a2621dd29b
unnecessary filter configuration code in nge_init_locked(). While I'm here add a check for driver running state for multicast filter handling. Also remove unnecessary assignment to error variable since it is cleared in the function entry. Suggested by: brad@OpenBSD.org
2738 lines
72 KiB
C
2738 lines
72 KiB
C
/*-
|
|
* Copyright (c) 2001 Wind River Systems
|
|
* Copyright (c) 1997, 1998, 1999, 2000, 2001
|
|
* Bill Paul <wpaul@bsdi.com>. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Bill Paul.
|
|
* 4. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
/*
|
|
* National Semiconductor DP83820/DP83821 gigabit ethernet driver
|
|
* for FreeBSD. Datasheets are available from:
|
|
*
|
|
* http://www.national.com/ds/DP/DP83820.pdf
|
|
* http://www.national.com/ds/DP/DP83821.pdf
|
|
*
|
|
* These chips are used on several low cost gigabit ethernet NICs
|
|
* sold by D-Link, Addtron, SMC and Asante. Both parts are
|
|
* virtually the same, except the 83820 is a 64-bit/32-bit part,
|
|
* while the 83821 is 32-bit only.
|
|
*
|
|
* Many cards also use National gigE transceivers, such as the
|
|
* DP83891, DP83861 and DP83862 gigPHYTER parts. The DP83861 datasheet
|
|
* contains a full register description that applies to all of these
|
|
* components:
|
|
*
|
|
* http://www.national.com/ds/DP/DP83861.pdf
|
|
*
|
|
* Written by Bill Paul <wpaul@bsdi.com>
|
|
* BSDi Open Source Solutions
|
|
*/
|
|
|
|
/*
|
|
* The NatSemi DP83820 and 83821 controllers are enhanced versions
|
|
* of the NatSemi MacPHYTER 10/100 devices. They support 10, 100
|
|
* and 1000Mbps speeds with 1000baseX (ten bit interface), MII and GMII
|
|
* ports. Other features include 8K TX FIFO and 32K RX FIFO, TCP/IP
|
|
* hardware checksum offload (IPv4 only), VLAN tagging and filtering,
|
|
* priority TX and RX queues, a 2048 bit multicast hash filter, 4 RX pattern
|
|
* matching buffers, one perfect address filter buffer and interrupt
|
|
* moderation. The 83820 supports both 64-bit and 32-bit addressing
|
|
* and data transfers: the 64-bit support can be toggled on or off
|
|
* via software. This affects the size of certain fields in the DMA
|
|
* descriptors.
|
|
*
|
|
* There are two bugs/misfeatures in the 83820/83821 that I have
|
|
* discovered so far:
|
|
*
|
|
* - Receive buffers must be aligned on 64-bit boundaries, which means
|
|
* you must resort to copying data in order to fix up the payload
|
|
* alignment.
|
|
*
|
|
* - In order to transmit jumbo frames larger than 8170 bytes, you have
|
|
* to turn off transmit checksum offloading, because the chip can't
|
|
* compute the checksum on an outgoing frame unless it fits entirely
|
|
* within the TX FIFO, which is only 8192 bytes in size. If you have
|
|
* TX checksum offload enabled and you transmit attempt to transmit a
|
|
* frame larger than 8170 bytes, the transmitter will wedge.
|
|
*
|
|
* To work around the latter problem, TX checksum offload is disabled
|
|
* if the user selects an MTU larger than 8152 (8170 - 18).
|
|
*/
|
|
|
|
#ifdef HAVE_KERNEL_OPTION_HEADERS
|
|
#include "opt_device_polling.h"
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/module.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/rman.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <net/bpf.h>
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_vlan_var.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/mii_bitbang.h>
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
|
|
#include <machine/bus.h>
|
|
|
|
#include <dev/nge/if_ngereg.h>
|
|
|
|
/* "device miibus" required. See GENERIC if you get errors here. */
|
|
#include "miibus_if.h"
|
|
|
|
MODULE_DEPEND(nge, pci, 1, 1, 1);
|
|
MODULE_DEPEND(nge, ether, 1, 1, 1);
|
|
MODULE_DEPEND(nge, miibus, 1, 1, 1);
|
|
|
|
#define NGE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
|
|
|
|
/*
|
|
* Various supported device vendors/types and their names.
|
|
*/
|
|
static const struct nge_type nge_devs[] = {
|
|
{ NGE_VENDORID, NGE_DEVICEID,
|
|
"National Semiconductor Gigabit Ethernet" },
|
|
{ 0, 0, NULL }
|
|
};
|
|
|
|
static int nge_probe(device_t);
|
|
static int nge_attach(device_t);
|
|
static int nge_detach(device_t);
|
|
static int nge_shutdown(device_t);
|
|
static int nge_suspend(device_t);
|
|
static int nge_resume(device_t);
|
|
|
|
static __inline void nge_discard_rxbuf(struct nge_softc *, int);
|
|
static int nge_newbuf(struct nge_softc *, int);
|
|
static int nge_encap(struct nge_softc *, struct mbuf **);
|
|
#ifndef __NO_STRICT_ALIGNMENT
|
|
static __inline void nge_fixup_rx(struct mbuf *);
|
|
#endif
|
|
static int nge_rxeof(struct nge_softc *);
|
|
static void nge_txeof(struct nge_softc *);
|
|
static void nge_intr(void *);
|
|
static void nge_tick(void *);
|
|
static void nge_stats_update(struct nge_softc *);
|
|
static void nge_start(struct ifnet *);
|
|
static void nge_start_locked(struct ifnet *);
|
|
static int nge_ioctl(struct ifnet *, u_long, caddr_t);
|
|
static void nge_init(void *);
|
|
static void nge_init_locked(struct nge_softc *);
|
|
static int nge_stop_mac(struct nge_softc *);
|
|
static void nge_stop(struct nge_softc *);
|
|
static void nge_wol(struct nge_softc *);
|
|
static void nge_watchdog(struct nge_softc *);
|
|
static int nge_mediachange(struct ifnet *);
|
|
static void nge_mediastatus(struct ifnet *, struct ifmediareq *);
|
|
|
|
static void nge_delay(struct nge_softc *);
|
|
static void nge_eeprom_idle(struct nge_softc *);
|
|
static void nge_eeprom_putbyte(struct nge_softc *, int);
|
|
static void nge_eeprom_getword(struct nge_softc *, int, uint16_t *);
|
|
static void nge_read_eeprom(struct nge_softc *, caddr_t, int, int);
|
|
|
|
static int nge_miibus_readreg(device_t, int, int);
|
|
static int nge_miibus_writereg(device_t, int, int, int);
|
|
static void nge_miibus_statchg(device_t);
|
|
|
|
static void nge_rxfilter(struct nge_softc *);
|
|
static void nge_reset(struct nge_softc *);
|
|
static void nge_dmamap_cb(void *, bus_dma_segment_t *, int, int);
|
|
static int nge_dma_alloc(struct nge_softc *);
|
|
static void nge_dma_free(struct nge_softc *);
|
|
static int nge_list_rx_init(struct nge_softc *);
|
|
static int nge_list_tx_init(struct nge_softc *);
|
|
static void nge_sysctl_node(struct nge_softc *);
|
|
static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
|
|
static int sysctl_hw_nge_int_holdoff(SYSCTL_HANDLER_ARGS);
|
|
|
|
/*
|
|
* MII bit-bang glue
|
|
*/
|
|
static uint32_t nge_mii_bitbang_read(device_t);
|
|
static void nge_mii_bitbang_write(device_t, uint32_t);
|
|
|
|
static const struct mii_bitbang_ops nge_mii_bitbang_ops = {
|
|
nge_mii_bitbang_read,
|
|
nge_mii_bitbang_write,
|
|
{
|
|
NGE_MEAR_MII_DATA, /* MII_BIT_MDO */
|
|
NGE_MEAR_MII_DATA, /* MII_BIT_MDI */
|
|
NGE_MEAR_MII_CLK, /* MII_BIT_MDC */
|
|
NGE_MEAR_MII_DIR, /* MII_BIT_DIR_HOST_PHY */
|
|
0, /* MII_BIT_DIR_PHY_HOST */
|
|
}
|
|
};
|
|
|
|
static device_method_t nge_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, nge_probe),
|
|
DEVMETHOD(device_attach, nge_attach),
|
|
DEVMETHOD(device_detach, nge_detach),
|
|
DEVMETHOD(device_shutdown, nge_shutdown),
|
|
DEVMETHOD(device_suspend, nge_suspend),
|
|
DEVMETHOD(device_resume, nge_resume),
|
|
|
|
/* MII interface */
|
|
DEVMETHOD(miibus_readreg, nge_miibus_readreg),
|
|
DEVMETHOD(miibus_writereg, nge_miibus_writereg),
|
|
DEVMETHOD(miibus_statchg, nge_miibus_statchg),
|
|
|
|
DEVMETHOD_END
|
|
};
|
|
|
|
static driver_t nge_driver = {
|
|
"nge",
|
|
nge_methods,
|
|
sizeof(struct nge_softc)
|
|
};
|
|
|
|
static devclass_t nge_devclass;
|
|
|
|
DRIVER_MODULE(nge, pci, nge_driver, nge_devclass, 0, 0);
|
|
DRIVER_MODULE(miibus, nge, miibus_driver, miibus_devclass, 0, 0);
|
|
|
|
#define NGE_SETBIT(sc, reg, x) \
|
|
CSR_WRITE_4(sc, reg, \
|
|
CSR_READ_4(sc, reg) | (x))
|
|
|
|
#define NGE_CLRBIT(sc, reg, x) \
|
|
CSR_WRITE_4(sc, reg, \
|
|
CSR_READ_4(sc, reg) & ~(x))
|
|
|
|
#define SIO_SET(x) \
|
|
CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) | (x))
|
|
|
|
#define SIO_CLR(x) \
|
|
CSR_WRITE_4(sc, NGE_MEAR, CSR_READ_4(sc, NGE_MEAR) & ~(x))
|
|
|
|
static void
|
|
nge_delay(struct nge_softc *sc)
|
|
{
|
|
int idx;
|
|
|
|
for (idx = (300 / 33) + 1; idx > 0; idx--)
|
|
CSR_READ_4(sc, NGE_CSR);
|
|
}
|
|
|
|
static void
|
|
nge_eeprom_idle(struct nge_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
SIO_SET(NGE_MEAR_EE_CSEL);
|
|
nge_delay(sc);
|
|
SIO_SET(NGE_MEAR_EE_CLK);
|
|
nge_delay(sc);
|
|
|
|
for (i = 0; i < 25; i++) {
|
|
SIO_CLR(NGE_MEAR_EE_CLK);
|
|
nge_delay(sc);
|
|
SIO_SET(NGE_MEAR_EE_CLK);
|
|
nge_delay(sc);
|
|
}
|
|
|
|
SIO_CLR(NGE_MEAR_EE_CLK);
|
|
nge_delay(sc);
|
|
SIO_CLR(NGE_MEAR_EE_CSEL);
|
|
nge_delay(sc);
|
|
CSR_WRITE_4(sc, NGE_MEAR, 0x00000000);
|
|
}
|
|
|
|
/*
|
|
* Send a read command and address to the EEPROM, check for ACK.
|
|
*/
|
|
static void
|
|
nge_eeprom_putbyte(struct nge_softc *sc, int addr)
|
|
{
|
|
int d, i;
|
|
|
|
d = addr | NGE_EECMD_READ;
|
|
|
|
/*
|
|
* Feed in each bit and stobe the clock.
|
|
*/
|
|
for (i = 0x400; i; i >>= 1) {
|
|
if (d & i) {
|
|
SIO_SET(NGE_MEAR_EE_DIN);
|
|
} else {
|
|
SIO_CLR(NGE_MEAR_EE_DIN);
|
|
}
|
|
nge_delay(sc);
|
|
SIO_SET(NGE_MEAR_EE_CLK);
|
|
nge_delay(sc);
|
|
SIO_CLR(NGE_MEAR_EE_CLK);
|
|
nge_delay(sc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read a word of data stored in the EEPROM at address 'addr.'
|
|
*/
|
|
static void
|
|
nge_eeprom_getword(struct nge_softc *sc, int addr, uint16_t *dest)
|
|
{
|
|
int i;
|
|
uint16_t word = 0;
|
|
|
|
/* Force EEPROM to idle state. */
|
|
nge_eeprom_idle(sc);
|
|
|
|
/* Enter EEPROM access mode. */
|
|
nge_delay(sc);
|
|
SIO_CLR(NGE_MEAR_EE_CLK);
|
|
nge_delay(sc);
|
|
SIO_SET(NGE_MEAR_EE_CSEL);
|
|
nge_delay(sc);
|
|
|
|
/*
|
|
* Send address of word we want to read.
|
|
*/
|
|
nge_eeprom_putbyte(sc, addr);
|
|
|
|
/*
|
|
* Start reading bits from EEPROM.
|
|
*/
|
|
for (i = 0x8000; i; i >>= 1) {
|
|
SIO_SET(NGE_MEAR_EE_CLK);
|
|
nge_delay(sc);
|
|
if (CSR_READ_4(sc, NGE_MEAR) & NGE_MEAR_EE_DOUT)
|
|
word |= i;
|
|
nge_delay(sc);
|
|
SIO_CLR(NGE_MEAR_EE_CLK);
|
|
nge_delay(sc);
|
|
}
|
|
|
|
/* Turn off EEPROM access mode. */
|
|
nge_eeprom_idle(sc);
|
|
|
|
*dest = word;
|
|
}
|
|
|
|
/*
|
|
* Read a sequence of words from the EEPROM.
