freebsd-dev/module/zfs/spa_stats.c
Richard Yao fdc2d30371
Cleanup: Specify unsignedness on things that should not be signed
In #13871, zfs_vdev_aggregation_limit_non_rotating and
zfs_vdev_aggregation_limit being signed was pointed out as a possible
reason not to eliminate an unnecessary MAX(unsigned, 0) since the
unsigned value was assigned from them.

There is no reason for these module parameters to be signed and upon
inspection, it was found that there are a number of other module
parameters that are signed, but should not be, so we make them unsigned.
Making them unsigned made it clear that some other variables in the code
should also be unsigned, so we also make those unsigned. This prevents
users from setting negative values that could potentially cause bad
behaviors. It also makes the code slightly easier to understand.

Mostly module parameters that deal with timeouts, limits, bitshifts and
percentages are made unsigned by this. Any that are boolean are left
signed, since whether booleans should be considered signed or unsigned
does not matter.

Making zfs_arc_lotsfree_percent unsigned caused a
`zfs_arc_lotsfree_percent >= 0` check to become redundant, so it was
removed. Removing the check was also necessary to prevent a compiler
error from -Werror=type-limits.

Several end of line comments had to be moved to their own lines because
replacing int with uint_t caused us to exceed the 80 character limit
enforced by cstyle.pl.

The following were kept signed because they are passed to
taskq_create(), which expects signed values and modifying the
OpenSolaris/Illumos DDI is out of scope of this patch:

	* metaslab_load_pct
	* zfs_sync_taskq_batch_pct
	* zfs_zil_clean_taskq_nthr_pct
	* zfs_zil_clean_taskq_minalloc
	* zfs_zil_clean_taskq_maxalloc
	* zfs_arc_prune_task_threads

Also, negative values in those parameters was found to be harmless.

The following were left signed because either negative values make
sense, or more analysis was needed to determine whether negative values
should be disallowed:

	* zfs_metaslab_switch_threshold
	* zfs_pd_bytes_max
	* zfs_livelist_min_percent_shared

zfs_multihost_history was made static to be consistent with other
parameters.

A number of module parameters were marked as signed, but in reality
referenced unsigned variables. upgrade_errlog_limit is one of the
numerous examples. In the case of zfs_vdev_async_read_max_active, it was
already uint32_t, but zdb had an extern int declaration for it.

Interestingly, the documentation in zfs.4 was right for
upgrade_errlog_limit despite the module parameter being wrongly marked,
while the documentation for zfs_vdev_async_read_max_active (and friends)
was wrong. It was also wrong for zstd_abort_size, which was unsigned,
but was documented as signed.

Also, the documentation in zfs.4 incorrectly described the following
parameters as ulong when they were int:

	* zfs_arc_meta_adjust_restarts
	* zfs_override_estimate_recordsize

They are now uint_t as of this patch and thus the man page has been
updated to describe them as uint.

dbuf_state_index was left alone since it does nothing and perhaps should
be removed in another patch.

If any module parameters were missed, they were not found by `grep -r
'ZFS_MODULE_PARAM' | grep ', INT'`. I did find a few that grep missed,
but only because they were in files that had hits.

This patch intentionally did not attempt to address whether some of
these module parameters should be elevated to 64-bit parameters, because
the length of a long on 32-bit is 32-bit.

Lastly, it was pointed out during review that uint_t is a better match
for these variables than uint32_t because FreeBSD kernel parameter
definitions are designed for uint_t, whose bit width can change in
future memory models.  As a result, we change the existing parameters
that are uint32_t to use uint_t.

Reviewed-by: Alexander Motin <mav@FreeBSD.org>
Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Reviewed-by: Neal Gompa <ngompa@datto.com>
Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Closes #13875
2022-09-27 16:42:41 -07:00

