freebsd-dev/sys/net/if.c
Bjoern A. Zeeb 33553d6e99 For all files including net/vnet.h directly include opt_route.h and
net/route.h.

Remove the hidden include of opt_route.h and net/route.h from net/vnet.h.

We need to make sure that both opt_route.h and net/route.h are included
before net/vnet.h because of the way MRT figures out the number of FIBs
from the kernel option. If we do not, we end up with the default number
of 1 when including net/vnet.h and array sizes are wrong.

This does not change the list of files which depend on opt_route.h
but we can identify them now more easily.
2009-02-27 14:12:05 +00:00

2940 lines
69 KiB
C

/*-
* Copyright (c) 1980, 1986, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)if.c 8.5 (Berkeley) 1/9/95
* $FreeBSD$
*/
#include "opt_compat.h"
#include "opt_inet6.h"
#include "opt_inet.h"
#include "opt_route.h"
#include "opt_mac.h"
#include "opt_carp.h"
#include <sys/param.h>
#include <sys/types.h>
#include <sys/conf.h>
#include <sys/malloc.h>
#include <sys/sbuf.h>
#include <sys/bus.h>
#include <sys/mbuf.h>
#include <sys/systm.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/protosw.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/rwlock.h>
#include <sys/sockio.h>
#include <sys/syslog.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <sys/domain.h>
#include <sys/jail.h>
#include <sys/vimage.h>
#include <machine/stdarg.h>
#include <vm/uma.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_clone.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/if_var.h>
#include <net/radix.h>
#include <net/route.h>
#include <net/vnet.h>
#if defined(INET) || defined(INET6)
/*XXX*/
#include <netinet/in.h>
#include <netinet/in_var.h>
#ifdef INET6
#include <netinet6/in6_var.h>
#include <netinet6/in6_ifattach.h>
#endif
#endif
#ifdef INET
#include <netinet/if_ether.h>
#include <netinet/vinet.h>
#endif
#ifdef DEV_CARP
#include <netinet/ip_carp.h>
#endif
#include <security/mac/mac_framework.h>
#ifndef VIMAGE
#ifndef VIMAGE_GLOBALS
struct vnet_net vnet_net_0;
#endif
#endif
static int slowtimo_started;
SYSCTL_NODE(_net, PF_LINK, link, CTLFLAG_RW, 0, "Link layers");
SYSCTL_NODE(_net_link, 0, generic, CTLFLAG_RW, 0, "Generic link-management");
/* Log link state change events */
static int log_link_state_change = 1;
SYSCTL_INT(_net_link, OID_AUTO, log_link_state_change, CTLFLAG_RW,
&log_link_state_change, 0,
"log interface link state change events");
void (*bstp_linkstate_p)(struct ifnet *ifp, int state);
void (*ng_ether_link_state_p)(struct ifnet *ifp, int state);
void (*lagg_linkstate_p)(struct ifnet *ifp, int state);
struct mbuf *(*tbr_dequeue_ptr)(struct ifaltq *, int) = NULL;
/*
* XXX: Style; these should be sorted alphabetically, and unprototyped
* static functions should be prototyped. Currently they are sorted by
* declaration order.
*/
static void if_attachdomain(void *);
static void if_attachdomain1(struct ifnet *);
static int ifconf(u_long, caddr_t);
static void if_freemulti(struct ifmultiaddr *);
static void if_grow(void);
static void if_init(void *);
static void if_check(void *);
static void if_qflush(struct ifnet *);
static void if_route(struct ifnet *, int flag, int fam);
static int if_setflag(struct ifnet *, int, int, int *, int);
static void if_slowtimo(void *);
static int if_transmit(struct ifnet *ifp, struct mbuf *m);
static void if_unroute(struct ifnet *, int flag, int fam);
static void link_rtrequest(int, struct rtentry *, struct rt_addrinfo *);
static int if_rtdel(struct radix_node *, void *);
static int ifhwioctl(u_long, struct ifnet *, caddr_t, struct thread *);
static int if_delmulti_locked(struct ifnet *, struct ifmultiaddr *, int);
static void if_start_deferred(void *context, int pending);
static void do_link_state_change(void *, int);
static int if_getgroup(struct ifgroupreq *, struct ifnet *);
static int if_getgroupmembers(struct ifgroupreq *);
#ifdef INET6
/*
* XXX: declare here to avoid to include many inet6 related files..
* should be more generalized?
*/
extern void nd6_setmtu(struct ifnet *);
#endif
#ifdef VIMAGE_GLOBALS
struct ifnethead ifnet; /* depend on static init XXX */
struct ifgrouphead ifg_head;
int if_index;
static int if_indexlim;
/* Table of ifnet/cdev by index. Locked with ifnet_lock. */
static struct ifindex_entry *ifindex_table;
static struct knlist ifklist;
#endif
int ifqmaxlen = IFQ_MAXLEN;
struct rwlock ifnet_lock;
static if_com_alloc_t *if_com_alloc[256];
static if_com_free_t *if_com_free[256];
static void filt_netdetach(struct knote *kn);
static int filt_netdev(struct knote *kn, long hint);
static struct filterops netdev_filtops =
{ 1, NULL, filt_netdetach, filt_netdev };
#ifndef VIMAGE_GLOBALS
static struct vnet_symmap vnet_net_symmap[] = {
VNET_SYMMAP(net, ifnet),
VNET_SYMMAP(net, rt_tables),
VNET_SYMMAP(net, rtstat),
VNET_SYMMAP(net, rttrash),
VNET_SYMMAP_END
};
VNET_MOD_DECLARE(NET, net, vnet_net_iattach, vnet_net_idetach,
NONE, vnet_net_symmap)
#endif
/*
* System initialization
*/
SYSINIT(interfaces, SI_SUB_INIT_IF, SI_ORDER_FIRST, if_init, NULL);
SYSINIT(interface_check, SI_SUB_PROTO_IF, SI_ORDER_FIRST, if_check, NULL);
MALLOC_DEFINE(M_IFNET, "ifnet", "interface internals");
MALLOC_DEFINE(M_IFADDR, "ifaddr", "interface address");
MALLOC_DEFINE(M_IFMADDR, "ether_multi", "link-level multicast address");
static struct ifnet *
ifnet_byindex_locked(u_short idx)
{
INIT_VNET_NET(curvnet);
struct ifnet *ifp;
ifp = V_ifindex_table[idx].ife_ifnet;
return (ifp);
}
struct ifnet *
ifnet_byindex(u_short idx)
{
struct ifnet *ifp;
IFNET_RLOCK();
ifp = ifnet_byindex_locked(idx);
IFNET_RUNLOCK();
return (ifp);
}
static void
ifnet_setbyindex(u_short idx, struct ifnet *ifp)
{
INIT_VNET_NET(curvnet);
IFNET_WLOCK_ASSERT();
V_ifindex_table[idx].ife_ifnet = ifp;
}
struct ifaddr *
ifaddr_byindex(u_short idx)
{
struct ifaddr *ifa;
IFNET_RLOCK();
ifa = ifnet_byindex_locked(idx)->if_addr;
IFNET_RUNLOCK();
return (ifa);
}
struct cdev *
ifdev_byindex(u_short idx)
{
INIT_VNET_NET(curvnet);
struct cdev *cdev;
IFNET_RLOCK();
cdev = V_ifindex_table[idx].ife_dev;
IFNET_RUNLOCK();
return (cdev);
}
static void
ifdev_setbyindex(u_short idx, struct cdev *cdev)
{
INIT_VNET_NET(curvnet);
IFNET_WLOCK();
V_ifindex_table[idx].ife_dev = cdev;
IFNET_WUNLOCK();
}
static d_open_t netopen;
static d_close_t netclose;
static d_ioctl_t netioctl;
static d_kqfilter_t netkqfilter;
static struct cdevsw net_cdevsw = {
.d_version = D_VERSION,
.d_flags = D_NEEDGIANT,
.d_open = netopen,
.d_close = netclose,
.d_ioctl = netioctl,
.d_name = "net",
.d_kqfilter = netkqfilter,
};
static int
netopen(struct cdev *dev, int flag, int mode, struct thread *td)
{
return (0);
}
static int
netclose(struct cdev *dev, int flags, int fmt, struct thread *td)
{
return (0);
}
static int
netioctl(struct cdev *dev, u_long cmd, caddr_t data, int flag, struct thread *td)
{
struct ifnet *ifp;
int error, idx;
/* only support interface specific ioctls */
if (IOCGROUP(cmd) != 'i')
return (EOPNOTSUPP);
idx = dev2unit(dev);
if (idx == 0) {
/*
* special network device, not interface.
*/
if (cmd == SIOCGIFCONF)
return (ifconf(cmd, data)); /* XXX remove cmd */
#ifdef __amd64__
if (cmd == SIOCGIFCONF32)
return (ifconf(cmd, data)); /* XXX remove cmd */
#endif
return (EOPNOTSUPP);
}
ifp = ifnet_byindex(idx);
if (ifp == NULL)
return (ENXIO);
error = ifhwioctl(cmd, ifp, data, td);
if (error == ENOIOCTL)
error = EOPNOTSUPP;
return (error);
}
static int
netkqfilter(struct cdev *dev, struct knote *kn)
{
INIT_VNET_NET(curvnet);
struct knlist *klist;
struct ifnet *ifp;
int idx;
switch (kn->kn_filter) {
case EVFILT_NETDEV:
kn->kn_fop = &netdev_filtops;
break;
default:
return (EINVAL);
}
idx = dev2unit(dev);
if (idx == 0) {
klist = &V_ifklist;
} else {
ifp = ifnet_byindex(idx);
if (ifp == NULL)
return (1);
klist = &ifp->if_klist;
}
kn->kn_hook = (caddr_t)klist;
knlist_add(klist, kn, 0);
return (0);
}
static void
filt_netdetach(struct knote *kn)
{
struct knlist *klist = (struct knlist *)kn->kn_hook;
knlist_remove(klist, kn, 0);
}
static int
filt_netdev(struct knote *kn, long hint)
{
struct knlist *klist = (struct knlist *)kn->kn_hook;
/*
* Currently NOTE_EXIT is abused to indicate device detach.
*/
if (hint == NOTE_EXIT) {
kn->kn_data = NOTE_LINKINV;
kn->kn_flags |= (EV_EOF | EV_ONESHOT);
knlist_remove_inevent(klist, kn);
return (1);
}
if (hint != 0)
kn->kn_data = hint; /* current status */
if (kn->kn_sfflags & hint)
kn->kn_fflags |= hint;
return (kn->kn_fflags != 0);
}
/*
* Network interface utility routines.
*
* Routines with ifa_ifwith* names take sockaddr *'s as
* parameters.