|
|
*/
|
|
static void
|
|
nge_read_eeprom(struct nge_softc *sc, caddr_t dest, int off, int cnt)
|
|
{
|
|
int i;
|
|
uint16_t word = 0, *ptr;
|
|
|
|
for (i = 0; i < cnt; i++) {
|
|
nge_eeprom_getword(sc, off + i, &word);
|
|
ptr = (uint16_t *)(dest + (i * 2));
|
|
*ptr = word;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read the MII serial port for the MII bit-bang module.
|
|
*/
|
|
static uint32_t
|
|
nge_mii_bitbang_read(device_t dev)
|
|
{
|
|
struct nge_softc *sc;
|
|
uint32_t val;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
val = CSR_READ_4(sc, NGE_MEAR);
|
|
CSR_BARRIER_4(sc, NGE_MEAR,
|
|
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
|
|
|
|
return (val);
|
|
}
|
|
|
|
/*
|
|
* Write the MII serial port for the MII bit-bang module.
|
|
*/
|
|
static void
|
|
nge_mii_bitbang_write(device_t dev, uint32_t val)
|
|
{
|
|
struct nge_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
CSR_WRITE_4(sc, NGE_MEAR, val);
|
|
CSR_BARRIER_4(sc, NGE_MEAR,
|
|
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
|
|
}
|
|
|
|
static int
|
|
nge_miibus_readreg(device_t dev, int phy, int reg)
|
|
{
|
|
struct nge_softc *sc;
|
|
int rv;
|
|
|
|
sc = device_get_softc(dev);
|
|
if ((sc->nge_flags & NGE_FLAG_TBI) != 0) {
|
|
/* Pretend PHY is at address 0. */
|
|
if (phy != 0)
|
|
return (0);
|
|
switch (reg) {
|
|
case MII_BMCR:
|
|
reg = NGE_TBI_BMCR;
|
|
break;
|
|
case MII_BMSR:
|
|
/* 83820/83821 has different bit layout for BMSR. */
|
|
rv = BMSR_ANEG | BMSR_EXTCAP | BMSR_EXTSTAT;
|
|
reg = CSR_READ_4(sc, NGE_TBI_BMSR);
|
|
if ((reg & NGE_TBIBMSR_ANEG_DONE) != 0)
|
|
rv |= BMSR_ACOMP;
|
|
if ((reg & NGE_TBIBMSR_LINKSTAT) != 0)
|
|
rv |= BMSR_LINK;
|
|
return (rv);
|
|
case MII_ANAR:
|
|
reg = NGE_TBI_ANAR;
|
|
break;
|
|
case MII_ANLPAR:
|
|
reg = NGE_TBI_ANLPAR;
|
|
break;
|
|
case MII_ANER:
|
|
reg = NGE_TBI_ANER;
|
|
break;
|
|
case MII_EXTSR:
|
|
reg = NGE_TBI_ESR;
|
|
break;
|
|
case MII_PHYIDR1:
|
|
case MII_PHYIDR2:
|
|
return (0);
|
|
default:
|
|
device_printf(sc->nge_dev,
|
|
"bad phy register read : %d\n", reg);
|
|
return (0);
|
|
}
|
|
return (CSR_READ_4(sc, reg));
|
|
}
|
|
|
|
return (mii_bitbang_readreg(dev, &nge_mii_bitbang_ops, phy, reg));
|
|
}
|
|
|
|
static int
|
|
nge_miibus_writereg(device_t dev, int phy, int reg, int data)
|
|
{
|
|
struct nge_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
if ((sc->nge_flags & NGE_FLAG_TBI) != 0) {
|
|
/* Pretend PHY is at address 0. */
|
|
if (phy != 0)
|
|
return (0);
|
|
switch (reg) {
|
|
case MII_BMCR:
|
|
reg = NGE_TBI_BMCR;
|
|
break;
|
|
case MII_BMSR:
|
|
return (0);
|
|
case MII_ANAR:
|
|
reg = NGE_TBI_ANAR;
|
|
break;
|
|
case MII_ANLPAR:
|
|
reg = NGE_TBI_ANLPAR;
|
|
break;
|
|
case MII_ANER:
|
|
reg = NGE_TBI_ANER;
|
|
break;
|
|
case MII_EXTSR:
|
|
reg = NGE_TBI_ESR;
|
|
break;
|
|
case MII_PHYIDR1:
|
|
case MII_PHYIDR2:
|
|
return (0);
|
|
default:
|
|
device_printf(sc->nge_dev,
|
|
"bad phy register write : %d\n", reg);
|
|
return (0);
|
|
}
|
|
CSR_WRITE_4(sc, reg, data);
|
|
return (0);
|
|
}
|
|
|
|
mii_bitbang_writereg(dev, &nge_mii_bitbang_ops, phy, reg, data);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* media status/link state change handler.
|
|
*/
|
|
static void
|
|
nge_miibus_statchg(device_t dev)
|
|
{
|
|
struct nge_softc *sc;
|
|
struct mii_data *mii;
|
|
struct ifnet *ifp;
|
|
struct nge_txdesc *txd;
|
|
uint32_t done, reg, status;
|
|
int i;
|
|
|
|
sc = device_get_softc(dev);
|
|
NGE_LOCK_ASSERT(sc);
|
|
|
|
mii = device_get_softc(sc->nge_miibus);
|
|
ifp = sc->nge_ifp;
|
|
if (mii == NULL || ifp == NULL ||
|
|
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
|
|
return;
|
|
|
|
sc->nge_flags &= ~NGE_FLAG_LINK;
|
|
if ((mii->mii_media_status & (IFM_AVALID | IFM_ACTIVE)) ==
|
|
(IFM_AVALID | IFM_ACTIVE)) {
|
|
switch (IFM_SUBTYPE(mii->mii_media_active)) {
|
|
case IFM_10_T:
|
|
case IFM_100_TX:
|
|
case IFM_1000_T:
|
|
case IFM_1000_SX:
|
|
case IFM_1000_LX:
|
|
case IFM_1000_CX:
|
|
sc->nge_flags |= NGE_FLAG_LINK;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Stop Tx/Rx MACs. */
|
|
if (nge_stop_mac(sc) == ETIMEDOUT)
|
|
device_printf(sc->nge_dev,
|
|
"%s: unable to stop Tx/Rx MAC\n", __func__);
|
|
nge_txeof(sc);
|
|
nge_rxeof(sc);
|
|
if (sc->nge_head != NULL) {
|
|
m_freem(sc->nge_head);
|
|
sc->nge_head = sc->nge_tail = NULL;
|
|
}
|
|
|
|
/* Release queued frames. */
|
|
for (i = 0; i < NGE_TX_RING_CNT; i++) {
|
|
txd = &sc->nge_cdata.nge_txdesc[i];
|
|
if (txd->tx_m != NULL) {
|
|
bus_dmamap_sync(sc->nge_cdata.nge_tx_tag,
|
|
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->nge_cdata.nge_tx_tag,
|
|
txd->tx_dmamap);
|
|
m_freem(txd->tx_m);
|
|
txd->tx_m = NULL;
|
|
}
|
|
}
|
|
|
|
/* Program MAC with resolved speed/duplex. */
|
|
if ((sc->nge_flags & NGE_FLAG_LINK) != 0) {
|
|
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
|
|
NGE_SETBIT(sc, NGE_TX_CFG,
|
|
(NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
|
|
NGE_SETBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
|
|
#ifdef notyet
|
|
/* Enable flow-control. */
|
|
if ((IFM_OPTIONS(mii->mii_media_active) &
|
|
(IFM_ETH_RXPAUSE | IFM_ETH_TXPAUSE)) != 0)
|
|
NGE_SETBIT(sc, NGE_PAUSECSR,
|
|
NGE_PAUSECSR_PAUSE_ENB);
|
|
#endif
|
|
} else {
|
|
NGE_CLRBIT(sc, NGE_TX_CFG,
|
|
(NGE_TXCFG_IGN_HBEAT | NGE_TXCFG_IGN_CARR));
|
|
NGE_CLRBIT(sc, NGE_RX_CFG, NGE_RXCFG_RX_FDX);
|
|
NGE_CLRBIT(sc, NGE_PAUSECSR, NGE_PAUSECSR_PAUSE_ENB);
|
|
}
|
|
/* If we have a 1000Mbps link, set the mode_1000 bit. */
|
|
reg = CSR_READ_4(sc, NGE_CFG);
|
|
switch (IFM_SUBTYPE(mii->mii_media_active)) {
|
|
case IFM_1000_SX:
|
|
case IFM_1000_LX:
|
|
case IFM_1000_CX:
|
|
case IFM_1000_T:
|
|
reg |= NGE_CFG_MODE_1000;
|
|
break;
|
|
default:
|
|
reg &= ~NGE_CFG_MODE_1000;
|
|
break;
|
|
}
|
|
CSR_WRITE_4(sc, NGE_CFG, reg);
|
|
|
|
/* Reset Tx/Rx MAC. */
|
|
reg = CSR_READ_4(sc, NGE_CSR);
|
|
reg |= NGE_CSR_TX_RESET | NGE_CSR_RX_RESET;
|
|
CSR_WRITE_4(sc, NGE_CSR, reg);
|
|
/* Check the completion of reset. */
|
|
done = 0;
|
|
for (i = 0; i < NGE_TIMEOUT; i++) {
|
|
DELAY(1);
|
|
status = CSR_READ_4(sc, NGE_ISR);
|
|
if ((status & NGE_ISR_RX_RESET_DONE) != 0)
|
|
done |= NGE_ISR_RX_RESET_DONE;
|
|
if ((status & NGE_ISR_TX_RESET_DONE) != 0)
|
|
done |= NGE_ISR_TX_RESET_DONE;
|
|
if (done ==
|
|
(NGE_ISR_TX_RESET_DONE | NGE_ISR_RX_RESET_DONE))
|
|
break;
|
|
}
|
|
if (i == NGE_TIMEOUT)
|
|
device_printf(sc->nge_dev,
|
|
"%s: unable to reset Tx/Rx MAC\n", __func__);
|
|
/* Reuse Rx buffer and reset consumer pointer. */
|
|
sc->nge_cdata.nge_rx_cons = 0;
|
|
/*
|
|
* It seems that resetting Rx/Tx MAC results in
|
|
* resetting Tx/Rx descriptor pointer registers such
|
|
* that reloading Tx/Rx lists address are needed.
|
|
*/
|
|
CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI,
|
|
NGE_ADDR_HI(sc->nge_rdata.nge_rx_ring_paddr));
|
|
CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO,
|
|
NGE_ADDR_LO(sc->nge_rdata.nge_rx_ring_paddr));
|
|
CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI,
|
|
NGE_ADDR_HI(sc->nge_rdata.nge_tx_ring_paddr));
|
|
CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO,
|
|
NGE_ADDR_LO(sc->nge_rdata.nge_tx_ring_paddr));
|
|
/* Reinitialize Tx buffers. */
|
|
nge_list_tx_init(sc);
|
|
|
|
/* Restart Rx MAC. */
|
|
reg = CSR_READ_4(sc, NGE_CSR);
|
|
reg |= NGE_CSR_RX_ENABLE;
|
|
CSR_WRITE_4(sc, NGE_CSR, reg);
|
|
for (i = 0; i < NGE_TIMEOUT; i++) {
|
|
if ((CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RX_ENABLE) != 0)
|
|
break;
|
|
DELAY(1);
|
|
}
|
|
if (i == NGE_TIMEOUT)
|
|
device_printf(sc->nge_dev,
|
|
"%s: unable to restart Rx MAC\n", __func__);
|
|
}
|
|
|
|
/* Data LED off for TBI mode */
|
|
if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
|
|
CSR_WRITE_4(sc, NGE_GPIO,
|
|
CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT);
|
|
}
|
|
|
|
static void
|
|
nge_rxfilter(struct nge_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct ifmultiaddr *ifma;
|
|
uint32_t h, i, rxfilt;
|
|
int bit, index;
|
|
|
|
NGE_LOCK_ASSERT(sc);
|
|
ifp = sc->nge_ifp;
|
|
|
|
/* Make sure to stop Rx filtering. */
|
|
rxfilt = CSR_READ_4(sc, NGE_RXFILT_CTL);
|
|
rxfilt &= ~NGE_RXFILTCTL_ENABLE;
|
|
CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
|
|
CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
|
|
|
|
rxfilt &= ~(NGE_RXFILTCTL_ALLMULTI | NGE_RXFILTCTL_ALLPHYS);
|
|
rxfilt &= ~NGE_RXFILTCTL_BROAD;
|
|
/*
|
|
* We don't want to use the hash table for matching unicast
|
|
* addresses.
|
|
*/
|
|
rxfilt &= ~(NGE_RXFILTCTL_MCHASH | NGE_RXFILTCTL_UCHASH);
|
|
|
|
/*
|
|
* For the NatSemi chip, we have to explicitly enable the
|
|
* reception of ARP frames, as well as turn on the 'perfect
|
|
* match' filter where we store the station address, otherwise
|
|
* we won't receive unicasts meant for this host.
|
|
*/
|
|
rxfilt |= NGE_RXFILTCTL_ARP | NGE_RXFILTCTL_PERFECT;
|
|
|
|
/*
|
|
* Set the capture broadcast bit to capture broadcast frames.
|
|
*/
|
|
if ((ifp->if_flags & IFF_BROADCAST) != 0)
|
|
rxfilt |= NGE_RXFILTCTL_BROAD;
|
|
|
|
if ((ifp->if_flags & IFF_PROMISC) != 0 ||
|
|
(ifp->if_flags & IFF_ALLMULTI) != 0) {
|
|
rxfilt |= NGE_RXFILTCTL_ALLMULTI;
|
|
if ((ifp->if_flags & IFF_PROMISC) != 0)
|
|
rxfilt |= NGE_RXFILTCTL_ALLPHYS;
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* We have to explicitly enable the multicast hash table
|
|
* on the NatSemi chip if we want to use it, which we do.
