freebsd-dev/module/zfs/zap_leaf.c
Richard Yao 17443e0b20 Cleanup: Remove constant comparisons reported by CodeQL
CodeQL's cpp/constant-comparison query from its security-and-extended
query set reported 4 instances where we have comparions that always
evaluate the same way.

In `draid_config_by_type()`, we have an early `if (nparity == 0)` check
that returns `EINVAL`, making a later `if (nparity == 0 || nparity >
VDEV_DRAID_MAXPARITY)` partially redundant. The later check prints an
error message when parity is 0, but the early check does not. This is
not useful feedback, so we move the later check to the place where the
early check runs to replace the early check.

In `perform_thread_merge()`, we return when `num_threads == 0`. After
that block, we do `if (num_threads > 0) {`, which will always be true.
We remove the `if` statement.

In `sa_modify_attrs()`, we have a loop condition that is `k != 2`, but
at the end of the loop, we have `if (k == 0 && hdl->sa_spill)` followed
by an else that does a break. The result is that k != 2 will never be
evaluated when it is false. We drop the comparison.

In `zap_leaf_array_read()`, we have a for loop condition that is `i <
ZAP_LEAF_ARRAY_BYTES && len > 0`. However, that loop itself is in a loop
that is `while (len > 0)` and while the value of len is decremented
inside the loop, when `len == 0`, it will return, such that `len > 0`
inside the loop condition will always be true. We drop that part of the
condition.

Reviewed-by: Brian Behlendorf <behlendorf1@llnl.gov>
Signed-off-by: Richard Yao <richard.yao@alumni.stonybrook.edu>
Closes #14575
2023-03-08 13:51:46 -08:00

849 lines
23 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or https://opensource.org/licenses/CDDL-1.0.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2013, 2016 by Delphix. All rights reserved.
* Copyright 2017 Nexenta Systems, Inc.
*/
/*
* The 512-byte leaf is broken into 32 16-byte chunks.
* chunk number n means l_chunk[n], even though the header precedes it.
* the names are stored null-terminated.
*/
#include <sys/zio.h>
#include <sys/spa.h>
#include <sys/dmu.h>
#include <sys/zfs_context.h>
#include <sys/fs/zfs.h>
#include <sys/zap.h>
#include <sys/zap_impl.h>
#include <sys/zap_leaf.h>
#include <sys/arc.h>
static uint16_t *zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry);
#define CHAIN_END 0xffff /* end of the chunk chain */
#define LEAF_HASH(l, h) \
((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \
((h) >> \
(64 - ZAP_LEAF_HASH_SHIFT(l) - zap_leaf_phys(l)->l_hdr.lh_prefix_len)))
#define LEAF_HASH_ENTPTR(l, h) (&zap_leaf_phys(l)->l_hash[LEAF_HASH(l, h)])
static void
zap_memset(void *a, int c, size_t n)
{
char *cp = a;
char *cpend = cp + n;
while (cp < cpend)
*cp++ = c;
}
static void
stv(int len, void *addr, uint64_t value)
{
switch (len) {
case 1:
*(uint8_t *)addr = value;
return;
case 2:
*(uint16_t *)addr = value;
return;
case 4:
*(uint32_t *)addr = value;
return;
case 8:
*(uint64_t *)addr = value;
return;
default:
cmn_err(CE_PANIC, "bad int len %d", len);
}
}
static uint64_t
ldv(int len, const void *addr)
{
switch (len) {
case 1:
return (*(uint8_t *)addr);
case 2:
return (*(uint16_t *)addr);
case 4:
return (*(uint32_t *)addr);
case 8:
return (*(uint64_t *)addr);
default:
cmn_err(CE_PANIC, "bad int len %d", len);
}
return (0xFEEDFACEDEADBEEFULL);
}
void
zap_leaf_byteswap(zap_leaf_phys_t *buf, int size)
{
