
struct drr_write *drrw = &drc->drc_rrd->header.drr_u.drr_write;
int size = DRR_WRITE_PAYLOAD_SIZE(drrw);
abd_t *abd = abd_alloc_linear(size, B_FALSE);
err = receive_read_payload_and_next_header(drc, size,
abd_to_buf(abd));
if (err != 0) {
abd_free(abd);
return (err);
}
drc->drc_rrd->abd = abd;
receive_read_prefetch(drc, drrw->drr_object, drrw->drr_offset,
drrw->drr_logical_size);
return (err);
}
case DRR_WRITE_EMBEDDED:
{
struct drr_write_embedded *drrwe =
&drc->drc_rrd->header.drr_u.drr_write_embedded;
uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
void *buf = kmem_zalloc(size, KM_SLEEP);
err = receive_read_payload_and_next_header(drc, size, buf);
if (err != 0) {
kmem_free(buf, size);
return (err);
}
receive_read_prefetch(drc, drrwe->drr_object, drrwe->drr_offset,
drrwe->drr_length);
return (err);
}
case DRR_FREE:
case DRR_REDACT:
{
/*
* It might be beneficial to prefetch indirect blocks here, but
* we don't really have the data to decide for sure.
*/
err = receive_read_payload_and_next_header(drc, 0, NULL);
return (err);
}
case DRR_END:
{
struct drr_end *drre = &drc->drc_rrd->header.drr_u.drr_end;
if (!ZIO_CHECKSUM_EQUAL(drc->drc_prev_cksum,
drre->drr_checksum))
return (SET_ERROR(ECKSUM));
return (0);
}
case DRR_SPILL:
{
struct drr_spill *drrs = &drc->drc_rrd->header.drr_u.drr_spill;
int size = DRR_SPILL_PAYLOAD_SIZE(drrs);
abd_t *abd = abd_alloc_linear(size, B_FALSE);
err = receive_read_payload_and_next_header(drc, size,
abd_to_buf(abd));
if (err != 0)
abd_free(abd);
else
drc->drc_rrd->abd = abd;
return (err);
}
case DRR_OBJECT_RANGE:
{
err = receive_read_payload_and_next_header(drc, 0, NULL);
return (err);
}
default:
return (SET_ERROR(EINVAL));
}
}
static void
dprintf_drr(struct receive_record_arg *rrd, int err)
{
#ifdef ZFS_DEBUG
switch (rrd->header.drr_type) {
case DRR_OBJECT:
{
struct drr_object *drro = &rrd->header.drr_u.drr_object;
dprintf("drr_type = OBJECT obj = %llu type = %u "
"bonustype = %u blksz = %u bonuslen = %u cksumtype = %u "
"compress = %u dn_slots = %u err = %d\n",
(u_longlong_t)drro->drr_object, drro->drr_type,
drro->drr_bonustype, drro->drr_blksz, drro->drr_bonuslen,
drro->drr_checksumtype, drro->drr_compress,
drro->drr_dn_slots, err);
break;
}
case DRR_FREEOBJECTS:
{
struct drr_freeobjects *drrfo =
&rrd->header.drr_u.drr_freeobjects;
dprintf("drr_type = FREEOBJECTS firstobj = %llu "
"numobjs = %llu err = %d\n",
(u_longlong_t)drrfo->drr_firstobj,
(u_longlong_t)drrfo->drr_numobjs, err);
break;
}
case DRR_WRITE:
{
struct drr_write *drrw = &rrd->header.drr_u.drr_write;
dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu "
"lsize = %llu cksumtype = %u flags = %u "
"compress = %u psize = %llu err = %d\n",
(u_longlong_t)drrw->drr_object, drrw->drr_type,
(u_longlong_t)drrw->drr_offset,
(u_longlong_t)drrw->drr_logical_size,
drrw->drr_checksumtype, drrw->drr_flags,
drrw->drr_compressiontype,
(u_longlong_t)drrw->drr_compressed_size, err);
break;
}
case DRR_WRITE_BYREF:
{
struct drr_write_byref *drrwbr =
&rrd->header.drr_u.drr_write_byref;
dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu "
"length = %llu toguid = %llx refguid = %llx "
"refobject = %llu refoffset = %llu cksumtype = %u "
