266 lines
10 KiB
C++
266 lines
10 KiB
C++
//=====- CFLSummary.h - Abstract stratified sets implementation. --------=====//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This file defines various utility types and functions useful to
|
|
/// summary-based alias analysis.
|
|
///
|
|
/// Summary-based analysis, also known as bottom-up analysis, is a style of
|
|
/// interprocedrual static analysis that tries to analyze the callees before the
|
|
/// callers get analyzed. The key idea of summary-based analysis is to first
|
|
/// process each function indepedently, outline its behavior in a condensed
|
|
/// summary, and then instantiate the summary at the callsite when the said
|
|
/// function is called elsewhere. This is often in contrast to another style
|
|
/// called top-down analysis, in which callers are always analyzed first before
|
|
/// the callees.
|
|
///
|
|
/// In a summary-based analysis, functions must be examined independently and
|
|
/// out-of-context. We have no information on the state of the memory, the
|
|
/// arguments, the global values, and anything else external to the function. To
|
|
/// carry out the analysis conservative assumptions have to be made about those
|
|
/// external states. In exchange for the potential loss of precision, the
|
|
/// summary we obtain this way is highly reusable, which makes the analysis
|
|
/// easier to scale to large programs even if carried out context-sensitively.
|
|
///
|
|
/// Currently, all CFL-based alias analyses adopt the summary-based approach
|
|
/// and therefore heavily rely on this header.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ANALYSIS_ALIASANALYSISSUMMARY_H
|
|
#define LLVM_ANALYSIS_ALIASANALYSISSUMMARY_H
|
|
|
|
#include "llvm/ADT/DenseMapInfo.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include <bitset>
|
|
|
|
namespace llvm {
|
|
namespace cflaa {
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AliasAttr related stuffs
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// The number of attributes that AliasAttr should contain. Attributes are
|
|
/// described below, and 32 was an arbitrary choice because it fits nicely in 32
|
|
/// bits (because we use a bitset for AliasAttr).
|
|
static const unsigned NumAliasAttrs = 32;
|
|
|
|
/// These are attributes that an alias analysis can use to mark certain special
|
|
/// properties of a given pointer. Refer to the related functions below to see
|
|
/// what kinds of attributes are currently defined.
|
|
typedef std::bitset<NumAliasAttrs> AliasAttrs;
|
|
|
|
/// Attr represent whether the said pointer comes from an unknown source
|
|
/// (such as opaque memory or an integer cast).
|
|
AliasAttrs getAttrNone();
|
|
|
|
/// AttrUnknown represent whether the said pointer comes from a source not known
|
|
/// to alias analyses (such as opaque memory or an integer cast).
|
|
AliasAttrs getAttrUnknown();
|
|
bool hasUnknownAttr(AliasAttrs);
|
|
|
|
/// AttrCaller represent whether the said pointer comes from a source not known
|
|
/// to the current function but known to the caller. Values pointed to by the
|
|
/// arguments of the current function have this attribute set
|
|
AliasAttrs getAttrCaller();
|
|
bool hasCallerAttr(AliasAttrs);
|
|
bool hasUnknownOrCallerAttr(AliasAttrs);
|
|
|
|
/// AttrEscaped represent whether the said pointer comes from a known source but
|
|
/// escapes to the unknown world (e.g. casted to an integer, or passed as an
|
|
/// argument to opaque function). Unlike non-escaped pointers, escaped ones may
|
|
/// alias pointers coming from unknown sources.
|
|
AliasAttrs getAttrEscaped();
|
|
bool hasEscapedAttr(AliasAttrs);
|
|
|
|
/// AttrGlobal represent whether the said pointer is a global value.
|
|
/// AttrArg represent whether the said pointer is an argument, and if so, what
|
|
/// index the argument has.
|
|
AliasAttrs getGlobalOrArgAttrFromValue(const Value &);
|
|
bool isGlobalOrArgAttr(AliasAttrs);
|
|
|
|
/// Given an AliasAttrs, return a new AliasAttrs that only contains attributes
|
|
/// meaningful to the caller. This function is primarily used for
|
|
/// interprocedural analysis
|
|
/// Currently, externally visible AliasAttrs include AttrUnknown, AttrGlobal,
|
|
/// and AttrEscaped
|
|
AliasAttrs getExternallyVisibleAttrs(AliasAttrs);
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Function summary related stuffs
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// The maximum number of arguments we can put into a summary.
