f4659f4c27
RSS parameters, rather than assuming we're hashing IPv4+UDP and IPv4+TCP.
901 lines
23 KiB
C
901 lines
23 KiB
C
/*-
|
|
* Copyright (c) 2010-2011 Juniper Networks, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This software was developed by Robert N. M. Watson under contract
|
|
* to Juniper Networks, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_inet6.h"
|
|
#include "opt_pcbgroup.h"
|
|
|
|
#ifndef PCBGROUP
|
|
#error "options RSS depends on options PCBGROUP"
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/priv.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/smp.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/sbuf.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_var.h>
|
|
#include <net/netisr.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_pcb.h>
|
|
#include <netinet/in_rss.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/toeplitz.h>
|
|
|
|
/* for software rss hash support */
|
|
#include <netinet/ip.h>
|
|
#include <netinet/tcp.h>
|
|
#include <netinet/udp.h>
|
|
|
|
/*-
|
|
* Operating system parts of receiver-side scaling (RSS), which allows
|
|
* network cards to direct flows to particular receive queues based on hashes
|
|
* of header tuples. This implementation aligns RSS buckets with connection
|
|
* groups at the TCP/IP layer, so each bucket is associated with exactly one
|
|
* group. As a result, the group lookup structures (and lock) should have an
|
|
* effective affinity with exactly one CPU.
|
|
*
|
|
* Network device drivers needing to configure RSS will query this framework
|
|
* for parameters, such as the current RSS key, hashing policies, number of
|
|
* bits, and indirection table mapping hashes to buckets and CPUs. They may
|
|
* provide their own supplementary information, such as queue<->CPU bindings.
|
|
* It is the responsibility of the network device driver to inject packets
|
|
* into the stack on as close to the right CPU as possible, if playing by RSS
|
|
* rules.
|
|
*
|
|
* TODO:
|
|
*
|
|
* - Synchronization for rss_key and other future-configurable parameters.
|
|
* - Event handler drivers can register to pick up RSS configuration changes.
|
|
* - Should we allow rss_basecpu to be configured?
|
|
* - Randomize key on boot.
|
|
* - IPv6 support.
|
|
* - Statistics on how often there's a misalignment between hardware
|
|
* placement and pcbgroup expectations.
|
|
*/
|
|
|
|
SYSCTL_NODE(_net_inet, OID_AUTO, rss, CTLFLAG_RW, 0, "Receive-side steering");
|
|
|
|
/*
|
|
* Toeplitz is the only required hash function in the RSS spec, so use it by
|
|
* default.
|
|
*/
|
|
static u_int rss_hashalgo = RSS_HASH_TOEPLITZ;
|
|
SYSCTL_INT(_net_inet_rss, OID_AUTO, hashalgo, CTLFLAG_RDTUN, &rss_hashalgo, 0,
|
|
"RSS hash algorithm");
|
|
|
|
/*
|
|
* Size of the indirection table; at most 128 entries per the RSS spec. We
|
|
* size it to at least 2 times the number of CPUs by default to allow useful
|
|
* rebalancing. If not set explicitly with a loader tunable, we tune based
|
|
* on the number of CPUs present.
|
|
*
|
|
* XXXRW: buckets might be better to use for the tunable than bits.
|
|
*/
|
|
static u_int rss_bits;
|
|
SYSCTL_INT(_net_inet_rss, OID_AUTO, bits, CTLFLAG_RDTUN, &rss_bits, 0,
|
|
"RSS bits");
|
|
|
|
static u_int rss_mask;
|
|
SYSCTL_INT(_net_inet_rss, OID_AUTO, mask, CTLFLAG_RD, &rss_mask, 0,
|
|
"RSS mask");
|
|
|
|
static const u_int rss_maxbits = RSS_MAXBITS;
|
|
SYSCTL_INT(_net_inet_rss, OID_AUTO, maxbits, CTLFLAG_RD,
|
|
__DECONST(int *, &rss_maxbits), 0, "RSS maximum bits");
|
|
|
|
/*
|
|
* RSS's own count of the number of CPUs it could be using for processing.
|
|
* Bounded to 64 by RSS constants.
|
|
*/
|
|
static u_int rss_ncpus;
|
|
SYSCTL_INT(_net_inet_rss, OID_AUTO, ncpus, CTLFLAG_RD, &rss_ncpus, 0,
|
|
"Number of CPUs available to RSS");
|
|
|
|
#define RSS_MAXCPUS (1 << (RSS_MAXBITS - 1))
|
|
static const u_int rss_maxcpus = RSS_MAXCPUS;
|
|
SYSCTL_INT(_net_inet_rss, OID_AUTO, maxcpus, CTLFLAG_RD,
|
|
__DECONST(int *, &rss_maxcpus), 0, "RSS maximum CPUs that can be used");
|
|
|
|
/*
|
|
* Variable exists just for reporting rss_bits in a user-friendly way.
