freebsd-dev/sys/arm/s3c2xx0/s3c24x0_machdep.c
2013-03-01 19:02:41 +00:00

405 lines
12 KiB
C

/*-
* Copyright (c) 1994-1998 Mark Brinicombe.
* Copyright (c) 1994 Brini.
* All rights reserved.
*
* This code is derived from software written for Brini by Mark Brinicombe
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Brini.
* 4. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* RiscBSD kernel project
*
* machdep.c
*
* Machine dependant functions for kernel setup
*
* This file needs a lot of work.
*
* Created : 17/09/94
*/
#include "opt_ddb.h"
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#define _ARM32_BUS_DMA_PRIVATE
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysproto.h>
#include <sys/signalvar.h>
#include <sys/imgact.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/linker.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/pcpu.h>
#include <sys/proc.h>
#include <sys/ptrace.h>
#include <sys/cons.h>
#include <sys/bio.h>
#include <sys/bus.h>
#include <sys/buf.h>
#include <sys/exec.h>
#include <sys/kdb.h>
#include <sys/msgbuf.h>
#include <machine/reg.h>
#include <machine/cpu.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <machine/vmparam.h>
#include <machine/pcb.h>
#include <machine/undefined.h>
#include <machine/machdep.h>
#include <machine/metadata.h>
#include <machine/armreg.h>
#include <machine/bus.h>
#include <sys/reboot.h>
#include <arm/s3c2xx0/s3c24x0var.h>
#include <arm/s3c2xx0/s3c2410reg.h>
#include <arm/s3c2xx0/s3c2xx0board.h>
/* Page table for mapping proc0 zero page */
#define KERNEL_PT_SYS 0
#define KERNEL_PT_KERN 1
#define KERNEL_PT_KERN_NUM 44
/* L2 table for mapping after kernel */
#define KERNEL_PT_AFKERNEL KERNEL_PT_KERN + KERNEL_PT_KERN_NUM
#define KERNEL_PT_AFKERNEL_NUM 5
/* this should be evenly divisable by PAGE_SIZE / L2_TABLE_SIZE_REAL (or 4) */
#define NUM_KERNEL_PTS (KERNEL_PT_AFKERNEL + KERNEL_PT_AFKERNEL_NUM)
extern int s3c2410_pclk;
extern u_int data_abort_handler_address;
extern u_int prefetch_abort_handler_address;
extern u_int undefined_handler_address;
struct pv_addr kernel_pt_table[NUM_KERNEL_PTS];
/* Physical and virtual addresses for some global pages */
vm_paddr_t phys_avail[10];
vm_paddr_t dump_avail[4];
struct pv_addr systempage;
struct pv_addr msgbufpv;
struct pv_addr irqstack;
struct pv_addr undstack;
struct pv_addr abtstack;
struct pv_addr kernelstack;
#define _A(a) ((a) & ~L1_S_OFFSET)
#define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
/* Static device mappings. */
static const struct pmap_devmap s3c24x0_devmap[] = {
/*
* Map the devices we need early on.