|
|
static const unsigned MaxSupportedArgsInSummary = 50;
|
|
|
|
/// We use InterfaceValue to describe parameters/return value, as well as
|
|
/// potential memory locations that are pointed to by parameters/return value,
|
|
/// of a function.
|
|
/// Index is an integer which represents a single parameter or a return value.
|
|
/// When the index is 0, it refers to the return value. Non-zero index i refers
|
|
/// to the i-th parameter.
|
|
/// DerefLevel indicates the number of dereferences one must perform on the
|
|
/// parameter/return value to get this InterfaceValue.
|
|
struct InterfaceValue {
|
|
unsigned Index;
|
|
unsigned DerefLevel;
|
|
};
|
|
|
|
inline bool operator==(InterfaceValue LHS, InterfaceValue RHS) {
|
|
return LHS.Index == RHS.Index && LHS.DerefLevel == RHS.DerefLevel;
|
|
}
|
|
inline bool operator!=(InterfaceValue LHS, InterfaceValue RHS) {
|
|
return !(LHS == RHS);
|
|
}
|
|
inline bool operator<(InterfaceValue LHS, InterfaceValue RHS) {
|
|
return LHS.Index < RHS.Index ||
|
|
(LHS.Index == RHS.Index && LHS.DerefLevel < RHS.DerefLevel);
|
|
}
|
|
inline bool operator>(InterfaceValue LHS, InterfaceValue RHS) {
|
|
return RHS < LHS;
|
|
}
|
|
inline bool operator<=(InterfaceValue LHS, InterfaceValue RHS) {
|
|
return !(RHS < LHS);
|
|
}
|
|
inline bool operator>=(InterfaceValue LHS, InterfaceValue RHS) {
|
|
return !(LHS < RHS);
|
|
}
|
|
|
|
// We use UnknownOffset to represent pointer offsets that cannot be determined
|
|
// at compile time. Note that MemoryLocation::UnknownSize cannot be used here
|
|
// because we require a signed value.
|
|
static const int64_t UnknownOffset = INT64_MAX;
|
|
|
|
inline int64_t addOffset(int64_t LHS, int64_t RHS) {
|
|
if (LHS == UnknownOffset || RHS == UnknownOffset)
|
|
return UnknownOffset;
|
|
// FIXME: Do we need to guard against integer overflow here?
|
|
return LHS + RHS;
|
|
}
|
|
|
|
/// We use ExternalRelation to describe an externally visible aliasing relations
|
|
/// between parameters/return value of a function.
|
|
struct ExternalRelation {
|
|
InterfaceValue From, To;
|
|
int64_t Offset;
|
|
};
|
|
|
|
inline bool operator==(ExternalRelation LHS, ExternalRelation RHS) {
|
|
return LHS.From == RHS.From && LHS.To == RHS.To && LHS.Offset == RHS.Offset;
|
|
}
|
|
inline bool operator!=(ExternalRelation LHS, ExternalRelation RHS) {
|
|
return !(LHS == RHS);
|
|
}
|
|
inline bool operator<(ExternalRelation LHS, ExternalRelation RHS) {
|
|
if (LHS.From < RHS.From)
|
|
return true;
|
|
if (LHS.From > RHS.From)
|
|
return false;
|
|
if (LHS.To < RHS.To)
|
|
return true;
|
|
if (LHS.To > RHS.To)
|
|
return false;
|
|
return LHS.Offset < RHS.Offset;
|
|
}
|
|
inline bool operator>(ExternalRelation LHS, ExternalRelation RHS) {
|
|
return RHS < LHS;
|
|
}
|
|
inline bool operator<=(ExternalRelation LHS, ExternalRelation RHS) {
|
|
return !(RHS < LHS);
|
|
}
|
|
inline bool operator>=(ExternalRelation LHS, ExternalRelation RHS) {
|
|
return !(LHS < RHS);
|
|
}
|
|
|
|
/// We use ExternalAttribute to describe an externally visible AliasAttrs
|
|
/// for parameters/return value.