zap_leaf_t l;
dmu_buf_t l_dbuf;
l_dbuf.db_data = buf;
l.l_bs = highbit64(size) - 1;
l.l_dbuf = &l_dbuf;
buf->l_hdr.lh_block_type = BSWAP_64(buf->l_hdr.lh_block_type);
buf->l_hdr.lh_prefix = BSWAP_64(buf->l_hdr.lh_prefix);
buf->l_hdr.lh_magic = BSWAP_32(buf->l_hdr.lh_magic);
buf->l_hdr.lh_nfree = BSWAP_16(buf->l_hdr.lh_nfree);
buf->l_hdr.lh_nentries = BSWAP_16(buf->l_hdr.lh_nentries);
buf->l_hdr.lh_prefix_len = BSWAP_16(buf->l_hdr.lh_prefix_len);
buf->l_hdr.lh_freelist = BSWAP_16(buf->l_hdr.lh_freelist);
for (int i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++)
buf->l_hash[i] = BSWAP_16(buf->l_hash[i]);
for (int i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) {
zap_leaf_chunk_t *lc = &ZAP_LEAF_CHUNK(&l, i);
struct zap_leaf_entry *le;
switch (lc->l_free.lf_type) {
case ZAP_CHUNK_ENTRY:
le = &lc->l_entry;
le->le_type = BSWAP_8(le->le_type);
le->le_value_intlen = BSWAP_8(le->le_value_intlen);
le->le_next = BSWAP_16(le->le_next);
le->le_name_chunk = BSWAP_16(le->le_name_chunk);
le->le_name_numints = BSWAP_16(le->le_name_numints);
le->le_value_chunk = BSWAP_16(le->le_value_chunk);
le->le_value_numints = BSWAP_16(le->le_value_numints);
le->le_cd = BSWAP_32(le->le_cd);
le->le_hash = BSWAP_64(le->le_hash);
break;
case ZAP_CHUNK_FREE:
lc->l_free.lf_type = BSWAP_8(lc->l_free.lf_type);
lc->l_free.lf_next = BSWAP_16(lc->l_free.lf_next);
break;
case ZAP_CHUNK_ARRAY:
lc->l_array.la_type = BSWAP_8(lc->l_array.la_type);
lc->l_array.la_next = BSWAP_16(lc->l_array.la_next);
/* la_array doesn't need swapping */
break;
default:
cmn_err(CE_PANIC, "bad leaf type %d",
lc->l_free.lf_type);
}
}
}
void
zap_leaf_init(zap_leaf_t *l, boolean_t sort)
{
l->l_bs = highbit64(l->l_dbuf->db_size) - 1;
zap_memset(&zap_leaf_phys(l)->l_hdr, 0,
sizeof (struct zap_leaf_header));
zap_memset(zap_leaf_phys(l)->l_hash, CHAIN_END,
2*ZAP_LEAF_HASH_NUMENTRIES(l));
for (int i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) {
ZAP_LEAF_CHUNK(l, i).l_free.lf_type = ZAP_CHUNK_FREE;
ZAP_LEAF_CHUNK(l, i).l_free.lf_next = i+1;
}
ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)-1).l_free.lf_next = CHAIN_END;
zap_leaf_phys(l)->l_hdr.lh_block_type = ZBT_LEAF;
zap_leaf_phys(l)->l_hdr.lh_magic = ZAP_LEAF_MAGIC;
zap_leaf_phys(l)->l_hdr.lh_nfree = ZAP_LEAF_NUMCHUNKS(l);
if (sort)
zap_leaf_phys(l)->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED;
}
/*
* Routines which manipulate leaf chunks (l_chunk[]).
*/
static uint16_t
zap_leaf_chunk_alloc(zap_leaf_t *l)
{
ASSERT(zap_leaf_phys(l)->l_hdr.lh_nfree > 0);
int chunk = zap_leaf_phys(l)->l_hdr.lh_freelist;
ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_free.lf_type, ==, ZAP_CHUNK_FREE);
zap_leaf_phys(l)->l_hdr.lh_freelist =
ZAP_LEAF_CHUNK(l, chunk).l_free.lf_next;
zap_leaf_phys(l)->l_hdr.lh_nfree--;
return (chunk);
}
static void
zap_leaf_chunk_free(zap_leaf_t *l, uint16_t chunk)
{
struct zap_leaf_free *zlf = &ZAP_LEAF_CHUNK(l, chunk).l_free;
ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_nfree, <, ZAP_LEAF_NUMCHUNKS(l));
ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
ASSERT(zlf->lf_type != ZAP_CHUNK_FREE);
zlf->lf_type = ZAP_CHUNK_FREE;
zlf->lf_next = zap_leaf_phys(l)->l_hdr.lh_freelist;
memset(zlf->lf_pad, 0, sizeof (zlf->lf_pad)); /* help it to compress */
zap_leaf_phys(l)->l_hdr.lh_freelist = chunk;
zap_leaf_phys(l)->l_hdr.lh_nfree++;
}
/*
* Routines which manipulate leaf arrays (zap_leaf_array type chunks).