|
|
*/
|
|
static u_int rss_buckets;
|
|
SYSCTL_INT(_net_inet_rss, OID_AUTO, buckets, CTLFLAG_RD, &rss_buckets, 0,
|
|
"RSS buckets");
|
|
|
|
/*
|
|
* Base CPU number; devices will add this to all CPU numbers returned by the
|
|
* RSS indirection table. Currently unmodifable in FreeBSD.
|
|
*/
|
|
static const u_int rss_basecpu;
|
|
SYSCTL_INT(_net_inet_rss, OID_AUTO, basecpu, CTLFLAG_RD,
|
|
__DECONST(int *, &rss_basecpu), 0, "RSS base CPU");
|
|
|
|
/*
|
|
* RSS secret key, intended to prevent attacks on load-balancing. Its
|
|
* effectiveness may be limited by algorithm choice and available entropy
|
|
* during the boot.
|
|
*
|
|
* XXXRW: And that we don't randomize it yet!
|
|
*
|
|
* This is the default Microsoft RSS specification key which is also
|
|
* the Chelsio T5 firmware default key.
|
|
*/
|
|
static uint8_t rss_key[RSS_KEYSIZE] = {
|
|
0x6d, 0x5a, 0x56, 0xda, 0x25, 0x5b, 0x0e, 0xc2,
|
|
0x41, 0x67, 0x25, 0x3d, 0x43, 0xa3, 0x8f, 0xb0,
|
|
0xd0, 0xca, 0x2b, 0xcb, 0xae, 0x7b, 0x30, 0xb4,
|
|
0x77, 0xcb, 0x2d, 0xa3, 0x80, 0x30, 0xf2, 0x0c,
|
|
0x6a, 0x42, 0xb7, 0x3b, 0xbe, 0xac, 0x01, 0xfa,
|
|
};
|
|
|
|
/*
|
|
* RSS hash->CPU table, which maps hashed packet headers to particular CPUs.
|
|
* Drivers may supplement this table with a seperate CPU<->queue table when
|
|
* programming devices.
|
|
*/
|
|
struct rss_table_entry {
|
|
uint8_t rte_cpu; /* CPU affinity of bucket. */
|
|
};
|
|
static struct rss_table_entry rss_table[RSS_TABLE_MAXLEN];
|
|
|
|
static inline u_int rss_gethashconfig_local(void);
|
|
|
|
static void
|
|
rss_init(__unused void *arg)
|
|
{
|
|
u_int i;
|
|
u_int cpuid;
|
|
|
|
/*
|
|
* Validate tunables, coerce to sensible values.
|
|
*/
|
|
switch (rss_hashalgo) {
|
|
case RSS_HASH_TOEPLITZ:
|
|
case RSS_HASH_NAIVE:
|
|
break;
|
|
|
|
default:
|
|
printf("%s: invalid RSS hashalgo %u, coercing to %u",
|
|
__func__, rss_hashalgo, RSS_HASH_TOEPLITZ);
|
|
rss_hashalgo = RSS_HASH_TOEPLITZ;
|
|
}
|
|
|
|
/*
|
|
* Count available CPUs.
|
|
*
|
|
* XXXRW: Note incorrect assumptions regarding contiguity of this set
|
|
* elsewhere.
|
|
*/
|
|
rss_ncpus = 0;
|
|
for (i = 0; i <= mp_maxid; i++) {
|
|
if (CPU_ABSENT(i))
|
|
continue;
|
|
rss_ncpus++;
|
|
}
|
|
if (rss_ncpus > RSS_MAXCPUS)
|
|
rss_ncpus = RSS_MAXCPUS;
|
|
|
|
/*
|
|
* Tune RSS table entries to be no less than 2x the number of CPUs
|
|
* -- unless we're running uniprocessor, in which case there's not
|
|
* much point in having buckets to rearrange for load-balancing!
|
|
*/
|
|
if (rss_ncpus > 1) {
|
|
if (rss_bits == 0)
|
|
rss_bits = fls(rss_ncpus - 1) + 1;
|
|
|
|
/*
|
|
* Microsoft limits RSS table entries to 128, so apply that
|
|
* limit to both auto-detected CPU counts and user-configured
|
|
* ones.