"flags = %u err = %d\n",
(u_longlong_t)drrwbr->drr_object,
(u_longlong_t)drrwbr->drr_offset,
(u_longlong_t)drrwbr->drr_length,
(u_longlong_t)drrwbr->drr_toguid,
(u_longlong_t)drrwbr->drr_refguid,
(u_longlong_t)drrwbr->drr_refobject,
(u_longlong_t)drrwbr->drr_refoffset,
drrwbr->drr_checksumtype, drrwbr->drr_flags, err);
break;
}
case DRR_WRITE_EMBEDDED:
{
struct drr_write_embedded *drrwe =
&rrd->header.drr_u.drr_write_embedded;
dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu "
"length = %llu compress = %u etype = %u lsize = %u "
"psize = %u err = %d\n",
(u_longlong_t)drrwe->drr_object,
(u_longlong_t)drrwe->drr_offset,
(u_longlong_t)drrwe->drr_length,
drrwe->drr_compression, drrwe->drr_etype,
drrwe->drr_lsize, drrwe->drr_psize, err);
break;
}
case DRR_FREE:
{
struct drr_free *drrf = &rrd->header.drr_u.drr_free;
dprintf("drr_type = FREE obj = %llu offset = %llu "
"length = %lld err = %d\n",
(u_longlong_t)drrf->drr_object,
(u_longlong_t)drrf->drr_offset,
(longlong_t)drrf->drr_length,
err);
break;
}
case DRR_SPILL:
{
struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
dprintf("drr_type = SPILL obj = %llu length = %llu "
"err = %d\n", (u_longlong_t)drrs->drr_object,
(u_longlong_t)drrs->drr_length, err);
break;
}
case DRR_OBJECT_RANGE:
{
struct drr_object_range *drror =
&rrd->header.drr_u.drr_object_range;
dprintf("drr_type = OBJECT_RANGE firstobj = %llu "
"numslots = %llu flags = %u err = %d\n",
(u_longlong_t)drror->drr_firstobj,
(u_longlong_t)drror->drr_numslots,
drror->drr_flags, err);
break;
}
default:
return;
}
#endif
}
/*
* Commit the records to the pool.
*/
static int
receive_process_record(struct receive_writer_arg *rwa,
struct receive_record_arg *rrd)
{
int err;
/* Processing in order, therefore bytes_read should be increasing. */
ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
rwa->bytes_read = rrd->bytes_read;
/* We can only heal write records; other ones get ignored */
if (rwa->heal && rrd->header.drr_type != DRR_WRITE) {
if (rrd->abd != NULL) {
abd_free(rrd->abd);
rrd->abd = NULL;
} else if (rrd->payload != NULL) {
kmem_free(rrd->payload, rrd->payload_size);
rrd->payload = NULL;
}
return (0);
}
if (!rwa->heal && rrd->header.drr_type != DRR_WRITE) {
err = flush_write_batch(rwa);
if (err != 0) {
if (rrd->abd != NULL) {
abd_free(rrd->abd);
rrd->abd = NULL;
rrd->payload = NULL;
} else if (rrd->payload != NULL) {
kmem_free(rrd->payload, rrd->payload_size);
rrd->payload = NULL;
}
return (err);
}
}
switch (rrd->header.drr_type) {
case DRR_OBJECT:
{
struct drr_object *drro = &rrd->header.drr_u.drr_object;
err = receive_object(rwa, drro, rrd->payload);
kmem_free(rrd->payload, rrd->payload_size);
rrd->payload = NULL;
break;
}
case DRR_FREEOBJECTS:
{
struct drr_freeobjects *drrfo =
&rrd->header.drr_u.drr_freeobjects;
err = receive_freeobjects(rwa, drrfo);
break;
}
case DRR_WRITE:
{
err = receive_process_write_record(rwa, rrd);
if (rwa->heal) {
/*
* If healing - always free the abd after processing
*/
abd_free(rrd->abd);
rrd->abd = NULL;
} else if (err != EAGAIN) {
/*
* On success, a non-healing
* receive_process_write_record() returns
* EAGAIN to indicate that we do not want to free
* the rrd or arc_buf.