1026 lines
27 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
#include <sys/zfs_context.h>
#include <sys/spa_impl.h>
#include <sys/vdev_impl.h>
#include <sys/spa.h>
#include <zfs_comutil.h>
/*
* Keeps stats on last N reads per spa_t, disabled by default.
*/
static uint_t zfs_read_history = B_FALSE;
/*
* Include cache hits in history, disabled by default.
*/
static int zfs_read_history_hits = B_FALSE;
/*
* Keeps stats on the last 100 txgs by default.
*/
static uint_t zfs_txg_history = 100;
/*
* Keeps stats on the last N MMP updates, disabled by default.
*/
static uint_t zfs_multihost_history = B_FALSE;
/*
* ==========================================================================
* SPA Read History Routines
* ==========================================================================
*/
/*
* Read statistics - Information exported regarding each arc_read call
*/
typedef struct spa_read_history {
hrtime_t start; /* time read completed */
uint64_t objset; /* read from this objset */
uint64_t object; /* read of this object number */
uint64_t level; /* block's indirection level */
uint64_t blkid; /* read of this block id */
char origin[24]; /* read originated from here */
uint32_t aflags; /* ARC flags (cached, prefetch, etc.) */
pid_t pid; /* PID of task doing read */
char comm[16]; /* process name of task doing read */
procfs_list_node_t srh_node;
} spa_read_history_t;
static int
spa_read_history_show_header(struct seq_file *f)
{
seq_printf(f, "%-8s %-16s %-8s %-8s %-8s %-8s %-8s "
"%-24s %-8s %-16s\n", "UID", "start", "objset", "object",
"level", "blkid", "aflags", "origin", "pid", "process");
return (0);
}
static int
spa_read_history_show(struct seq_file *f, void *data)
{
spa_read_history_t *srh = (spa_read_history_t *)data;
seq_printf(f, "%-8llu %-16llu 0x%-6llx "
"%-8lli %-8lli %-8lli 0x%-6x %-24s %-8i %-16s\n",
(u_longlong_t)srh->srh_node.pln_id, srh->start,
(longlong_t)srh->objset, (longlong_t)srh->object,
(longlong_t)srh->level, (longlong_t)srh->blkid,
srh->aflags, srh->origin, srh->pid, srh->comm);
return (0);
}
/* Remove oldest elements from list until there are no more than 'size' left */
static void
spa_read_history_truncate(spa_history_list_t *shl, unsigned int size)
{
spa_read_history_t *srh;
while (shl->size > size) {
srh = list_remove_head(&shl->procfs_list.pl_list);
ASSERT3P(srh, !=, NULL);
kmem_free(srh, sizeof (spa_read_history_t));
shl->size--;
}
if (size == 0)
ASSERT(list_is_empty(&shl->procfs_list.pl_list));
}
static int
spa_read_history_clear(procfs_list_t *procfs_list)
{
spa_history_list_t *shl = procfs_list->pl_private;
mutex_enter(&procfs_list->pl_lock);
spa_read_history_truncate(shl, 0);
mutex_exit(&procfs_list->pl_lock);
return (0);
}
static void
spa_read_history_init(spa_t *spa)
{
spa_history_list_t *shl = &spa->spa_stats.read_history;
shl->size = 0;
shl->procfs_list.pl_private = shl;
procfs_list_install("zfs",
spa_name(spa),
"reads",
0600,
&shl->procfs_list,
spa_read_history_show,
spa_read_history_show_header,
spa_read_history_clear,
offsetof(spa_read_history_t, srh_node));
}
static void
spa_read_history_destroy(spa_t *spa)
{
spa_history_list_t *shl = &spa->spa_stats.read_history;
procfs_list_uninstall(&shl->procfs_list);
spa_read_history_truncate(shl, 0);
procfs_list_destroy(&shl->procfs_list);
}
void
spa_read_history_add(spa_t *spa, const zbookmark_phys_t *zb, uint32_t aflags)
{
spa_history_list_t *shl = &spa->spa_stats.read_history;
spa_read_history_t *srh;
ASSERT3P(spa, !=, NULL);
ASSERT3P(zb, !=, NULL);
if (zfs_read_history == 0 && shl->size == 0)
return;
if (zfs_read_history_hits == 0 && (aflags & ARC_FLAG_CACHED))
return;
srh = kmem_zalloc(sizeof (spa_read_history_t), KM_SLEEP);
