freebsd-dev/sys/dev/drm2/i915/i915_gem_evict.c
Jean-Sébastien Pédron 455fa6518a drm: Update the device-independent code to match Linux 3.8.13
This update brings few features:
    o  Support for the setmaster/dropmaster ioctls. For instance, they
       are used to run multiple X servers simultaneously.
    o  Support for minor devices. The only user-visible change is a new
       entry in /dev/dri but it is useless at the moment. This is a
       first step to support render nodes [1].

The main benefit is to greatly reduce the diff with Linux (at the
expense of an unreadable commit diff). Hopefully, next upgrades will be
easier.

No updates were made to the drivers, beside adapting them to API
changes.

[1] https://en.wikipedia.org/wiki/Direct_Rendering_Manager#Render_nodes

Tested by:	Many people
MFC after:	1 month
Relnotes:	yes
2015-03-17 18:50:33 +00:00

208 lines
6.3 KiB
C

/*
* Copyright © 2008-2010 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eric Anholt <eric@anholt.net>
* Chris Wilson <chris@chris-wilson.co.uuk>
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <dev/drm2/drmP.h>
#include <dev/drm2/drm.h>
#include <dev/drm2/i915/i915_drm.h>
#include <dev/drm2/i915/i915_drv.h>
static bool
mark_free(struct drm_i915_gem_object *obj, struct list_head *unwind)
{
if (obj->pin_count)
return false;
list_add(&obj->exec_list, unwind);
return drm_mm_scan_add_block(obj->gtt_space);
}
int
i915_gem_evict_something(struct drm_device *dev, int min_size,
unsigned alignment, bool mappable)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct list_head eviction_list, unwind_list;
struct drm_i915_gem_object *obj;
int ret = 0;
CTR4(KTR_DRM, "evict_something %p %d %u %d", dev, min_size,
alignment, mappable);
/*
* The goal is to evict objects and amalgamate space in LRU order.
* The oldest idle objects reside on the inactive list, which is in
* retirement order. The next objects to retire are those on the (per
* ring) active list that do not have an outstanding flush. Once the
* hardware reports completion (the seqno is updated after the
* batchbuffer has been finished) the clean buffer objects would
* be retired to the inactive list. Any dirty objects would be added
* to the tail of the flushing list. So after processing the clean
* active objects we need to emit a MI_FLUSH to retire the flushing
* list, hence the retirement order of the flushing list is in
* advance of the dirty objects on the active lists.
*
* The retirement sequence is thus:
* 1. Inactive objects (already retired)
* 2. Clean active objects
* 3. Flushing list
* 4. Dirty active objects.
*
* On each list, the oldest objects lie at the HEAD with the freshest
* object on the TAIL.
*/
INIT_LIST_HEAD(&unwind_list);
if (mappable)
drm_mm_init_scan_with_range(&dev_priv->mm.gtt_space, min_size,
alignment, 0, 0,
dev_priv->mm.gtt_mappable_end);
else
drm_mm_init_scan(&dev_priv->mm.gtt_space, min_size, alignment, 0);
/* First see if there is a large enough contiguous idle region... */
list_for_each_entry(obj, &dev_priv->mm.inactive_list, mm_list) {
if (mark_free(obj, &unwind_list))
goto found;
}
/* Now merge in the soon-to-be-expired objects... */
list_for_each_entry(obj, &dev_priv->mm.active_list, mm_list) {
/* Does the object require an outstanding flush? */
if (obj->base.write_domain)
continue;
if (mark_free(obj, &unwind_list))
goto found;
}
/* Finally add anything with a pending flush (in order of retirement) */
list_for_each_entry(obj, &dev_priv->mm.flushing_list, mm_list) {
if (mark_free(obj, &unwind_list))
goto found;
}
list_for_each_entry(obj, &dev_priv->mm.active_list, mm_list) {
if (!obj->base.write_domain)
continue;
if (mark_free(obj, &unwind_list))
goto found;
}
/* Nothing found, clean up and bail out! */
while (!list_empty(&unwind_list)) {
obj = list_first_entry(&unwind_list,
struct drm_i915_gem_object,
exec_list);
ret = drm_mm_scan_remove_block(obj->gtt_space);
KASSERT(ret == 0, ("drm_mm_scan_remove_block failed %d", ret));
list_del_init(&obj->exec_list);
}
/* We expect the caller to unpin, evict all and try again, or give up.
* So calling i915_gem_evict_everything() is unnecessary.
*/
return -ENOSPC;
found:
/* drm_mm doesn't allow any other other operations while
* scanning, therefore store to be evicted objects on a
* temporary list. */
INIT_LIST_HEAD(&eviction_list);
while (!list_empty(&unwind_list)) {
obj = list_first_entry(&unwind_list,
struct drm_i915_gem_object,
exec_list);
if (drm_mm_scan_remove_block(obj->gtt_space)) {
list_move(&obj->exec_list, &eviction_list);
drm_gem_object_reference(&obj->base);
continue;
}
list_del_init(&obj->exec_list);
}
/* Unbinding will emit any required flushes */
while (!list_empty(&eviction_list)) {
obj = list_first_entry(&eviction_list,
struct drm_i915_gem_object,
exec_list);
if (ret == 0)
ret = i915_gem_object_unbind(obj);
list_del_init(&obj->exec_list);
drm_gem_object_unreference(&obj->base);
}
return ret;
}
int
i915_gem_evict_everything(struct drm_device *dev, bool purgeable_only)
{
drm_i915_private_t *dev_priv = dev->dev_private;
struct drm_i915_gem_object *obj, *next;
bool lists_empty;
int ret;
lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
list_empty(&dev_priv->mm.flushing_list) &&
list_empty(&dev_priv->mm.active_list));
if (lists_empty)
return -ENOSPC;
CTR2(KTR_DRM, "evict_everything %p %d", dev, purgeable_only);
/* The gpu_idle will flush everything in the write domain to the
* active list. Then we must move everything off the active list
* with retire requests.
*/
ret = i915_gpu_idle(dev);
if (ret)
return ret;
i915_gem_retire_requests(dev);
KASSERT(list_empty(&dev_priv->mm.flushing_list),
("flush list not empty"));
/* Having flushed everything, unbind() should never raise an error */
list_for_each_entry_safe(obj, next,
&dev_priv->mm.inactive_list, mm_list) {
if (!purgeable_only || obj->madv != I915_MADV_WILLNEED) {
if (obj->pin_count == 0)
i915_gem_object_unbind(obj);
}
}
return 0;
}