|
|
*/
|
|
if (rss_bits == 0 || rss_bits > RSS_MAXBITS) {
|
|
printf("%s: RSS bits %u not valid, coercing to %u",
|
|
__func__, rss_bits, RSS_MAXBITS);
|
|
rss_bits = RSS_MAXBITS;
|
|
}
|
|
|
|
/*
|
|
* Figure out how many buckets to use; warn if less than the
|
|
* number of configured CPUs, although this is not a fatal
|
|
* problem.
|
|
*/
|
|
rss_buckets = (1 << rss_bits);
|
|
if (rss_buckets < rss_ncpus)
|
|
printf("%s: WARNING: rss_buckets (%u) less than "
|
|
"rss_ncpus (%u)\n", __func__, rss_buckets,
|
|
rss_ncpus);
|
|
rss_mask = rss_buckets - 1;
|
|
} else {
|
|
rss_bits = 0;
|
|
rss_buckets = 1;
|
|
rss_mask = 0;
|
|
}
|
|
|
|
/*
|
|
* Set up initial CPU assignments: round-robin by default.
|
|
*/
|
|
cpuid = CPU_FIRST();
|
|
for (i = 0; i < rss_buckets; i++) {
|
|
rss_table[i].rte_cpu = cpuid;
|
|
cpuid = CPU_NEXT(cpuid);
|
|
}
|
|
|
|
/*
|
|
* Randomize rrs_key.
|
|
*
|
|
* XXXRW: Not yet. If nothing else, will require an rss_isbadkey()
|
|
* loop to check for "bad" RSS keys.
|
|
*/
|
|
}
|
|
SYSINIT(rss_init, SI_SUB_SOFTINTR, SI_ORDER_SECOND, rss_init, NULL);
|
|
|
|
static uint32_t
|
|
rss_naive_hash(u_int keylen, const uint8_t *key, u_int datalen,
|
|
const uint8_t *data)
|
|
{
|
|
uint32_t v;
|
|
u_int i;
|
|
|
|
v = 0;
|
|
for (i = 0; i < keylen; i++)
|
|
v += key[i];
|
|
for (i = 0; i < datalen; i++)
|
|
v += data[i];
|
|
return (v);
|
|
}
|
|
|
|
static uint32_t
|
|
rss_hash(u_int datalen, const uint8_t *data)
|
|
{
|
|
|
|
switch (rss_hashalgo) {
|
|
case RSS_HASH_TOEPLITZ:
|
|
return (toeplitz_hash(sizeof(rss_key), rss_key, datalen,
|
|
data));
|
|
|
|
case RSS_HASH_NAIVE:
|
|
return (rss_naive_hash(sizeof(rss_key), rss_key, datalen,
|
|
data));
|
|
|
|
default:
|
|
panic("%s: unsupported/unknown hashalgo %d", __func__,
|
|
rss_hashalgo);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Hash an IPv4 2-tuple.
|
|
*/
|
|
uint32_t
|
|
rss_hash_ip4_2tuple(struct in_addr src, struct in_addr dst)
|
|
{
|
|
uint8_t data[sizeof(src) + sizeof(dst)];
|
|
u_int datalen;
|
|
|
|
datalen = 0;
|
|
bcopy(&src, &data[datalen], sizeof(src));
|
|
datalen += sizeof(src);
|
|
bcopy(&dst, &data[datalen], sizeof(dst));
|
|
datalen += sizeof(dst);
|
|
return (rss_hash(datalen, data));
|
|
}
|
|
|
|
/*
|
|
* Hash an IPv4 4-tuple.
|
|
*/
|
|
uint32_t
|
|
rss_hash_ip4_4tuple(struct in_addr src, u_short srcport, struct in_addr dst,
|
|
u_short dstport)
|
|
{
|
|
uint8_t data[sizeof(src) + sizeof(dst) + sizeof(srcport) +
|
|
sizeof(dstport)];
|
|
u_int datalen;
|
|
|
|
datalen = 0;
|
|
bcopy(&src, &data[datalen], sizeof(src));
|
|
datalen += sizeof(src);
|
|
bcopy(&dst, &data[datalen], sizeof(dst));
|
|
datalen += sizeof(dst);
|
|
bcopy(&srcport, &data[datalen], sizeof(srcport));
|
|
datalen += sizeof(srcport);
|
|
bcopy(&dstport, &data[datalen], sizeof(dstport));
|
|
datalen += sizeof(dstport);
|
|
return (rss_hash(datalen, data));
|
|
}
|
|
|
|
#ifdef INET6
|
|
/*
|
|
* Hash an IPv6 2-tuple.