*/
/* ARGSUSED*/
static void
if_init(void *dummy __unused)
{
INIT_VNET_NET(curvnet);
#ifndef VIMAGE_GLOBALS
vnet_mod_register(&vnet_net_modinfo);
#endif
V_if_index = 0;
V_ifindex_table = NULL;
V_if_indexlim = 8;
IFNET_LOCK_INIT();
TAILQ_INIT(&V_ifnet);
TAILQ_INIT(&V_ifg_head);
knlist_init(&V_ifklist, NULL, NULL, NULL, NULL);
if_grow(); /* create initial table */
ifdev_setbyindex(0, make_dev(&net_cdevsw, 0, UID_ROOT, GID_WHEEL,
0600, "network"));
if_clone_init();
}
static void
if_grow(void)
{
INIT_VNET_NET(curvnet);
u_int n;
struct ifindex_entry *e;
V_if_indexlim <<= 1;
n = V_if_indexlim * sizeof(*e);
e = malloc(n, M_IFNET, M_WAITOK | M_ZERO);
if (V_ifindex_table != NULL) {
memcpy((caddr_t)e, (caddr_t)V_ifindex_table, n/2);
free((caddr_t)V_ifindex_table, M_IFNET);
}
V_ifindex_table = e;
}
static void
if_check(void *dummy __unused)
{
/*
* If at least one interface added during boot uses
* if_watchdog then start the timer.
*/
if (slowtimo_started)
if_slowtimo(0);
}
/*
* Allocate a struct ifnet and an index for an interface. A layer 2
* common structure will also be allocated if an allocation routine is
* registered for the passed type.
*/
struct ifnet*
if_alloc(u_char type)
{
INIT_VNET_NET(curvnet);
struct ifnet *ifp;
ifp = malloc(sizeof(struct ifnet), M_IFNET, M_WAITOK|M_ZERO);
/*
* Try to find an empty slot below if_index. If we fail, take
* the next slot.
*
* XXX: should be locked!
*/
for (ifp->if_index = 1; ifp->if_index <= V_if_index; ifp->if_index++) {
if (ifnet_byindex(ifp->if_index) == NULL)
break;
}
/* Catch if_index overflow. */
if (ifp->if_index < 1) {
free(ifp, M_IFNET);
return (NULL);
}
if (ifp->if_index > V_if_index)
V_if_index = ifp->if_index;
if (V_if_index >= V_if_indexlim)
if_grow();
ifp->if_type = type;
if (if_com_alloc[type] != NULL) {
ifp->if_l2com = if_com_alloc[type](type, ifp);
if (ifp->if_l2com == NULL) {
free(ifp, M_IFNET);
return (NULL);
}
}
IFNET_WLOCK();
ifnet_setbyindex(ifp->if_index, ifp);
IFNET_WUNLOCK();
IF_ADDR_LOCK_INIT(ifp);
return (ifp);
}
/*
* Free the struct ifnet, the associated index, and the layer 2 common
* structure if needed. All the work is done in if_free_type().
*
* Do not add code to this function! Add it to if_free_type().
*/
void
if_free(struct ifnet *ifp)
{
if_free_type(ifp, ifp->if_type);
}
/*
* Do the actual work of freeing a struct ifnet, associated index, and
* layer 2 common structure. This version should only be called by
* intefaces that switch their type after calling if_alloc().
*/
void
if_free_type(struct ifnet *ifp, u_char type)
{
INIT_VNET_NET(curvnet); /* ifp->if_vnet can be NULL here ! */
if (ifp != ifnet_byindex(ifp->if_index)) {
if_printf(ifp, "%s: value was not if_alloced, skipping\n",
__func__);
return;
}
IFNET_WLOCK();
ifnet_setbyindex(ifp->if_index, NULL);
/* XXX: should be locked with if_findindex() */
while (V_if_index > 0 && ifnet_byindex_locked(V_if_index) == NULL)
V_if_index--;
IFNET_WUNLOCK();
if (if_com_free[type] != NULL)
if_com_free[type](ifp->if_l2com, type);
IF_ADDR_LOCK_DESTROY(ifp);
free(ifp, M_IFNET);
};
void
ifq_attach(struct ifaltq *ifq, struct ifnet *ifp)
{
mtx_init(&ifq->ifq_mtx, ifp->if_xname, "if send queue", MTX_DEF);
if (ifq->ifq_maxlen == 0)
ifq->ifq_maxlen = ifqmaxlen;
ifq->altq_type = 0;
ifq->altq_disc = NULL;
ifq->altq_flags &= ALTQF_CANTCHANGE;
ifq->altq_tbr = NULL;
ifq->altq_ifp = ifp;
}
void
ifq_detach(struct ifaltq *ifq)
{
mtx_destroy(&ifq->ifq_mtx);
}
/*
* Perform generic interface initalization tasks and attach the interface
* to the list of "active" interfaces.
*
* XXX:
* - The decision to return void and thus require this function to
* succeed is questionable.
* - We do more initialization here then is probably a good idea.
* Some of this should probably move to if_alloc().
* - We should probably do more sanity checking. For instance we don't
* do anything to insure if_xname is unique or non-empty.
*/
void
if_attach(struct ifnet *ifp)
{
INIT_VNET_NET(curvnet);
unsigned socksize, ifasize;
int namelen, masklen;
struct sockaddr_dl *sdl;
struct ifaddr *ifa;
if (ifp->if_index == 0 || ifp != ifnet_byindex(ifp->if_index))
panic ("%s: BUG: if_attach called without if_alloc'd input()\n",
ifp->if_xname);
TASK_INIT(&ifp->if_starttask, 0, if_start_deferred, ifp);
TASK_INIT(&ifp->if_linktask, 0, do_link_state_change, ifp);
IF_AFDATA_LOCK_INIT(ifp);
ifp->if_afdata_initialized = 0;
TAILQ_INIT(&ifp->if_addrhead);
TAILQ_INIT(&ifp->if_prefixhead);
TAILQ_INIT(&ifp->if_multiaddrs);
TAILQ_INIT(&ifp->if_groups);
if_addgroup(ifp, IFG_ALL);
knlist_init(&ifp->if_klist, NULL, NULL, NULL, NULL);
getmicrotime(&ifp->if_lastchange);
ifp->if_data.ifi_epoch = time_uptime;
ifp->if_data.ifi_datalen = sizeof(struct if_data);
ifp->if_transmit = if_transmit;
ifp->if_qflush = if_qflush;
#ifdef MAC
mac_ifnet_init(ifp);
mac_ifnet_create(ifp);
#endif
ifdev_setbyindex(ifp->if_index, make_dev(&net_cdevsw,
ifp->if_index, UID_ROOT, GID_WHEEL, 0600, "%s/%s",
net_cdevsw.d_name, ifp->if_xname));
make_dev_alias(ifdev_byindex(ifp->if_index), "%s%d",
net_cdevsw.d_name, ifp->if_index);
ifq_attach(&ifp->if_snd, ifp);
/*
* create a Link Level name for this device
*/
namelen = strlen(ifp->if_xname);
/*
* Always save enough space for any possiable name so we can do
* a rename in place later.
*/
masklen = offsetof(struct sockaddr_dl, sdl_data[0]) + IFNAMSIZ;
socksize = masklen + ifp->if_addrlen;
if (socksize < sizeof(*sdl))
socksize = sizeof(*sdl);
socksize = roundup2(socksize, sizeof(long));
ifasize = sizeof(*ifa) + 2 * socksize;
ifa = malloc(ifasize, M_IFADDR, M_WAITOK | M_ZERO);
IFA_LOCK_INIT(ifa);
sdl = (struct sockaddr_dl *)(ifa + 1);
sdl->sdl_len = socksize;
sdl->sdl_family = AF_LINK;
bcopy(ifp->if_xname, sdl->sdl_data, namelen);
sdl->sdl_nlen = namelen;
sdl->sdl_index = ifp->if_index;
sdl->sdl_type = ifp->if_type;
ifp->if_addr = ifa;
ifa->ifa_ifp = ifp;
ifa->ifa_rtrequest = link_rtrequest;
ifa->ifa_addr = (struct sockaddr *)sdl;
sdl = (struct sockaddr_dl *)(socksize + (caddr_t)sdl);
ifa->ifa_netmask = (struct sockaddr *)sdl;
sdl->sdl_len = masklen;
while (namelen != 0)
sdl->sdl_data[--namelen] = 0xff;
ifa->ifa_refcnt = 1;
TAILQ_INSERT_HEAD(&ifp->if_addrhead, ifa, ifa_link);
ifp->if_broadcastaddr = NULL; /* reliably crash if used uninitialized */
IFNET_WLOCK();
TAILQ_INSERT_TAIL(&V_ifnet, ifp, if_link);
IFNET_WUNLOCK();
if (domain_init_status >= 2)
if_attachdomain1(ifp);
EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp);
devctl_notify("IFNET", ifp->if_xname, "ATTACH", NULL);
/* Announce the interface. */
rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
if (ifp->if_watchdog != NULL) {
if_printf(ifp,
"WARNING: using obsoleted if_watchdog interface\n");
/*
* Note that we need if_slowtimo(). If this happens after
* boot, then call if_slowtimo() directly.
*/
if (atomic_cmpset_int(&slowtimo_started, 0, 1) && !cold)
if_slowtimo(0);
}
if (ifp->if_flags & IFF_NEEDSGIANT)
if_printf(ifp,
"WARNING: using obsoleted IFF_NEEDSGIANT flag\n");
}
static void
if_attachdomain(void *dummy)
{
INIT_VNET_NET(curvnet);
struct ifnet *ifp;
int s;
s = splnet();
TAILQ_FOREACH(ifp, &V_ifnet, if_link)
if_attachdomain1(ifp);
splx(s);
}
SYSINIT(domainifattach, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_SECOND,
if_attachdomain, NULL);
static void
if_attachdomain1(struct ifnet *ifp)
{
struct domain *dp;
int s;
s = splnet();
/*
* Since dp->dom_ifattach calls malloc() with M_WAITOK, we
* cannot lock ifp->if_afdata initialization, entirely.
*/
if (IF_AFDATA_TRYLOCK(ifp) == 0) {
splx(s);
return;
}
if (ifp->if_afdata_initialized >= domain_init_status) {
IF_AFDATA_UNLOCK(ifp);
splx(s);
printf("if_attachdomain called more than once on %s\n",
ifp->if_xname);
return;
}
ifp->if_afdata_initialized = domain_init_status;
IF_AFDATA_UNLOCK(ifp);
/* address family dependent data region */
bzero(ifp->if_afdata, sizeof(ifp->if_afdata));
for (dp = domains; dp; dp = dp->dom_next) {
if (dp->dom_ifattach)
ifp->if_afdata[dp->dom_family] =
(*dp->dom_ifattach)(ifp);
}
splx(s);
}
/*
* Remove any unicast or broadcast network addresses from an interface.