strlcpy(srh->comm, getcomm(), sizeof (srh->comm));
srh->start = gethrtime();
srh->objset = zb->zb_objset;
srh->object = zb->zb_object;
srh->level = zb->zb_level;
srh->blkid = zb->zb_blkid;
srh->aflags = aflags;
srh->pid = getpid();
mutex_enter(&shl->procfs_list.pl_lock);
procfs_list_add(&shl->procfs_list, srh);
shl->size++;
spa_read_history_truncate(shl, zfs_read_history);
mutex_exit(&shl->procfs_list.pl_lock);
}
/*
* ==========================================================================
* SPA TXG History Routines
* ==========================================================================
*/
/*
* Txg statistics - Information exported regarding each txg sync
*/
typedef struct spa_txg_history {
uint64_t txg; /* txg id */
txg_state_t state; /* active txg state */
uint64_t nread; /* number of bytes read */
uint64_t nwritten; /* number of bytes written */
uint64_t reads; /* number of read operations */
uint64_t writes; /* number of write operations */
uint64_t ndirty; /* number of dirty bytes */
hrtime_t times[TXG_STATE_COMMITTED]; /* completion times */
procfs_list_node_t sth_node;
} spa_txg_history_t;
static int
spa_txg_history_show_header(struct seq_file *f)
{
seq_printf(f, "%-8s %-16s %-5s %-12s %-12s %-12s "
"%-8s %-8s %-12s %-12s %-12s %-12s\n", "txg", "birth", "state",
"ndirty", "nread", "nwritten", "reads", "writes",
"otime", "qtime", "wtime", "stime");
return (0);
}
static int
spa_txg_history_show(struct seq_file *f, void *data)
{
spa_txg_history_t *sth = (spa_txg_history_t *)data;
uint64_t open = 0, quiesce = 0, wait = 0, sync = 0;
char state;
switch (sth->state) {
case TXG_STATE_BIRTH: state = 'B'; break;
case TXG_STATE_OPEN: state = 'O'; break;
case TXG_STATE_QUIESCED: state = 'Q'; break;
case TXG_STATE_WAIT_FOR_SYNC: state = 'W'; break;
case TXG_STATE_SYNCED: state = 'S'; break;
case TXG_STATE_COMMITTED: state = 'C'; break;
default: state = '?'; break;
}
if (sth->times[TXG_STATE_OPEN])
open = sth->times[TXG_STATE_OPEN] -
sth->times[TXG_STATE_BIRTH];
if (sth->times[TXG_STATE_QUIESCED])
quiesce = sth->times[TXG_STATE_QUIESCED] -
sth->times[TXG_STATE_OPEN];
if (sth->times[TXG_STATE_WAIT_FOR_SYNC])
wait = sth->times[TXG_STATE_WAIT_FOR_SYNC] -
sth->times[TXG_STATE_QUIESCED];
if (sth->times[TXG_STATE_SYNCED])
sync = sth->times[TXG_STATE_SYNCED] -
sth->times[TXG_STATE_WAIT_FOR_SYNC];
seq_printf(f, "%-8llu %-16llu %-5c %-12llu "
"%-12llu %-12llu %-8llu %-8llu %-12llu %-12llu %-12llu %-12llu\n",
(longlong_t)sth->txg, sth->times[TXG_STATE_BIRTH], state,
(u_longlong_t)sth->ndirty,
(u_longlong_t)sth->nread, (u_longlong_t)sth->nwritten,
(u_longlong_t)sth->reads, (u_longlong_t)sth->writes,
(u_longlong_t)open, (u_longlong_t)quiesce, (u_longlong_t)wait,
(u_longlong_t)sync);
return (0);
}
/* Remove oldest elements from list until there are no more than 'size' left */
static void
spa_txg_history_truncate(spa_history_list_t *shl, unsigned int size)
{
spa_txg_history_t *sth;
while (shl->size > size) {
sth = list_remove_head(&shl->procfs_list.pl_list);
ASSERT3P(sth, !=, NULL);
kmem_free(sth, sizeof (spa_txg_history_t));
shl->size--;
}
if (size == 0)
ASSERT(list_is_empty(&shl->procfs_list.pl_list));
}
static int
spa_txg_history_clear(procfs_list_t *procfs_list)
{
spa_history_list_t *shl = procfs_list->pl_private;
mutex_enter(&procfs_list->pl_lock);
spa_txg_history_truncate(shl, 0);
mutex_exit(&procfs_list->pl_lock);
return (0);
}
static void
spa_txg_history_init(spa_t *spa)
{
spa_history_list_t *shl = &spa->spa_stats.txg_history;
shl->size = 0;
shl->procfs_list.pl_private = shl;
procfs_list_install("zfs",
spa_name(spa),
"txgs",
0644,
&shl->procfs_list,
spa_txg_history_show,