|
|
*/
|
|
uint32_t
|
|
rss_hash_ip6_2tuple(struct in6_addr src, struct in6_addr dst)
|
|
{
|
|
uint8_t data[sizeof(src) + sizeof(dst)];
|
|
u_int datalen;
|
|
|
|
datalen = 0;
|
|
bcopy(&src, &data[datalen], sizeof(src));
|
|
datalen += sizeof(src);
|
|
bcopy(&dst, &data[datalen], sizeof(dst));
|
|
datalen += sizeof(dst);
|
|
return (rss_hash(datalen, data));
|
|
}
|
|
|
|
/*
|
|
* Hash an IPv6 4-tuple.
|
|
*/
|
|
uint32_t
|
|
rss_hash_ip6_4tuple(struct in6_addr src, u_short srcport,
|
|
struct in6_addr dst, u_short dstport)
|
|
{
|
|
uint8_t data[sizeof(src) + sizeof(dst) + sizeof(srcport) +
|
|
sizeof(dstport)];
|
|
u_int datalen;
|
|
|
|
datalen = 0;
|
|
bcopy(&src, &data[datalen], sizeof(src));
|
|
datalen += sizeof(src);
|
|
bcopy(&dst, &data[datalen], sizeof(dst));
|
|
datalen += sizeof(dst);
|
|
bcopy(&srcport, &data[datalen], sizeof(srcport));
|
|
datalen += sizeof(srcport);
|
|
bcopy(&dstport, &data[datalen], sizeof(dstport));
|
|
datalen += sizeof(dstport);
|
|
return (rss_hash(datalen, data));
|
|
}
|
|
#endif /* INET6 */
|
|
|
|
/*
|
|
* Query the number of RSS bits in use.
|
|
*/
|
|
u_int
|
|
rss_getbits(void)
|
|
{
|
|
|
|
return (rss_bits);
|
|
}
|
|
|
|
/*
|
|
* Query the RSS bucket associated with an RSS hash.
|
|
*/
|
|
u_int
|
|
rss_getbucket(u_int hash)
|
|
{
|
|
|
|
return (hash & rss_mask);
|
|
}
|
|
|
|
/*
|
|
* Query the RSS layer bucket associated with the given
|
|
* entry in the RSS hash space.
|
|
*
|
|
* The RSS indirection table is 0 .. rss_buckets-1,
|
|
* covering the low 'rss_bits' of the total 128 slot
|
|
* RSS indirection table. So just mask off rss_bits and
|
|
* return that.
|
|
*
|
|
* NIC drivers can then iterate over the 128 slot RSS
|
|
* indirection table and fetch which RSS bucket to
|
|
* map it to. This will typically be a CPU queue
|
|
*/
|
|
u_int
|
|
rss_get_indirection_to_bucket(u_int index)
|
|
{
|
|
|
|
return (index & rss_mask);
|
|
}
|
|
|
|
/*
|
|
* Query the RSS CPU associated with an RSS bucket.
|
|
*/
|
|
u_int
|
|
rss_getcpu(u_int bucket)
|
|
{
|
|
|
|
return (rss_table[bucket].rte_cpu);
|
|
}
|
|
|
|
/*
|
|
* netisr CPU affinity lookup given just the hash and hashtype.
|
|
*/
|
|
u_int
|
|
rss_hash2cpuid(uint32_t hash_val, uint32_t hash_type)
|
|
{
|
|
|
|
switch (hash_type) {
|
|
case M_HASHTYPE_RSS_IPV4:
|
|
case M_HASHTYPE_RSS_TCP_IPV4:
|
|
case M_HASHTYPE_RSS_UDP_IPV4:
|
|
case M_HASHTYPE_RSS_IPV6:
|
|
case M_HASHTYPE_RSS_TCP_IPV6:
|
|
case M_HASHTYPE_RSS_UDP_IPV6:
|
|
return (rss_getcpu(rss_getbucket(hash_val)));
|
|
default:
|
|
return (NETISR_CPUID_NONE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Query the RSS bucket associated with the given hash value and
|
|
* type.