*/
void
if_purgeaddrs(struct ifnet *ifp)
{
struct ifaddr *ifa, *next;
TAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) {
if (ifa->ifa_addr->sa_family == AF_LINK)
continue;
#ifdef INET
/* XXX: Ugly!! ad hoc just for INET */
if (ifa->ifa_addr->sa_family == AF_INET) {
struct ifaliasreq ifr;
bzero(&ifr, sizeof(ifr));
ifr.ifra_addr = *ifa->ifa_addr;
if (ifa->ifa_dstaddr)
ifr.ifra_broadaddr = *ifa->ifa_dstaddr;
if (in_control(NULL, SIOCDIFADDR, (caddr_t)&ifr, ifp,
NULL) == 0)
continue;
}
#endif /* INET */
#ifdef INET6
if (ifa->ifa_addr->sa_family == AF_INET6) {
in6_purgeaddr(ifa);
/* ifp_addrhead is already updated */
continue;
}
#endif /* INET6 */
TAILQ_REMOVE(&ifp->if_addrhead, ifa, ifa_link);
IFAFREE(ifa);
}
}
/*
* Remove any multicast network addresses from an interface.
*/
void
if_purgemaddrs(struct ifnet *ifp)
{
struct ifmultiaddr *ifma;
struct ifmultiaddr *next;
IF_ADDR_LOCK(ifp);
TAILQ_FOREACH_SAFE(ifma, &ifp->if_multiaddrs, ifma_link, next)
if_delmulti_locked(ifp, ifma, 1);
IF_ADDR_UNLOCK(ifp);
}
/*
* Detach an interface, removing it from the
* list of "active" interfaces.
*
* XXXRW: There are some significant questions about event ordering, and
* how to prevent things from starting to use the interface during detach.
*/
void
if_detach(struct ifnet *ifp)
{
INIT_VNET_NET(ifp->if_vnet);
struct ifaddr *ifa;
struct radix_node_head *rnh;
int s, i, j;
struct domain *dp;
struct ifnet *iter;
int found = 0;
IFNET_WLOCK();
TAILQ_FOREACH(iter, &V_ifnet, if_link)
if (iter == ifp) {
TAILQ_REMOVE(&V_ifnet, ifp, if_link);
found = 1;
break;
}
IFNET_WUNLOCK();
if (!found)
return;
/*
* Remove/wait for pending events.
*/
taskqueue_drain(taskqueue_swi, &ifp->if_linktask);
/*
* Remove routes and flush queues.
*/
s = splnet();
if_down(ifp);
#ifdef ALTQ
if (ALTQ_IS_ENABLED(&ifp->if_snd))
altq_disable(&ifp->if_snd);
if (ALTQ_IS_ATTACHED(&ifp->if_snd))
altq_detach(&ifp->if_snd);
#endif
if_purgeaddrs(ifp);
#ifdef INET
in_ifdetach(ifp);
#endif
#ifdef INET6
/*
* Remove all IPv6 kernel structs related to ifp. This should be done
* before removing routing entries below, since IPv6 interface direct
* routes are expected to be removed by the IPv6-specific kernel API.
* Otherwise, the kernel will detect some inconsistency and bark it.
*/
in6_ifdetach(ifp);
#endif
if_purgemaddrs(ifp);
/*
* Remove link ifaddr pointer and maybe decrement if_index.
* Clean up all addresses.
*/
ifp->if_addr = NULL;
destroy_dev(ifdev_byindex(ifp->if_index));
ifdev_setbyindex(ifp->if_index, NULL);
/* We can now free link ifaddr. */
if (!TAILQ_EMPTY(&ifp->if_addrhead)) {
ifa = TAILQ_FIRST(&ifp->if_addrhead);
TAILQ_REMOVE(&ifp->if_addrhead, ifa, ifa_link);
IFAFREE(ifa);
}
/*
* Delete all remaining routes using this interface
* Unfortuneatly the only way to do this is to slog through
* the entire routing table looking for routes which point
* to this interface...oh well...
*/
for (i = 1; i <= AF_MAX; i++) {
for (j = 0; j < rt_numfibs; j++) {
if ((rnh = V_rt_tables[j][i]) == NULL)
continue;
RADIX_NODE_HEAD_LOCK(rnh);
(void) rnh->rnh_walktree(rnh, if_rtdel, ifp);
RADIX_NODE_HEAD_UNLOCK(rnh);
}
}
/* Announce that the interface is gone. */
rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
EVENTHANDLER_INVOKE(ifnet_departure_event, ifp);
devctl_notify("IFNET", ifp->if_xname, "DETACH", NULL);
IF_AFDATA_LOCK(ifp);
for (dp = domains; dp; dp = dp->dom_next) {
if (dp->dom_ifdetach && ifp->if_afdata[dp->dom_family])
(*dp->dom_ifdetach)(ifp,
ifp->if_afdata[dp->dom_family]);
}
IF_AFDATA_UNLOCK(ifp);
#ifdef MAC
mac_ifnet_destroy(ifp);
#endif /* MAC */
KNOTE_UNLOCKED(&ifp->if_klist, NOTE_EXIT);
knlist_clear(&ifp->if_klist, 0);
knlist_destroy(&ifp->if_klist);
ifq_detach(&ifp->if_snd);
IF_AFDATA_DESTROY(ifp);
splx(s);
}
/*
* Add a group to an interface
*/
int
if_addgroup(struct ifnet *ifp, const char *groupname)
{
INIT_VNET_NET(ifp->if_vnet);
struct ifg_list *ifgl;
struct ifg_group *ifg = NULL;
struct ifg_member *ifgm;
if (groupname[0] && groupname[strlen(groupname) - 1] >= '0' &&
groupname[strlen(groupname) - 1] <= '9')
return (EINVAL);
IFNET_WLOCK();
TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
if (!strcmp(ifgl->ifgl_group->ifg_group, groupname)) {
IFNET_WUNLOCK();
return (EEXIST);
}
if ((ifgl = (struct ifg_list *)malloc(sizeof(struct ifg_list), M_TEMP,
M_NOWAIT)) == NULL) {
IFNET_WUNLOCK();
return (ENOMEM);
}
if ((ifgm = (struct ifg_member *)malloc(sizeof(struct ifg_member),
M_TEMP, M_NOWAIT)) == NULL) {
free(ifgl, M_TEMP);
IFNET_WUNLOCK();
return (ENOMEM);
}
TAILQ_FOREACH(ifg, &V_ifg_head, ifg_next)
if (!strcmp(ifg->ifg_group, groupname))
break;
if (ifg == NULL) {
if ((ifg = (struct ifg_group *)malloc(sizeof(struct ifg_group),
M_TEMP, M_NOWAIT)) == NULL) {
free(ifgl, M_TEMP);
free(ifgm, M_TEMP);
IFNET_WUNLOCK();
return (ENOMEM);
}
strlcpy(ifg->ifg_group, groupname, sizeof(ifg->ifg_group));
ifg->ifg_refcnt = 0;
TAILQ_INIT(&ifg->ifg_members);
EVENTHANDLER_INVOKE(group_attach_event, ifg);
TAILQ_INSERT_TAIL(&V_ifg_head, ifg, ifg_next);
}
ifg->ifg_refcnt++;
ifgl->ifgl_group = ifg;
ifgm->ifgm_ifp = ifp;
IF_ADDR_LOCK(ifp);
TAILQ_INSERT_TAIL(&ifg->ifg_members, ifgm, ifgm_next);
TAILQ_INSERT_TAIL(&ifp->if_groups, ifgl, ifgl_next);
IF_ADDR_UNLOCK(ifp);
IFNET_WUNLOCK();
EVENTHANDLER_INVOKE(group_change_event, groupname);
return (0);
}
/*
* Remove a group from an interface
*/
int
if_delgroup(struct ifnet *ifp, const char *groupname)
{
INIT_VNET_NET(ifp->if_vnet);
struct ifg_list *ifgl;
struct ifg_member *ifgm;
IFNET_WLOCK();
TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
if (!strcmp(ifgl->ifgl_group->ifg_group, groupname))
break;
if (ifgl == NULL) {
IFNET_WUNLOCK();
return (ENOENT);
}
IF_ADDR_LOCK(ifp);
TAILQ_REMOVE(&ifp->if_groups, ifgl, ifgl_next);
IF_ADDR_UNLOCK(ifp);
TAILQ_FOREACH(ifgm, &ifgl->ifgl_group->ifg_members, ifgm_next)
if (ifgm->ifgm_ifp == ifp)
break;
if (ifgm != NULL) {
TAILQ_REMOVE(&ifgl->ifgl_group->ifg_members, ifgm, ifgm_next);
free(ifgm, M_TEMP);
}
if (--ifgl->ifgl_group->ifg_refcnt == 0) {
TAILQ_REMOVE(&V_ifg_head, ifgl->ifgl_group, ifg_next);
EVENTHANDLER_INVOKE(group_detach_event, ifgl->ifgl_group);
free(ifgl->ifgl_group, M_TEMP);
}
IFNET_WUNLOCK();
free(ifgl, M_TEMP);
EVENTHANDLER_INVOKE(group_change_event, groupname);
return (0);
}
/*
* Stores all groups from an interface in memory pointed
* to by data
*/
static int
if_getgroup(struct ifgroupreq *data, struct ifnet *ifp)
{
int len, error;
struct ifg_list *ifgl;
struct ifg_req ifgrq, *ifgp;
struct ifgroupreq *ifgr = data;
if (ifgr->ifgr_len == 0) {
IF_ADDR_LOCK(ifp);
TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next)
ifgr->ifgr_len += sizeof(struct ifg_req);
IF_ADDR_UNLOCK(ifp);
return (0);
}
len = ifgr->ifgr_len;
ifgp = ifgr->ifgr_groups;
/* XXX: wire */
IF_ADDR_LOCK(ifp);
TAILQ_FOREACH(ifgl, &ifp->if_groups, ifgl_next) {
if (len < sizeof(ifgrq)) {
IF_ADDR_UNLOCK(ifp);
return (EINVAL);
}
bzero(&ifgrq, sizeof ifgrq);
strlcpy(ifgrq.ifgrq_group, ifgl->ifgl_group->ifg_group,
sizeof(ifgrq.ifgrq_group));
if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) {
IF_ADDR_UNLOCK(ifp);
return (error);
}
len -= sizeof(ifgrq);
ifgp++;
}
IF_ADDR_UNLOCK(ifp);
return (0);
}
/*
* Stores all members of a group in memory pointed to by data
*/
static int
if_getgroupmembers(struct ifgroupreq *data)
{
INIT_VNET_NET(curvnet);
struct ifgroupreq *ifgr = data;
struct ifg_group *ifg;
struct ifg_member *ifgm;
struct ifg_req ifgrq, *ifgp;
int len, error;
IFNET_RLOCK();
TAILQ_FOREACH(ifg, &V_ifg_head, ifg_next)
if (!strcmp(ifg->ifg_group, ifgr->ifgr_name))
break;
if (ifg == NULL) {
IFNET_RUNLOCK();
return (ENOENT);
}
if (ifgr->ifgr_len == 0) {
TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next)
ifgr->ifgr_len += sizeof(ifgrq);
IFNET_RUNLOCK();
return (0);
}
len = ifgr->ifgr_len;
ifgp = ifgr->ifgr_groups;
TAILQ_FOREACH(ifgm, &ifg->ifg_members, ifgm_next) {
if (len < sizeof(ifgrq)) {
IFNET_RUNLOCK();
return (EINVAL);
}
bzero(&ifgrq, sizeof ifgrq);
strlcpy(ifgrq.ifgrq_member, ifgm->ifgm_ifp->if_xname,
sizeof(ifgrq.ifgrq_member));
if ((error = copyout(&ifgrq, ifgp, sizeof(struct ifg_req)))) {
IFNET_RUNLOCK();
return (error);
}
len -= sizeof(ifgrq);
ifgp++;
}
IFNET_RUNLOCK();
return (0);
}
/*
* Delete Routes for a Network Interface
*
* Called for each routing entry via the rnh->rnh_walktree() call above
* to delete all route entries referencing a detaching network interface.