*/
ASSERT(err != 0);
abd_free(rrd->abd);
rrd->abd = NULL;
}
break;
}
case DRR_WRITE_EMBEDDED:
{
struct drr_write_embedded *drrwe =
&rrd->header.drr_u.drr_write_embedded;
err = receive_write_embedded(rwa, drrwe, rrd->payload);
kmem_free(rrd->payload, rrd->payload_size);
rrd->payload = NULL;
break;
}
case DRR_FREE:
{
struct drr_free *drrf = &rrd->header.drr_u.drr_free;
err = receive_free(rwa, drrf);
break;
}
case DRR_SPILL:
{
struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
err = receive_spill(rwa, drrs, rrd->abd);
if (err != 0)
abd_free(rrd->abd);
rrd->abd = NULL;
rrd->payload = NULL;
break;
}
case DRR_OBJECT_RANGE:
{
struct drr_object_range *drror =
&rrd->header.drr_u.drr_object_range;
err = receive_object_range(rwa, drror);
break;
}
case DRR_REDACT:
{
struct drr_redact *drrr = &rrd->header.drr_u.drr_redact;
err = receive_redact(rwa, drrr);
break;
}
default:
err = (SET_ERROR(EINVAL));
}
if (err != 0)
dprintf_drr(rrd, err);
return (err);
}
/*
* dmu_recv_stream's worker thread; pull records off the queue, and then call
* receive_process_record When we're done, signal the main thread and exit.
*/
static __attribute__((noreturn)) void
receive_writer_thread(void *arg)
{
struct receive_writer_arg *rwa = arg;
struct receive_record_arg *rrd;
fstrans_cookie_t cookie = spl_fstrans_mark();
for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
rrd = bqueue_dequeue(&rwa->q)) {
/*
* If there's an error, the main thread will stop putting things
* on the queue, but we need to clear everything in it before we
* can exit.
*/
int err = 0;
if (rwa->err == 0) {
err = receive_process_record(rwa, rrd);
} else if (rrd->abd != NULL) {
abd_free(rrd->abd);
rrd->abd = NULL;
rrd->payload = NULL;
} else if (rrd->payload != NULL) {
kmem_free(rrd->payload, rrd->payload_size);
rrd->payload = NULL;
}
/*
* EAGAIN indicates that this record has been saved (on
* raw->write_batch), and will be used again, so we don't
* free it.
* When healing data we always need to free the record.
*/
if (err != EAGAIN || rwa->heal) {
if (rwa->err == 0)
rwa->err = err;
kmem_free(rrd, sizeof (*rrd));
}
}
kmem_free(rrd, sizeof (*rrd));
if (rwa->heal) {
zio_wait(rwa->heal_pio);
} else {
int err = flush_write_batch(rwa);
if (rwa->err == 0)
rwa->err = err;
}
mutex_enter(&rwa->mutex);
rwa->done = B_TRUE;
cv_signal(&rwa->cv);
mutex_exit(&rwa->mutex);
spl_fstrans_unmark(cookie);
thread_exit();
}
static int
resume_check(dmu_recv_cookie_t *drc, nvlist_t *begin_nvl)
{
uint64_t val;
objset_t *mos = dmu_objset_pool(drc->drc_os)->dp_meta_objset;
uint64_t dsobj = dmu_objset_id(drc->drc_os);
uint64_t resume_obj, resume_off;
if (nvlist_lookup_uint64(begin_nvl,
"resume_object", &resume_obj) != 0 ||
nvlist_lookup_uint64(begin_nvl,
"resume_offset", &resume_off) != 0) {
return (SET_ERROR(EINVAL));
}
VERIFY0(zap_lookup(mos, dsobj,
DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
if (resume_obj != val)
return (SET_ERROR(EINVAL));
VERIFY0(zap_lookup(mos, dsobj,
DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
if (resume_off != val)
return (SET_ERROR(EINVAL));
return (0);
}
/*
* Read in the stream's records, one by one, and apply them to the pool. There
* are two threads involved; the thread that calls this function will spin up a
* worker thread, read the records off the stream one by one, and issue
* prefetches for any necessary indirect blocks. It will then push the records
* onto an internal blocking queue. The worker thread will pull the records off
* the queue, and actually write the data into the DMU. This way, the worker
* thread doesn't have to wait for reads to complete, since everything it needs
* (the indirect blocks) will be prefetched.