|
|
*/
|
|
rxfilt |= NGE_RXFILTCTL_MCHASH;
|
|
|
|
/* first, zot all the existing hash bits */
|
|
for (i = 0; i < NGE_MCAST_FILTER_LEN; i += 2) {
|
|
CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_MCAST_LO + i);
|
|
CSR_WRITE_4(sc, NGE_RXFILT_DATA, 0);
|
|
}
|
|
|
|
/*
|
|
* From the 11 bits returned by the crc routine, the top 7
|
|
* bits represent the 16-bit word in the mcast hash table
|
|
* that needs to be updated, and the lower 4 bits represent
|
|
* which bit within that byte needs to be set.
|
|
*/
|
|
if_maddr_rlock(ifp);
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
|
|
ifma->ifma_addr), ETHER_ADDR_LEN) >> 21;
|
|
index = (h >> 4) & 0x7F;
|
|
bit = h & 0xF;
|
|
CSR_WRITE_4(sc, NGE_RXFILT_CTL,
|
|
NGE_FILTADDR_MCAST_LO + (index * 2));
|
|
NGE_SETBIT(sc, NGE_RXFILT_DATA, (1 << bit));
|
|
}
|
|
if_maddr_runlock(ifp);
|
|
|
|
done:
|
|
CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
|
|
/* Turn the receive filter on. */
|
|
rxfilt |= NGE_RXFILTCTL_ENABLE;
|
|
CSR_WRITE_4(sc, NGE_RXFILT_CTL, rxfilt);
|
|
CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
|
|
}
|
|
|
|
static void
|
|
nge_reset(struct nge_softc *sc)
|
|
{
|
|
uint32_t v;
|
|
int i;
|
|
|
|
NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RESET);
|
|
|
|
for (i = 0; i < NGE_TIMEOUT; i++) {
|
|
if (!(CSR_READ_4(sc, NGE_CSR) & NGE_CSR_RESET))
|
|
break;
|
|
DELAY(1);
|
|
}
|
|
|
|
if (i == NGE_TIMEOUT)
|
|
device_printf(sc->nge_dev, "reset never completed\n");
|
|
|
|
/* Wait a little while for the chip to get its brains in order. */
|
|
DELAY(1000);
|
|
|
|
/*
|
|
* If this is a NetSemi chip, make sure to clear
|
|
* PME mode.
|
|
*/
|
|
CSR_WRITE_4(sc, NGE_CLKRUN, NGE_CLKRUN_PMESTS);
|
|
CSR_WRITE_4(sc, NGE_CLKRUN, 0);
|
|
|
|
/* Clear WOL events which may interfere normal Rx filter opertaion. */
|
|
CSR_WRITE_4(sc, NGE_WOLCSR, 0);
|
|
|
|
/*
|
|
* Only DP83820 supports 64bits addressing/data transfers and
|
|
* 64bit addressing requires different descriptor structures.
|
|
* To make it simple, disable 64bit addressing/data transfers.
|
|
*/
|
|
v = CSR_READ_4(sc, NGE_CFG);
|
|
v &= ~(NGE_CFG_64BIT_ADDR_ENB | NGE_CFG_64BIT_DATA_ENB);
|
|
CSR_WRITE_4(sc, NGE_CFG, v);
|
|
}
|
|
|
|
/*
|
|
* Probe for a NatSemi chip. Check the PCI vendor and device
|
|
* IDs against our list and return a device name if we find a match.
|
|
*/
|
|
static int
|
|
nge_probe(device_t dev)
|
|
{
|
|
const struct nge_type *t;
|
|
|
|
t = nge_devs;
|
|
|
|
while (t->nge_name != NULL) {
|
|
if ((pci_get_vendor(dev) == t->nge_vid) &&
|
|
(pci_get_device(dev) == t->nge_did)) {
|
|
device_set_desc(dev, t->nge_name);
|
|
return (BUS_PROBE_DEFAULT);
|
|
}
|
|
t++;
|
|
}
|
|
|
|
return (ENXIO);
|
|
}
|
|
|
|
/*
|
|
* Attach the interface. Allocate softc structures, do ifmedia
|
|
* setup and ethernet/BPF attach.
|
|
*/
|
|
static int
|
|
nge_attach(device_t dev)
|
|
{
|
|
uint8_t eaddr[ETHER_ADDR_LEN];
|
|
uint16_t ea[ETHER_ADDR_LEN/2], ea_temp, reg;
|
|
struct nge_softc *sc;
|
|
struct ifnet *ifp;
|
|
int error, i, rid;
|
|
|
|
error = 0;
|
|
sc = device_get_softc(dev);
|
|
sc->nge_dev = dev;
|
|
|
|
NGE_LOCK_INIT(sc, device_get_nameunit(dev));
|
|
callout_init_mtx(&sc->nge_stat_ch, &sc->nge_mtx, 0);
|
|
|
|
/*
|
|
* Map control/status registers.
|
|
*/
|
|
pci_enable_busmaster(dev);
|
|
|
|
#ifdef NGE_USEIOSPACE
|
|
sc->nge_res_type = SYS_RES_IOPORT;
|
|
sc->nge_res_id = PCIR_BAR(0);
|
|
#else
|
|
sc->nge_res_type = SYS_RES_MEMORY;
|
|
sc->nge_res_id = PCIR_BAR(1);
|
|
#endif
|
|
sc->nge_res = bus_alloc_resource_any(dev, sc->nge_res_type,
|
|
&sc->nge_res_id, RF_ACTIVE);
|
|
|
|
if (sc->nge_res == NULL) {
|
|
if (sc->nge_res_type == SYS_RES_MEMORY) {
|
|
sc->nge_res_type = SYS_RES_IOPORT;
|
|
sc->nge_res_id = PCIR_BAR(0);
|
|
} else {
|
|
sc->nge_res_type = SYS_RES_MEMORY;
|
|
sc->nge_res_id = PCIR_BAR(1);
|
|
}
|
|
sc->nge_res = bus_alloc_resource_any(dev, sc->nge_res_type,
|
|
&sc->nge_res_id, RF_ACTIVE);
|
|
if (sc->nge_res == NULL) {
|
|
device_printf(dev, "couldn't allocate %s resources\n",
|
|
sc->nge_res_type == SYS_RES_MEMORY ? "memory" :
|
|
"I/O");
|
|
NGE_LOCK_DESTROY(sc);
|
|
return (ENXIO);
|
|
}
|
|
}
|
|
|
|
/* Allocate interrupt */
|
|
rid = 0;
|
|
sc->nge_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
|
|
RF_SHAREABLE | RF_ACTIVE);
|
|
|
|
if (sc->nge_irq == NULL) {
|
|
device_printf(dev, "couldn't map interrupt\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
/* Enable MWI. */
|
|
reg = pci_read_config(dev, PCIR_COMMAND, 2);
|
|
reg |= PCIM_CMD_MWRICEN;
|
|
pci_write_config(dev, PCIR_COMMAND, reg, 2);
|
|
|
|
/* Reset the adapter. */
|
|
nge_reset(sc);
|
|
|
|
/*
|
|
* Get station address from the EEPROM.
|
|
*/
|
|
nge_read_eeprom(sc, (caddr_t)ea, NGE_EE_NODEADDR, 3);
|
|
for (i = 0; i < ETHER_ADDR_LEN / 2; i++)
|
|
ea[i] = le16toh(ea[i]);
|
|
ea_temp = ea[0];
|
|
ea[0] = ea[2];
|
|
ea[2] = ea_temp;
|
|
bcopy(ea, eaddr, sizeof(eaddr));
|
|
|
|
if (nge_dma_alloc(sc) != 0) {
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
|
|
nge_sysctl_node(sc);
|
|
|
|
ifp = sc->nge_ifp = if_alloc(IFT_ETHER);
|
|
if (ifp == NULL) {
|
|
device_printf(dev, "can not allocate ifnet structure\n");
|
|
error = ENOSPC;
|
|
goto fail;
|
|
}
|
|
ifp->if_softc = sc;
|
|
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = nge_ioctl;
|
|
ifp->if_start = nge_start;
|
|
ifp->if_init = nge_init;
|
|
ifp->if_snd.ifq_drv_maxlen = NGE_TX_RING_CNT - 1;
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
ifp->if_hwassist = NGE_CSUM_FEATURES;
|
|
ifp->if_capabilities = IFCAP_HWCSUM;
|
|
/*
|
|
* It seems that some hardwares doesn't provide 3.3V auxiliary
|
|
* supply(3VAUX) to drive PME such that checking PCI power
|
|
* management capability is necessary.
|
|
*/
|
|
if (pci_find_cap(sc->nge_dev, PCIY_PMG, &i) == 0)
|
|
ifp->if_capabilities |= IFCAP_WOL;
|
|
ifp->if_capenable = ifp->if_capabilities;
|
|
|
|
if ((CSR_READ_4(sc, NGE_CFG) & NGE_CFG_TBI_EN) != 0) {
|
|
sc->nge_flags |= NGE_FLAG_TBI;
|
|
device_printf(dev, "Using TBI\n");
|
|
/* Configure GPIO. */
|
|
CSR_WRITE_4(sc, NGE_GPIO, CSR_READ_4(sc, NGE_GPIO)
|
|
| NGE_GPIO_GP4_OUT
|
|
| NGE_GPIO_GP1_OUTENB | NGE_GPIO_GP2_OUTENB
|
|
| NGE_GPIO_GP3_OUTENB
|
|
| NGE_GPIO_GP3_IN | NGE_GPIO_GP4_IN);
|
|
}
|
|
|
|
/*
|
|
* Do MII setup.
|
|
*/
|
|
error = mii_attach(dev, &sc->nge_miibus, ifp, nge_mediachange,
|
|
nge_mediastatus, BMSR_DEFCAPMASK, MII_PHY_ANY, MII_OFFSET_ANY, 0);
|
|
if (error != 0) {
|
|
device_printf(dev, "attaching PHYs failed\n");
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Call MI attach routine.
|
|
*/
|
|
ether_ifattach(ifp, eaddr);
|
|
|
|
/* VLAN capability setup. */
|
|
ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
|
|
ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
|
|
ifp->if_capenable = ifp->if_capabilities;
|
|
#ifdef DEVICE_POLLING
|
|
ifp->if_capabilities |= IFCAP_POLLING;
|
|
#endif
|
|
/*
|
|
* Tell the upper layer(s) we support long frames.
|
|
* Must appear after the call to ether_ifattach() because
|
|
* ether_ifattach() sets ifi_hdrlen to the default value.
|
|
*/
|
|
ifp->if_hdrlen = sizeof(struct ether_vlan_header);
|
|
|
|
/*
|
|
* Hookup IRQ last.