spa_txg_history_show_header,
spa_txg_history_clear,
offsetof(spa_txg_history_t, sth_node));
}
static void
spa_txg_history_destroy(spa_t *spa)
{
spa_history_list_t *shl = &spa->spa_stats.txg_history;
procfs_list_uninstall(&shl->procfs_list);
spa_txg_history_truncate(shl, 0);
procfs_list_destroy(&shl->procfs_list);
}
/*
* Add a new txg to historical record.
*/
void
spa_txg_history_add(spa_t *spa, uint64_t txg, hrtime_t birth_time)
{
spa_history_list_t *shl = &spa->spa_stats.txg_history;
spa_txg_history_t *sth;
if (zfs_txg_history == 0 && shl->size == 0)
return;
sth = kmem_zalloc(sizeof (spa_txg_history_t), KM_SLEEP);
sth->txg = txg;
sth->state = TXG_STATE_OPEN;
sth->times[TXG_STATE_BIRTH] = birth_time;
mutex_enter(&shl->procfs_list.pl_lock);
procfs_list_add(&shl->procfs_list, sth);
shl->size++;
spa_txg_history_truncate(shl, zfs_txg_history);
mutex_exit(&shl->procfs_list.pl_lock);
}
/*
* Set txg state completion time and increment current state.
*/
int
spa_txg_history_set(spa_t *spa, uint64_t txg, txg_state_t completed_state,
hrtime_t completed_time)
{
spa_history_list_t *shl = &spa->spa_stats.txg_history;
spa_txg_history_t *sth;
int error = ENOENT;
if (zfs_txg_history == 0)
return (0);
mutex_enter(&shl->procfs_list.pl_lock);
for (sth = list_tail(&shl->procfs_list.pl_list); sth != NULL;
sth = list_prev(&shl->procfs_list.pl_list, sth)) {
if (sth->txg == txg) {
sth->times[completed_state] = completed_time;
sth->state++;
error = 0;
break;
}
}
mutex_exit(&shl->procfs_list.pl_lock);
return (error);
}
/*
* Set txg IO stats.
*/
static int
spa_txg_history_set_io(spa_t *spa, uint64_t txg, uint64_t nread,
uint64_t nwritten, uint64_t reads, uint64_t writes, uint64_t ndirty)
{
spa_history_list_t *shl = &spa->spa_stats.txg_history;
spa_txg_history_t *sth;
int error = ENOENT;
if (zfs_txg_history == 0)
return (0);
mutex_enter(&shl->procfs_list.pl_lock);
for (sth = list_tail(&shl->procfs_list.pl_list); sth != NULL;
sth = list_prev(&shl->procfs_list.pl_list, sth)) {
if (sth->txg == txg) {
sth->nread = nread;
sth->nwritten = nwritten;
sth->reads = reads;
sth->writes = writes;
sth->ndirty = ndirty;
error = 0;
break;
}
}
mutex_exit(&shl->procfs_list.pl_lock);
return (error);
}
txg_stat_t *
spa_txg_history_init_io(spa_t *spa, uint64_t txg, dsl_pool_t *dp)
{
txg_stat_t *ts;
if (zfs_txg_history == 0)
return (NULL);
ts = kmem_alloc(sizeof (txg_stat_t), KM_SLEEP);
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
vdev_get_stats(spa->spa_root_vdev, &ts->vs1);
spa_config_exit(spa, SCL_CONFIG, FTAG);
ts->txg = txg;
ts->ndirty = dp->dp_dirty_pertxg[txg & TXG_MASK];
spa_txg_history_set(spa, txg, TXG_STATE_WAIT_FOR_SYNC, gethrtime());
return (ts);
}
void
spa_txg_history_fini_io(spa_t *spa, txg_stat_t *ts)
{
if (ts == NULL)
return;
if (zfs_txg_history == 0) {
kmem_free(ts, sizeof (txg_stat_t));
return;
}
spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
vdev_get_stats(spa->spa_root_vdev, &ts->vs2);
spa_config_exit(spa, SCL_CONFIG, FTAG);
spa_txg_history_set(spa, ts->txg, TXG_STATE_SYNCED, gethrtime());
spa_txg_history_set_io(spa, ts->txg,
ts->vs2.vs_bytes[ZIO_TYPE_READ] - ts->vs1.vs_bytes[ZIO_TYPE_READ],
ts->vs2.vs_bytes[ZIO_TYPE_WRITE] - ts->vs1.vs_bytes[ZIO_TYPE_WRITE],
ts->vs2.vs_ops[ZIO_TYPE_READ] - ts->vs1.vs_ops[ZIO_TYPE_READ],
ts->vs2.vs_ops[ZIO_TYPE_WRITE] - ts->vs1.vs_ops[ZIO_TYPE_WRITE],
ts->ndirty);
kmem_free(ts, sizeof (txg_stat_t));
}
/*
* ==========================================================================
* SPA TX Assign Histogram Routines
* ==========================================================================
*/
/*
* Tx statistics - Information exported regarding dmu_tx_assign time.
*/
/*