*
* NB: callers *must* call dmu_recv_end() if this succeeds.
*/
int
dmu_recv_stream(dmu_recv_cookie_t *drc, offset_t *voffp)
{
int err = 0;
struct receive_writer_arg *rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP);
if (dsl_dataset_has_resume_receive_state(drc->drc_ds)) {
uint64_t bytes = 0;
(void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
sizeof (bytes), 1, &bytes);
drc->drc_bytes_read += bytes;
}
drc->drc_ignore_objlist = objlist_create();
/* these were verified in dmu_recv_begin */
ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
DMU_SUBSTREAM);
ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
ASSERT0(drc->drc_os->os_encrypted &&
(drc->drc_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA));
/* handle DSL encryption key payload */
if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
nvlist_t *keynvl = NULL;
ASSERT(drc->drc_os->os_encrypted);
ASSERT(drc->drc_raw);
err = nvlist_lookup_nvlist(drc->drc_begin_nvl, "crypt_keydata",
&keynvl);
if (err != 0)
goto out;
if (!drc->drc_heal) {
/*
* If this is a new dataset we set the key immediately.
* Otherwise we don't want to change the key until we
* are sure the rest of the receive succeeded so we
* stash the keynvl away until then.
*/
err = dsl_crypto_recv_raw(spa_name(drc->drc_os->os_spa),
drc->drc_ds->ds_object, drc->drc_fromsnapobj,
drc->drc_drrb->drr_type, keynvl, drc->drc_newfs);
if (err != 0)
goto out;
}
/* see comment in dmu_recv_end_sync() */
drc->drc_ivset_guid = 0;
(void) nvlist_lookup_uint64(keynvl, "to_ivset_guid",
&drc->drc_ivset_guid);
if (!drc->drc_newfs)
drc->drc_keynvl = fnvlist_dup(keynvl);
}
if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
err = resume_check(drc, drc->drc_begin_nvl);
if (err != 0)
goto out;
}
/*
* For compatibility with recursive send streams, we do this here,
* rather than in dmu_recv_begin. If we pull the next header too
* early, and it's the END record, we break the `recv_skip` logic.
*/
if (drc->drc_drr_begin->drr_payloadlen == 0) {
err = receive_read_payload_and_next_header(drc, 0, NULL);
if (err != 0)
goto out;
}
/*
* If we failed before this point we will clean up any new resume
* state that was created. Now that we've gotten past the initial
* checks we are ok to retain that resume state.
*/
drc->drc_should_save = B_TRUE;
(void) bqueue_init(&rwa->q, zfs_recv_queue_ff,
MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize),
offsetof(struct receive_record_arg, node));
cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL);
mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL);
rwa->os = drc->drc_os;
rwa->byteswap = drc->drc_byteswap;
rwa->heal = drc->drc_heal;
rwa->tofs = drc->drc_tofs;
rwa->resumable = drc->drc_resumable;
rwa->raw = drc->drc_raw;
rwa->spill = drc->drc_spill;
rwa->full = (drc->drc_drr_begin->drr_u.drr_begin.drr_fromguid == 0);
rwa->os->os_raw_receive = drc->drc_raw;
if (drc->drc_heal) {
rwa->heal_pio = zio_root(drc->drc_os->os_spa, NULL, NULL,
ZIO_FLAG_GODFATHER);
}
list_create(&rwa->write_batch, sizeof (struct receive_record_arg),
offsetof(struct receive_record_arg, node.bqn_node));
(void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc,
TS_RUN, minclsyspri);
/*
* We're reading rwa->err without locks, which is safe since we are the
* only reader, and the worker thread is the only writer. It's ok if we
* miss a write for an iteration or two of the loop, since the writer
* thread will keep freeing records we send it until we send it an eos
* marker.