|
|
*/
|
|
error = bus_setup_intr(dev, sc->nge_irq, INTR_TYPE_NET | INTR_MPSAFE,
|
|
NULL, nge_intr, sc, &sc->nge_intrhand);
|
|
if (error) {
|
|
device_printf(dev, "couldn't set up irq\n");
|
|
goto fail;
|
|
}
|
|
|
|
fail:
|
|
if (error != 0)
|
|
nge_detach(dev);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
nge_detach(device_t dev)
|
|
{
|
|
struct nge_softc *sc;
|
|
struct ifnet *ifp;
|
|
|
|
sc = device_get_softc(dev);
|
|
ifp = sc->nge_ifp;
|
|
|
|
#ifdef DEVICE_POLLING
|
|
if (ifp != NULL && ifp->if_capenable & IFCAP_POLLING)
|
|
ether_poll_deregister(ifp);
|
|
#endif
|
|
|
|
if (device_is_attached(dev)) {
|
|
NGE_LOCK(sc);
|
|
sc->nge_flags |= NGE_FLAG_DETACH;
|
|
nge_stop(sc);
|
|
NGE_UNLOCK(sc);
|
|
callout_drain(&sc->nge_stat_ch);
|
|
if (ifp != NULL)
|
|
ether_ifdetach(ifp);
|
|
}
|
|
|
|
if (sc->nge_miibus != NULL) {
|
|
device_delete_child(dev, sc->nge_miibus);
|
|
sc->nge_miibus = NULL;
|
|
}
|
|
bus_generic_detach(dev);
|
|
if (sc->nge_intrhand != NULL)
|
|
bus_teardown_intr(dev, sc->nge_irq, sc->nge_intrhand);
|
|
if (sc->nge_irq != NULL)
|
|
bus_release_resource(dev, SYS_RES_IRQ, 0, sc->nge_irq);
|
|
if (sc->nge_res != NULL)
|
|
bus_release_resource(dev, sc->nge_res_type, sc->nge_res_id,
|
|
sc->nge_res);
|
|
|
|
nge_dma_free(sc);
|
|
if (ifp != NULL)
|
|
if_free(ifp);
|
|
|
|
NGE_LOCK_DESTROY(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
struct nge_dmamap_arg {
|
|
bus_addr_t nge_busaddr;
|
|
};
|
|
|
|
static void
|
|
nge_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
|
|
{
|
|
struct nge_dmamap_arg *ctx;
|
|
|
|
if (error != 0)
|
|
return;
|
|
ctx = arg;
|
|
ctx->nge_busaddr = segs[0].ds_addr;
|
|
}
|
|
|
|
static int
|
|
nge_dma_alloc(struct nge_softc *sc)
|
|
{
|
|
struct nge_dmamap_arg ctx;
|
|
struct nge_txdesc *txd;
|
|
struct nge_rxdesc *rxd;
|
|
int error, i;
|
|
|
|
/* Create parent DMA tag. */
|
|
error = bus_dma_tag_create(
|
|
bus_get_dma_tag(sc->nge_dev), /* parent */
|
|
1, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
|
|
0, /* nsegments */
|
|
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->nge_cdata.nge_parent_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->nge_dev, "failed to create parent DMA tag\n");
|
|
goto fail;
|
|
}
|
|
/* Create tag for Tx ring. */
|
|
error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
|
|
NGE_RING_ALIGN, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
NGE_TX_RING_SIZE, /* maxsize */
|
|
1, /* nsegments */
|
|
NGE_TX_RING_SIZE, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->nge_cdata.nge_tx_ring_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->nge_dev, "failed to create Tx ring DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Create tag for Rx ring. */
|
|
error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
|
|
NGE_RING_ALIGN, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
NGE_RX_RING_SIZE, /* maxsize */
|
|
1, /* nsegments */
|
|
NGE_RX_RING_SIZE, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->nge_cdata.nge_rx_ring_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->nge_dev,
|
|
"failed to create Rx ring DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Create tag for Tx buffers. */
|
|
error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
|
|
1, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MCLBYTES * NGE_MAXTXSEGS, /* maxsize */
|
|
NGE_MAXTXSEGS, /* nsegments */
|
|
MCLBYTES, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->nge_cdata.nge_tx_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->nge_dev, "failed to create Tx DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Create tag for Rx buffers. */
|
|
error = bus_dma_tag_create(sc->nge_cdata.nge_parent_tag,/* parent */
|
|
NGE_RX_ALIGN, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MCLBYTES, /* maxsize */
|
|
1, /* nsegments */
|
|
MCLBYTES, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->nge_cdata.nge_rx_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->nge_dev, "failed to create Rx DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Allocate DMA'able memory and load the DMA map for Tx ring. */
|
|
error = bus_dmamem_alloc(sc->nge_cdata.nge_tx_ring_tag,
|
|
(void **)&sc->nge_rdata.nge_tx_ring, BUS_DMA_WAITOK |
|
|
BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->nge_cdata.nge_tx_ring_map);
|
|
if (error != 0) {
|
|
device_printf(sc->nge_dev,
|
|
"failed to allocate DMA'able memory for Tx ring\n");
|
|
goto fail;
|
|
}
|
|
|
|
ctx.nge_busaddr = 0;
|
|
error = bus_dmamap_load(sc->nge_cdata.nge_tx_ring_tag,
|
|
sc->nge_cdata.nge_tx_ring_map, sc->nge_rdata.nge_tx_ring,
|
|
NGE_TX_RING_SIZE, nge_dmamap_cb, &ctx, 0);
|
|
if (error != 0 || ctx.nge_busaddr == 0) {
|
|
device_printf(sc->nge_dev,
|
|
"failed to load DMA'able memory for Tx ring\n");
|
|
goto fail;
|
|
}
|
|
sc->nge_rdata.nge_tx_ring_paddr = ctx.nge_busaddr;
|
|
|
|
/* Allocate DMA'able memory and load the DMA map for Rx ring. */
|
|
error = bus_dmamem_alloc(sc->nge_cdata.nge_rx_ring_tag,
|
|
(void **)&sc->nge_rdata.nge_rx_ring, BUS_DMA_WAITOK |
|
|
BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->nge_cdata.nge_rx_ring_map);
|
|
if (error != 0) {
|
|
device_printf(sc->nge_dev,
|
|
"failed to allocate DMA'able memory for Rx ring\n");
|
|
goto fail;
|
|
}
|
|
|
|
ctx.nge_busaddr = 0;
|
|
error = bus_dmamap_load(sc->nge_cdata.nge_rx_ring_tag,
|
|
sc->nge_cdata.nge_rx_ring_map, sc->nge_rdata.nge_rx_ring,
|
|
NGE_RX_RING_SIZE, nge_dmamap_cb, &ctx, 0);
|
|
if (error != 0 || ctx.nge_busaddr == 0) {
|
|
device_printf(sc->nge_dev,
|
|
"failed to load DMA'able memory for Rx ring\n");
|
|
goto fail;
|
|
}
|
|
sc->nge_rdata.nge_rx_ring_paddr = ctx.nge_busaddr;
|
|
|
|
/* Create DMA maps for Tx buffers. */
|
|
for (i = 0; i < NGE_TX_RING_CNT; i++) {
|
|
txd = &sc->nge_cdata.nge_txdesc[i];
|
|
txd->tx_m = NULL;
|
|
txd->tx_dmamap = NULL;
|
|
error = bus_dmamap_create(sc->nge_cdata.nge_tx_tag, 0,
|
|
&txd->tx_dmamap);
|
|
if (error != 0) {
|
|
device_printf(sc->nge_dev,
|
|
"failed to create Tx dmamap\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
/* Create DMA maps for Rx buffers. */
|
|
if ((error = bus_dmamap_create(sc->nge_cdata.nge_rx_tag, 0,
|
|
&sc->nge_cdata.nge_rx_sparemap)) != 0) {
|
|
device_printf(sc->nge_dev,
|
|
"failed to create spare Rx dmamap\n");
|
|
goto fail;
|
|
}
|
|
for (i = 0; i < NGE_RX_RING_CNT; i++) {
|
|
rxd = &sc->nge_cdata.nge_rxdesc[i];
|
|
rxd->rx_m = NULL;
|
|
rxd->rx_dmamap = NULL;
|
|
error = bus_dmamap_create(sc->nge_cdata.nge_rx_tag, 0,
|
|
&rxd->rx_dmamap);
|
|
if (error != 0) {
|
|
device_printf(sc->nge_dev,
|
|
"failed to create Rx dmamap\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
fail:
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
nge_dma_free(struct nge_softc *sc)
|
|
{
|
|
struct nge_txdesc *txd;
|
|
struct nge_rxdesc *rxd;
|
|
int i;
|
|
|
|
/* Tx ring. */
|
|
if (sc->nge_cdata.nge_tx_ring_tag) {
|
|
if (sc->nge_rdata.nge_tx_ring_paddr)
|
|
bus_dmamap_unload(sc->nge_cdata.nge_tx_ring_tag,
|
|
sc->nge_cdata.nge_tx_ring_map);
|
|
if (sc->nge_rdata.nge_tx_ring)
|
|
bus_dmamem_free(sc->nge_cdata.nge_tx_ring_tag,
|
|
sc->nge_rdata.nge_tx_ring,
|
|
sc->nge_cdata.nge_tx_ring_map);
|
|
sc->nge_rdata.nge_tx_ring = NULL;
|
|
sc->nge_rdata.nge_tx_ring_paddr = 0;
|
|
bus_dma_tag_destroy(sc->nge_cdata.nge_tx_ring_tag);
|
|
sc->nge_cdata.nge_tx_ring_tag = NULL;
|
|
}
|
|
/* Rx ring. */
|
|
if (sc->nge_cdata.nge_rx_ring_tag) {
|
|
if (sc->nge_rdata.nge_rx_ring_paddr)
|
|
bus_dmamap_unload(sc->nge_cdata.nge_rx_ring_tag,
|
|
sc->nge_cdata.nge_rx_ring_map);
|
|
if (sc->nge_rdata.nge_rx_ring)
|
|
bus_dmamem_free(sc->nge_cdata.nge_rx_ring_tag,
|
|
sc->nge_rdata.nge_rx_ring,
|
|
sc->nge_cdata.nge_rx_ring_map);
|
|
sc->nge_rdata.nge_rx_ring = NULL;
|
|
sc->nge_rdata.nge_rx_ring_paddr = 0;
|
|
bus_dma_tag_destroy(sc->nge_cdata.nge_rx_ring_tag);
|
|
sc->nge_cdata.nge_rx_ring_tag = NULL;
|
|
}
|
|
/* Tx buffers. */
|
|
if (sc->nge_cdata.nge_tx_tag) {
|
|
for (i = 0; i < NGE_TX_RING_CNT; i++) {
|
|
txd = &sc->nge_cdata.nge_txdesc[i];
|
|
if (txd->tx_dmamap) {
|
|
bus_dmamap_destroy(sc->nge_cdata.nge_tx_tag,
|
|
txd->tx_dmamap);
|
|
txd->tx_dmamap = NULL;
|
|
}
|
|
}
|
|
bus_dma_tag_destroy(sc->nge_cdata.nge_tx_tag);
|
|
sc->nge_cdata.nge_tx_tag = NULL;
|
|
}
|
|
/* Rx buffers. */
|
|
if (sc->nge_cdata.nge_rx_tag) {
|
|
for (i = 0; i < NGE_RX_RING_CNT; i++) {
|
|
rxd = &sc->nge_cdata.nge_rxdesc[i];
|
|
if (rxd->rx_dmamap) {
|
|
bus_dmamap_destroy(sc->nge_cdata.nge_rx_tag,
|
|
rxd->rx_dmamap);
|
|
rxd->rx_dmamap = NULL;
|
|
}
|
|
}
|
|
if (sc->nge_cdata.nge_rx_sparemap) {
|
|
bus_dmamap_destroy(sc->nge_cdata.nge_rx_tag,
|
|
sc->nge_cdata.nge_rx_sparemap);
|
|
sc->nge_cdata.nge_rx_sparemap = 0;
|
|
}
|
|
bus_dma_tag_destroy(sc->nge_cdata.nge_rx_tag);
|
|
sc->nge_cdata.nge_rx_tag = NULL;
|
|
}
|
|
|
|
if (sc->nge_cdata.nge_parent_tag) {
|
|
bus_dma_tag_destroy(sc->nge_cdata.nge_parent_tag);
|
|
sc->nge_cdata.nge_parent_tag = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize the transmit descriptors.
|
|
*/
|
|
static int
|
|
nge_list_tx_init(struct nge_softc *sc)
|
|
{
|
|
struct nge_ring_data *rd;
|
|
struct nge_txdesc *txd;
|
|
bus_addr_t addr;
|
|
int i;
|
|
|
|
sc->nge_cdata.nge_tx_prod = 0;
|
|
sc->nge_cdata.nge_tx_cons = 0;
|
|
sc->nge_cdata.nge_tx_cnt = 0;
|
|
|
|
rd = &sc->nge_rdata;
|
|
bzero(rd->nge_tx_ring, sizeof(struct nge_desc) * NGE_TX_RING_CNT);
|
|
for (i = 0; i < NGE_TX_RING_CNT; i++) {
|
|
if (i == NGE_TX_RING_CNT - 1)
|
|
addr = NGE_TX_RING_ADDR(sc, 0);
|
|
else
|
|
addr = NGE_TX_RING_ADDR(sc, i + 1);
|
|
rd->nge_tx_ring[i].nge_next = htole32(NGE_ADDR_LO(addr));
|
|
txd = &sc->nge_cdata.nge_txdesc[i];
|
|
txd->tx_m = NULL;
|
|
}
|
|
|
|
bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
|
|
sc->nge_cdata.nge_tx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Initialize the RX descriptors and allocate mbufs for them. Note that
|
|
* we arrange the descriptors in a closed ring, so that the last descriptor
|
|
* points back to the first.
|
|
*/
|
|
static int
|
|
nge_list_rx_init(struct nge_softc *sc)
|
|
{
|
|
struct nge_ring_data *rd;
|
|
bus_addr_t addr;
|
|
int i;
|
|
|
|
sc->nge_cdata.nge_rx_cons = 0;
|
|
sc->nge_head = sc->nge_tail = NULL;
|
|
|
|
rd = &sc->nge_rdata;
|
|
bzero(rd->nge_rx_ring, sizeof(struct nge_desc) * NGE_RX_RING_CNT);
|
|
for (i = 0; i < NGE_RX_RING_CNT; i++) {
|
|
if (nge_newbuf(sc, i) != 0)
|
|
return (ENOBUFS);
|
|
if (i == NGE_RX_RING_CNT - 1)
|
|
addr = NGE_RX_RING_ADDR(sc, 0);
|
|
else
|
|
addr = NGE_RX_RING_ADDR(sc, i + 1);
|
|
rd->nge_rx_ring[i].nge_next = htole32(NGE_ADDR_LO(addr));
|
|
}
|
|
|
|
bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
|
|
sc->nge_cdata.nge_rx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static __inline void
|
|
nge_discard_rxbuf(struct nge_softc *sc, int idx)
|
|
{
|
|
struct nge_desc *desc;
|
|
|
|
desc = &sc->nge_rdata.nge_rx_ring[idx];
|
|
desc->nge_cmdsts = htole32(MCLBYTES - sizeof(uint64_t));
|
|
desc->nge_extsts = 0;
|
|
}
|
|
|
|
/*
|
|
* Initialize an RX descriptor and attach an MBUF cluster.