*/
static uint16_t
zap_leaf_array_create(zap_leaf_t *l, const char *buf,
int integer_size, int num_integers)
{
uint16_t chunk_head;
uint16_t *chunkp = &chunk_head;
int byten = 0;
uint64_t value = 0;
int shift = (integer_size - 1) * 8;
int len = num_integers;
ASSERT3U(num_integers * integer_size, <=, ZAP_MAXVALUELEN);
while (len > 0) {
uint16_t chunk = zap_leaf_chunk_alloc(l);
struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
la->la_type = ZAP_CHUNK_ARRAY;
for (int i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) {
if (byten == 0)
value = ldv(integer_size, buf);
la->la_array[i] = value >> shift;
value <<= 8;
if (++byten == integer_size) {
byten = 0;
buf += integer_size;
if (--len == 0)
break;
}
}
*chunkp = chunk;
chunkp = &la->la_next;
}
*chunkp = CHAIN_END;
return (chunk_head);
}
static void
zap_leaf_array_free(zap_leaf_t *l, uint16_t *chunkp)
{
uint16_t chunk = *chunkp;
*chunkp = CHAIN_END;
while (chunk != CHAIN_END) {
int nextchunk = ZAP_LEAF_CHUNK(l, chunk).l_array.la_next;
ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_array.la_type, ==,
ZAP_CHUNK_ARRAY);
zap_leaf_chunk_free(l, chunk);
chunk = nextchunk;
}
}
/* array_len and buf_len are in integers, not bytes */
static void
zap_leaf_array_read(zap_leaf_t *l, uint16_t chunk,
int array_int_len, int array_len, int buf_int_len, uint64_t buf_len,
void *buf)
{
int len = MIN(array_len, buf_len);
int byten = 0;
uint64_t value = 0;
char *p = buf;
ASSERT3U(array_int_len, <=, buf_int_len);
/* Fast path for one 8-byte integer */
if (array_int_len == 8 && buf_int_len == 8 && len == 1) {
struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
uint8_t *ip = la->la_array;
uint64_t *buf64 = buf;
*buf64 = (uint64_t)ip[0] << 56 | (uint64_t)ip[1] << 48 |
(uint64_t)ip[2] << 40 | (uint64_t)ip[3] << 32 |
(uint64_t)ip[4] << 24 | (uint64_t)ip[5] << 16 |
(uint64_t)ip[6] << 8 | (uint64_t)ip[7];
return;
}
/* Fast path for an array of 1-byte integers (eg. the entry name) */
if (array_int_len == 1 && buf_int_len == 1 &&
buf_len > array_len + ZAP_LEAF_ARRAY_BYTES) {
while (chunk != CHAIN_END) {
struct zap_leaf_array *la =
&ZAP_LEAF_CHUNK(l, chunk).l_array;
memcpy(p, la->la_array, ZAP_LEAF_ARRAY_BYTES);
p += ZAP_LEAF_ARRAY_BYTES;
chunk = la->la_next;
}
return;
}
while (len > 0) {
struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
for (int i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) {
value = (value << 8) | la->la_array[i];
byten++;
if (byten == array_int_len) {
stv(buf_int_len, p, value);
byten = 0;
len--;
if (len == 0)
return;
p += buf_int_len;
}
}
chunk = la->la_next;
}
}
static boolean_t
zap_leaf_array_match(zap_leaf_t *l, zap_name_t *zn,
int chunk, int array_numints)
{
int bseen = 0;
if (zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY) {
uint64_t *thiskey =
kmem_alloc(array_numints * sizeof (*thiskey), KM_SLEEP);
ASSERT(zn->zn_key_intlen == sizeof (*thiskey));
zap_leaf_array_read(l, chunk, sizeof (*thiskey), array_numints,
sizeof (*thiskey), array_numints, thiskey);
boolean_t match = memcmp(thiskey, zn->zn_key_orig,
array_numints * sizeof (*thiskey)) == 0;
kmem_free(thiskey, array_numints * sizeof (*thiskey));
return (match);
}
ASSERT(zn->zn_key_intlen == 1);
if (zn->zn_matchtype & MT_NORMALIZE) {
char *thisname = kmem_alloc(array_numints, KM_SLEEP);
zap_leaf_array_read(l, chunk, sizeof (char), array_numints,
sizeof (char), array_numints, thisname);
boolean_t match = zap_match(zn, thisname);
kmem_free(thisname, array_numints);
return (match);
}
/*
* Fast path for exact matching.