*
* Arguments:
* rn pointer to node in the routing table
* arg argument passed to rnh->rnh_walktree() - detaching interface
*
* Returns:
* 0 successful
* errno failed - reason indicated
*
*/
static int
if_rtdel(struct radix_node *rn, void *arg)
{
struct rtentry *rt = (struct rtentry *)rn;
struct ifnet *ifp = arg;
int err;
if (rt->rt_ifp == ifp) {
/*
* Protect (sorta) against walktree recursion problems
* with cloned routes
*/
if ((rt->rt_flags & RTF_UP) == 0)
return (0);
err = rtrequest_fib(RTM_DELETE, rt_key(rt), rt->rt_gateway,
rt_mask(rt), rt->rt_flags|RTF_RNH_LOCKED,
(struct rtentry **) NULL, rt->rt_fibnum);
if (err) {
log(LOG_WARNING, "if_rtdel: error %d\n", err);
}
}
return (0);
}
/*
* XXX: Because sockaddr_dl has deeper structure than the sockaddr
* structs used to represent other address families, it is necessary
* to perform a different comparison.
*/
#define sa_equal(a1, a2) \
(bcmp((a1), (a2), ((a1))->sa_len) == 0)
#define sa_dl_equal(a1, a2) \
((((struct sockaddr_dl *)(a1))->sdl_len == \
((struct sockaddr_dl *)(a2))->sdl_len) && \
(bcmp(LLADDR((struct sockaddr_dl *)(a1)), \
LLADDR((struct sockaddr_dl *)(a2)), \
((struct sockaddr_dl *)(a1))->sdl_alen) == 0))
/*
* Locate an interface based on a complete address.
*/
/*ARGSUSED*/
struct ifaddr *
ifa_ifwithaddr(struct sockaddr *addr)
{
INIT_VNET_NET(curvnet);
struct ifnet *ifp;
struct ifaddr *ifa;
IFNET_RLOCK();
TAILQ_FOREACH(ifp, &V_ifnet, if_link)
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
if (ifa->ifa_addr->sa_family != addr->sa_family)
continue;
if (sa_equal(addr, ifa->ifa_addr))
goto done;
/* IP6 doesn't have broadcast */
if ((ifp->if_flags & IFF_BROADCAST) &&
ifa->ifa_broadaddr &&
ifa->ifa_broadaddr->sa_len != 0 &&
sa_equal(ifa->ifa_broadaddr, addr))
goto done;
}
ifa = NULL;
done:
IFNET_RUNLOCK();
return (ifa);
}
/*
* Locate an interface based on the broadcast address.
*/
/* ARGSUSED */
struct ifaddr *
ifa_ifwithbroadaddr(struct sockaddr *addr)
{
INIT_VNET_NET(curvnet);
struct ifnet *ifp;
struct ifaddr *ifa;
IFNET_RLOCK();
TAILQ_FOREACH(ifp, &V_ifnet, if_link)
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
if (ifa->ifa_addr->sa_family != addr->sa_family)
continue;
if ((ifp->if_flags & IFF_BROADCAST) &&
ifa->ifa_broadaddr &&
ifa->ifa_broadaddr->sa_len != 0 &&
sa_equal(ifa->ifa_broadaddr, addr))
goto done;
}
ifa = NULL;
done:
IFNET_RUNLOCK();
return (ifa);
}
/*
* Locate the point to point interface with a given destination address.
*/
/*ARGSUSED*/
struct ifaddr *
ifa_ifwithdstaddr(struct sockaddr *addr)
{
INIT_VNET_NET(curvnet);
struct ifnet *ifp;
struct ifaddr *ifa;
IFNET_RLOCK();
TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
continue;
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
if (ifa->ifa_addr->sa_family != addr->sa_family)
continue;
if (ifa->ifa_dstaddr != NULL &&
sa_equal(addr, ifa->ifa_dstaddr))
goto done;
}
}
ifa = NULL;
done:
IFNET_RUNLOCK();
return (ifa);
}
/*
* Find an interface on a specific network. If many, choice
* is most specific found.
*/
struct ifaddr *
ifa_ifwithnet(struct sockaddr *addr)
{
INIT_VNET_NET(curvnet);
struct ifnet *ifp;
struct ifaddr *ifa;
struct ifaddr *ifa_maybe = (struct ifaddr *) 0;
u_int af = addr->sa_family;
char *addr_data = addr->sa_data, *cplim;
/*
* AF_LINK addresses can be looked up directly by their index number,
* so do that if we can.
*/
if (af == AF_LINK) {
struct sockaddr_dl *sdl = (struct sockaddr_dl *)addr;
if (sdl->sdl_index && sdl->sdl_index <= V_if_index)
return (ifaddr_byindex(sdl->sdl_index));
}
/*
* Scan though each interface, looking for ones that have
* addresses in this address family.
*/
IFNET_RLOCK();
TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
char *cp, *cp2, *cp3;
if (ifa->ifa_addr->sa_family != af)
next: continue;
if (af == AF_INET && ifp->if_flags & IFF_POINTOPOINT) {
/*
* This is a bit broken as it doesn't
* take into account that the remote end may
* be a single node in the network we are
* looking for.
* The trouble is that we don't know the
* netmask for the remote end.
*/
if (ifa->ifa_dstaddr != NULL &&
sa_equal(addr, ifa->ifa_dstaddr))
goto done;
} else {
/*
* if we have a special address handler,
* then use it instead of the generic one.
*/
if (ifa->ifa_claim_addr) {
if ((*ifa->ifa_claim_addr)(ifa, addr))
goto done;
continue;
}
/*
* Scan all the bits in the ifa's address.
* If a bit dissagrees with what we are
* looking for, mask it with the netmask
* to see if it really matters.
* (A byte at a time)
*/
if (ifa->ifa_netmask == 0)
continue;
cp = addr_data;
cp2 = ifa->ifa_addr->sa_data;
cp3 = ifa->ifa_netmask->sa_data;
cplim = ifa->ifa_netmask->sa_len
+ (char *)ifa->ifa_netmask;
while (cp3 < cplim)
if ((*cp++ ^ *cp2++) & *cp3++)
goto next; /* next address! */
/*
* If the netmask of what we just found
* is more specific than what we had before
* (if we had one) then remember the new one
* before continuing to search
* for an even better one.
*/
if (ifa_maybe == 0 ||
rn_refines((caddr_t)ifa->ifa_netmask,
(caddr_t)ifa_maybe->ifa_netmask))
ifa_maybe = ifa;
}
}
}
ifa = ifa_maybe;
done:
IFNET_RUNLOCK();
return (ifa);
}
/*
* Find an interface address specific to an interface best matching
* a given address.
*/
struct ifaddr *
ifaof_ifpforaddr(struct sockaddr *addr, struct ifnet *ifp)
{
struct ifaddr *ifa;
char *cp, *cp2, *cp3;
char *cplim;
struct ifaddr *ifa_maybe = 0;
u_int af = addr->sa_family;
if (af >= AF_MAX)
return (0);
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
if (ifa->ifa_addr->sa_family != af)
continue;
if (ifa_maybe == 0)
ifa_maybe = ifa;
if (ifa->ifa_netmask == 0) {
if (sa_equal(addr, ifa->ifa_addr) ||
(ifa->ifa_dstaddr &&
sa_equal(addr, ifa->ifa_dstaddr)))
goto done;
continue;
}
if (ifp->if_flags & IFF_POINTOPOINT) {
if (sa_equal(addr, ifa->ifa_dstaddr))
goto done;
} else {
cp = addr->sa_data;
cp2 = ifa->ifa_addr->sa_data;
cp3 = ifa->ifa_netmask->sa_data;
cplim = ifa->ifa_netmask->sa_len + (char *)ifa->ifa_netmask;
for (; cp3 < cplim; cp3++)
if ((*cp++ ^ *cp2++) & *cp3)
break;
if (cp3 == cplim)
goto done;
}
}
ifa = ifa_maybe;
done:
return (ifa);
}
#include <net/route.h>
#include <net/if_llatbl.h>
/*
* Default action when installing a route with a Link Level gateway.
* Lookup an appropriate real ifa to point to.
* This should be moved to /sys/net/link.c eventually.
*/
static void
link_rtrequest(int cmd, struct rtentry *rt, struct rt_addrinfo *info)
{
struct ifaddr *ifa, *oifa;
struct sockaddr *dst;
struct ifnet *ifp;
RT_LOCK_ASSERT(rt);
if (cmd != RTM_ADD || ((ifa = rt->rt_ifa) == 0) ||
((ifp = ifa->ifa_ifp) == 0) || ((dst = rt_key(rt)) == 0))
return;
ifa = ifaof_ifpforaddr(dst, ifp);
if (ifa) {
IFAREF(ifa); /* XXX */
oifa = rt->rt_ifa;
rt->rt_ifa = ifa;
IFAFREE(oifa);
if (ifa->ifa_rtrequest && ifa->ifa_rtrequest != link_rtrequest)
ifa->ifa_rtrequest(cmd, rt, info);
}
}
/*
* Mark an interface down and notify protocols of
* the transition.
* NOTE: must be called at splnet or eqivalent.
*/
static void
if_unroute(struct ifnet *ifp, int flag, int fam)
{
struct ifaddr *ifa;
KASSERT(flag == IFF_UP, ("if_unroute: flag != IFF_UP"));
ifp->if_flags &= ~flag;
getmicrotime(&ifp->if_lastchange);
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link)
if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
pfctlinput(PRC_IFDOWN, ifa->ifa_addr);
ifp->if_qflush(ifp);
#ifdef DEV_CARP
if (ifp->if_carp)
carp_carpdev_state(ifp->if_carp);
#endif
rt_ifmsg(ifp);
}
/*
* Mark an interface up and notify protocols of
* the transition.
* NOTE: must be called at splnet or eqivalent.