|
|
*/
|
|
static int
|
|
nge_newbuf(struct nge_softc *sc, int idx)
|
|
{
|
|
struct nge_desc *desc;
|
|
struct nge_rxdesc *rxd;
|
|
struct mbuf *m;
|
|
bus_dma_segment_t segs[1];
|
|
bus_dmamap_t map;
|
|
int nsegs;
|
|
|
|
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
m->m_len = m->m_pkthdr.len = MCLBYTES;
|
|
m_adj(m, sizeof(uint64_t));
|
|
|
|
if (bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_rx_tag,
|
|
sc->nge_cdata.nge_rx_sparemap, m, segs, &nsegs, 0) != 0) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
|
|
|
|
rxd = &sc->nge_cdata.nge_rxdesc[idx];
|
|
if (rxd->rx_m != NULL) {
|
|
bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap);
|
|
}
|
|
map = rxd->rx_dmamap;
|
|
rxd->rx_dmamap = sc->nge_cdata.nge_rx_sparemap;
|
|
sc->nge_cdata.nge_rx_sparemap = map;
|
|
bus_dmamap_sync(sc->nge_cdata.nge_rx_tag, rxd->rx_dmamap,
|
|
BUS_DMASYNC_PREREAD);
|
|
rxd->rx_m = m;
|
|
desc = &sc->nge_rdata.nge_rx_ring[idx];
|
|
desc->nge_ptr = htole32(NGE_ADDR_LO(segs[0].ds_addr));
|
|
desc->nge_cmdsts = htole32(segs[0].ds_len);
|
|
desc->nge_extsts = 0;
|
|
|
|
return (0);
|
|
}
|
|
|
|
#ifndef __NO_STRICT_ALIGNMENT
|
|
static __inline void
|
|
nge_fixup_rx(struct mbuf *m)
|
|
{
|
|
int i;
|
|
uint16_t *src, *dst;
|
|
|
|
src = mtod(m, uint16_t *);
|
|
dst = src - 1;
|
|
|
|
for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
|
|
*dst++ = *src++;
|
|
|
|
m->m_data -= ETHER_ALIGN;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* A frame has been uploaded: pass the resulting mbuf chain up to
|
|
* the higher level protocols.
|
|
*/
|
|
static int
|
|
nge_rxeof(struct nge_softc *sc)
|
|
{
|
|
struct mbuf *m;
|
|
struct ifnet *ifp;
|
|
struct nge_desc *cur_rx;
|
|
struct nge_rxdesc *rxd;
|
|
int cons, prog, rx_npkts, total_len;
|
|
uint32_t cmdsts, extsts;
|
|
|
|
NGE_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->nge_ifp;
|
|
cons = sc->nge_cdata.nge_rx_cons;
|
|
rx_npkts = 0;
|
|
|
|
bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
|
|
sc->nge_cdata.nge_rx_ring_map,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
|
|
for (prog = 0; prog < NGE_RX_RING_CNT &&
|
|
(ifp->if_drv_flags & IFF_DRV_RUNNING) != 0;
|
|
NGE_INC(cons, NGE_RX_RING_CNT)) {
|
|
#ifdef DEVICE_POLLING
|
|
if (ifp->if_capenable & IFCAP_POLLING) {
|
|
if (sc->rxcycles <= 0)
|
|
break;
|
|
sc->rxcycles--;
|
|
}
|
|
#endif
|
|
cur_rx = &sc->nge_rdata.nge_rx_ring[cons];
|
|
cmdsts = le32toh(cur_rx->nge_cmdsts);
|
|
extsts = le32toh(cur_rx->nge_extsts);
|
|
if ((cmdsts & NGE_CMDSTS_OWN) == 0)
|
|
break;
|
|
prog++;
|
|
rxd = &sc->nge_cdata.nge_rxdesc[cons];
|
|
m = rxd->rx_m;
|
|
total_len = cmdsts & NGE_CMDSTS_BUFLEN;
|
|
|
|
if ((cmdsts & NGE_CMDSTS_MORE) != 0) {
|
|
if (nge_newbuf(sc, cons) != 0) {
|
|
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
|
|
if (sc->nge_head != NULL) {
|
|
m_freem(sc->nge_head);
|
|
sc->nge_head = sc->nge_tail = NULL;
|
|
}
|
|
nge_discard_rxbuf(sc, cons);
|
|
continue;
|
|
}
|
|
m->m_len = total_len;
|
|
if (sc->nge_head == NULL) {
|
|
m->m_pkthdr.len = total_len;
|
|
sc->nge_head = sc->nge_tail = m;
|
|
} else {
|
|
m->m_flags &= ~M_PKTHDR;
|
|
sc->nge_head->m_pkthdr.len += total_len;
|
|
sc->nge_tail->m_next = m;
|
|
sc->nge_tail = m;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If an error occurs, update stats, clear the
|
|
* status word and leave the mbuf cluster in place:
|
|
* it should simply get re-used next time this descriptor
|
|
* comes up in the ring.
|
|
*/
|
|
if ((cmdsts & NGE_CMDSTS_PKT_OK) == 0) {
|
|
if ((cmdsts & NGE_RXSTAT_RUNT) &&
|
|
total_len >= (ETHER_MIN_LEN - ETHER_CRC_LEN - 4)) {
|
|
/*
|
|
* Work-around hardware bug, accept runt frames
|
|
* if its length is larger than or equal to 56.
|
|
*/
|
|
} else {
|
|
/*
|
|
* Input error counters are updated by hardware.
|
|
*/
|
|
if (sc->nge_head != NULL) {
|
|
m_freem(sc->nge_head);
|
|
sc->nge_head = sc->nge_tail = NULL;
|
|
}
|
|
nge_discard_rxbuf(sc, cons);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* Try conjure up a replacement mbuf. */
|
|
|
|
if (nge_newbuf(sc, cons) != 0) {
|
|
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
|
|
if (sc->nge_head != NULL) {
|
|
m_freem(sc->nge_head);
|
|
sc->nge_head = sc->nge_tail = NULL;
|
|
}
|
|
nge_discard_rxbuf(sc, cons);
|
|
continue;
|
|
}
|
|
|
|
/* Chain received mbufs. */
|
|
if (sc->nge_head != NULL) {
|
|
m->m_len = total_len;
|
|
m->m_flags &= ~M_PKTHDR;
|
|
sc->nge_tail->m_next = m;
|
|
m = sc->nge_head;
|
|
m->m_pkthdr.len += total_len;
|
|
sc->nge_head = sc->nge_tail = NULL;
|
|
} else
|
|
m->m_pkthdr.len = m->m_len = total_len;
|
|
|
|
/*
|
|
* Ok. NatSemi really screwed up here. This is the
|
|
* only gigE chip I know of with alignment constraints
|
|
* on receive buffers. RX buffers must be 64-bit aligned.
|
|
*/
|
|
/*
|
|
* By popular demand, ignore the alignment problems
|
|
* on the non-strict alignment platform. The performance hit
|
|
* incurred due to unaligned accesses is much smaller
|
|
* than the hit produced by forcing buffer copies all
|
|
* the time, especially with jumbo frames. We still
|
|
* need to fix up the alignment everywhere else though.
|
|
*/
|
|
#ifndef __NO_STRICT_ALIGNMENT
|
|
nge_fixup_rx(m);
|
|
#endif
|
|
m->m_pkthdr.rcvif = ifp;
|
|
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
|
|
|
|
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0) {
|
|
/* Do IP checksum checking. */
|
|
if ((extsts & NGE_RXEXTSTS_IPPKT) != 0)
|
|
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
|
|
if ((extsts & NGE_RXEXTSTS_IPCSUMERR) == 0)
|
|
m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
|
|
if ((extsts & NGE_RXEXTSTS_TCPPKT &&
|
|
!(extsts & NGE_RXEXTSTS_TCPCSUMERR)) ||
|
|
(extsts & NGE_RXEXTSTS_UDPPKT &&
|
|
!(extsts & NGE_RXEXTSTS_UDPCSUMERR))) {
|
|
m->m_pkthdr.csum_flags |=
|
|
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
|
|
m->m_pkthdr.csum_data = 0xffff;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we received a packet with a vlan tag, pass it
|
|
* to vlan_input() instead of ether_input().
|
|
*/
|
|
if ((extsts & NGE_RXEXTSTS_VLANPKT) != 0 &&
|
|
(ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
|
|
m->m_pkthdr.ether_vtag =
|
|
bswap16(extsts & NGE_RXEXTSTS_VTCI);
|
|
m->m_flags |= M_VLANTAG;
|
|
}
|
|
NGE_UNLOCK(sc);
|
|
(*ifp->if_input)(ifp, m);
|
|
NGE_LOCK(sc);
|
|
rx_npkts++;
|
|
}
|
|
|
|
if (prog > 0) {
|
|
sc->nge_cdata.nge_rx_cons = cons;
|
|
bus_dmamap_sync(sc->nge_cdata.nge_rx_ring_tag,
|
|
sc->nge_cdata.nge_rx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
}
|
|
return (rx_npkts);
|
|
}
|
|
|
|
/*
|
|
* A frame was downloaded to the chip. It's safe for us to clean up
|
|
* the list buffers.
|
|
*/
|
|
static void
|
|
nge_txeof(struct nge_softc *sc)
|
|
{
|
|
struct nge_desc *cur_tx;
|
|
struct nge_txdesc *txd;
|
|
struct ifnet *ifp;
|
|
uint32_t cmdsts;
|
|
int cons, prod;
|
|
|
|
NGE_LOCK_ASSERT(sc);
|
|
ifp = sc->nge_ifp;
|
|
|
|
cons = sc->nge_cdata.nge_tx_cons;
|
|
prod = sc->nge_cdata.nge_tx_prod;
|
|
if (cons == prod)
|
|
return;
|
|
|
|
bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
|
|
sc->nge_cdata.nge_tx_ring_map,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
|
|
/*
|
|
* Go through our tx list and free mbufs for those
|
|
* frames that have been transmitted.
|
|
*/
|
|
for (; cons != prod; NGE_INC(cons, NGE_TX_RING_CNT)) {
|
|
cur_tx = &sc->nge_rdata.nge_tx_ring[cons];
|
|
cmdsts = le32toh(cur_tx->nge_cmdsts);
|
|
if ((cmdsts & NGE_CMDSTS_OWN) != 0)
|
|
break;
|
|
sc->nge_cdata.nge_tx_cnt--;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
if ((cmdsts & NGE_CMDSTS_MORE) != 0)
|
|
continue;
|
|
|
|
txd = &sc->nge_cdata.nge_txdesc[cons];
|
|
bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, txd->tx_dmamap);
|
|
if ((cmdsts & NGE_CMDSTS_PKT_OK) == 0) {
|
|
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
|
|
if ((cmdsts & NGE_TXSTAT_EXCESSCOLLS) != 0)
|
|
if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
|
|
if ((cmdsts & NGE_TXSTAT_OUTOFWINCOLL) != 0)
|
|
if_inc_counter(ifp, IFCOUNTER_COLLISIONS, 1);
|
|
} else
|
|
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
|
|
|
|
if_inc_counter(ifp, IFCOUNTER_COLLISIONS, (cmdsts & NGE_TXSTAT_COLLCNT) >> 16);
|
|
KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!\n",
|
|
__func__));
|
|
m_freem(txd->tx_m);
|
|
txd->tx_m = NULL;
|
|
}
|
|
|
|
sc->nge_cdata.nge_tx_cons = cons;
|
|
if (sc->nge_cdata.nge_tx_cnt == 0)
|
|
sc->nge_watchdog_timer = 0;
|
|
}
|
|
|
|
static void
|
|
nge_tick(void *xsc)
|
|
{
|
|
struct nge_softc *sc;
|
|
struct mii_data *mii;
|
|
|
|
sc = xsc;
|
|
NGE_LOCK_ASSERT(sc);
|
|
mii = device_get_softc(sc->nge_miibus);
|
|
mii_tick(mii);
|
|
/*
|
|
* For PHYs that does not reset established link, it is
|
|
* necessary to check whether driver still have a valid
|
|
* link(e.g link state change callback is not called).
|
|
* Otherwise, driver think it lost link because driver
|
|
* initialization routine clears link state flag.
|
|
*/
|
|
if ((sc->nge_flags & NGE_FLAG_LINK) == 0)
|
|
nge_miibus_statchg(sc->nge_dev);
|
|
nge_stats_update(sc);
|
|
nge_watchdog(sc);
|
|
callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
|
|
}
|
|
|
|
static void
|
|
nge_stats_update(struct nge_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct nge_stats now, *stats, *nstats;
|
|
|
|
NGE_LOCK_ASSERT(sc);
|
|
|
|
ifp = sc->nge_ifp;
|
|
stats = &now;
|
|
stats->rx_pkts_errs =
|
|
CSR_READ_4(sc, NGE_MIB_RXERRPKT) & 0xFFFF;
|
|
stats->rx_crc_errs =
|
|
CSR_READ_4(sc, NGE_MIB_RXERRFCS) & 0xFFFF;
|
|
stats->rx_fifo_oflows =
|
|
CSR_READ_4(sc, NGE_MIB_RXERRMISSEDPKT) & 0xFFFF;
|
|
stats->rx_align_errs =
|
|
CSR_READ_4(sc, NGE_MIB_RXERRALIGN) & 0xFFFF;
|
|
stats->rx_sym_errs =
|
|
CSR_READ_4(sc, NGE_MIB_RXERRSYM) & 0xFFFF;
|
|
stats->rx_pkts_jumbos =
|
|
CSR_READ_4(sc, NGE_MIB_RXERRGIANT) & 0xFFFF;
|
|
stats->rx_len_errs =
|
|
CSR_READ_4(sc, NGE_MIB_RXERRRANGLEN) & 0xFFFF;
|
|
stats->rx_unctl_frames =
|
|
CSR_READ_4(sc, NGE_MIB_RXBADOPCODE) & 0xFFFF;
|
|
stats->rx_pause =
|
|
CSR_READ_4(sc, NGE_MIB_RXPAUSEPKTS) & 0xFFFF;
|
|
stats->tx_pause =
|
|
CSR_READ_4(sc, NGE_MIB_TXPAUSEPKTS) & 0xFFFF;
|
|
stats->tx_seq_errs =
|
|
CSR_READ_4(sc, NGE_MIB_TXERRSQE) & 0xFF;
|
|
|
|
/*
|
|
* Since we've accept errored frames exclude Rx length errors.