* When the kstat is written zero all buckets. When the kstat is read
* count the number of trailing buckets set to zero and update ks_ndata
* such that they are not output.
*/
static int
spa_tx_assign_update(kstat_t *ksp, int rw)
{
spa_t *spa = ksp->ks_private;
spa_history_kstat_t *shk = &spa->spa_stats.tx_assign_histogram;
int i;
if (rw == KSTAT_WRITE) {
for (i = 0; i < shk->count; i++)
((kstat_named_t *)shk->priv)[i].value.ui64 = 0;
}
for (i = shk->count; i > 0; i--)
if (((kstat_named_t *)shk->priv)[i-1].value.ui64 != 0)
break;
ksp->ks_ndata = i;
ksp->ks_data_size = i * sizeof (kstat_named_t);
return (0);
}
static void
spa_tx_assign_init(spa_t *spa)
{
spa_history_kstat_t *shk = &spa->spa_stats.tx_assign_histogram;
char *name;
kstat_named_t *ks;
kstat_t *ksp;
int i;
mutex_init(&shk->lock, NULL, MUTEX_DEFAULT, NULL);
shk->count = 42; /* power of two buckets for 1ns to 2,199s */
shk->size = shk->count * sizeof (kstat_named_t);
shk->priv = kmem_alloc(shk->size, KM_SLEEP);
name = kmem_asprintf("zfs/%s", spa_name(spa));
for (i = 0; i < shk->count; i++) {
ks = &((kstat_named_t *)shk->priv)[i];
ks->data_type = KSTAT_DATA_UINT64;
ks->value.ui64 = 0;
(void) snprintf(ks->name, KSTAT_STRLEN, "%llu ns",
(u_longlong_t)1 << i);
}
ksp = kstat_create(name, 0, "dmu_tx_assign", "misc",
KSTAT_TYPE_NAMED, 0, KSTAT_FLAG_VIRTUAL);
shk->kstat = ksp;
if (ksp) {
ksp->ks_lock = &shk->lock;
ksp->ks_data = shk->priv;
ksp->ks_ndata = shk->count;
ksp->ks_data_size = shk->size;
ksp->ks_private = spa;
ksp->ks_update = spa_tx_assign_update;
kstat_install(ksp);
}
kmem_strfree(name);
}
static void
spa_tx_assign_destroy(spa_t *spa)
{
spa_history_kstat_t *shk = &spa->spa_stats.tx_assign_histogram;
kstat_t *ksp;
ksp = shk->kstat;
if (ksp)
kstat_delete(ksp);
kmem_free(shk->priv, shk->size);
mutex_destroy(&shk->lock);
}
void
spa_tx_assign_add_nsecs(spa_t *spa, uint64_t nsecs)
{
spa_history_kstat_t *shk = &spa->spa_stats.tx_assign_histogram;
uint64_t idx = 0;
while (((1ULL << idx) < nsecs) && (idx < shk->size - 1))
idx++;
atomic_inc_64(&((kstat_named_t *)shk->priv)[idx].value.ui64);
}
/*
* ==========================================================================
* SPA MMP History Routines
* ==========================================================================
*/
/*
* MMP statistics - Information exported regarding attempted MMP writes
* For MMP writes issued, fields used as per comments below.
* For MMP writes skipped, an entry represents a span of time when
* writes were skipped for same reason (error from mmp_random_leaf).
* Differences are:
* timestamp time first write skipped, if >1 skipped in a row
* mmp_delay delay value at timestamp
* vdev_guid number of writes skipped
* io_error one of enum mmp_error
* duration time span (ns) of skipped writes
*/
typedef struct spa_mmp_history {
uint64_t mmp_node_id; /* unique # for updates */
uint64_t txg; /* txg of last sync */
uint64_t timestamp; /* UTC time MMP write issued */
uint64_t mmp_delay; /* mmp_thread.mmp_delay at timestamp */
uint64_t vdev_guid; /* unique ID of leaf vdev */
char *vdev_path;
int vdev_label; /* vdev label */
int io_error; /* error status of MMP write */
hrtime_t error_start; /* hrtime of start of error period */
hrtime_t duration; /* time from submission to completion */
procfs_list_node_t smh_node;
} spa_mmp_history_t;
static int
spa_mmp_history_show_header(struct seq_file *f)
{
seq_printf(f, "%-10s %-10s %-10s %-6s %-10s %-12s %-24s "
"%-10s %s\n", "id", "txg", "timestamp", "error", "duration",
"mmp_delay", "vdev_guid", "vdev_label", "vdev_path");
return (0);
}
static int
spa_mmp_history_show(struct seq_file *f, void *data)
{
spa_mmp_history_t *smh = (spa_mmp_history_t *)data;