|
|
*/
|
|
int
|
|
rss_hash2bucket(uint32_t hash_val, uint32_t hash_type, uint32_t *bucket_id)
|
|
{
|
|
|
|
switch (hash_type) {
|
|
case M_HASHTYPE_RSS_IPV4:
|
|
case M_HASHTYPE_RSS_TCP_IPV4:
|
|
case M_HASHTYPE_RSS_UDP_IPV4:
|
|
case M_HASHTYPE_RSS_IPV6:
|
|
case M_HASHTYPE_RSS_TCP_IPV6:
|
|
case M_HASHTYPE_RSS_UDP_IPV6:
|
|
*bucket_id = rss_getbucket(hash_val);
|
|
return (0);
|
|
default:
|
|
return (-1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* netisr CPU affinity lookup routine for use by protocols.
|
|
*/
|
|
struct mbuf *
|
|
rss_m2cpuid(struct mbuf *m, uintptr_t source, u_int *cpuid)
|
|
{
|
|
|
|
M_ASSERTPKTHDR(m);
|
|
*cpuid = rss_hash2cpuid(m->m_pkthdr.flowid, M_HASHTYPE_GET(m));
|
|
return (m);
|
|
}
|
|
|
|
int
|
|
rss_m2bucket(struct mbuf *m, uint32_t *bucket_id)
|
|
{
|
|
|
|
M_ASSERTPKTHDR(m);
|
|
|
|
return(rss_hash2bucket(m->m_pkthdr.flowid, M_HASHTYPE_GET(m),
|
|
bucket_id));
|
|
}
|
|
|
|
/*
|
|
* Calculate an appropriate ipv4 2-tuple or 4-tuple given the given
|
|
* IPv4 source/destination address, UDP or TCP source/destination ports
|
|
* and the protocol type.
|
|
*
|
|
* The protocol code may wish to do a software hash of the given
|
|
* tuple. This depends upon the currently configured RSS hash types.
|
|
*
|
|
* This assumes that the packet in question isn't a fragment.
|
|
*
|
|
* It also assumes the packet source/destination address
|
|
* are in "incoming" packet order (ie, source is "far" address.)
|
|
*/
|
|
int
|
|
rss_proto_software_hash_v4(struct in_addr s, struct in_addr d,
|
|
u_short sp, u_short dp, int proto,
|
|
uint32_t *hashval, uint32_t *hashtype)
|
|
{
|
|
uint32_t hash;
|
|
|
|
/*
|
|
* Next, choose the hash type depending upon the protocol
|
|
* identifier.
|
|
*/
|
|
if ((proto == IPPROTO_TCP) &&
|
|
(rss_gethashconfig_local() & RSS_HASHTYPE_RSS_TCP_IPV4)) {
|
|
hash = rss_hash_ip4_4tuple(s, sp, d, dp);
|
|
*hashval = hash;
|
|
*hashtype = M_HASHTYPE_RSS_TCP_IPV4;
|
|
return (0);
|
|
} else if ((proto == IPPROTO_UDP) &&
|
|
(rss_gethashconfig_local() & RSS_HASHTYPE_RSS_UDP_IPV4)) {
|
|
hash = rss_hash_ip4_4tuple(s, sp, d, dp);
|
|
*hashval = hash;
|
|
*hashtype = M_HASHTYPE_RSS_UDP_IPV4;
|
|
return (0);
|
|
} else if (rss_gethashconfig_local() & RSS_HASHTYPE_RSS_IPV4) {
|
|
/* RSS doesn't hash on other protocols like SCTP; so 2-tuple */
|
|
hash = rss_hash_ip4_2tuple(s, d);
|
|
*hashval = hash;
|
|
*hashtype = M_HASHTYPE_RSS_IPV4;
|
|
return (0);
|
|
}
|
|
|
|
/* No configured available hashtypes! */
|
|
printf("%s: no available hashtypes!\n", __func__);
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* Do a software calculation of the RSS for the given mbuf.
|
|
*
|
|
* This is typically used by the input path to recalculate the RSS after
|
|
* some form of packet processing (eg de-capsulation, IP fragment reassembly.)
|
|
*
|
|
* dir is the packet direction - RSS_HASH_PKT_INGRESS for incoming and
|
|
* RSS_HASH_PKT_EGRESS for outgoing.
|
|
*
|
|
* Returns 0 if a hash was done, -1 if no hash was done, +1 if
|
|
* the mbuf already had a valid RSS flowid.
|
|
*
|
|
* This function doesn't modify the mbuf. It's up to the caller to
|
|
* assign flowid/flowtype as appropriate.