* First check that the lengths match, so that we don't read
* past the end of the zn_key_orig array.
*/
if (array_numints != zn->zn_key_orig_numints)
return (B_FALSE);
while (bseen < array_numints) {
struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array;
int toread = MIN(array_numints - bseen, ZAP_LEAF_ARRAY_BYTES);
ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
if (memcmp(la->la_array, (char *)zn->zn_key_orig + bseen,
toread))
break;
chunk = la->la_next;
bseen += toread;
}
return (bseen == array_numints);
}
/*
* Routines which manipulate leaf entries.
*/
int
zap_leaf_lookup(zap_leaf_t *l, zap_name_t *zn, zap_entry_handle_t *zeh)
{
struct zap_leaf_entry *le;
ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
for (uint16_t *chunkp = LEAF_HASH_ENTPTR(l, zn->zn_hash);
*chunkp != CHAIN_END; chunkp = &le->le_next) {
uint16_t chunk = *chunkp;
le = ZAP_LEAF_ENTRY(l, chunk);
ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
if (le->le_hash != zn->zn_hash)
continue;
/*
* NB: the entry chain is always sorted by cd on
* normalized zap objects, so this will find the
* lowest-cd match for MT_NORMALIZE.
*/
ASSERT((zn->zn_matchtype == 0) ||
(zap_leaf_phys(l)->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED));
if (zap_leaf_array_match(l, zn, le->le_name_chunk,
le->le_name_numints)) {
zeh->zeh_num_integers = le->le_value_numints;
zeh->zeh_integer_size = le->le_value_intlen;
zeh->zeh_cd = le->le_cd;
zeh->zeh_hash = le->le_hash;
zeh->zeh_chunkp = chunkp;
zeh->zeh_leaf = l;
return (0);
}
}
return (SET_ERROR(ENOENT));
}
/* Return (h1,cd1 >= h2,cd2) */
#define HCD_GTEQ(h1, cd1, h2, cd2) \
((h1 > h2) ? TRUE : ((h1 == h2 && cd1 >= cd2) ? TRUE : FALSE))
int
zap_leaf_lookup_closest(zap_leaf_t *l,
uint64_t h, uint32_t cd, zap_entry_handle_t *zeh)
{
uint64_t besth = -1ULL;
uint32_t bestcd = -1U;
uint16_t bestlh = ZAP_LEAF_HASH_NUMENTRIES(l)-1;
struct zap_leaf_entry *le;
ASSERT3U(zap_leaf_phys(l)->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
for (uint16_t lh = LEAF_HASH(l, h); lh <= bestlh; lh++) {
for (uint16_t chunk = zap_leaf_phys(l)->l_hash[lh];
chunk != CHAIN_END; chunk = le->le_next) {
le = ZAP_LEAF_ENTRY(l, chunk);
ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
if (HCD_GTEQ(le->le_hash, le->le_cd, h, cd) &&
HCD_GTEQ(besth, bestcd, le->le_hash, le->le_cd)) {
ASSERT3U(bestlh, >=, lh);
bestlh = lh;
besth = le->le_hash;
bestcd = le->le_cd;
zeh->zeh_num_integers = le->le_value_numints;
zeh->zeh_integer_size = le->le_value_intlen;
zeh->zeh_cd = le->le_cd;
zeh->zeh_hash = le->le_hash;
zeh->zeh_fakechunk = chunk;
zeh->zeh_chunkp = &zeh->zeh_fakechunk;
zeh->zeh_leaf = l;
}
}
}
return (bestcd == -1U ? SET_ERROR(ENOENT) : 0);
}
int
zap_entry_read(const zap_entry_handle_t *zeh,
uint8_t integer_size, uint64_t num_integers, void *buf)
{
struct zap_leaf_entry *le =
ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp);
ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
if (le->le_value_intlen > integer_size)
return (SET_ERROR(EINVAL));
zap_leaf_array_read(zeh->zeh_leaf, le->le_value_chunk,