*
* We can leave this loop in 3 ways: First, if rwa->err is
* non-zero. In that case, the writer thread will free the rrd we just
* pushed. Second, if we're interrupted; in that case, either it's the
* first loop and drc->drc_rrd was never allocated, or it's later, and
* drc->drc_rrd has been handed off to the writer thread who will free
* it. Finally, if receive_read_record fails or we're at the end of the
* stream, then we free drc->drc_rrd and exit.
*/
while (rwa->err == 0) {
if (issig(JUSTLOOKING) && issig(FORREAL)) {
err = SET_ERROR(EINTR);
break;
}
ASSERT3P(drc->drc_rrd, ==, NULL);
drc->drc_rrd = drc->drc_next_rrd;
drc->drc_next_rrd = NULL;
/* Allocates and loads header into drc->drc_next_rrd */
err = receive_read_record(drc);
if (drc->drc_rrd->header.drr_type == DRR_END || err != 0) {
kmem_free(drc->drc_rrd, sizeof (*drc->drc_rrd));
drc->drc_rrd = NULL;
break;
}
bqueue_enqueue(&rwa->q, drc->drc_rrd,
sizeof (struct receive_record_arg) +
drc->drc_rrd->payload_size);
drc->drc_rrd = NULL;
}
ASSERT3P(drc->drc_rrd, ==, NULL);
drc->drc_rrd = kmem_zalloc(sizeof (*drc->drc_rrd), KM_SLEEP);
drc->drc_rrd->eos_marker = B_TRUE;
bqueue_enqueue_flush(&rwa->q, drc->drc_rrd, 1);
mutex_enter(&rwa->mutex);
while (!rwa->done) {
/*
* We need to use cv_wait_sig() so that any process that may
* be sleeping here can still fork.
*/
(void) cv_wait_sig(&rwa->cv, &rwa->mutex);
}
mutex_exit(&rwa->mutex);
/*
* If we are receiving a full stream as a clone, all object IDs which
* are greater than the maximum ID referenced in the stream are
* by definition unused and must be freed.
*/
if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) {
uint64_t obj = rwa->max_object + 1;
int free_err = 0;
int next_err = 0;
while (next_err == 0) {
free_err = dmu_free_long_object(rwa->os, obj);
if (free_err != 0 && free_err != ENOENT)
break;
next_err = dmu_object_next(rwa->os, &obj, FALSE, 0);
}
if (err == 0) {
if (free_err != 0 && free_err != ENOENT)
err = free_err;
else if (next_err != ESRCH)
err = next_err;
}
}
cv_destroy(&rwa->cv);
mutex_destroy(&rwa->mutex);
bqueue_destroy(&rwa->q);
list_destroy(&rwa->write_batch);
if (err == 0)
err = rwa->err;
out:
/*
* If we hit an error before we started the receive_writer_thread
* we need to clean up the next_rrd we create by processing the
* DRR_BEGIN record.
*/
if (drc->drc_next_rrd != NULL)
kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
/*
* The objset will be invalidated by dmu_recv_end() when we do
* dsl_dataset_clone_swap_sync_impl().
*/
drc->drc_os = NULL;
kmem_free(rwa, sizeof (*rwa));
nvlist_free(drc->drc_begin_nvl);
if (err != 0) {
/*
* Clean up references. If receive is not resumable,
* destroy what we created, so we don't leave it in
* the inconsistent state.
*/
dmu_recv_cleanup_ds(drc);
nvlist_free(drc->drc_keynvl);
}
objlist_destroy(drc->drc_ignore_objlist);
drc->drc_ignore_objlist = NULL;
*voffp = drc->drc_voff;
return (err);
}
static int
dmu_recv_end_check(void *arg, dmu_tx_t *tx)
{
dmu_recv_cookie_t *drc = arg;
dsl_pool_t *dp = dmu_tx_pool(tx);
int error;
ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
if (drc->drc_heal) {
error = 0;
} else if (!drc->drc_newfs) {
dsl_dataset_t *origin_head;
error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
if (error != 0)
return (error);
if (drc->drc_force) {
/*
* We will destroy any snapshots in tofs (i.e. before
* origin_head) that are after the origin (which is
* the snap before drc_ds, because drc_ds can not
* have any snaps of its own).