*/
static void
if_route(struct ifnet *ifp, int flag, int fam)
{
struct ifaddr *ifa;
KASSERT(flag == IFF_UP, ("if_route: flag != IFF_UP"));
ifp->if_flags |= flag;
getmicrotime(&ifp->if_lastchange);
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link)
if (fam == PF_UNSPEC || (fam == ifa->ifa_addr->sa_family))
pfctlinput(PRC_IFUP, ifa->ifa_addr);
#ifdef DEV_CARP
if (ifp->if_carp)
carp_carpdev_state(ifp->if_carp);
#endif
rt_ifmsg(ifp);
#ifdef INET6
in6_if_up(ifp);
#endif
}
void (*vlan_link_state_p)(struct ifnet *, int); /* XXX: private from if_vlan */
void (*vlan_trunk_cap_p)(struct ifnet *); /* XXX: private from if_vlan */
/*
* Handle a change in the interface link state. To avoid LORs
* between driver lock and upper layer locks, as well as possible
* recursions, we post event to taskqueue, and all job
* is done in static do_link_state_change().
*/
void
if_link_state_change(struct ifnet *ifp, int link_state)
{
/* Return if state hasn't changed. */
if (ifp->if_link_state == link_state)
return;
ifp->if_link_state = link_state;
taskqueue_enqueue(taskqueue_swi, &ifp->if_linktask);
}
static void
do_link_state_change(void *arg, int pending)
{
struct ifnet *ifp = (struct ifnet *)arg;
int link_state = ifp->if_link_state;
int link;
CURVNET_SET(ifp->if_vnet);
/* Notify that the link state has changed. */
rt_ifmsg(ifp);
if (link_state == LINK_STATE_UP)
link = NOTE_LINKUP;
else if (link_state == LINK_STATE_DOWN)
link = NOTE_LINKDOWN;
else
link = NOTE_LINKINV;
KNOTE_UNLOCKED(&ifp->if_klist, link);
if (ifp->if_vlantrunk != NULL)
(*vlan_link_state_p)(ifp, link);
if ((ifp->if_type == IFT_ETHER || ifp->if_type == IFT_L2VLAN) &&
IFP2AC(ifp)->ac_netgraph != NULL)
(*ng_ether_link_state_p)(ifp, link_state);
#ifdef DEV_CARP
if (ifp->if_carp)
carp_carpdev_state(ifp->if_carp);
#endif
if (ifp->if_bridge) {
KASSERT(bstp_linkstate_p != NULL,("if_bridge bstp not loaded!"));
(*bstp_linkstate_p)(ifp, link_state);
}
if (ifp->if_lagg) {
KASSERT(lagg_linkstate_p != NULL,("if_lagg not loaded!"));
(*lagg_linkstate_p)(ifp, link_state);
}
devctl_notify("IFNET", ifp->if_xname,
(link_state == LINK_STATE_UP) ? "LINK_UP" : "LINK_DOWN", NULL);
if (pending > 1)
if_printf(ifp, "%d link states coalesced\n", pending);
if (log_link_state_change)
log(LOG_NOTICE, "%s: link state changed to %s\n", ifp->if_xname,
(link_state == LINK_STATE_UP) ? "UP" : "DOWN" );
CURVNET_RESTORE();
}
/*
* Mark an interface down and notify protocols of
* the transition.
* NOTE: must be called at splnet or eqivalent.
*/
void
if_down(struct ifnet *ifp)
{
if_unroute(ifp, IFF_UP, AF_UNSPEC);
}
/*
* Mark an interface up and notify protocols of
* the transition.
* NOTE: must be called at splnet or eqivalent.
*/
void
if_up(struct ifnet *ifp)
{
if_route(ifp, IFF_UP, AF_UNSPEC);
}
/*
* Flush an interface queue.
*/
static void
if_qflush(struct ifnet *ifp)
{
struct mbuf *m, *n;
struct ifaltq *ifq;
ifq = &ifp->if_snd;
IFQ_LOCK(ifq);
#ifdef ALTQ
if (ALTQ_IS_ENABLED(ifq))
ALTQ_PURGE(ifq);
#endif
n = ifq->ifq_head;
while ((m = n) != 0) {
n = m->m_act;
m_freem(m);
}
ifq->ifq_head = 0;
ifq->ifq_tail = 0;
ifq->ifq_len = 0;
IFQ_UNLOCK(ifq);
}
/*
* Handle interface watchdog timer routines. Called
* from softclock, we decrement timers (if set) and
* call the appropriate interface routine on expiration.
*
* XXXRW: Note that because timeouts run with Giant, if_watchdog() is called
* holding Giant. If we switch to an MPSAFE callout, we likely need to grab
* Giant before entering if_watchdog() on an IFF_NEEDSGIANT interface.
*/
static void
if_slowtimo(void *arg)
{
VNET_ITERATOR_DECL(vnet_iter);
struct ifnet *ifp;
int s = splimp();
IFNET_RLOCK();
VNET_LIST_RLOCK();
VNET_FOREACH(vnet_iter) {
CURVNET_SET(vnet_iter);
INIT_VNET_NET(vnet_iter);
TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
if (ifp->if_timer == 0 || --ifp->if_timer)
continue;
if (ifp->if_watchdog)
(*ifp->if_watchdog)(ifp);
}
CURVNET_RESTORE();
}
VNET_LIST_RUNLOCK();
IFNET_RUNLOCK();
splx(s);
timeout(if_slowtimo, (void *)0, hz / IFNET_SLOWHZ);
}
/*
* Map interface name to
* interface structure pointer.
*/
struct ifnet *
ifunit(const char *name)
{
INIT_VNET_NET(curvnet);
struct ifnet *ifp;
IFNET_RLOCK();
TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
if (strncmp(name, ifp->if_xname, IFNAMSIZ) == 0)
break;
}
IFNET_RUNLOCK();
return (ifp);
}
/*
* Hardware specific interface ioctls.
*/
static int
ifhwioctl(u_long cmd, struct ifnet *ifp, caddr_t data, struct thread *td)
{
struct ifreq *ifr;
struct ifstat *ifs;
int error = 0;
int new_flags, temp_flags;
size_t namelen, onamelen;
char new_name[IFNAMSIZ];
struct ifaddr *ifa;
struct sockaddr_dl *sdl;
ifr = (struct ifreq *)data;
switch (cmd) {
case SIOCGIFINDEX:
ifr->ifr_index = ifp->if_index;
break;
case SIOCGIFFLAGS:
temp_flags = ifp->if_flags | ifp->if_drv_flags;
ifr->ifr_flags = temp_flags & 0xffff;
ifr->ifr_flagshigh = temp_flags >> 16;
break;
case SIOCGIFCAP:
ifr->ifr_reqcap = ifp->if_capabilities;
ifr->ifr_curcap = ifp->if_capenable;
break;
#ifdef MAC
case SIOCGIFMAC:
error = mac_ifnet_ioctl_get(td->td_ucred, ifr, ifp);
break;
#endif
case SIOCGIFMETRIC:
ifr->ifr_metric = ifp->if_metric;
break;
case SIOCGIFMTU:
ifr->ifr_mtu = ifp->if_mtu;
break;
case SIOCGIFPHYS:
ifr->ifr_phys = ifp->if_physical;
break;
case SIOCSIFFLAGS:
error = priv_check(td, PRIV_NET_SETIFFLAGS);
if (error)
return (error);
/*
* Currently, no driver owned flags pass the IFF_CANTCHANGE
* check, so we don't need special handling here yet.
*/
new_flags = (ifr->ifr_flags & 0xffff) |
(ifr->ifr_flagshigh << 16);
if (ifp->if_flags & IFF_SMART) {
/* Smart drivers twiddle their own routes */
} else if (ifp->if_flags & IFF_UP &&
(new_flags & IFF_UP) == 0) {
int s = splimp();
if_down(ifp);
splx(s);
} else if (new_flags & IFF_UP &&
(ifp->if_flags & IFF_UP) == 0) {
int s = splimp();
if_up(ifp);
splx(s);
}
/* See if permanently promiscuous mode bit is about to flip */
if ((ifp->if_flags ^ new_flags) & IFF_PPROMISC) {
if (new_flags & IFF_PPROMISC)
ifp->if_flags |= IFF_PROMISC;
else if (ifp->if_pcount == 0)
ifp->if_flags &= ~IFF_PROMISC;
log(LOG_INFO, "%s: permanently promiscuous mode %s\n",
ifp->if_xname,
(new_flags & IFF_PPROMISC) ? "enabled" : "disabled");
}
ifp->if_flags = (ifp->if_flags & IFF_CANTCHANGE) |
(new_flags &~ IFF_CANTCHANGE);
if (ifp->if_ioctl) {
IFF_LOCKGIANT(ifp);
(void) (*ifp->if_ioctl)(ifp, cmd, data);
IFF_UNLOCKGIANT(ifp);
}
getmicrotime(&ifp->if_lastchange);
break;
case SIOCSIFCAP:
error = priv_check(td, PRIV_NET_SETIFCAP);
if (error)
return (error);
if (ifp->if_ioctl == NULL)
return (EOPNOTSUPP);
if (ifr->ifr_reqcap & ~ifp->if_capabilities)
return (EINVAL);
IFF_LOCKGIANT(ifp);
error = (*ifp->if_ioctl)(ifp, cmd, data);
IFF_UNLOCKGIANT(ifp);
if (error == 0)
getmicrotime(&ifp->if_lastchange);
break;
#ifdef MAC
case SIOCSIFMAC:
error = mac_ifnet_ioctl_set(td->td_ucred, ifr, ifp);
break;
#endif
case SIOCSIFNAME:
error = priv_check(td, PRIV_NET_SETIFNAME);
if (error)
return (error);
error = copyinstr(ifr->ifr_data, new_name, IFNAMSIZ, NULL);
if (error != 0)
return (error);
if (new_name[0] == '\0')
return (EINVAL);
if (ifunit(new_name) != NULL)
return (EEXIST);
/* Announce the departure of the interface. */
rt_ifannouncemsg(ifp, IFAN_DEPARTURE);
EVENTHANDLER_INVOKE(ifnet_departure_event, ifp);
log(LOG_INFO, "%s: changing name to '%s'\n",
ifp->if_xname, new_name);
strlcpy(ifp->if_xname, new_name, sizeof(ifp->if_xname));
ifa = ifp->if_addr;
IFA_LOCK(ifa);
sdl = (struct sockaddr_dl *)ifa->ifa_addr;
namelen = strlen(new_name);
onamelen = sdl->sdl_nlen;
/*
* Move the address if needed. This is safe because we
* allocate space for a name of length IFNAMSIZ when we
* create this in if_attach().