char skip_fmt[] = "%-10llu %-10llu %10llu %#6llx %10lld %12llu %-24llu "
"%-10lld %s\n";
char write_fmt[] = "%-10llu %-10llu %10llu %6lld %10lld %12llu %-24llu "
"%-10lld %s\n";
seq_printf(f, (smh->error_start ? skip_fmt : write_fmt),
(u_longlong_t)smh->mmp_node_id, (u_longlong_t)smh->txg,
(u_longlong_t)smh->timestamp, (longlong_t)smh->io_error,
(longlong_t)smh->duration, (u_longlong_t)smh->mmp_delay,
(u_longlong_t)smh->vdev_guid, (u_longlong_t)smh->vdev_label,
(smh->vdev_path ? smh->vdev_path : "-"));
return (0);
}
/* Remove oldest elements from list until there are no more than 'size' left */
static void
spa_mmp_history_truncate(spa_history_list_t *shl, unsigned int size)
{
spa_mmp_history_t *smh;
while (shl->size > size) {
smh = list_remove_head(&shl->procfs_list.pl_list);
if (smh->vdev_path)
kmem_strfree(smh->vdev_path);
kmem_free(smh, sizeof (spa_mmp_history_t));
shl->size--;
}
if (size == 0)
ASSERT(list_is_empty(&shl->procfs_list.pl_list));
}
static int
spa_mmp_history_clear(procfs_list_t *procfs_list)
{
spa_history_list_t *shl = procfs_list->pl_private;
mutex_enter(&procfs_list->pl_lock);
spa_mmp_history_truncate(shl, 0);
mutex_exit(&procfs_list->pl_lock);
return (0);
}
static void
spa_mmp_history_init(spa_t *spa)
{
spa_history_list_t *shl = &spa->spa_stats.mmp_history;
shl->size = 0;
shl->procfs_list.pl_private = shl;
procfs_list_install("zfs",
spa_name(spa),
"multihost",
0644,
&shl->procfs_list,
spa_mmp_history_show,
spa_mmp_history_show_header,
spa_mmp_history_clear,
offsetof(spa_mmp_history_t, smh_node));
}
static void
spa_mmp_history_destroy(spa_t *spa)
{
spa_history_list_t *shl = &spa->spa_stats.mmp_history;
procfs_list_uninstall(&shl->procfs_list);
spa_mmp_history_truncate(shl, 0);
procfs_list_destroy(&shl->procfs_list);
}
/*
* Set duration in existing "skip" record to how long we have waited for a leaf
* vdev to become available.
*
* Important that we start search at the tail of the list where new
* records are inserted, so this is normally an O(1) operation.
*/
int
spa_mmp_history_set_skip(spa_t *spa, uint64_t mmp_node_id)
{
spa_history_list_t *shl = &spa->spa_stats.mmp_history;
spa_mmp_history_t *smh;
int error = ENOENT;
if (zfs_multihost_history == 0 && shl->size == 0)
return (0);
mutex_enter(&shl->procfs_list.pl_lock);
for (smh = list_tail(&shl->procfs_list.pl_list); smh != NULL;
smh = list_prev(&shl->procfs_list.pl_list, smh)) {
if (smh->mmp_node_id == mmp_node_id) {
ASSERT3U(smh->io_error, !=, 0);
smh->duration = gethrtime() - smh->error_start;
smh->vdev_guid++;
error = 0;
break;
}
}
mutex_exit(&shl->procfs_list.pl_lock);
return (error);
}
/*
* Set MMP write duration and error status in existing record.
* See comment re: search order above spa_mmp_history_set_skip().
*/
int
spa_mmp_history_set(spa_t *spa, uint64_t mmp_node_id, int io_error,
hrtime_t duration)
{
spa_history_list_t *shl = &spa->spa_stats.mmp_history;
spa_mmp_history_t *smh;
int error = ENOENT;
if (zfs_multihost_history == 0 && shl->size == 0)
return (0);
mutex_enter(&shl->procfs_list.pl_lock);
for (smh = list_tail(&shl->procfs_list.pl_list); smh != NULL;
smh = list_prev(&shl->procfs_list.pl_list, smh)) {
if (smh->mmp_node_id == mmp_node_id) {
ASSERT(smh->io_error == 0);
smh->io_error = io_error;
smh->duration = duration;
error = 0;
break;
}
}
mutex_exit(&shl->procfs_list.pl_lock);
return (error);
}
/*
* Add a new MMP historical record.
* error == 0 : a write was issued.
* error != 0 : a write was not issued because no leaves were found.
*/
void
spa_mmp_history_add(spa_t *spa, uint64_t txg, uint64_t timestamp,
uint64_t mmp_delay, vdev_t *vd, int label, uint64_t mmp_node_id,
int error)
{