*/
uint64_t obj;
obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
while (obj !=
dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
dsl_dataset_t *snap;
error = dsl_dataset_hold_obj(dp, obj, FTAG,
&snap);
if (error != 0)
break;
if (snap->ds_dir != origin_head->ds_dir)
error = SET_ERROR(EINVAL);
if (error == 0) {
error = dsl_destroy_snapshot_check_impl(
snap, B_FALSE);
}
obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
dsl_dataset_rele(snap, FTAG);
if (error != 0)
break;
}
if (error != 0) {
dsl_dataset_rele(origin_head, FTAG);
return (error);
}
}
if (drc->drc_keynvl != NULL) {
error = dsl_crypto_recv_raw_key_check(drc->drc_ds,
drc->drc_keynvl, tx);
if (error != 0) {
dsl_dataset_rele(origin_head, FTAG);
return (error);
}
}
error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
origin_head, drc->drc_force, drc->drc_owner, tx);
if (error != 0) {
dsl_dataset_rele(origin_head, FTAG);
return (error);
}
error = dsl_dataset_snapshot_check_impl(origin_head,
drc->drc_tosnap, tx, B_TRUE, 1,
drc->drc_cred, drc->drc_proc);
dsl_dataset_rele(origin_head, FTAG);
if (error != 0)
return (error);
error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
} else {
error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
drc->drc_tosnap, tx, B_TRUE, 1,
drc->drc_cred, drc->drc_proc);
}
return (error);
}
static void
dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
{
dmu_recv_cookie_t *drc = arg;
dsl_pool_t *dp = dmu_tx_pool(tx);
boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0;
uint64_t newsnapobj = 0;
spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
tx, "snap=%s", drc->drc_tosnap);
drc->drc_ds->ds_objset->os_raw_receive = B_FALSE;
if (drc->drc_heal) {
if (drc->drc_keynvl != NULL) {
nvlist_free(drc->drc_keynvl);
drc->drc_keynvl = NULL;
}
} else if (!drc->drc_newfs) {
dsl_dataset_t *origin_head;
VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
&origin_head));
if (drc->drc_force) {
/*
* Destroy any snapshots of drc_tofs (origin_head)
* after the origin (the snap before drc_ds).
*/
uint64_t obj;
obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
while (obj !=
dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
dsl_dataset_t *snap;
VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
&snap));
ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
dsl_destroy_snapshot_sync_impl(snap,
B_FALSE, tx);
dsl_dataset_rele(snap, FTAG);
}
}
if (drc->drc_keynvl != NULL) {
dsl_crypto_recv_raw_key_sync(drc->drc_ds,
drc->drc_keynvl, tx);
nvlist_free(drc->drc_keynvl);
drc->drc_keynvl = NULL;
}
VERIFY3P(drc->drc_ds->ds_prev, ==,
origin_head->ds_prev);
dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
origin_head, tx);
/*
* The objset was evicted by dsl_dataset_clone_swap_sync_impl,
* so drc_os is no longer valid.