|
|
*/
|
|
if_inc_counter(ifp, IFCOUNTER_IERRORS,
|
|
stats->rx_pkts_errs + stats->rx_crc_errs +
|
|
stats->rx_fifo_oflows + stats->rx_sym_errs);
|
|
|
|
nstats = &sc->nge_stats;
|
|
nstats->rx_pkts_errs += stats->rx_pkts_errs;
|
|
nstats->rx_crc_errs += stats->rx_crc_errs;
|
|
nstats->rx_fifo_oflows += stats->rx_fifo_oflows;
|
|
nstats->rx_align_errs += stats->rx_align_errs;
|
|
nstats->rx_sym_errs += stats->rx_sym_errs;
|
|
nstats->rx_pkts_jumbos += stats->rx_pkts_jumbos;
|
|
nstats->rx_len_errs += stats->rx_len_errs;
|
|
nstats->rx_unctl_frames += stats->rx_unctl_frames;
|
|
nstats->rx_pause += stats->rx_pause;
|
|
nstats->tx_pause += stats->tx_pause;
|
|
nstats->tx_seq_errs += stats->tx_seq_errs;
|
|
}
|
|
|
|
#ifdef DEVICE_POLLING
|
|
static poll_handler_t nge_poll;
|
|
|
|
static int
|
|
nge_poll(struct ifnet *ifp, enum poll_cmd cmd, int count)
|
|
{
|
|
struct nge_softc *sc;
|
|
int rx_npkts = 0;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
NGE_LOCK(sc);
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
|
|
NGE_UNLOCK(sc);
|
|
return (rx_npkts);
|
|
}
|
|
|
|
/*
|
|
* On the nge, reading the status register also clears it.
|
|
* So before returning to intr mode we must make sure that all
|
|
* possible pending sources of interrupts have been served.
|
|
* In practice this means run to completion the *eof routines,
|
|
* and then call the interrupt routine.
|
|
*/
|
|
sc->rxcycles = count;
|
|
rx_npkts = nge_rxeof(sc);
|
|
nge_txeof(sc);
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
nge_start_locked(ifp);
|
|
|
|
if (sc->rxcycles > 0 || cmd == POLL_AND_CHECK_STATUS) {
|
|
uint32_t status;
|
|
|
|
/* Reading the ISR register clears all interrupts. */
|
|
status = CSR_READ_4(sc, NGE_ISR);
|
|
|
|
if ((status & (NGE_ISR_RX_ERR|NGE_ISR_RX_OFLOW)) != 0)
|
|
rx_npkts += nge_rxeof(sc);
|
|
|
|
if ((status & NGE_ISR_RX_IDLE) != 0)
|
|
NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
|
|
|
|
if ((status & NGE_ISR_SYSERR) != 0) {
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
nge_init_locked(sc);
|
|
}
|
|
}
|
|
NGE_UNLOCK(sc);
|
|
return (rx_npkts);
|
|
}
|
|
#endif /* DEVICE_POLLING */
|
|
|
|
static void
|
|
nge_intr(void *arg)
|
|
{
|
|
struct nge_softc *sc;
|
|
struct ifnet *ifp;
|
|
uint32_t status;
|
|
|
|
sc = (struct nge_softc *)arg;
|
|
ifp = sc->nge_ifp;
|
|
|
|
NGE_LOCK(sc);
|
|
|
|
if ((sc->nge_flags & NGE_FLAG_SUSPENDED) != 0)
|
|
goto done_locked;
|
|
|
|
/* Reading the ISR register clears all interrupts. */
|
|
status = CSR_READ_4(sc, NGE_ISR);
|
|
if (status == 0xffffffff || (status & NGE_INTRS) == 0)
|
|
goto done_locked;
|
|
#ifdef DEVICE_POLLING
|
|
if ((ifp->if_capenable & IFCAP_POLLING) != 0)
|
|
goto done_locked;
|
|
#endif
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
|
|
goto done_locked;
|
|
|
|
/* Disable interrupts. */
|
|
CSR_WRITE_4(sc, NGE_IER, 0);
|
|
|
|
/* Data LED on for TBI mode */
|
|
if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
|
|
CSR_WRITE_4(sc, NGE_GPIO,
|
|
CSR_READ_4(sc, NGE_GPIO) | NGE_GPIO_GP3_OUT);
|
|
|
|
for (; (status & NGE_INTRS) != 0;) {
|
|
if ((status & (NGE_ISR_TX_DESC_OK | NGE_ISR_TX_ERR |
|
|
NGE_ISR_TX_OK | NGE_ISR_TX_IDLE)) != 0)
|
|
nge_txeof(sc);
|
|
|
|
if ((status & (NGE_ISR_RX_DESC_OK | NGE_ISR_RX_ERR |
|
|
NGE_ISR_RX_OFLOW | NGE_ISR_RX_FIFO_OFLOW |
|
|
NGE_ISR_RX_IDLE | NGE_ISR_RX_OK)) != 0)
|
|
nge_rxeof(sc);
|
|
|
|
if ((status & NGE_ISR_RX_IDLE) != 0)
|
|
NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
|
|
|
|
if ((status & NGE_ISR_SYSERR) != 0) {
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
nge_init_locked(sc);
|
|
}
|
|
/* Reading the ISR register clears all interrupts. */
|
|
status = CSR_READ_4(sc, NGE_ISR);
|
|
}
|
|
|
|
/* Re-enable interrupts. */
|
|
CSR_WRITE_4(sc, NGE_IER, 1);
|
|
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
nge_start_locked(ifp);
|
|
|
|
/* Data LED off for TBI mode */
|
|
if ((sc->nge_flags & NGE_FLAG_TBI) != 0)
|
|
CSR_WRITE_4(sc, NGE_GPIO,
|
|
CSR_READ_4(sc, NGE_GPIO) & ~NGE_GPIO_GP3_OUT);
|
|
|
|
done_locked:
|
|
NGE_UNLOCK(sc);
|
|
}
|
|
|
|
/*
|
|
* Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
|
|
* pointers to the fragment pointers.
|
|
*/
|
|
static int
|
|
nge_encap(struct nge_softc *sc, struct mbuf **m_head)
|
|
{
|
|
struct nge_txdesc *txd, *txd_last;
|
|
struct nge_desc *desc;
|
|
struct mbuf *m;
|
|
bus_dmamap_t map;
|
|
bus_dma_segment_t txsegs[NGE_MAXTXSEGS];
|
|
int error, i, nsegs, prod, si;
|
|
|
|
NGE_LOCK_ASSERT(sc);
|
|
|
|
m = *m_head;
|
|
prod = sc->nge_cdata.nge_tx_prod;
|
|
txd = &sc->nge_cdata.nge_txdesc[prod];
|
|
txd_last = txd;
|
|
map = txd->tx_dmamap;
|
|
error = bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_tx_tag, map,
|
|
*m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
|
|
if (error == EFBIG) {
|
|
m = m_collapse(*m_head, M_NOWAIT, NGE_MAXTXSEGS);
|
|
if (m == NULL) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
*m_head = m;
|
|
error = bus_dmamap_load_mbuf_sg(sc->nge_cdata.nge_tx_tag,
|
|
map, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (error);
|
|
}
|
|
} else if (error != 0)
|
|
return (error);
|
|
if (nsegs == 0) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (EIO);
|
|
}
|
|
|
|
/* Check number of available descriptors. */
|
|
if (sc->nge_cdata.nge_tx_cnt + nsegs >= (NGE_TX_RING_CNT - 1)) {
|
|
bus_dmamap_unload(sc->nge_cdata.nge_tx_tag, map);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
bus_dmamap_sync(sc->nge_cdata.nge_tx_tag, map, BUS_DMASYNC_PREWRITE);
|
|
|
|
si = prod;
|
|
for (i = 0; i < nsegs; i++) {
|
|
desc = &sc->nge_rdata.nge_tx_ring[prod];
|
|
desc->nge_ptr = htole32(NGE_ADDR_LO(txsegs[i].ds_addr));
|
|
if (i == 0)
|
|
desc->nge_cmdsts = htole32(txsegs[i].ds_len |
|
|
NGE_CMDSTS_MORE);
|
|
else
|
|
desc->nge_cmdsts = htole32(txsegs[i].ds_len |
|
|
NGE_CMDSTS_MORE | NGE_CMDSTS_OWN);
|
|
desc->nge_extsts = 0;
|
|
sc->nge_cdata.nge_tx_cnt++;
|
|
NGE_INC(prod, NGE_TX_RING_CNT);
|
|
}
|
|
/* Update producer index. */
|
|
sc->nge_cdata.nge_tx_prod = prod;
|
|
|
|
prod = (prod + NGE_TX_RING_CNT - 1) % NGE_TX_RING_CNT;
|
|
desc = &sc->nge_rdata.nge_tx_ring[prod];
|
|
/* Check if we have a VLAN tag to insert. */
|
|
if ((m->m_flags & M_VLANTAG) != 0)
|
|
desc->nge_extsts |= htole32(NGE_TXEXTSTS_VLANPKT |
|
|
bswap16(m->m_pkthdr.ether_vtag));
|
|
/* Set EOP on the last desciptor. */
|
|
desc->nge_cmdsts &= htole32(~NGE_CMDSTS_MORE);
|
|
|
|
/* Set checksum offload in the first descriptor. */
|
|
desc = &sc->nge_rdata.nge_tx_ring[si];
|
|
if ((m->m_pkthdr.csum_flags & NGE_CSUM_FEATURES) != 0) {
|
|
if ((m->m_pkthdr.csum_flags & CSUM_IP) != 0)
|
|
desc->nge_extsts |= htole32(NGE_TXEXTSTS_IPCSUM);
|
|
if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
|
|
desc->nge_extsts |= htole32(NGE_TXEXTSTS_TCPCSUM);
|
|
if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
|
|
desc->nge_extsts |= htole32(NGE_TXEXTSTS_UDPCSUM);
|
|
}
|
|
/* Lastly, turn the first descriptor ownership to hardware. */
|
|
desc->nge_cmdsts |= htole32(NGE_CMDSTS_OWN);
|
|
|
|
txd = &sc->nge_cdata.nge_txdesc[prod];
|
|
map = txd_last->tx_dmamap;
|
|
txd_last->tx_dmamap = txd->tx_dmamap;
|
|
txd->tx_dmamap = map;
|
|
txd->tx_m = m;
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
|
|
* to the mbuf data regions directly in the transmit lists. We also save a
|
|
* copy of the pointers since the transmit list fragment pointers are
|
|
* physical addresses.
|
|
*/
|
|
|
|
static void
|
|
nge_start(struct ifnet *ifp)
|
|
{
|
|
struct nge_softc *sc;
|
|
|
|
sc = ifp->if_softc;
|
|
NGE_LOCK(sc);
|
|
nge_start_locked(ifp);
|
|
NGE_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
nge_start_locked(struct ifnet *ifp)
|
|
{
|
|
struct nge_softc *sc;
|
|
struct mbuf *m_head;
|
|
int enq;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
NGE_LOCK_ASSERT(sc);
|
|
|
|
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
|
|
IFF_DRV_RUNNING || (sc->nge_flags & NGE_FLAG_LINK) == 0)
|
|
return;
|
|
|
|
for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
|
|
sc->nge_cdata.nge_tx_cnt < NGE_TX_RING_CNT - 2; ) {
|
|
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
|
|
if (m_head == NULL)
|
|
break;
|
|
/*
|
|
* Pack the data into the transmit ring. If we
|
|
* don't have room, set the OACTIVE flag and wait
|
|
* for the NIC to drain the ring.
|
|
*/
|
|
if (nge_encap(sc, &m_head)) {
|
|
if (m_head == NULL)
|
|
break;
|
|
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
break;
|
|
}
|
|
|
|
enq++;
|
|
/*
|
|
* If there's a BPF listener, bounce a copy of this frame
|
|
* to him.
|
|
*/
|
|
ETHER_BPF_MTAP(ifp, m_head);
|
|
}
|
|
|
|
if (enq > 0) {
|
|
bus_dmamap_sync(sc->nge_cdata.nge_tx_ring_tag,
|
|
sc->nge_cdata.nge_tx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
/* Transmit */
|
|
NGE_SETBIT(sc, NGE_CSR, NGE_CSR_TX_ENABLE);
|
|
|
|
/* Set a timeout in case the chip goes out to lunch. */
|
|
sc->nge_watchdog_timer = 5;
|
|
}
|
|
}
|
|
|
|
static void
|
|
nge_init(void *xsc)
|
|
{
|
|
struct nge_softc *sc = xsc;
|
|
|
|
NGE_LOCK(sc);
|
|
nge_init_locked(sc);
|
|
NGE_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
nge_init_locked(struct nge_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->nge_ifp;
|
|
struct mii_data *mii;
|
|
uint8_t *eaddr;
|
|
uint32_t reg;
|
|
|
|
NGE_LOCK_ASSERT(sc);
|
|
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
|
|
return;
|
|
|
|
/*
|
|
* Cancel pending I/O and free all RX/TX buffers.
|
|
*/
|
|
nge_stop(sc);
|
|
|
|
/* Reset the adapter. */
|
|
nge_reset(sc);
|
|
|
|
/* Disable Rx filter prior to programming Rx filter. */
|
|
CSR_WRITE_4(sc, NGE_RXFILT_CTL, 0);
|
|
CSR_BARRIER_4(sc, NGE_RXFILT_CTL, BUS_SPACE_BARRIER_WRITE);
|
|
|
|
mii = device_get_softc(sc->nge_miibus);
|
|
|
|
/* Set MAC address. */
|
|
eaddr = IF_LLADDR(sc->nge_ifp);
|
|
CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR0);
|
|
CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[1] << 8) | eaddr[0]);
|
|
CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR1);
|
|
CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[3] << 8) | eaddr[2]);
|
|
CSR_WRITE_4(sc, NGE_RXFILT_CTL, NGE_FILTADDR_PAR2);
|
|
CSR_WRITE_4(sc, NGE_RXFILT_DATA, (eaddr[5] << 8) | eaddr[4]);
|
|
|
|
/* Init circular RX list. */
|
|
if (nge_list_rx_init(sc) == ENOBUFS) {
|
|
device_printf(sc->nge_dev, "initialization failed: no "
|
|
"memory for rx buffers\n");
|
|
nge_stop(sc);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Init tx descriptors.