le->le_value_intlen, le->le_value_numints,
integer_size, num_integers, buf);
if (zeh->zeh_num_integers > num_integers)
return (SET_ERROR(EOVERFLOW));
return (0);
}
int
zap_entry_read_name(zap_t *zap, const zap_entry_handle_t *zeh, uint16_t buflen,
char *buf)
{
struct zap_leaf_entry *le =
ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp);
ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 8,
le->le_name_numints, 8, buflen / 8, buf);
} else {
zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 1,
le->le_name_numints, 1, buflen, buf);
}
if (le->le_name_numints > buflen)
return (SET_ERROR(EOVERFLOW));
return (0);
}
int
zap_entry_update(zap_entry_handle_t *zeh,
uint8_t integer_size, uint64_t num_integers, const void *buf)
{
zap_leaf_t *l = zeh->zeh_leaf;
struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, *zeh->zeh_chunkp);
int delta_chunks = ZAP_LEAF_ARRAY_NCHUNKS(num_integers * integer_size) -
ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints * le->le_value_intlen);
if ((int)zap_leaf_phys(l)->l_hdr.lh_nfree < delta_chunks)
return (SET_ERROR(EAGAIN));
zap_leaf_array_free(l, &le->le_value_chunk);
le->le_value_chunk =
zap_leaf_array_create(l, buf, integer_size, num_integers);
le->le_value_numints = num_integers;
le->le_value_intlen = integer_size;
return (0);
}
void
zap_entry_remove(zap_entry_handle_t *zeh)
{
zap_leaf_t *l = zeh->zeh_leaf;
ASSERT3P(zeh->zeh_chunkp, !=, &zeh->zeh_fakechunk);
uint16_t entry_chunk = *zeh->zeh_chunkp;
struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry_chunk);
ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
zap_leaf_array_free(l, &le->le_name_chunk);
zap_leaf_array_free(l, &le->le_value_chunk);
*zeh->zeh_chunkp = le->le_next;
zap_leaf_chunk_free(l, entry_chunk);
zap_leaf_phys(l)->l_hdr.lh_nentries--;
}
int
zap_entry_create(zap_leaf_t *l, zap_name_t *zn, uint32_t cd,
uint8_t integer_size, uint64_t num_integers, const void *buf,
zap_entry_handle_t *zeh)
{
uint16_t chunk;
struct zap_leaf_entry *le;
uint64_t h = zn->zn_hash;
uint64_t valuelen = integer_size * num_integers;
int numchunks = 1 + ZAP_LEAF_ARRAY_NCHUNKS(zn->zn_key_orig_numints *
zn->zn_key_intlen) + ZAP_LEAF_ARRAY_NCHUNKS(valuelen);
if (numchunks > ZAP_LEAF_NUMCHUNKS(l))
return (SET_ERROR(E2BIG));
if (cd == ZAP_NEED_CD) {
/* find the lowest unused cd */
if (zap_leaf_phys(l)->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED) {
cd = 0;
for (chunk = *LEAF_HASH_ENTPTR(l, h);
chunk != CHAIN_END; chunk = le->le_next) {
le = ZAP_LEAF_ENTRY(l, chunk);
if (le->le_cd > cd)
break;
if (le->le_hash == h) {
ASSERT3U(cd, ==, le->le_cd);
cd++;
}
}
} else {
/* old unsorted format; do it the O(n^2) way */
for (cd = 0; ; cd++) {
for (chunk = *LEAF_HASH_ENTPTR(l, h);
chunk != CHAIN_END; chunk = le->le_next) {
le = ZAP_LEAF_ENTRY(l, chunk);
if (le->le_hash == h &&
le->le_cd == cd) {
break;
}
}
/* If this cd is not in use, we are good. */
if (chunk == CHAIN_END)
break;
}
}
/*
* We would run out of space in a block before we could
* store enough entries to run out of CD values.