|
|
struct ExternalAttribute {
|
|
InterfaceValue IValue;
|
|
AliasAttrs Attr;
|
|
};
|
|
|
|
/// AliasSummary is just a collection of ExternalRelation and ExternalAttribute
|
|
struct AliasSummary {
|
|
// RetParamRelations is a collection of ExternalRelations.
|
|
SmallVector<ExternalRelation, 8> RetParamRelations;
|
|
|
|
// RetParamAttributes is a collection of ExternalAttributes.
|
|
SmallVector<ExternalAttribute, 8> RetParamAttributes;
|
|
};
|
|
|
|
/// This is the result of instantiating InterfaceValue at a particular callsite
|
|
struct InstantiatedValue {
|
|
Value *Val;
|
|
unsigned DerefLevel;
|
|
};
|
|
Optional<InstantiatedValue> instantiateInterfaceValue(InterfaceValue, CallSite);
|
|
|
|
inline bool operator==(InstantiatedValue LHS, InstantiatedValue RHS) {
|
|
return LHS.Val == RHS.Val && LHS.DerefLevel == RHS.DerefLevel;
|
|
}
|
|
inline bool operator!=(InstantiatedValue LHS, InstantiatedValue RHS) {
|
|
return !(LHS == RHS);
|
|
}
|
|
inline bool operator<(InstantiatedValue LHS, InstantiatedValue RHS) {
|
|
return std::less<Value *>()(LHS.Val, RHS.Val) ||
|
|
(LHS.Val == RHS.Val && LHS.DerefLevel < RHS.DerefLevel);
|
|
}
|
|
inline bool operator>(InstantiatedValue LHS, InstantiatedValue RHS) {
|
|
return RHS < LHS;
|
|
}
|
|
inline bool operator<=(InstantiatedValue LHS, InstantiatedValue RHS) {
|
|
return !(RHS < LHS);
|
|
}
|
|
inline bool operator>=(InstantiatedValue LHS, InstantiatedValue RHS) {
|
|
return !(LHS < RHS);
|
|
}
|
|
|
|
/// This is the result of instantiating ExternalRelation at a particular
|
|
/// callsite
|
|
struct InstantiatedRelation {
|
|
InstantiatedValue From, To;
|
|
int64_t Offset;
|
|
};
|
|
Optional<InstantiatedRelation> instantiateExternalRelation(ExternalRelation,
|
|
CallSite);
|
|
|
|
/// This is the result of instantiating ExternalAttribute at a particular
|
|
/// callsite
|
|
struct InstantiatedAttr {
|
|
InstantiatedValue IValue;
|
|
AliasAttrs Attr;
|
|
};
|
|
Optional<InstantiatedAttr> instantiateExternalAttribute(ExternalAttribute,
|
|
CallSite);
|
|
}
|
|
|
|
template <> struct DenseMapInfo<cflaa::InstantiatedValue> {
|
|
static inline cflaa::InstantiatedValue getEmptyKey() {
|
|
return cflaa::InstantiatedValue{DenseMapInfo<Value *>::getEmptyKey(),
|
|
DenseMapInfo<unsigned>::getEmptyKey()};
|
|
}
|
|
static inline cflaa::InstantiatedValue getTombstoneKey() {
|
|
return cflaa::InstantiatedValue{DenseMapInfo<Value *>::getTombstoneKey(),
|
|
DenseMapInfo<unsigned>::getTombstoneKey()};
|
|
}
|
|
static unsigned getHashValue(const cflaa::InstantiatedValue &IV) {
|
|
return DenseMapInfo<std::pair<Value *, unsigned>>::getHashValue(
|
|
std::make_pair(IV.Val, IV.DerefLevel));
|
|
}
|
|
static bool isEqual(const cflaa::InstantiatedValue &LHS,
|
|
const cflaa::InstantiatedValue &RHS) {
|
|
return LHS.Val == RHS.Val && LHS.DerefLevel == RHS.DerefLevel;
|
|
}
|
|
};
|
|
}
|
|
|
|
#endif
|