*/
if (namelen != onamelen) {
bcopy(sdl->sdl_data + onamelen,
sdl->sdl_data + namelen, sdl->sdl_alen);
}
bcopy(new_name, sdl->sdl_data, namelen);
sdl->sdl_nlen = namelen;
sdl = (struct sockaddr_dl *)ifa->ifa_netmask;
bzero(sdl->sdl_data, onamelen);
while (namelen != 0)
sdl->sdl_data[--namelen] = 0xff;
IFA_UNLOCK(ifa);
EVENTHANDLER_INVOKE(ifnet_arrival_event, ifp);
/* Announce the return of the interface. */
rt_ifannouncemsg(ifp, IFAN_ARRIVAL);
break;
case SIOCSIFMETRIC:
error = priv_check(td, PRIV_NET_SETIFMETRIC);
if (error)
return (error);
ifp->if_metric = ifr->ifr_metric;
getmicrotime(&ifp->if_lastchange);
break;
case SIOCSIFPHYS:
error = priv_check(td, PRIV_NET_SETIFPHYS);
if (error)
return (error);
if (ifp->if_ioctl == NULL)
return (EOPNOTSUPP);
IFF_LOCKGIANT(ifp);
error = (*ifp->if_ioctl)(ifp, cmd, data);
IFF_UNLOCKGIANT(ifp);
if (error == 0)
getmicrotime(&ifp->if_lastchange);
break;
case SIOCSIFMTU:
{
u_long oldmtu = ifp->if_mtu;
error = priv_check(td, PRIV_NET_SETIFMTU);
if (error)
return (error);
if (ifr->ifr_mtu < IF_MINMTU || ifr->ifr_mtu > IF_MAXMTU)
return (EINVAL);
if (ifp->if_ioctl == NULL)
return (EOPNOTSUPP);
IFF_LOCKGIANT(ifp);
error = (*ifp->if_ioctl)(ifp, cmd, data);
IFF_UNLOCKGIANT(ifp);
if (error == 0) {
getmicrotime(&ifp->if_lastchange);
rt_ifmsg(ifp);
}
/*
* If the link MTU changed, do network layer specific procedure.
*/
if (ifp->if_mtu != oldmtu) {
#ifdef INET6
nd6_setmtu(ifp);
#endif
}
break;
}
case SIOCADDMULTI:
case SIOCDELMULTI:
if (cmd == SIOCADDMULTI)
error = priv_check(td, PRIV_NET_ADDMULTI);
else
error = priv_check(td, PRIV_NET_DELMULTI);
if (error)
return (error);
/* Don't allow group membership on non-multicast interfaces. */
if ((ifp->if_flags & IFF_MULTICAST) == 0)
return (EOPNOTSUPP);
/* Don't let users screw up protocols' entries. */
if (ifr->ifr_addr.sa_family != AF_LINK)
return (EINVAL);
if (cmd == SIOCADDMULTI) {
struct ifmultiaddr *ifma;
/*
* Userland is only permitted to join groups once
* via the if_addmulti() KPI, because it cannot hold
* struct ifmultiaddr * between calls. It may also
* lose a race while we check if the membership
* already exists.
*/
IF_ADDR_LOCK(ifp);
ifma = if_findmulti(ifp, &ifr->ifr_addr);
IF_ADDR_UNLOCK(ifp);
if (ifma != NULL)
error = EADDRINUSE;
else
error = if_addmulti(ifp, &ifr->ifr_addr, &ifma);
} else {
error = if_delmulti(ifp, &ifr->ifr_addr);
}
if (error == 0)
getmicrotime(&ifp->if_lastchange);
break;
case SIOCSIFPHYADDR:
case SIOCDIFPHYADDR:
#ifdef INET6
case SIOCSIFPHYADDR_IN6:
#endif
case SIOCSLIFPHYADDR:
case SIOCSIFMEDIA:
case SIOCSIFGENERIC:
error = priv_check(td, PRIV_NET_HWIOCTL);
if (error)
return (error);
if (ifp->if_ioctl == NULL)
return (EOPNOTSUPP);
IFF_LOCKGIANT(ifp);
error = (*ifp->if_ioctl)(ifp, cmd, data);
IFF_UNLOCKGIANT(ifp);
if (error == 0)
getmicrotime(&ifp->if_lastchange);
break;
case SIOCGIFSTATUS:
ifs = (struct ifstat *)data;
ifs->ascii[0] = '\0';
case SIOCGIFPSRCADDR:
case SIOCGIFPDSTADDR:
case SIOCGLIFPHYADDR:
case SIOCGIFMEDIA:
case SIOCGIFGENERIC:
if (ifp->if_ioctl == NULL)
return (EOPNOTSUPP);
IFF_LOCKGIANT(ifp);
error = (*ifp->if_ioctl)(ifp, cmd, data);
IFF_UNLOCKGIANT(ifp);
break;
case SIOCSIFLLADDR:
error = priv_check(td, PRIV_NET_SETLLADDR);
if (error)
return (error);
error = if_setlladdr(ifp,
ifr->ifr_addr.sa_data, ifr->ifr_addr.sa_len);
break;
case SIOCAIFGROUP:
{
struct ifgroupreq *ifgr = (struct ifgroupreq *)ifr;
error = priv_check(td, PRIV_NET_ADDIFGROUP);
if (error)
return (error);
if ((error = if_addgroup(ifp, ifgr->ifgr_group)))
return (error);
break;
}
case SIOCGIFGROUP:
if ((error = if_getgroup((struct ifgroupreq *)ifr, ifp)))
return (error);
break;
case SIOCDIFGROUP:
{
struct ifgroupreq *ifgr = (struct ifgroupreq *)ifr;
error = priv_check(td, PRIV_NET_DELIFGROUP);
if (error)
return (error);
if ((error = if_delgroup(ifp, ifgr->ifgr_group)))
return (error);
break;
}
default:
error = ENOIOCTL;
break;
}
return (error);
}
/*
* Interface ioctls.
*/
int
ifioctl(struct socket *so, u_long cmd, caddr_t data, struct thread *td)
{
struct ifnet *ifp;
struct ifreq *ifr;
int error;
int oif_flags;
switch (cmd) {
case SIOCGIFCONF:
case OSIOCGIFCONF:
#ifdef __amd64__
case SIOCGIFCONF32:
#endif
return (ifconf(cmd, data));
}
ifr = (struct ifreq *)data;
switch (cmd) {
case SIOCIFCREATE:
case SIOCIFCREATE2:
error = priv_check(td, PRIV_NET_IFCREATE);
if (error)
return (error);
return (if_clone_create(ifr->ifr_name, sizeof(ifr->ifr_name),
cmd == SIOCIFCREATE2 ? ifr->ifr_data : NULL));
case SIOCIFDESTROY:
error = priv_check(td, PRIV_NET_IFDESTROY);
if (error)
return (error);
return if_clone_destroy(ifr->ifr_name);
case SIOCIFGCLONERS:
return (if_clone_list((struct if_clonereq *)data));
case SIOCGIFGMEMB:
return (if_getgroupmembers((struct ifgroupreq *)data));
}
ifp = ifunit(ifr->ifr_name);
if (ifp == 0)
return (ENXIO);
error = ifhwioctl(cmd, ifp, data, td);
if (error != ENOIOCTL)
return (error);
oif_flags = ifp->if_flags;
if (so->so_proto == 0)
return (EOPNOTSUPP);
#ifndef COMPAT_43
error = ((*so->so_proto->pr_usrreqs->pru_control)(so, cmd,
data,
ifp, td));
#else
{
int ocmd = cmd;
switch (cmd) {
case SIOCSIFDSTADDR:
case SIOCSIFADDR:
case SIOCSIFBRDADDR:
case SIOCSIFNETMASK:
#if BYTE_ORDER != BIG_ENDIAN
if (ifr->ifr_addr.sa_family == 0 &&
ifr->ifr_addr.sa_len < 16) {
ifr->ifr_addr.sa_family = ifr->ifr_addr.sa_len;
ifr->ifr_addr.sa_len = 16;
}
#else
if (ifr->ifr_addr.sa_len == 0)
ifr->ifr_addr.sa_len = 16;
#endif
break;
case OSIOCGIFADDR:
cmd = SIOCGIFADDR;
break;
case OSIOCGIFDSTADDR:
cmd = SIOCGIFDSTADDR;
break;
case OSIOCGIFBRDADDR:
cmd = SIOCGIFBRDADDR;
break;
case OSIOCGIFNETMASK:
cmd = SIOCGIFNETMASK;
}
error = ((*so->so_proto->pr_usrreqs->pru_control)(so,
cmd,
data,
ifp, td));
switch (ocmd) {
case OSIOCGIFADDR:
case OSIOCGIFDSTADDR:
case OSIOCGIFBRDADDR:
case OSIOCGIFNETMASK:
*(u_short *)&ifr->ifr_addr = ifr->ifr_addr.sa_family;
}
}
#endif /* COMPAT_43 */
if ((oif_flags ^ ifp->if_flags) & IFF_UP) {
#ifdef INET6
DELAY(100);/* XXX: temporary workaround for fxp issue*/
if (ifp->if_flags & IFF_UP) {
int s = splimp();
in6_if_up(ifp);
splx(s);
}
#endif
}
return (error);
}
/*
* The code common to handling reference counted flags,
* e.g., in ifpromisc() and if_allmulti().
* The "pflag" argument can specify a permanent mode flag to check,
* such as IFF_PPROMISC for promiscuous mode; should be 0 if none.
*
* Only to be used on stack-owned flags, not driver-owned flags.
*/
static int
if_setflag(struct ifnet *ifp, int flag, int pflag, int *refcount, int onswitch)
{
struct ifreq ifr;
int error;
int oldflags, oldcount;
/* Sanity checks to catch programming errors */
KASSERT((flag & (IFF_DRV_OACTIVE|IFF_DRV_RUNNING)) == 0,
("%s: setting driver-owned flag %d", __func__, flag));
if (onswitch)
KASSERT(*refcount >= 0,
("%s: increment negative refcount %d for flag %d",
__func__, *refcount, flag));
else
KASSERT(*refcount > 0,
("%s: decrement non-positive refcount %d for flag %d",
__func__, *refcount, flag));
/* In case this mode is permanent, just touch refcount */
if (ifp->if_flags & pflag) {
*refcount += onswitch ? 1 : -1;
return (0);
}
/* Save ifnet parameters for if_ioctl() may fail */
oldcount = *refcount;
oldflags = ifp->if_flags;
/*
* See if we aren't the only and touching refcount is enough.
* Actually toggle interface flag if we are the first or last.
*/
if (onswitch) {
if ((*refcount)++)
return (0);
ifp->if_flags |= flag;
} else {
if (--(*refcount))
return (0);
ifp->if_flags &= ~flag;
}
/* Call down the driver since we've changed interface flags */
if (ifp->if_ioctl == NULL) {
error = EOPNOTSUPP;
goto recover;
}
ifr.ifr_flags = ifp->if_flags & 0xffff;
ifr.ifr_flagshigh = ifp->if_flags >> 16;
IFF_LOCKGIANT(ifp);
error = (*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
IFF_UNLOCKGIANT(ifp);
if (error)
goto recover;
/* Notify userland that interface flags have changed */
rt_ifmsg(ifp);
return (0);
recover:
/* Recover after driver error */
*refcount = oldcount;
ifp->if_flags = oldflags;
return (error);
}
/*
* Set/clear promiscuous mode on interface ifp based on the truth value
* of pswitch. The calls are reference counted so that only the first
* "on" request actually has an effect, as does the final "off" request.
* Results are undefined if the "off" and "on" requests are not matched.