spa_history_list_t *shl = &spa->spa_stats.mmp_history;
spa_mmp_history_t *smh;
if (zfs_multihost_history == 0 && shl->size == 0)
return;
smh = kmem_zalloc(sizeof (spa_mmp_history_t), KM_SLEEP);
smh->txg = txg;
smh->timestamp = timestamp;
smh->mmp_delay = mmp_delay;
if (vd) {
smh->vdev_guid = vd->vdev_guid;
if (vd->vdev_path)
smh->vdev_path = kmem_strdup(vd->vdev_path);
}
smh->vdev_label = label;
smh->mmp_node_id = mmp_node_id;
if (error) {
smh->io_error = error;
smh->error_start = gethrtime();
smh->vdev_guid = 1;
}
mutex_enter(&shl->procfs_list.pl_lock);
procfs_list_add(&shl->procfs_list, smh);
shl->size++;
spa_mmp_history_truncate(shl, zfs_multihost_history);
mutex_exit(&shl->procfs_list.pl_lock);
}
static void *
spa_state_addr(kstat_t *ksp, loff_t n)
{
if (n == 0)
return (ksp->ks_private); /* return the spa_t */
return (NULL);
}
static int
spa_state_data(char *buf, size_t size, void *data)
{
spa_t *spa = (spa_t *)data;
(void) snprintf(buf, size, "%s\n", spa_state_to_name(spa));
return (0);
}
/*
* Return the state of the pool in /proc/spl/kstat/zfs/<pool>/state.
*
* This is a lock-less read of the pool's state (unlike using 'zpool', which
* can potentially block for seconds). Because it doesn't block, it can useful
* as a pool heartbeat value.
*/
static void
spa_state_init(spa_t *spa)
{
spa_history_kstat_t *shk = &spa->spa_stats.state;
char *name;
kstat_t *ksp;
mutex_init(&shk->lock, NULL, MUTEX_DEFAULT, NULL);
name = kmem_asprintf("zfs/%s", spa_name(spa));
ksp = kstat_create(name, 0, "state", "misc",
KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VIRTUAL);
shk->kstat = ksp;
if (ksp) {
ksp->ks_lock = &shk->lock;
ksp->ks_data = NULL;
ksp->ks_private = spa;
ksp->ks_flags |= KSTAT_FLAG_NO_HEADERS;
kstat_set_raw_ops(ksp, NULL, spa_state_data, spa_state_addr);
kstat_install(ksp);
}
kmem_strfree(name);
}
static int
spa_guid_data(char *buf, size_t size, void *data)
{
spa_t *spa = (spa_t *)data;
(void) snprintf(buf, size, "%llu\n", (u_longlong_t)spa_guid(spa));
return (0);
}
static void
spa_guid_init(spa_t *spa)
{
spa_history_kstat_t *shk = &spa->spa_stats.guid;
char *name;
kstat_t *ksp;
mutex_init(&shk->lock, NULL, MUTEX_DEFAULT, NULL);
name = kmem_asprintf("zfs/%s", spa_name(spa));
ksp = kstat_create(name, 0, "guid", "misc",
KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VIRTUAL);
shk->kstat = ksp;
if (ksp) {
ksp->ks_lock = &shk->lock;
ksp->ks_data = NULL;
ksp->ks_private = spa;
ksp->ks_flags |= KSTAT_FLAG_NO_HEADERS;
kstat_set_raw_ops(ksp, NULL, spa_guid_data, spa_state_addr);
kstat_install(ksp);
}
kmem_strfree(name);
}
static void
spa_health_destroy(spa_t *spa)
{
spa_history_kstat_t *shk = &spa->spa_stats.state;
kstat_t *ksp = shk->kstat;
if (ksp)
kstat_delete(ksp);
mutex_destroy(&shk->lock);
}
static void
spa_guid_destroy(spa_t *spa)
{
spa_history_kstat_t *shk = &spa->spa_stats.guid;
kstat_t *ksp = shk->kstat;
if (ksp)
kstat_delete(ksp);
mutex_destroy(&shk->lock);
}
static const spa_iostats_t spa_iostats_template = {
{ "trim_extents_written", KSTAT_DATA_UINT64 },
{ "trim_bytes_written", KSTAT_DATA_UINT64 },
{ "trim_extents_skipped", KSTAT_DATA_UINT64 },
{ "trim_bytes_skipped", KSTAT_DATA_UINT64 },
{ "trim_extents_failed", KSTAT_DATA_UINT64 },
{ "trim_bytes_failed", KSTAT_DATA_UINT64 },
{ "autotrim_extents_written", KSTAT_DATA_UINT64 },
{ "autotrim_bytes_written", KSTAT_DATA_UINT64 },
{ "autotrim_extents_skipped", KSTAT_DATA_UINT64 },
{ "autotrim_bytes_skipped", KSTAT_DATA_UINT64 },
{ "autotrim_extents_failed", KSTAT_DATA_UINT64 },
{ "autotrim_bytes_failed", KSTAT_DATA_UINT64 },
{ "simple_trim_extents_written", KSTAT_DATA_UINT64 },
{ "simple_trim_bytes_written", KSTAT_DATA_UINT64 },