*/
{
_A(S3C24X0_CLKMAN_BASE),
_A(S3C24X0_CLKMAN_PA_BASE),
_S(S3C24X0_CLKMAN_SIZE),
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE,
},
{
_A(S3C24X0_GPIO_BASE),
_A(S3C24X0_GPIO_PA_BASE),
_S(S3C2410_GPIO_SIZE),
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE,
},
{
_A(S3C24X0_INTCTL_BASE),
_A(S3C24X0_INTCTL_PA_BASE),
_S(S3C24X0_INTCTL_SIZE),
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE,
},
{
_A(S3C24X0_TIMER_BASE),
_A(S3C24X0_TIMER_PA_BASE),
_S(S3C24X0_TIMER_SIZE),
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE,
},
{
_A(S3C24X0_UART0_BASE),
_A(S3C24X0_UART0_PA_BASE),
_S(S3C24X0_UART_PA_BASE(3) - S3C24X0_UART0_PA_BASE),
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE,
},
{
_A(S3C24X0_WDT_BASE),
_A(S3C24X0_WDT_PA_BASE),
_S(S3C24X0_WDT_SIZE),
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE,
},
{
0,
0,
0,
0,
0,
}
};
#undef _A
#undef _S
#define ioreg_read32(a) (*(volatile uint32_t *)(a))
#define ioreg_write32(a,v) (*(volatile uint32_t *)(a)=(v))
struct arm32_dma_range s3c24x0_range = {
.dr_sysbase = 0,
.dr_busbase = 0,
.dr_len = 0,
};
struct arm32_dma_range *
bus_dma_get_range(void)
{
if (s3c24x0_range.dr_len == 0) {
s3c24x0_range.dr_sysbase = dump_avail[0];
s3c24x0_range.dr_busbase = dump_avail[0];
s3c24x0_range.dr_len = dump_avail[1] - dump_avail[0];
}
return (&s3c24x0_range);
}
int
bus_dma_get_range_nb(void)
{
return (1);
}
void *
initarm(struct arm_boot_params *abp)
{
struct pv_addr kernel_l1pt;
int loop;
u_int l1pagetable;
vm_offset_t freemempos;
vm_offset_t afterkern;
vm_offset_t lastaddr;
int i;
uint32_t memsize;
boothowto = 0; /* Likely not needed */
lastaddr = parse_boot_param(abp);
i = 0;
set_cpufuncs();
cpufuncs.cf_sleep = s3c24x0_sleep;
pcpu0_init();
/* Do basic tuning, hz etc */
init_param1();
#define KERNEL_TEXT_BASE (KERNBASE)
freemempos = (lastaddr + PAGE_MASK) & ~PAGE_MASK;
/* Define a macro to simplify memory allocation */
#define valloc_pages(var, np) \
alloc_pages((var).pv_va, (np)); \
(var).pv_pa = (var).pv_va + (KERNPHYSADDR - KERNVIRTADDR);
#define alloc_pages(var, np) \
(var) = freemempos; \
freemempos += (np * PAGE_SIZE); \
memset((char *)(var), 0, ((np) * PAGE_SIZE));
while (((freemempos - L1_TABLE_SIZE) & (L1_TABLE_SIZE - 1)) != 0)
freemempos += PAGE_SIZE;
valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
if (!(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL))) {
valloc_pages(kernel_pt_table[loop],
L2_TABLE_SIZE / PAGE_SIZE);
} else {
kernel_pt_table[loop].pv_va = freemempos -
(loop % (PAGE_SIZE / L2_TABLE_SIZE_REAL)) *
L2_TABLE_SIZE_REAL;
kernel_pt_table[loop].pv_pa =
kernel_pt_table[loop].pv_va - KERNVIRTADDR +
KERNPHYSADDR;
}
}
/*
* Allocate a page for the system page mapped to V0x00000000
* This page will just contain the system vectors and can be
* shared by all processes.
*/
valloc_pages(systempage, 1);
/* Allocate stacks for all modes */
valloc_pages(irqstack, IRQ_STACK_SIZE);
valloc_pages(abtstack, ABT_STACK_SIZE);
valloc_pages(undstack, UND_STACK_SIZE);
valloc_pages(kernelstack, KSTACK_PAGES);
valloc_pages(msgbufpv, round_page(msgbufsize) / PAGE_SIZE);
/*
* Now we start construction of the L1 page table
* We start by mapping the L2 page tables into the L1.