*/
int
ifpromisc(struct ifnet *ifp, int pswitch)
{
int error;
int oldflags = ifp->if_flags;
error = if_setflag(ifp, IFF_PROMISC, IFF_PPROMISC,
&ifp->if_pcount, pswitch);
/* If promiscuous mode status has changed, log a message */
if (error == 0 && ((ifp->if_flags ^ oldflags) & IFF_PROMISC))
log(LOG_INFO, "%s: promiscuous mode %s\n",
ifp->if_xname,
(ifp->if_flags & IFF_PROMISC) ? "enabled" : "disabled");
return (error);
}
/*
* Return interface configuration
* of system. List may be used
* in later ioctl's (above) to get
* other information.
*/
/*ARGSUSED*/
static int
ifconf(u_long cmd, caddr_t data)
{
INIT_VNET_NET(curvnet);
struct ifconf *ifc = (struct ifconf *)data;
#ifdef __amd64__
struct ifconf32 *ifc32 = (struct ifconf32 *)data;
struct ifconf ifc_swab;
#endif
struct ifnet *ifp;
struct ifaddr *ifa;
struct ifreq ifr;
struct sbuf *sb;
int error, full = 0, valid_len, max_len;
#ifdef __amd64__
if (cmd == SIOCGIFCONF32) {
ifc_swab.ifc_len = ifc32->ifc_len;
ifc_swab.ifc_buf = (caddr_t)(uintptr_t)ifc32->ifc_buf;
ifc = &ifc_swab;
}
#endif
/* Limit initial buffer size to MAXPHYS to avoid DoS from userspace. */
max_len = MAXPHYS - 1;
/* Prevent hostile input from being able to crash the system */
if (ifc->ifc_len <= 0)
return (EINVAL);
again:
if (ifc->ifc_len <= max_len) {
max_len = ifc->ifc_len;
full = 1;
}
sb = sbuf_new(NULL, NULL, max_len + 1, SBUF_FIXEDLEN);
max_len = 0;
valid_len = 0;
IFNET_RLOCK(); /* could sleep XXX */
TAILQ_FOREACH(ifp, &V_ifnet, if_link) {
int addrs;
/*
* Zero the ifr_name buffer to make sure we don't
* disclose the contents of the stack.
*/
memset(ifr.ifr_name, 0, sizeof(ifr.ifr_name));
if (strlcpy(ifr.ifr_name, ifp->if_xname, sizeof(ifr.ifr_name))
>= sizeof(ifr.ifr_name)) {
sbuf_delete(sb);
IFNET_RUNLOCK();
return (ENAMETOOLONG);
}
addrs = 0;
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
struct sockaddr *sa = ifa->ifa_addr;
if (prison_if(curthread->td_ucred, sa) != 0)
continue;
addrs++;
#ifdef COMPAT_43
if (cmd == OSIOCGIFCONF) {
struct osockaddr *osa =
(struct osockaddr *)&ifr.ifr_addr;
ifr.ifr_addr = *sa;
osa->sa_family = sa->sa_family;
sbuf_bcat(sb, &ifr, sizeof(ifr));
max_len += sizeof(ifr);
} else
#endif
if (sa->sa_len <= sizeof(*sa)) {
ifr.ifr_addr = *sa;
sbuf_bcat(sb, &ifr, sizeof(ifr));
max_len += sizeof(ifr);
} else {
sbuf_bcat(sb, &ifr,
offsetof(struct ifreq, ifr_addr));
max_len += offsetof(struct ifreq, ifr_addr);
sbuf_bcat(sb, sa, sa->sa_len);
max_len += sa->sa_len;
}
if (!sbuf_overflowed(sb))
valid_len = sbuf_len(sb);
}
if (addrs == 0) {
bzero((caddr_t)&ifr.ifr_addr, sizeof(ifr.ifr_addr));
sbuf_bcat(sb, &ifr, sizeof(ifr));
max_len += sizeof(ifr);
if (!sbuf_overflowed(sb))
valid_len = sbuf_len(sb);
}
}
IFNET_RUNLOCK();
/*
* If we didn't allocate enough space (uncommon), try again. If
* we have already allocated as much space as we are allowed,
* return what we've got.
*/
if (valid_len != max_len && !full) {
sbuf_delete(sb);
goto again;
}
ifc->ifc_len = valid_len;
#ifdef __amd64__
if (cmd == SIOCGIFCONF32)
ifc32->ifc_len = valid_len;
#endif
sbuf_finish(sb);
error = copyout(sbuf_data(sb), ifc->ifc_req, ifc->ifc_len);
sbuf_delete(sb);
return (error);
}
/*
* Just like ifpromisc(), but for all-multicast-reception mode.
*/
int
if_allmulti(struct ifnet *ifp, int onswitch)
{
return (if_setflag(ifp, IFF_ALLMULTI, 0, &ifp->if_amcount, onswitch));
}
struct ifmultiaddr *
if_findmulti(struct ifnet *ifp, struct sockaddr *sa)
{
struct ifmultiaddr *ifma;
IF_ADDR_LOCK_ASSERT(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
if (sa->sa_family == AF_LINK) {
if (sa_dl_equal(ifma->ifma_addr, sa))
break;
} else {
if (sa_equal(ifma->ifma_addr, sa))
break;
}
}
return ifma;
}
/*
* Allocate a new ifmultiaddr and initialize based on passed arguments. We
* make copies of passed sockaddrs. The ifmultiaddr will not be added to
* the ifnet multicast address list here, so the caller must do that and
* other setup work (such as notifying the device driver). The reference
* count is initialized to 1.
*/
static struct ifmultiaddr *
if_allocmulti(struct ifnet *ifp, struct sockaddr *sa, struct sockaddr *llsa,
int mflags)
{
struct ifmultiaddr *ifma;
struct sockaddr *dupsa;
ifma = malloc(sizeof *ifma, M_IFMADDR, mflags |
M_ZERO);
if (ifma == NULL)
return (NULL);
dupsa = malloc(sa->sa_len, M_IFMADDR, mflags);
if (dupsa == NULL) {
free(ifma, M_IFMADDR);
return (NULL);
}
bcopy(sa, dupsa, sa->sa_len);
ifma->ifma_addr = dupsa;
ifma->ifma_ifp = ifp;
ifma->ifma_refcount = 1;
ifma->ifma_protospec = NULL;
if (llsa == NULL) {
ifma->ifma_lladdr = NULL;
return (ifma);
}
dupsa = malloc(llsa->sa_len, M_IFMADDR, mflags);
if (dupsa == NULL) {
free(ifma->ifma_addr, M_IFMADDR);
free(ifma, M_IFMADDR);
return (NULL);
}
bcopy(llsa, dupsa, llsa->sa_len);
ifma->ifma_lladdr = dupsa;
return (ifma);
}
/*
* if_freemulti: free ifmultiaddr structure and possibly attached related
* addresses. The caller is responsible for implementing reference
* counting, notifying the driver, handling routing messages, and releasing
* any dependent link layer state.
*/
static void
if_freemulti(struct ifmultiaddr *ifma)
{
KASSERT(ifma->ifma_refcount == 0, ("if_freemulti: refcount %d",
ifma->ifma_refcount));
KASSERT(ifma->ifma_protospec == NULL,
("if_freemulti: protospec not NULL"));
if (ifma->ifma_lladdr != NULL)
free(ifma->ifma_lladdr, M_IFMADDR);
free(ifma->ifma_addr, M_IFMADDR);
free(ifma, M_IFMADDR);
}
/*
* Register an additional multicast address with a network interface.
*
* - If the address is already present, bump the reference count on the
* address and return.
* - If the address is not link-layer, look up a link layer address.
* - Allocate address structures for one or both addresses, and attach to the
* multicast address list on the interface. If automatically adding a link
* layer address, the protocol address will own a reference to the link
* layer address, to be freed when it is freed.
* - Notify the network device driver of an addition to the multicast address
* list.
*
* 'sa' points to caller-owned memory with the desired multicast address.
*
* 'retifma' will be used to return a pointer to the resulting multicast
* address reference, if desired.
*/
int
if_addmulti(struct ifnet *ifp, struct sockaddr *sa,
struct ifmultiaddr **retifma)
{
struct ifmultiaddr *ifma, *ll_ifma;
struct sockaddr *llsa;
int error;
/*
* If the address is already present, return a new reference to it;
* otherwise, allocate storage and set up a new address.
*/
IF_ADDR_LOCK(ifp);
ifma = if_findmulti(ifp, sa);
if (ifma != NULL) {
ifma->ifma_refcount++;
if (retifma != NULL)
*retifma = ifma;
IF_ADDR_UNLOCK(ifp);
return (0);
}
/*
* The address isn't already present; resolve the protocol address
* into a link layer address, and then look that up, bump its
* refcount or allocate an ifma for that also. If 'llsa' was
* returned, we will need to free it later.
*/
llsa = NULL;
ll_ifma = NULL;
if (ifp->if_resolvemulti != NULL) {
error = ifp->if_resolvemulti(ifp, &llsa, sa);
if (error)
goto unlock_out;
}
/*
* Allocate the new address. Don't hook it up yet, as we may also
* need to allocate a link layer multicast address.
*/
ifma = if_allocmulti(ifp, sa, llsa, M_NOWAIT);
if (ifma == NULL) {
error = ENOMEM;
goto free_llsa_out;
}
/*
* If a link layer address is found, we'll need to see if it's
* already present in the address list, or allocate is as well.
* When this block finishes, the link layer address will be on the
* list.
*/
if (llsa != NULL) {
ll_ifma = if_findmulti(ifp, llsa);
if (ll_ifma == NULL) {
ll_ifma = if_allocmulti(ifp, llsa, NULL, M_NOWAIT);
if (ll_ifma == NULL) {
--ifma->ifma_refcount;
if_freemulti(ifma);
error = ENOMEM;
goto free_llsa_out;
}
TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ll_ifma,
ifma_link);
} else
ll_ifma->ifma_refcount++;
ifma->ifma_llifma = ll_ifma;
}
/*
* We now have a new multicast address, ifma, and possibly a new or
* referenced link layer address. Add the primary address to the
* ifnet address list.
*/
TAILQ_INSERT_HEAD(&ifp->if_multiaddrs, ifma, ifma_link);
if (retifma != NULL)
*retifma = ifma;
/*
* Must generate the message while holding the lock so that 'ifma'
* pointer is still valid.
*/
rt_newmaddrmsg(RTM_NEWMADDR, ifma);
IF_ADDR_UNLOCK(ifp);
/*
* We are certain we have added something, so call down to the
* interface to let them know about it.
*/
if (ifp->if_ioctl != NULL) {
IFF_LOCKGIANT(ifp);
(void) (*ifp->if_ioctl)(ifp, SIOCADDMULTI, 0);
IFF_UNLOCKGIANT(ifp);
}
if (llsa != NULL)
free(llsa, M_IFMADDR);
return (0);
free_llsa_out:
if (llsa != NULL)
free(llsa, M_IFMADDR);
unlock_out:
IF_ADDR_UNLOCK(ifp);
return (error);
}
/*
* Delete a multicast group membership by network-layer group address.