|
|
*/
|
|
int
|
|
rss_mbuf_software_hash_v4(const struct mbuf *m, int dir, uint32_t *hashval,
|
|
uint32_t *hashtype)
|
|
{
|
|
const struct ip *ip;
|
|
const struct tcphdr *th;
|
|
const struct udphdr *uh;
|
|
uint8_t proto;
|
|
int iphlen;
|
|
int is_frag = 0;
|
|
|
|
/*
|
|
* XXX For now this only handles hashing on incoming mbufs.
|
|
*/
|
|
if (dir != RSS_HASH_PKT_INGRESS) {
|
|
printf("%s: called on EGRESS packet!\n", __func__);
|
|
return (-1);
|
|
}
|
|
|
|
/*
|
|
* First, validate that the mbuf we have is long enough
|
|
* to have an IPv4 header in it.
|
|
*/
|
|
if (m->m_pkthdr.len < (sizeof(struct ip))) {
|
|
printf("%s: short mbuf pkthdr\n", __func__);
|
|
return (-1);
|
|
}
|
|
if (m->m_len < (sizeof(struct ip))) {
|
|
printf("%s: short mbuf len\n", __func__);
|
|
return (-1);
|
|
}
|
|
|
|
/* Ok, let's dereference that */
|
|
ip = mtod(m, struct ip *);
|
|
proto = ip->ip_p;
|
|
iphlen = ip->ip_hl << 2;
|
|
|
|
/*
|
|
* If this is a fragment then it shouldn't be four-tuple
|
|
* hashed just yet. Once it's reassembled into a full
|
|
* frame it should be re-hashed.
|
|
*/
|
|
if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
|
|
is_frag = 1;
|
|
|
|
/*
|
|
* If the mbuf flowid/flowtype matches the packet type,
|
|
* and we don't support the 4-tuple version of the given protocol,
|
|
* then signal to the owner that it can trust the flowid/flowtype
|
|
* details.
|
|
*
|
|
* This is a little picky - eg, if TCPv4 / UDPv4 hashing
|
|
* is supported but we got a TCP/UDP frame only 2-tuple hashed,
|
|
* then we shouldn't just "trust" the 2-tuple hash. We need
|
|
* a 4-tuple hash.
|
|
*/
|
|
if (m->m_flags & M_FLOWID) {
|
|
uint32_t flowid, flowtype;
|
|
|
|
flowid = m->m_pkthdr.flowid;
|
|
flowtype = M_HASHTYPE_GET(m);
|
|
|
|
switch (proto) {
|
|
case IPPROTO_UDP:
|
|
if ((rss_gethashconfig_local() & RSS_HASHTYPE_RSS_UDP_IPV4) &&
|
|
(flowtype == M_HASHTYPE_RSS_UDP_IPV4) &&
|
|
(is_frag == 0)) {
|
|
return (1);
|
|
}
|
|
/*
|
|
* Only allow 2-tuple for UDP frames if we don't also
|
|
* support 4-tuple for UDP.
|
|
*/
|
|
if ((rss_gethashconfig_local() & RSS_HASHTYPE_RSS_IPV4) &&
|
|
((rss_gethashconfig_local() & RSS_HASHTYPE_RSS_UDP_IPV4) == 0) &&
|
|
flowtype == M_HASHTYPE_RSS_IPV4) {
|
|
return (1);
|
|
}
|
|
break;
|
|
case IPPROTO_TCP:
|
|
if ((rss_gethashconfig_local() & RSS_HASHTYPE_RSS_TCP_IPV4) &&
|
|
(flowtype == M_HASHTYPE_RSS_TCP_IPV4) &&
|
|
(is_frag == 0)) {
|
|
return (1);
|
|
}
|
|
/*
|
|
* Only allow 2-tuple for TCP frames if we don't also
|
|
* support 2-tuple for TCP.
|
|
*/
|
|
if ((rss_gethashconfig_local() & RSS_HASHTYPE_RSS_IPV4) &&
|
|
((rss_gethashconfig_local() & RSS_HASHTYPE_RSS_TCP_IPV4) == 0) &&
|
|
flowtype == M_HASHTYPE_RSS_IPV4) {
|
|
return (1);
|
|
}
|
|
break;
|
|
default:
|
|
if ((rss_gethashconfig_local() & RSS_HASHTYPE_RSS_IPV4) &&
|
|
flowtype == M_HASHTYPE_RSS_IPV4) {
|
|
return (1);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Decode enough information to make a hash decision.
|
|
*
|
|
* XXX TODO: does the hardware hash on 4-tuple if IP
|
|
* options are present?