*/
drc->drc_os = NULL;
dsl_dataset_snapshot_sync_impl(origin_head,
drc->drc_tosnap, tx);
/* set snapshot's creation time and guid */
dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
drc->drc_drrb->drr_creation_time;
dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
drc->drc_drrb->drr_toguid;
dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
~DS_FLAG_INCONSISTENT;
dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
dsl_dataset_phys(origin_head)->ds_flags &=
~DS_FLAG_INCONSISTENT;
newsnapobj =
dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
dsl_dataset_rele(origin_head, FTAG);
dsl_destroy_head_sync_impl(drc->drc_ds, tx);
if (drc->drc_owner != NULL)
VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
} else {
dsl_dataset_t *ds = drc->drc_ds;
dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
/* set snapshot's creation time and guid */
dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
drc->drc_drrb->drr_creation_time;
dsl_dataset_phys(ds->ds_prev)->ds_guid =
drc->drc_drrb->drr_toguid;
dsl_dataset_phys(ds->ds_prev)->ds_flags &=
~DS_FLAG_INCONSISTENT;
dmu_buf_will_dirty(ds->ds_dbuf, tx);
dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
if (dsl_dataset_has_resume_receive_state(ds)) {
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
DS_FIELD_RESUME_FROMGUID, tx);
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
DS_FIELD_RESUME_OBJECT, tx);
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
DS_FIELD_RESUME_OFFSET, tx);
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
DS_FIELD_RESUME_BYTES, tx);
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
DS_FIELD_RESUME_TOGUID, tx);
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
DS_FIELD_RESUME_TONAME, tx);
(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, tx);
}
newsnapobj =
dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
}
/*
* If this is a raw receive, the crypt_keydata nvlist will include
* a to_ivset_guid for us to set on the new snapshot. This value
* will override the value generated by the snapshot code. However,
* this value may not be present, because older implementations of
* the raw send code did not include this value, and we are still
* allowed to receive them if the zfs_disable_ivset_guid_check
* tunable is set, in which case we will leave the newly-generated
* value.
*/
if (!drc->drc_heal && drc->drc_raw && drc->drc_ivset_guid != 0) {
dmu_object_zapify(dp->dp_meta_objset, newsnapobj,
DMU_OT_DSL_DATASET, tx);
VERIFY0(zap_update(dp->dp_meta_objset, newsnapobj,
DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1,
&drc->drc_ivset_guid, tx));
}
/*
* Release the hold from dmu_recv_begin. This must be done before
* we return to open context, so that when we free the dataset's dnode
* we can evict its bonus buffer. Since the dataset may be destroyed
* at this point (and therefore won't have a valid pointer to the spa)
* we release the key mapping manually here while we do have a valid
* pointer, if it exists.
*/
if (!drc->drc_raw && encrypted) {
(void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa,
drc->drc_ds->ds_object, drc->drc_ds);
}
dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag);
drc->drc_ds = NULL;
}
static int dmu_recv_end_modified_blocks = 3;
static int
dmu_recv_existing_end(dmu_recv_cookie_t *drc)
{
#ifdef _KERNEL
/*
* We will be destroying the ds; make sure its origin is unmounted if
* necessary.
*/
char name[ZFS_MAX_DATASET_NAME_LEN];
dsl_dataset_name(drc->drc_ds, name);
zfs_destroy_unmount_origin(name);
#endif
return (dsl_sync_task(drc->drc_tofs,
dmu_recv_end_check, dmu_recv_end_sync, drc,
dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
}
static int
dmu_recv_new_end(dmu_recv_cookie_t *drc)
{
return (dsl_sync_task(drc->drc_tofs,
dmu_recv_end_check, dmu_recv_end_sync, drc,
dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
}
int
dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
{
int error;
drc->drc_owner = owner;
if (drc->drc_newfs)
error = dmu_recv_new_end(drc);
else
error = dmu_recv_existing_end(drc);
if (error != 0) {
dmu_recv_cleanup_ds(drc);
nvlist_free(drc->drc_keynvl);
} else if (!drc->drc_heal) {
if (drc->drc_newfs) {
zvol_create_minor(drc->drc_tofs);
}
char *snapname = kmem_asprintf("%s@%s",
drc->drc_tofs, drc->drc_tosnap);
zvol_create_minor(snapname);
kmem_strfree(snapname);
}
return (error);
}
/*
* Return TRUE if this objset is currently being received into.
*/
boolean_t
dmu_objset_is_receiving(objset_t *os)
{
return (os->os_dsl_dataset != NULL &&
os->os_dsl_dataset->ds_owner == dmu_recv_tag);
}
ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_length, UINT, ZMOD_RW,
"Maximum receive queue length");
ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_ff, UINT, ZMOD_RW,
"Receive queue fill fraction");
ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, write_batch_size, UINT, ZMOD_RW,
"Maximum amount of writes to batch into one transaction");
ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, best_effort_corrective, INT, ZMOD_RW,
"Ignore errors during corrective receive");
/* END CSTYLED */