*
* Returns ENOENT if the entry could not be found. If ifp no longer
* exists, results are undefined. This entry point should only be used
* from subsystems which do appropriate locking to hold ifp for the
* duration of the call.
* Network-layer protocol domains must use if_delmulti_ifma().
*/
int
if_delmulti(struct ifnet *ifp, struct sockaddr *sa)
{
struct ifmultiaddr *ifma;
int lastref;
#ifdef INVARIANTS
struct ifnet *oifp;
INIT_VNET_NET(ifp->if_vnet);
IFNET_RLOCK();
TAILQ_FOREACH(oifp, &V_ifnet, if_link)
if (ifp == oifp)
break;
if (ifp != oifp)
ifp = NULL;
IFNET_RUNLOCK();
KASSERT(ifp != NULL, ("%s: ifnet went away", __func__));
#endif
if (ifp == NULL)
return (ENOENT);
IF_ADDR_LOCK(ifp);
lastref = 0;
ifma = if_findmulti(ifp, sa);
if (ifma != NULL)
lastref = if_delmulti_locked(ifp, ifma, 0);
IF_ADDR_UNLOCK(ifp);
if (ifma == NULL)
return (ENOENT);
if (lastref && ifp->if_ioctl != NULL) {
IFF_LOCKGIANT(ifp);
(void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0);
IFF_UNLOCKGIANT(ifp);
}
return (0);
}
/*
* Delete a multicast group membership by group membership pointer.
* Network-layer protocol domains must use this routine.
*
* It is safe to call this routine if the ifp disappeared. Callers should
* hold IFF_LOCKGIANT() to avoid a LOR in case the hardware needs to be
* reconfigured.
*/
void
if_delmulti_ifma(struct ifmultiaddr *ifma)
{
#ifdef DIAGNOSTIC
INIT_VNET_NET(curvnet);
#endif
struct ifnet *ifp;
int lastref;
ifp = ifma->ifma_ifp;
#ifdef DIAGNOSTIC
if (ifp == NULL) {
printf("%s: ifma_ifp seems to be detached\n", __func__);
} else {
struct ifnet *oifp;
IFNET_RLOCK();
TAILQ_FOREACH(oifp, &V_ifnet, if_link)
if (ifp == oifp)
break;
if (ifp != oifp) {
printf("%s: ifnet %p disappeared\n", __func__, ifp);
ifp = NULL;
}
IFNET_RUNLOCK();
}
#endif
/*
* If and only if the ifnet instance exists: Acquire the address lock.
*/
if (ifp != NULL)
IF_ADDR_LOCK(ifp);
lastref = if_delmulti_locked(ifp, ifma, 0);
if (ifp != NULL) {
/*
* If and only if the ifnet instance exists:
* Release the address lock.
* If the group was left: update the hardware hash filter.
*/
IF_ADDR_UNLOCK(ifp);
if (lastref && ifp->if_ioctl != NULL) {
IFF_LOCKGIANT(ifp);
(void)(*ifp->if_ioctl)(ifp, SIOCDELMULTI, 0);
IFF_UNLOCKGIANT(ifp);
}
}
}
/*
* Perform deletion of network-layer and/or link-layer multicast address.
*
* Return 0 if the reference count was decremented.
* Return 1 if the final reference was released, indicating that the
* hardware hash filter should be reprogrammed.
*/
static int
if_delmulti_locked(struct ifnet *ifp, struct ifmultiaddr *ifma, int detaching)
{
struct ifmultiaddr *ll_ifma;
if (ifp != NULL && ifma->ifma_ifp != NULL) {
KASSERT(ifma->ifma_ifp == ifp,
("%s: inconsistent ifp %p", __func__, ifp));
IF_ADDR_LOCK_ASSERT(ifp);
}
ifp = ifma->ifma_ifp;
/*
* If the ifnet is detaching, null out references to ifnet,
* so that upper protocol layers will notice, and not attempt
* to obtain locks for an ifnet which no longer exists. The
* routing socket announcement must happen before the ifnet
* instance is detached from the system.
*/
if (detaching) {
#ifdef DIAGNOSTIC
printf("%s: detaching ifnet instance %p\n", __func__, ifp);
#endif
/*
* ifp may already be nulled out if we are being reentered
* to delete the ll_ifma.
*/
if (ifp != NULL) {
rt_newmaddrmsg(RTM_DELMADDR, ifma);
ifma->ifma_ifp = NULL;
}
}
if (--ifma->ifma_refcount > 0)
return 0;
/*
* If this ifma is a network-layer ifma, a link-layer ifma may
* have been associated with it. Release it first if so.
*/
ll_ifma = ifma->ifma_llifma;
if (ll_ifma != NULL) {
KASSERT(ifma->ifma_lladdr != NULL,
("%s: llifma w/o lladdr", __func__));
if (detaching)
ll_ifma->ifma_ifp = NULL; /* XXX */
if (--ll_ifma->ifma_refcount == 0) {
if (ifp != NULL) {
TAILQ_REMOVE(&ifp->if_multiaddrs, ll_ifma,
ifma_link);
}
if_freemulti(ll_ifma);
}
}
if (ifp != NULL)
TAILQ_REMOVE(&ifp->if_multiaddrs, ifma, ifma_link);
if_freemulti(ifma);
/*
* The last reference to this instance of struct ifmultiaddr
* was released; the hardware should be notified of this change.
*/
return 1;
}
/*
* Set the link layer address on an interface.
*
* At this time we only support certain types of interfaces,
* and we don't allow the length of the address to change.
*/
int
if_setlladdr(struct ifnet *ifp, const u_char *lladdr, int len)
{
struct sockaddr_dl *sdl;
struct ifaddr *ifa;
struct ifreq ifr;
ifa = ifp->if_addr;
if (ifa == NULL)
return (EINVAL);
sdl = (struct sockaddr_dl *)ifa->ifa_addr;
if (sdl == NULL)
return (EINVAL);
if (len != sdl->sdl_alen) /* don't allow length to change */
return (EINVAL);
switch (ifp->if_type) {
case IFT_ETHER:
case IFT_FDDI:
case IFT_XETHER:
case IFT_ISO88025:
case IFT_L2VLAN:
case IFT_BRIDGE:
case IFT_ARCNET:
case IFT_IEEE8023ADLAG:
bcopy(lladdr, LLADDR(sdl), len);
break;
default:
return (ENODEV);
}
/*
* If the interface is already up, we need
* to re-init it in order to reprogram its
* address filter.
*/
if ((ifp->if_flags & IFF_UP) != 0) {
if (ifp->if_ioctl) {
IFF_LOCKGIANT(ifp);
ifp->if_flags &= ~IFF_UP;
ifr.ifr_flags = ifp->if_flags & 0xffff;
ifr.ifr_flagshigh = ifp->if_flags >> 16;
(*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
ifp->if_flags |= IFF_UP;
ifr.ifr_flags = ifp->if_flags & 0xffff;
ifr.ifr_flagshigh = ifp->if_flags >> 16;
(*ifp->if_ioctl)(ifp, SIOCSIFFLAGS, (caddr_t)&ifr);
IFF_UNLOCKGIANT(ifp);
}
#ifdef INET
/*
* Also send gratuitous ARPs to notify other nodes about
* the address change.
*/
TAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) {
if (ifa->ifa_addr->sa_family == AF_INET)
arp_ifinit(ifp, ifa);
}
#endif
}
return (0);
}
/*
* The name argument must be a pointer to storage which will last as
* long as the interface does. For physical devices, the result of
* device_get_name(dev) is a good choice and for pseudo-devices a
* static string works well.
*/
void
if_initname(struct ifnet *ifp, const char *name, int unit)
{
ifp->if_dname = name;
ifp->if_dunit = unit;
if (unit != IF_DUNIT_NONE)
snprintf(ifp->if_xname, IFNAMSIZ, "%s%d", name, unit);
else
strlcpy(ifp->if_xname, name, IFNAMSIZ);
}
int
if_printf(struct ifnet *ifp, const char * fmt, ...)
{
va_list ap;
int retval;
retval = printf("%s: ", ifp->if_xname);
va_start(ap, fmt);
retval += vprintf(fmt, ap);
va_end(ap);
return (retval);
}
/*
* When an interface is marked IFF_NEEDSGIANT, its if_start() routine cannot
* be called without Giant. However, we often can't acquire the Giant lock
* at those points; instead, we run it via a task queue that holds Giant via
* if_start_deferred.
*
* XXXRW: We need to make sure that the ifnet isn't fully detached until any
* outstanding if_start_deferred() tasks that will run after the free. This
* probably means waiting in if_detach().
*/
void
if_start(struct ifnet *ifp)
{
if (ifp->if_flags & IFF_NEEDSGIANT) {
if (mtx_owned(&Giant))
(*(ifp)->if_start)(ifp);
else
taskqueue_enqueue(taskqueue_swi_giant,
&ifp->if_starttask);
} else
(*(ifp)->if_start)(ifp);
}
static void
if_start_deferred(void *context, int pending)
{
struct ifnet *ifp;
GIANT_REQUIRED;
ifp = context;
(ifp->if_start)(ifp);
}
/*
* Backwards compatibility interface for drivers
* that have not implemented it
*/
static int
if_transmit(struct ifnet *ifp, struct mbuf *m)
{
int error;
IFQ_HANDOFF(ifp, m, error);
return (error);
}
int
if_handoff(struct ifqueue *ifq, struct mbuf *m, struct ifnet *ifp, int adjust)
{
int active = 0;
IF_LOCK(ifq);
if (_IF_QFULL(ifq)) {
_IF_DROP(ifq);
IF_UNLOCK(ifq);
m_freem(m);
return (0);
}
if (ifp != NULL) {
ifp->if_obytes += m->m_pkthdr.len + adjust;
if (m->m_flags & (M_BCAST|M_MCAST))
ifp->if_omcasts++;
active = ifp->if_drv_flags & IFF_DRV_OACTIVE;
}
_IF_ENQUEUE(ifq, m);
IF_UNLOCK(ifq);
if (ifp != NULL && !active)
if_start(ifp);
return (1);
}
void
if_register_com_alloc(u_char type,
if_com_alloc_t *a, if_com_free_t *f)
{
KASSERT(if_com_alloc[type] == NULL,
("if_register_com_alloc: %d already registered", type));
KASSERT(if_com_free[type] == NULL,
("if_register_com_alloc: %d free already registered", type));
if_com_alloc[type] = a;
if_com_free[type] = f;
}
void
if_deregister_com_alloc(u_char type)
{
KASSERT(if_com_alloc[type] != NULL,
("if_deregister_com_alloc: %d not registered", type));
KASSERT(if_com_free[type] != NULL,
("if_deregister_com_alloc: %d free not registered", type));
if_com_alloc[type] = NULL;
if_com_free[type] = NULL;
}