|
|
*/
|
|
nge_list_tx_init(sc);
|
|
|
|
/* Set Rx filter. */
|
|
nge_rxfilter(sc);
|
|
|
|
/* Disable PRIQ ctl. */
|
|
CSR_WRITE_4(sc, NGE_PRIOQCTL, 0);
|
|
|
|
/*
|
|
* Set pause frames paramters.
|
|
* Rx stat FIFO hi-threshold : 2 or more packets
|
|
* Rx stat FIFO lo-threshold : less than 2 packets
|
|
* Rx data FIFO hi-threshold : 2K or more bytes
|
|
* Rx data FIFO lo-threshold : less than 2K bytes
|
|
* pause time : (512ns * 0xffff) -> 33.55ms
|
|
*/
|
|
CSR_WRITE_4(sc, NGE_PAUSECSR,
|
|
NGE_PAUSECSR_PAUSE_ON_MCAST |
|
|
NGE_PAUSECSR_PAUSE_ON_DA |
|
|
((1 << 24) & NGE_PAUSECSR_RX_STATFIFO_THR_HI) |
|
|
((1 << 22) & NGE_PAUSECSR_RX_STATFIFO_THR_LO) |
|
|
((1 << 20) & NGE_PAUSECSR_RX_DATAFIFO_THR_HI) |
|
|
((1 << 18) & NGE_PAUSECSR_RX_DATAFIFO_THR_LO) |
|
|
NGE_PAUSECSR_CNT);
|
|
|
|
/*
|
|
* Load the address of the RX and TX lists.
|
|
*/
|
|
CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI,
|
|
NGE_ADDR_HI(sc->nge_rdata.nge_rx_ring_paddr));
|
|
CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO,
|
|
NGE_ADDR_LO(sc->nge_rdata.nge_rx_ring_paddr));
|
|
CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI,
|
|
NGE_ADDR_HI(sc->nge_rdata.nge_tx_ring_paddr));
|
|
CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO,
|
|
NGE_ADDR_LO(sc->nge_rdata.nge_tx_ring_paddr));
|
|
|
|
/* Set RX configuration. */
|
|
CSR_WRITE_4(sc, NGE_RX_CFG, NGE_RXCFG);
|
|
|
|
CSR_WRITE_4(sc, NGE_VLAN_IP_RXCTL, 0);
|
|
/*
|
|
* Enable hardware checksum validation for all IPv4
|
|
* packets, do not reject packets with bad checksums.
|
|
*/
|
|
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
|
|
NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_IPCSUM_ENB);
|
|
|
|
/*
|
|
* Tell the chip to detect and strip VLAN tag info from
|
|
* received frames. The tag will be provided in the extsts
|
|
* field in the RX descriptors.
|
|
*/
|
|
NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_DETECT_ENB);
|
|
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
|
|
NGE_SETBIT(sc, NGE_VLAN_IP_RXCTL, NGE_VIPRXCTL_TAG_STRIP_ENB);
|
|
|
|
/* Set TX configuration. */
|
|
CSR_WRITE_4(sc, NGE_TX_CFG, NGE_TXCFG);
|
|
|
|
/*
|
|
* Enable TX IPv4 checksumming on a per-packet basis.
|
|
*/
|
|
CSR_WRITE_4(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_CSUM_PER_PKT);
|
|
|
|
/*
|
|
* Tell the chip to insert VLAN tags on a per-packet basis as
|
|
* dictated by the code in the frame encapsulation routine.
|
|
*/
|
|
NGE_SETBIT(sc, NGE_VLAN_IP_TXCTL, NGE_VIPTXCTL_TAG_PER_PKT);
|
|
|
|
/*
|
|
* Enable the delivery of PHY interrupts based on
|
|
* link/speed/duplex status changes. Also enable the
|
|
* extsts field in the DMA descriptors (needed for
|
|
* TCP/IP checksum offload on transmit).
|
|
*/
|
|
NGE_SETBIT(sc, NGE_CFG, NGE_CFG_PHYINTR_SPD |
|
|
NGE_CFG_PHYINTR_LNK | NGE_CFG_PHYINTR_DUP | NGE_CFG_EXTSTS_ENB);
|
|
|
|
/*
|
|
* Configure interrupt holdoff (moderation). We can
|
|
* have the chip delay interrupt delivery for a certain
|
|
* period. Units are in 100us, and the max setting
|
|
* is 25500us (0xFF x 100us). Default is a 100us holdoff.
|
|
*/
|
|
CSR_WRITE_4(sc, NGE_IHR, sc->nge_int_holdoff);
|
|
|
|
/*
|
|
* Enable MAC statistics counters and clear.
|
|
*/
|
|
reg = CSR_READ_4(sc, NGE_MIBCTL);
|
|
reg &= ~NGE_MIBCTL_FREEZE_CNT;
|
|
reg |= NGE_MIBCTL_CLEAR_CNT;
|
|
CSR_WRITE_4(sc, NGE_MIBCTL, reg);
|
|
|
|
/*
|
|
* Enable interrupts.
|
|
*/
|
|
CSR_WRITE_4(sc, NGE_IMR, NGE_INTRS);
|
|
#ifdef DEVICE_POLLING
|
|
/*
|
|
* ... only enable interrupts if we are not polling, make sure
|
|
* they are off otherwise.
|
|
*/
|
|
if ((ifp->if_capenable & IFCAP_POLLING) != 0)
|
|
CSR_WRITE_4(sc, NGE_IER, 0);
|
|
else
|
|
#endif
|
|
CSR_WRITE_4(sc, NGE_IER, 1);
|
|
|
|
sc->nge_flags &= ~NGE_FLAG_LINK;
|
|
mii_mediachg(mii);
|
|
|
|
sc->nge_watchdog_timer = 0;
|
|
callout_reset(&sc->nge_stat_ch, hz, nge_tick, sc);
|
|
|
|
ifp->if_drv_flags |= IFF_DRV_RUNNING;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
}
|
|
|
|
/*
|
|
* Set media options.
|
|
*/
|
|
static int
|
|
nge_mediachange(struct ifnet *ifp)
|
|
{
|
|
struct nge_softc *sc;
|
|
struct mii_data *mii;
|
|
struct mii_softc *miisc;
|
|
int error;
|
|
|
|
sc = ifp->if_softc;
|
|
NGE_LOCK(sc);
|
|
mii = device_get_softc(sc->nge_miibus);
|
|
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
|
|
PHY_RESET(miisc);
|
|
error = mii_mediachg(mii);
|
|
NGE_UNLOCK(sc);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Report current media status.
|
|
*/
|
|
static void
|
|
nge_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct nge_softc *sc;
|
|
struct mii_data *mii;
|
|
|
|
sc = ifp->if_softc;
|
|
NGE_LOCK(sc);
|
|
mii = device_get_softc(sc->nge_miibus);
|
|
mii_pollstat(mii);
|
|
ifmr->ifm_active = mii->mii_media_active;
|
|
ifmr->ifm_status = mii->mii_media_status;
|
|
NGE_UNLOCK(sc);
|
|
}
|
|
|
|
static int
|
|
nge_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
|
|
{
|
|
struct nge_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *) data;
|
|
struct mii_data *mii;
|
|
int error = 0, mask;
|
|
|
|
switch (command) {
|
|
case SIOCSIFMTU:
|
|
if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > NGE_JUMBO_MTU)
|
|
error = EINVAL;
|
|
else {
|
|
NGE_LOCK(sc);
|
|
ifp->if_mtu = ifr->ifr_mtu;
|
|
/*
|
|
* Workaround: if the MTU is larger than
|
|
* 8152 (TX FIFO size minus 64 minus 18), turn off
|
|
* TX checksum offloading.
|
|
*/
|
|
if (ifr->ifr_mtu >= 8152) {
|
|
ifp->if_capenable &= ~IFCAP_TXCSUM;
|
|
ifp->if_hwassist &= ~NGE_CSUM_FEATURES;
|
|
} else {
|
|
ifp->if_capenable |= IFCAP_TXCSUM;
|
|
ifp->if_hwassist |= NGE_CSUM_FEATURES;
|
|
}
|
|
NGE_UNLOCK(sc);
|
|
VLAN_CAPABILITIES(ifp);
|
|
}
|
|
break;
|
|
case SIOCSIFFLAGS:
|
|
NGE_LOCK(sc);
|
|
if ((ifp->if_flags & IFF_UP) != 0) {
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
|
|
if ((ifp->if_flags ^ sc->nge_if_flags) &
|
|
(IFF_PROMISC | IFF_ALLMULTI))
|
|
nge_rxfilter(sc);
|
|
} else {
|
|
if ((sc->nge_flags & NGE_FLAG_DETACH) == 0)
|
|
nge_init_locked(sc);
|
|
}
|
|
} else {
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
|
|
nge_stop(sc);
|
|
}
|
|
sc->nge_if_flags = ifp->if_flags;
|
|
NGE_UNLOCK(sc);
|
|
error = 0;
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
NGE_LOCK(sc);
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
|
|
nge_rxfilter(sc);
|
|
NGE_UNLOCK(sc);
|
|
break;
|
|
case SIOCGIFMEDIA:
|
|
case SIOCSIFMEDIA:
|
|
mii = device_get_softc(sc->nge_miibus);
|
|
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
|
|
break;
|
|
case SIOCSIFCAP:
|
|
NGE_LOCK(sc);
|
|
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
|
|
#ifdef DEVICE_POLLING
|
|
if ((mask & IFCAP_POLLING) != 0 &&
|
|
(IFCAP_POLLING & ifp->if_capabilities) != 0) {
|
|
ifp->if_capenable ^= IFCAP_POLLING;
|
|
if ((IFCAP_POLLING & ifp->if_capenable) != 0) {
|
|
error = ether_poll_register(nge_poll, ifp);
|
|
if (error != 0) {
|
|
NGE_UNLOCK(sc);
|
|
break;
|
|
}
|
|
/* Disable interrupts. */
|
|
CSR_WRITE_4(sc, NGE_IER, 0);
|
|
} else {
|
|
error = ether_poll_deregister(ifp);
|
|
/* Enable interrupts. */
|
|
CSR_WRITE_4(sc, NGE_IER, 1);
|
|
}
|
|
}
|
|
#endif /* DEVICE_POLLING */
|
|
if ((mask & IFCAP_TXCSUM) != 0 &&
|
|
(IFCAP_TXCSUM & ifp->if_capabilities) != 0) {
|
|
ifp->if_capenable ^= IFCAP_TXCSUM;
|
|
if ((IFCAP_TXCSUM & ifp->if_capenable) != 0)
|
|
ifp->if_hwassist |= NGE_CSUM_FEATURES;
|
|
else
|
|
ifp->if_hwassist &= ~NGE_CSUM_FEATURES;
|
|
}
|
|
if ((mask & IFCAP_RXCSUM) != 0 &&
|
|
(IFCAP_RXCSUM & ifp->if_capabilities) != 0)
|
|
ifp->if_capenable ^= IFCAP_RXCSUM;
|
|
|
|
if ((mask & IFCAP_WOL) != 0 &&
|
|
(ifp->if_capabilities & IFCAP_WOL) != 0) {
|
|
if ((mask & IFCAP_WOL_UCAST) != 0)
|
|
ifp->if_capenable ^= IFCAP_WOL_UCAST;
|
|
if ((mask & IFCAP_WOL_MCAST) != 0)
|
|
ifp->if_capenable ^= IFCAP_WOL_MCAST;
|
|
if ((mask & IFCAP_WOL_MAGIC) != 0)
|
|
ifp->if_capenable ^= IFCAP_WOL_MAGIC;
|
|
}
|
|
|
|
if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
|
|
(ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
|
|
ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
|
|
if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
|
|
(ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
|
|
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
|
|
if ((ifp->if_capenable &
|
|
IFCAP_VLAN_HWTAGGING) != 0)
|
|
NGE_SETBIT(sc,
|
|
NGE_VLAN_IP_RXCTL,
|
|
NGE_VIPRXCTL_TAG_STRIP_ENB);
|
|
else
|
|
NGE_CLRBIT(sc,
|
|
NGE_VLAN_IP_RXCTL,
|
|
NGE_VIPRXCTL_TAG_STRIP_ENB);
|
|
}
|
|
}
|
|
/*
|
|
* Both VLAN hardware tagging and checksum offload is
|
|
* required to do checksum offload on VLAN interface.
