freebsd-dev/usr.sbin/bhyve/mem.c
Peter Grehan 4d1e669cad Rework how guest MMIO regions are dealt with.
- New memory region interface. An RB tree holds the regions,
with a last-found per-vCPU cache to deal with the common case
of repeated guest accesses to MMIO registers in the same page.

- Support memory-mapped BARs in PCI emulation.

 mem.c/h - memory region interface

 instruction_emul.c/h - remove old region interface.
 Use gpa from EPT exit to avoid a tablewalk to
 determine operand address. Determine operand size
 and use when calling through to region handler.

 fbsdrun.c - call into region interface on paging
  exit. Distinguish between instruction emul error
  and region not found

 pci_emul.c/h - implement new BAR callback api.
 Split BAR alloc routine into routines that
 require/don't require the BAR phys address.

 ioapic.c
 pci_passthru.c
 pci_virtio_block.c
 pci_virtio_net.c
 pci_uart.c  - update to new BAR callback i/f

Reviewed by:	neel
Obtained from:	NetApp
2012-10-19 18:11:17 +00:00

197 lines
4.7 KiB
C

/*-
* Copyright (c) 2012 NetApp, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD$
*/
/*
* Memory ranges are represented with an RB tree. On insertion, the range
* is checked for overlaps. On lookup, the key has the same base and limit
* so it can be searched within the range.
*
* It is assumed that all setup of ranges takes place in single-threaded
* mode before vCPUs have been started. As such, no locks are used on the
* RB tree. If this is no longer the case, then a r/w lock could be used,
* with readers on the lookup and a writer if the tree needs to be changed
* (and per vCPU caches flushed)
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/types.h>
#include <sys/tree.h>
#include <sys/errno.h>
#include <machine/vmm.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include "mem.h"
#include "instruction_emul.h"
struct mmio_rb_range {
RB_ENTRY(mmio_rb_range) mr_link; /* RB tree links */
struct mem_range mr_param;
uint64_t mr_base;
uint64_t mr_end;
};
struct mmio_rb_tree;
RB_PROTOTYPE(mmio_rb_tree, mmio_rb_range, mr_link, mmio_rb_range_compare);
RB_HEAD(mmio_rb_tree, mmio_rb_range) mmio_rbroot;
/*
* Per-vCPU cache. Since most accesses from a vCPU will be to
* consecutive addresses in a range, it makes sense to cache the
* result of a lookup.
*/
static struct mmio_rb_range *mmio_hint[VM_MAXCPU];
static int
mmio_rb_range_compare(struct mmio_rb_range *a, struct mmio_rb_range *b)
{
if (a->mr_end < b->mr_base)
return (-1);
else if (a->mr_base > b->mr_end)
return (1);
return (0);
}
static int
mmio_rb_lookup(uint64_t addr, struct mmio_rb_range **entry)
{
struct mmio_rb_range find, *res;
find.mr_base = find.mr_end = addr;
res = RB_FIND(mmio_rb_tree, &mmio_rbroot, &find);
if (res != NULL) {
*entry = res;
return (0);
}
return (ENOENT);
}
static int
mmio_rb_add(struct mmio_rb_range *new)
{
struct mmio_rb_range *overlap;
overlap = RB_INSERT(mmio_rb_tree, &mmio_rbroot, new);
if (overlap != NULL) {
#ifdef RB_DEBUG
printf("overlap detected: new %lx:%lx, tree %lx:%lx\n",
new->mr_base, new->mr_end,
overlap->mr_base, overlap->mr_end);
#endif
return (EEXIST);
}
return (0);
}
#if 0
static void
mmio_rb_dump(void)
{
struct mmio_rb_range *np;
RB_FOREACH(np, mmio_rb_tree, &mmio_rbroot) {
printf(" %lx:%lx, %s\n", np->mr_base, np->mr_end,
np->mr_param.name);
}
}
#endif
RB_GENERATE(mmio_rb_tree, mmio_rb_range, mr_link, mmio_rb_range_compare);
int
emulate_mem(struct vmctx *ctx, int vcpu, uint64_t paddr, uint64_t rip,
uint64_t cr3, int mode)
{
struct mmio_rb_range *entry;
int err;
err = 0;
/*
* First check the per-vCPU cache
*/
if (mmio_hint[vcpu] &&
paddr >= mmio_hint[vcpu]->mr_base &&
paddr <= mmio_hint[vcpu]->mr_end) {
err = emulate_instruction(ctx, vcpu, rip, cr3, paddr, mode,
&mmio_hint[vcpu]->mr_param);
} else {
if (mmio_rb_lookup(paddr, &entry)) {
err = ENOENT;
} else {
mmio_hint[vcpu] = entry;
err = emulate_instruction(ctx, vcpu, rip, cr3, paddr,
mode, &entry->mr_param);
}
}
return (err);
}
int
register_mem(struct mem_range *memp)
{
struct mmio_rb_range *mrp;
int err;
err = 0;
mrp = malloc(sizeof(struct mmio_rb_range));
if (mrp != NULL) {
mrp->mr_param = *memp;
mrp->mr_base = memp->base;
mrp->mr_end = memp->base + memp->size - 1;
err = mmio_rb_add(mrp);
if (err)
free(mrp);
} else
err = ENOMEM;
return (err);
}
void
init_mem(void)
{
RB_INIT(&mmio_rbroot);
}