*/
ASSERT3U(cd, <, zap_maxcd(zn->zn_zap));
}
if (zap_leaf_phys(l)->l_hdr.lh_nfree < numchunks)
return (SET_ERROR(EAGAIN));
/* make the entry */
chunk = zap_leaf_chunk_alloc(l);
le = ZAP_LEAF_ENTRY(l, chunk);
le->le_type = ZAP_CHUNK_ENTRY;
le->le_name_chunk = zap_leaf_array_create(l, zn->zn_key_orig,
zn->zn_key_intlen, zn->zn_key_orig_numints);
le->le_name_numints = zn->zn_key_orig_numints;
le->le_value_chunk =
zap_leaf_array_create(l, buf, integer_size, num_integers);
le->le_value_numints = num_integers;
le->le_value_intlen = integer_size;
le->le_hash = h;
le->le_cd = cd;
/* link it into the hash chain */
/* XXX if we did the search above, we could just use that */
uint16_t *chunkp = zap_leaf_rehash_entry(l, chunk);
zap_leaf_phys(l)->l_hdr.lh_nentries++;
zeh->zeh_leaf = l;
zeh->zeh_num_integers = num_integers;
zeh->zeh_integer_size = le->le_value_intlen;
zeh->zeh_cd = le->le_cd;
zeh->zeh_hash = le->le_hash;
zeh->zeh_chunkp = chunkp;
return (0);
}
/*
* Determine if there is another entry with the same normalized form.
* For performance purposes, either zn or name must be provided (the
* other can be NULL). Note, there usually won't be any hash
* conflicts, in which case we don't need the concatenated/normalized
* form of the name. But all callers have one of these on hand anyway,
* so might as well take advantage. A cleaner but slower interface
* would accept neither argument, and compute the normalized name as
* needed (using zap_name_alloc_str(zap_entry_read_name(zeh))).
*/
boolean_t
zap_entry_normalization_conflict(zap_entry_handle_t *zeh, zap_name_t *zn,
const char *name, zap_t *zap)
{
struct zap_leaf_entry *le;
boolean_t allocdzn = B_FALSE;
if (zap->zap_normflags == 0)
return (B_FALSE);
for (uint16_t chunk = *LEAF_HASH_ENTPTR(zeh->zeh_leaf, zeh->zeh_hash);
chunk != CHAIN_END; chunk = le->le_next) {
le = ZAP_LEAF_ENTRY(zeh->zeh_leaf, chunk);
if (le->le_hash != zeh->zeh_hash)
continue;
if (le->le_cd == zeh->zeh_cd)
continue;
if (zn == NULL) {
zn = zap_name_alloc_str(zap, name, MT_NORMALIZE);
allocdzn = B_TRUE;
}
if (zap_leaf_array_match(zeh->zeh_leaf, zn,
le->le_name_chunk, le->le_name_numints)) {
if (allocdzn)
zap_name_free(zn);
return (B_TRUE);
}
}
if (allocdzn)
zap_name_free(zn);
return (B_FALSE);
}
/*
* Routines for transferring entries between leafs.
*/
static uint16_t *
zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry)
{
struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry);
struct zap_leaf_entry *le2;
uint16_t *chunkp;
/*
* keep the entry chain sorted by cd
* NB: this will not cause problems for unsorted leafs, though
* it is unnecessary there.