{ "simple_trim_extents_skipped", KSTAT_DATA_UINT64 },
{ "simple_trim_bytes_skipped", KSTAT_DATA_UINT64 },
{ "simple_trim_extents_failed", KSTAT_DATA_UINT64 },
{ "simple_trim_bytes_failed", KSTAT_DATA_UINT64 },
};
#define SPA_IOSTATS_ADD(stat, val) \
atomic_add_64(&iostats->stat.value.ui64, (val));
void
spa_iostats_trim_add(spa_t *spa, trim_type_t type,
uint64_t extents_written, uint64_t bytes_written,
uint64_t extents_skipped, uint64_t bytes_skipped,
uint64_t extents_failed, uint64_t bytes_failed)
{
spa_history_kstat_t *shk = &spa->spa_stats.iostats;
kstat_t *ksp = shk->kstat;
spa_iostats_t *iostats;
if (ksp == NULL)
return;
iostats = ksp->ks_data;
if (type == TRIM_TYPE_MANUAL) {
SPA_IOSTATS_ADD(trim_extents_written, extents_written);
SPA_IOSTATS_ADD(trim_bytes_written, bytes_written);
SPA_IOSTATS_ADD(trim_extents_skipped, extents_skipped);
SPA_IOSTATS_ADD(trim_bytes_skipped, bytes_skipped);
SPA_IOSTATS_ADD(trim_extents_failed, extents_failed);
SPA_IOSTATS_ADD(trim_bytes_failed, bytes_failed);
} else if (type == TRIM_TYPE_AUTO) {
SPA_IOSTATS_ADD(autotrim_extents_written, extents_written);
SPA_IOSTATS_ADD(autotrim_bytes_written, bytes_written);
SPA_IOSTATS_ADD(autotrim_extents_skipped, extents_skipped);
SPA_IOSTATS_ADD(autotrim_bytes_skipped, bytes_skipped);
SPA_IOSTATS_ADD(autotrim_extents_failed, extents_failed);
SPA_IOSTATS_ADD(autotrim_bytes_failed, bytes_failed);
} else {
SPA_IOSTATS_ADD(simple_trim_extents_written, extents_written);
SPA_IOSTATS_ADD(simple_trim_bytes_written, bytes_written);
SPA_IOSTATS_ADD(simple_trim_extents_skipped, extents_skipped);
SPA_IOSTATS_ADD(simple_trim_bytes_skipped, bytes_skipped);
SPA_IOSTATS_ADD(simple_trim_extents_failed, extents_failed);
SPA_IOSTATS_ADD(simple_trim_bytes_failed, bytes_failed);
}
}
static int
spa_iostats_update(kstat_t *ksp, int rw)
{
if (rw == KSTAT_WRITE) {
memcpy(ksp->ks_data, &spa_iostats_template,
sizeof (spa_iostats_t));
}
return (0);
}
static void
spa_iostats_init(spa_t *spa)
{
spa_history_kstat_t *shk = &spa->spa_stats.iostats;
mutex_init(&shk->lock, NULL, MUTEX_DEFAULT, NULL);
char *name = kmem_asprintf("zfs/%s", spa_name(spa));
kstat_t *ksp = kstat_create(name, 0, "iostats", "misc",
KSTAT_TYPE_NAMED, sizeof (spa_iostats_t) / sizeof (kstat_named_t),
KSTAT_FLAG_VIRTUAL);
shk->kstat = ksp;
if (ksp) {
int size = sizeof (spa_iostats_t);
ksp->ks_lock = &shk->lock;
ksp->ks_private = spa;
ksp->ks_update = spa_iostats_update;
ksp->ks_data = kmem_alloc(size, KM_SLEEP);
memcpy(ksp->ks_data, &spa_iostats_template, size);
kstat_install(ksp);
}
kmem_strfree(name);
}
static void
spa_iostats_destroy(spa_t *spa)
{
spa_history_kstat_t *shk = &spa->spa_stats.iostats;
kstat_t *ksp = shk->kstat;
if (ksp) {
kmem_free(ksp->ks_data, sizeof (spa_iostats_t));
kstat_delete(ksp);
}
mutex_destroy(&shk->lock);
}
void
spa_stats_init(spa_t *spa)
{
spa_read_history_init(spa);
spa_txg_history_init(spa);
spa_tx_assign_init(spa);
spa_mmp_history_init(spa);
spa_state_init(spa);
spa_guid_init(spa);
spa_iostats_init(spa);
}
void
spa_stats_destroy(spa_t *spa)
{
spa_iostats_destroy(spa);
spa_health_destroy(spa);
spa_tx_assign_destroy(spa);
spa_txg_history_destroy(spa);
spa_read_history_destroy(spa);
spa_mmp_history_destroy(spa);
spa_guid_destroy(spa);
}
ZFS_MODULE_PARAM(zfs, zfs_, read_history, UINT, ZMOD_RW,
"Historical statistics for the last N reads");
ZFS_MODULE_PARAM(zfs, zfs_, read_history_hits, INT, ZMOD_RW,
"Include cache hits in read history");
ZFS_MODULE_PARAM(zfs_txg, zfs_txg_, history, UINT, ZMOD_RW,
"Historical statistics for the last N txgs");
ZFS_MODULE_PARAM(zfs_multihost, zfs_multihost_, history, UINT, ZMOD_RW,
"Historical statistics for last N multihost writes");