|
|
*/
|
|
if ((ifp->if_capenable & IFCAP_TXCSUM) == 0)
|
|
ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
|
|
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
|
|
ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
|
|
NGE_UNLOCK(sc);
|
|
VLAN_CAPABILITIES(ifp);
|
|
break;
|
|
default:
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
nge_watchdog(struct nge_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
|
|
NGE_LOCK_ASSERT(sc);
|
|
|
|
if (sc->nge_watchdog_timer == 0 || --sc->nge_watchdog_timer)
|
|
return;
|
|
|
|
ifp = sc->nge_ifp;
|
|
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
|
|
if_printf(ifp, "watchdog timeout\n");
|
|
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
nge_init_locked(sc);
|
|
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
nge_start_locked(ifp);
|
|
}
|
|
|
|
static int
|
|
nge_stop_mac(struct nge_softc *sc)
|
|
{
|
|
uint32_t reg;
|
|
int i;
|
|
|
|
NGE_LOCK_ASSERT(sc);
|
|
|
|
reg = CSR_READ_4(sc, NGE_CSR);
|
|
if ((reg & (NGE_CSR_TX_ENABLE | NGE_CSR_RX_ENABLE)) != 0) {
|
|
reg &= ~(NGE_CSR_TX_ENABLE | NGE_CSR_RX_ENABLE);
|
|
reg |= NGE_CSR_TX_DISABLE | NGE_CSR_RX_DISABLE;
|
|
CSR_WRITE_4(sc, NGE_CSR, reg);
|
|
for (i = 0; i < NGE_TIMEOUT; i++) {
|
|
DELAY(1);
|
|
if ((CSR_READ_4(sc, NGE_CSR) &
|
|
(NGE_CSR_RX_ENABLE | NGE_CSR_TX_ENABLE)) == 0)
|
|
break;
|
|
}
|
|
if (i == NGE_TIMEOUT)
|
|
return (ETIMEDOUT);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Stop the adapter and free any mbufs allocated to the
|
|
* RX and TX lists.
|
|
*/
|
|
static void
|
|
nge_stop(struct nge_softc *sc)
|
|
{
|
|
struct nge_txdesc *txd;
|
|
struct nge_rxdesc *rxd;
|
|
int i;
|
|
struct ifnet *ifp;
|
|
|
|
NGE_LOCK_ASSERT(sc);
|
|
ifp = sc->nge_ifp;
|
|
|
|
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
|
|
sc->nge_flags &= ~NGE_FLAG_LINK;
|
|
callout_stop(&sc->nge_stat_ch);
|
|
sc->nge_watchdog_timer = 0;
|
|
|
|
CSR_WRITE_4(sc, NGE_IER, 0);
|
|
CSR_WRITE_4(sc, NGE_IMR, 0);
|
|
if (nge_stop_mac(sc) == ETIMEDOUT)
|
|
device_printf(sc->nge_dev,
|
|
"%s: unable to stop Tx/Rx MAC\n", __func__);
|
|
CSR_WRITE_4(sc, NGE_TX_LISTPTR_HI, 0);
|
|
CSR_WRITE_4(sc, NGE_TX_LISTPTR_LO, 0);
|
|
CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 0);
|
|
CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 0);
|
|
nge_stats_update(sc);
|
|
if (sc->nge_head != NULL) {
|
|
m_freem(sc->nge_head);
|
|
sc->nge_head = sc->nge_tail = NULL;
|
|
}
|
|
|
|
/*
|
|
* Free RX and TX mbufs still in the queues.
|
|
*/
|
|
for (i = 0; i < NGE_RX_RING_CNT; i++) {
|
|
rxd = &sc->nge_cdata.nge_rxdesc[i];
|
|
if (rxd->rx_m != NULL) {
|
|
bus_dmamap_sync(sc->nge_cdata.nge_rx_tag,
|
|
rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->nge_cdata.nge_rx_tag,
|
|
rxd->rx_dmamap);
|
|
m_freem(rxd->rx_m);
|
|
rxd->rx_m = NULL;
|
|
}
|
|
}
|
|
for (i = 0; i < NGE_TX_RING_CNT; i++) {
|
|
txd = &sc->nge_cdata.nge_txdesc[i];
|
|
if (txd->tx_m != NULL) {
|
|
bus_dmamap_sync(sc->nge_cdata.nge_tx_tag,
|
|
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->nge_cdata.nge_tx_tag,
|
|
txd->tx_dmamap);
|
|
m_freem(txd->tx_m);
|
|
txd->tx_m = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Before setting WOL bits, caller should have stopped Receiver.
|
|
*/
|
|
static void
|
|
nge_wol(struct nge_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
uint32_t reg;
|
|
uint16_t pmstat;
|
|
int pmc;
|
|
|
|
NGE_LOCK_ASSERT(sc);
|
|
|
|
if (pci_find_cap(sc->nge_dev, PCIY_PMG, &pmc) != 0)
|
|
return;
|
|
|
|
ifp = sc->nge_ifp;
|
|
if ((ifp->if_capenable & IFCAP_WOL) == 0) {
|
|
/* Disable WOL & disconnect CLKRUN to save power. */
|
|
CSR_WRITE_4(sc, NGE_WOLCSR, 0);
|
|
CSR_WRITE_4(sc, NGE_CLKRUN, 0);
|
|
} else {
|
|
if (nge_stop_mac(sc) == ETIMEDOUT)
|
|
device_printf(sc->nge_dev,
|
|
"%s: unable to stop Tx/Rx MAC\n", __func__);
|
|
/*
|
|
* Make sure wake frames will be buffered in the Rx FIFO.
|
|
* (i.e. Silent Rx mode.)
|
|
*/
|
|
CSR_WRITE_4(sc, NGE_RX_LISTPTR_HI, 0);
|
|
CSR_BARRIER_4(sc, NGE_RX_LISTPTR_HI, BUS_SPACE_BARRIER_WRITE);
|
|
CSR_WRITE_4(sc, NGE_RX_LISTPTR_LO, 0);
|
|
CSR_BARRIER_4(sc, NGE_RX_LISTPTR_LO, BUS_SPACE_BARRIER_WRITE);
|
|
/* Enable Rx again. */
|
|
NGE_SETBIT(sc, NGE_CSR, NGE_CSR_RX_ENABLE);
|
|
CSR_BARRIER_4(sc, NGE_CSR, BUS_SPACE_BARRIER_WRITE);
|
|
|
|
/* Configure WOL events. */
|
|
reg = 0;
|
|
if ((ifp->if_capenable & IFCAP_WOL_UCAST) != 0)
|
|
reg |= NGE_WOLCSR_WAKE_ON_UNICAST;
|
|
if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
|
|
reg |= NGE_WOLCSR_WAKE_ON_MULTICAST;
|
|
if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
|
|
reg |= NGE_WOLCSR_WAKE_ON_MAGICPKT;
|
|
CSR_WRITE_4(sc, NGE_WOLCSR, reg);
|
|
|
|
/* Activate CLKRUN. */
|
|
reg = CSR_READ_4(sc, NGE_CLKRUN);
|
|
reg |= NGE_CLKRUN_PMEENB | NGE_CLNRUN_CLKRUN_ENB;
|
|
CSR_WRITE_4(sc, NGE_CLKRUN, reg);
|
|
}
|
|
|
|
/* Request PME. */
|
|
pmstat = pci_read_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, 2);
|
|
pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
|
|
if ((ifp->if_capenable & IFCAP_WOL) != 0)
|
|
pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
|
|
pci_write_config(sc->nge_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
|
|
}
|
|
|
|
/*
|
|
* Stop all chip I/O so that the kernel's probe routines don't
|
|
* get confused by errant DMAs when rebooting.
|
|
*/
|
|
static int
|
|
nge_shutdown(device_t dev)
|
|
{
|
|
|
|
return (nge_suspend(dev));
|
|
}
|
|
|
|
static int
|
|
nge_suspend(device_t dev)
|
|
{
|
|
struct nge_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
NGE_LOCK(sc);
|
|
nge_stop(sc);
|
|
nge_wol(sc);
|
|
sc->nge_flags |= NGE_FLAG_SUSPENDED;
|
|
NGE_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
nge_resume(device_t dev)
|
|
{
|
|
struct nge_softc *sc;
|
|
struct ifnet *ifp;
|
|
uint16_t pmstat;
|
|
int pmc;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
NGE_LOCK(sc);
|
|
ifp = sc->nge_ifp;
|
|
if (pci_find_cap(sc->nge_dev, PCIY_PMG, &pmc) == 0) {
|
|
/* Disable PME and clear PME status. */
|
|
pmstat = pci_read_config(sc->nge_dev,
|
|
pmc + PCIR_POWER_STATUS, 2);
|
|
if ((pmstat & PCIM_PSTAT_PMEENABLE) != 0) {
|
|
pmstat &= ~PCIM_PSTAT_PMEENABLE;
|
|
pci_write_config(sc->nge_dev,
|
|
pmc + PCIR_POWER_STATUS, pmstat, 2);
|
|
}
|
|
}
|
|
if (ifp->if_flags & IFF_UP) {
|
|
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
|
|
nge_init_locked(sc);
|
|
}
|
|
|
|
sc->nge_flags &= ~NGE_FLAG_SUSPENDED;
|
|
NGE_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
#define NGE_SYSCTL_STAT_ADD32(c, h, n, p, d) \
|
|
SYSCTL_ADD_UINT(c, h, OID_AUTO, n, CTLFLAG_RD, p, 0, d)
|
|
|
|
static void
|
|
nge_sysctl_node(struct nge_softc *sc)
|
|
{
|
|
struct sysctl_ctx_list *ctx;
|
|
struct sysctl_oid_list *child, *parent;
|
|
struct sysctl_oid *tree;
|
|
struct nge_stats *stats;
|
|
int error;
|
|
|
|
ctx = device_get_sysctl_ctx(sc->nge_dev);
|
|
child = SYSCTL_CHILDREN(device_get_sysctl_tree(sc->nge_dev));
|
|
SYSCTL_ADD_PROC(ctx, child, OID_AUTO, "int_holdoff",
|
|
CTLTYPE_INT | CTLFLAG_RW, &sc->nge_int_holdoff, 0,
|
|
sysctl_hw_nge_int_holdoff, "I", "NGE interrupt moderation");
|
|
/* Pull in device tunables. */
|
|
sc->nge_int_holdoff = NGE_INT_HOLDOFF_DEFAULT;
|
|
error = resource_int_value(device_get_name(sc->nge_dev),
|
|
device_get_unit(sc->nge_dev), "int_holdoff", &sc->nge_int_holdoff);
|
|
if (error == 0) {
|
|
if (sc->nge_int_holdoff < NGE_INT_HOLDOFF_MIN ||
|
|
sc->nge_int_holdoff > NGE_INT_HOLDOFF_MAX ) {
|
|
device_printf(sc->nge_dev,
|
|
"int_holdoff value out of range; "
|
|
"using default: %d(%d us)\n",
|
|
NGE_INT_HOLDOFF_DEFAULT,
|
|
NGE_INT_HOLDOFF_DEFAULT * 100);
|
|
sc->nge_int_holdoff = NGE_INT_HOLDOFF_DEFAULT;
|
|
}
|
|
}
|
|
|
|
stats = &sc->nge_stats;
|
|
tree = SYSCTL_ADD_NODE(ctx, child, OID_AUTO, "stats", CTLFLAG_RD,
|
|
NULL, "NGE statistics");
|
|
parent = SYSCTL_CHILDREN(tree);
|
|
|
|
/* Rx statistics. */
|
|
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "rx", CTLFLAG_RD,
|
|
NULL, "Rx MAC statistics");
|
|
child = SYSCTL_CHILDREN(tree);
|
|
NGE_SYSCTL_STAT_ADD32(ctx, child, "pkts_errs",
|
|
&stats->rx_pkts_errs,
|
|
"Packet errors including both wire errors and FIFO overruns");
|
|
NGE_SYSCTL_STAT_ADD32(ctx, child, "crc_errs",
|
|
&stats->rx_crc_errs, "CRC errors");
|
|
NGE_SYSCTL_STAT_ADD32(ctx, child, "fifo_oflows",
|
|
&stats->rx_fifo_oflows, "FIFO overflows");
|
|
NGE_SYSCTL_STAT_ADD32(ctx, child, "align_errs",
|
|
&stats->rx_align_errs, "Frame alignment errors");
|
|
NGE_SYSCTL_STAT_ADD32(ctx, child, "sym_errs",
|
|
&stats->rx_sym_errs, "One or more symbol errors");
|
|
NGE_SYSCTL_STAT_ADD32(ctx, child, "pkts_jumbos",
|
|
&stats->rx_pkts_jumbos,
|
|
"Packets received with length greater than 1518 bytes");
|
|
NGE_SYSCTL_STAT_ADD32(ctx, child, "len_errs",
|
|
&stats->rx_len_errs, "In Range Length errors");
|
|
NGE_SYSCTL_STAT_ADD32(ctx, child, "unctl_frames",
|
|
&stats->rx_unctl_frames, "Control frames with unsupported opcode");
|
|
NGE_SYSCTL_STAT_ADD32(ctx, child, "pause",
|
|
&stats->rx_pause, "Pause frames");
|
|
|
|
/* Tx statistics. */
|
|
tree = SYSCTL_ADD_NODE(ctx, parent, OID_AUTO, "tx", CTLFLAG_RD,
|
|
NULL, "Tx MAC statistics");
|
|
child = SYSCTL_CHILDREN(tree);
|
|
NGE_SYSCTL_STAT_ADD32(ctx, child, "pause",
|
|
&stats->tx_pause, "Pause frames");
|
|
NGE_SYSCTL_STAT_ADD32(ctx, child, "seq_errs",
|
|
&stats->tx_seq_errs,
|
|
"Loss of collision heartbeat during transmission");
|
|
}
|
|
|
|
#undef NGE_SYSCTL_STAT_ADD32
|
|
|
|
static int
|
|
sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
|
|
{
|
|
int error, value;
|
|
|
|
if (arg1 == NULL)
|
|
return (EINVAL);
|
|
value = *(int *)arg1;
|
|
error = sysctl_handle_int(oidp, &value, 0, req);
|
|
if (error != 0 || req->newptr == NULL)
|
|
return (error);
|
|
if (value < low || value > high)
|
|
return (EINVAL);
|
|
*(int *)arg1 = value;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
sysctl_hw_nge_int_holdoff(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
|
|
return (sysctl_int_range(oidp, arg1, arg2, req, NGE_INT_HOLDOFF_MIN,
|
|
NGE_INT_HOLDOFF_MAX));
|
|
}
|