|
|
*/
|
|
if ((rss_gethashconfig_local() & RSS_HASHTYPE_RSS_TCP_IPV4) &&
|
|
(proto == IPPROTO_TCP) &&
|
|
(is_frag == 0)) {
|
|
if (m->m_len < iphlen + sizeof(struct tcphdr)) {
|
|
printf("%s: short TCP frame?\n", __func__);
|
|
return (-1);
|
|
}
|
|
th = (struct tcphdr *)((caddr_t)ip + iphlen);
|
|
return rss_proto_software_hash_v4(ip->ip_src, ip->ip_dst,
|
|
th->th_sport,
|
|
th->th_dport,
|
|
proto,
|
|
hashval,
|
|
hashtype);
|
|
} else if ((rss_gethashconfig_local() & RSS_HASHTYPE_RSS_UDP_IPV4) &&
|
|
(proto == IPPROTO_UDP) &&
|
|
(is_frag == 0)) {
|
|
uh = (struct udphdr *)((caddr_t)ip + iphlen);
|
|
if (m->m_len < iphlen + sizeof(struct udphdr)) {
|
|
printf("%s: short UDP frame?\n", __func__);
|
|
return (-1);
|
|
}
|
|
return rss_proto_software_hash_v4(ip->ip_src, ip->ip_dst,
|
|
uh->uh_sport,
|
|
uh->uh_dport,
|
|
proto,
|
|
hashval,
|
|
hashtype);
|
|
} else if (rss_gethashconfig_local() & RSS_HASHTYPE_RSS_IPV4) {
|
|
/* Default to 2-tuple hash */
|
|
return rss_proto_software_hash_v4(ip->ip_src, ip->ip_dst,
|
|
0, /* source port */
|
|
0, /* destination port */
|
|
0, /* IPPROTO_IP */
|
|
hashval,
|
|
hashtype);
|
|
} else {
|
|
printf("%s: no available hashtypes!\n", __func__);
|
|
return (-1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Similar to rss_m2cpuid, but designed to be used by the IP NETISR
|
|
* on incoming frames.
|
|
*
|
|
* If an existing RSS hash exists and it matches what the configured
|
|
* hashing is, then use it.
|
|
*
|
|
* If there's an existing RSS hash but the desired hash is different,
|
|
* or if there's no useful RSS hash, then calculate it via
|
|
* the software path.
|
|
*
|
|
* XXX TODO: definitely want statistics here!
|
|
*/
|
|
struct mbuf *
|
|
rss_soft_m2cpuid(struct mbuf *m, uintptr_t source, u_int *cpuid)
|
|
{
|
|
uint32_t hash_val, hash_type;
|
|
int ret;
|
|
|
|
M_ASSERTPKTHDR(m);
|
|
|
|
ret = rss_mbuf_software_hash_v4(m, RSS_HASH_PKT_INGRESS,
|
|
&hash_val, &hash_type);
|
|
if (ret > 0) {
|
|
/* mbuf has a valid hash already; don't need to modify it */
|
|
*cpuid = rss_hash2cpuid(m->m_pkthdr.flowid, M_HASHTYPE_GET(m));
|
|
} else if (ret == 0) {
|
|
/* hash was done; update */
|
|
m->m_pkthdr.flowid = hash_val;
|
|
M_HASHTYPE_SET(m, hash_type);
|
|
m->m_flags |= M_FLOWID;
|
|
*cpuid = rss_hash2cpuid(m->m_pkthdr.flowid, M_HASHTYPE_GET(m));
|
|
} else { /* ret < 0 */
|
|
/* no hash was done */
|
|
*cpuid = NETISR_CPUID_NONE;
|
|
}
|
|
return (m);
|
|
}
|
|
|
|
/*
|
|
* Query the RSS hash algorithm.
|
|
*/
|
|
u_int
|
|
rss_gethashalgo(void)
|
|
{
|
|
|
|
return (rss_hashalgo);
|
|
}
|
|
|
|
/*
|
|
* Query the current RSS key; likely to be used by device drivers when
|
|
* configuring hardware RSS. Caller must pass an array of size RSS_KEYSIZE.
|
|
*
|
|
* XXXRW: Perhaps we should do the accept-a-length-and-truncate thing?
|
|
*/
|
|
void
|
|
rss_getkey(uint8_t *key)
|
|
{
|
|
|
|
bcopy(rss_key, key, sizeof(rss_key));
|
|
}
|
|
|
|
/*
|
|
* Query the number of buckets; this may be used by both network device
|
|
* drivers, which will need to populate hardware shadows of the software
|
|
* indirection table, and the network stack itself (such as when deciding how
|
|
* many connection groups to allocate).