* This means that we can replace L1 mappings later on if necessary
*/
l1pagetable = kernel_l1pt.pv_va;
/* Map the L2 pages tables in the L1 page table */
pmap_link_l2pt(l1pagetable, ARM_VECTORS_HIGH,
&kernel_pt_table[KERNEL_PT_SYS]);
for (i = 0; i < KERNEL_PT_KERN_NUM; i++)
pmap_link_l2pt(l1pagetable, KERNBASE + i * L1_S_SIZE,
&kernel_pt_table[KERNEL_PT_KERN + i]);
pmap_map_chunk(l1pagetable, KERNBASE, PHYSADDR,
(((uint32_t)(lastaddr) - KERNBASE) + PAGE_SIZE) & ~(PAGE_SIZE - 1),
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
afterkern = round_page((lastaddr + L1_S_SIZE) & ~(L1_S_SIZE
- 1));
for (i = 0; i < KERNEL_PT_AFKERNEL_NUM; i++) {
pmap_link_l2pt(l1pagetable, afterkern + i * L1_S_SIZE,
&kernel_pt_table[KERNEL_PT_AFKERNEL + i]);
}
/* Map the vector page. */
pmap_map_entry(l1pagetable, ARM_VECTORS_HIGH, systempage.pv_pa,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
/* Map the stack pages */
pmap_map_chunk(l1pagetable, irqstack.pv_va, irqstack.pv_pa,
IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, abtstack.pv_va, abtstack.pv_pa,
ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, undstack.pv_va, undstack.pv_pa,
UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, kernelstack.pv_va, kernelstack.pv_pa,
KSTACK_PAGES * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
L1_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
pmap_map_chunk(l1pagetable, msgbufpv.pv_va, msgbufpv.pv_pa,
msgbufsize, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
pmap_map_chunk(l1pagetable, kernel_pt_table[loop].pv_va,
kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
}
pmap_devmap_bootstrap(l1pagetable, s3c24x0_devmap);
cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
setttb(kernel_l1pt.pv_pa);
cpu_tlb_flushID();
cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
/*
* Pages were allocated during the secondary bootstrap for the
* stacks for different CPU modes.
* We must now set the r13 registers in the different CPU modes to
* point to these stacks.
* Since the ARM stacks use STMFD etc. we must set r13 to the top end
* of the stack memory.
*/
cpu_control(CPU_CONTROL_MMU_ENABLE, CPU_CONTROL_MMU_ENABLE);
set_stackptrs(0);
/*
* We must now clean the cache again....
* Cleaning may be done by reading new data to displace any
* dirty data in the cache. This will have happened in setttb()
* but since we are boot strapping the addresses used for the read
* may have just been remapped and thus the cache could be out
* of sync. A re-clean after the switch will cure this.
* After booting there are no gross reloations of the kernel thus
* this problem will not occur after initarm().
*/
cpu_idcache_wbinv_all();
/* Disable all peripheral interrupts */
ioreg_write32(S3C24X0_INTCTL_BASE + INTCTL_INTMSK, ~0);
memsize = board_init();
/* Find pclk for uart */
switch(ioreg_read32(S3C24X0_GPIO_BASE + GPIO_GSTATUS1) >> 16) {
case 0x3241:
s3c2410_clock_freq2(S3C24X0_CLKMAN_BASE, NULL, NULL,
&s3c2410_pclk);
break;
case 0x3244:
s3c2440_clock_freq2(S3C24X0_CLKMAN_BASE, NULL, NULL,
&s3c2410_pclk);
break;
}
cninit();
/* Set stack for exception handlers */
data_abort_handler_address = (u_int)data_abort_handler;
prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
undefined_handler_address = (u_int)undefinedinstruction_bounce;
undefined_init();
init_proc0(kernelstack.pv_va);
arm_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
pmap_curmaxkvaddr = afterkern + 0x100000 * (KERNEL_PT_KERN_NUM - 1);
arm_dump_avail_init(memsize, sizeof(dump_avail) / sizeof(dump_avail[0]));
vm_max_kernel_address = KERNVIRTADDR + 3 * memsize;
pmap_bootstrap(freemempos, &kernel_l1pt);
msgbufp = (void*)msgbufpv.pv_va;
msgbufinit(msgbufp, msgbufsize);
mutex_init();
physmem = memsize / PAGE_SIZE;
phys_avail[0] = virtual_avail - KERNVIRTADDR + KERNPHYSADDR;
phys_avail[1] = PHYSADDR + memsize;
phys_avail[2] = 0;
phys_avail[3] = 0;
init_param2(physmem);
kdb_init();
return ((void *)(kernelstack.pv_va + USPACE_SVC_STACK_TOP -
sizeof(struct pcb)));
}