*/
for (chunkp = LEAF_HASH_ENTPTR(l, le->le_hash);
*chunkp != CHAIN_END; chunkp = &le2->le_next) {
le2 = ZAP_LEAF_ENTRY(l, *chunkp);
if (le2->le_cd > le->le_cd)
break;
}
le->le_next = *chunkp;
*chunkp = entry;
return (chunkp);
}
static uint16_t
zap_leaf_transfer_array(zap_leaf_t *l, uint16_t chunk, zap_leaf_t *nl)
{
uint16_t new_chunk;
uint16_t *nchunkp = &new_chunk;
while (chunk != CHAIN_END) {
uint16_t nchunk = zap_leaf_chunk_alloc(nl);
struct zap_leaf_array *nla =
&ZAP_LEAF_CHUNK(nl, nchunk).l_array;
struct zap_leaf_array *la =
&ZAP_LEAF_CHUNK(l, chunk).l_array;
int nextchunk = la->la_next;
ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l));
ASSERT3U(nchunk, <, ZAP_LEAF_NUMCHUNKS(l));
*nla = *la; /* structure assignment */
zap_leaf_chunk_free(l, chunk);
chunk = nextchunk;
*nchunkp = nchunk;
nchunkp = &nla->la_next;
}
*nchunkp = CHAIN_END;
return (new_chunk);
}
static void
zap_leaf_transfer_entry(zap_leaf_t *l, int entry, zap_leaf_t *nl)
{
struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry);
ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY);
uint16_t chunk = zap_leaf_chunk_alloc(nl);
struct zap_leaf_entry *nle = ZAP_LEAF_ENTRY(nl, chunk);
*nle = *le; /* structure assignment */
(void) zap_leaf_rehash_entry(nl, chunk);
nle->le_name_chunk = zap_leaf_transfer_array(l, le->le_name_chunk, nl);
nle->le_value_chunk =
zap_leaf_transfer_array(l, le->le_value_chunk, nl);
zap_leaf_chunk_free(l, entry);
zap_leaf_phys(l)->l_hdr.lh_nentries--;
zap_leaf_phys(nl)->l_hdr.lh_nentries++;
}
/*
* Transfer the entries whose hash prefix ends in 1 to the new leaf.
*/
void
zap_leaf_split(zap_leaf_t *l, zap_leaf_t *nl, boolean_t sort)
{
int bit = 64 - 1 - zap_leaf_phys(l)->l_hdr.lh_prefix_len;
/* set new prefix and prefix_len */
zap_leaf_phys(l)->l_hdr.lh_prefix <<= 1;
zap_leaf_phys(l)->l_hdr.lh_prefix_len++;
zap_leaf_phys(nl)->l_hdr.lh_prefix =
zap_leaf_phys(l)->l_hdr.lh_prefix | 1;
zap_leaf_phys(nl)->l_hdr.lh_prefix_len =
zap_leaf_phys(l)->l_hdr.lh_prefix_len;
/* break existing hash chains */
zap_memset(zap_leaf_phys(l)->l_hash, CHAIN_END,
2*ZAP_LEAF_HASH_NUMENTRIES(l));
if (sort)
zap_leaf_phys(l)->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED;
/*
* Transfer entries whose hash bit 'bit' is set to nl; rehash
* the remaining entries
*
* NB: We could find entries via the hashtable instead. That
* would be O(hashents+numents) rather than O(numblks+numents),
* but this accesses memory more sequentially, and when we're
* called, the block is usually pretty full.
*/
for (int i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) {
struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, i);
if (le->le_type != ZAP_CHUNK_ENTRY)
continue;
if (le->le_hash & (1ULL << bit))
zap_leaf_transfer_entry(l, i, nl);
else
(void) zap_leaf_rehash_entry(l, i);
}
}
void
zap_leaf_stats(zap_t *zap, zap_leaf_t *l, zap_stats_t *zs)
{
int n = zap_f_phys(zap)->zap_ptrtbl.zt_shift -
zap_leaf_phys(l)->l_hdr.lh_prefix_len;
n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
zs->zs_leafs_with_2n_pointers[n]++;
n = zap_leaf_phys(l)->l_hdr.lh_nentries/5;
n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
zs->zs_blocks_with_n5_entries[n]++;
n = ((1<<FZAP_BLOCK_SHIFT(zap)) -
zap_leaf_phys(l)->l_hdr.lh_nfree * (ZAP_LEAF_ARRAY_BYTES+1))*10 /
(1<<FZAP_BLOCK_SHIFT(zap));
n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
zs->zs_blocks_n_tenths_full[n]++;
for (int i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(l); i++) {
int nentries = 0;
int chunk = zap_leaf_phys(l)->l_hash[i];
while (chunk != CHAIN_END) {
struct zap_leaf_entry *le =
ZAP_LEAF_ENTRY(l, chunk);
n = 1 + ZAP_LEAF_ARRAY_NCHUNKS(le->le_name_numints) +
ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints *
le->le_value_intlen);
n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
zs->zs_entries_using_n_chunks[n]++;
chunk = le->le_next;
nentries++;
}
n = nentries;
n = MIN(n, ZAP_HISTOGRAM_SIZE-1);
zs->zs_buckets_with_n_entries[n]++;
}
}