|
|
*/
|
|
u_int
|
|
rss_getnumbuckets(void)
|
|
{
|
|
|
|
return (rss_buckets);
|
|
}
|
|
|
|
/*
|
|
* Query the number of CPUs in use by RSS; may be useful to device drivers
|
|
* trying to figure out how to map a larger number of CPUs into a smaller
|
|
* number of receive queues.
|
|
*/
|
|
u_int
|
|
rss_getnumcpus(void)
|
|
{
|
|
|
|
return (rss_ncpus);
|
|
}
|
|
|
|
static inline u_int
|
|
rss_gethashconfig_local(void)
|
|
{
|
|
|
|
/* Return 4-tuple for TCP; 2-tuple for others */
|
|
/*
|
|
* UDP may fragment more often than TCP and thus we'll end up with
|
|
* NICs returning 2-tuple fragments.
|
|
* udp_init() and udplite_init() both currently initialise things
|
|
* as 2-tuple.
|
|
* So for now disable UDP 4-tuple hashing until all of the other
|
|
* pieces are in place.
|
|
*/
|
|
return (
|
|
RSS_HASHTYPE_RSS_IPV4
|
|
| RSS_HASHTYPE_RSS_TCP_IPV4
|
|
| RSS_HASHTYPE_RSS_IPV6
|
|
| RSS_HASHTYPE_RSS_TCP_IPV6
|
|
| RSS_HASHTYPE_RSS_IPV6_EX
|
|
| RSS_HASHTYPE_RSS_TCP_IPV6_EX
|
|
#if 0
|
|
| RSS_HASHTYPE_RSS_UDP_IPV4
|
|
| RSS_HASHTYPE_RSS_UDP_IPV4_EX
|
|
| RSS_HASHTYPE_RSS_UDP_IPV6
|
|
| RSS_HASHTYPE_RSS_UDP_IPV6_EX
|
|
#endif
|
|
);
|
|
}
|
|
|
|
/*
|
|
* Return the supported RSS hash configuration.
|
|
*
|
|
* NICs should query this to determine what to configure in their redirection
|
|
* matching table.
|
|
*/
|
|
u_int
|
|
rss_gethashconfig(void)
|
|
{
|
|
|
|
return (rss_gethashconfig_local());
|
|
}
|
|
|
|
/*
|
|
* XXXRW: Confirm that sysctl -a won't dump this keying material, don't want
|
|
* it appearing in debugging output unnecessarily.
|
|
*/
|
|
static int
|
|
sysctl_rss_key(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
uint8_t temp_rss_key[RSS_KEYSIZE];
|
|
int error;
|
|
|
|
error = priv_check(req->td, PRIV_NETINET_HASHKEY);
|
|
if (error)
|
|
return (error);
|
|
|
|
bcopy(rss_key, temp_rss_key, sizeof(temp_rss_key));
|
|
error = sysctl_handle_opaque(oidp, temp_rss_key,
|
|
sizeof(temp_rss_key), req);
|
|
if (error)
|
|
return (error);
|
|
if (req->newptr != NULL) {
|
|
/* XXXRW: Not yet. */
|
|
return (EINVAL);
|
|
}
|
|
return (0);
|
|
}
|
|
SYSCTL_PROC(_net_inet_rss, OID_AUTO, key,
|
|
CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, sysctl_rss_key,
|
|
"", "RSS keying material");
|
|
|
|
static int
|
|
sysctl_rss_bucket_mapping(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct sbuf *sb;
|
|
int error;
|
|
int i;
|
|
|
|
error = 0;
|
|
error = sysctl_wire_old_buffer(req, 0);
|
|
if (error != 0)
|
|
return (error);
|
|
sb = sbuf_new_for_sysctl(NULL, NULL, 512, req);
|
|
if (sb == NULL)
|
|
return (ENOMEM);
|
|
for (i = 0; i < rss_buckets; i++) {
|
|
sbuf_printf(sb, "%s%d:%d", i == 0 ? "" : " ",
|
|
i,
|
|
rss_getcpu(i));
|
|
}
|
|
error = sbuf_finish(sb);
|
|
sbuf_delete(sb);
|
|
|
|
return (error);
|
|
}
|
|
SYSCTL_PROC(_net_inet_rss, OID_AUTO, bucket_mapping,
|
|
CTLTYPE_STRING | CTLFLAG_RD, NULL, 0,
|
|
sysctl_rss_bucket_mapping, "", "RSS bucket -> CPU mapping");
|