freebsd-dev/sys/net/if_stf.c
Pedro F. Giffuni 51369649b0 sys: further adoption of SPDX licensing ID tags.
Mainly focus on files that use BSD 3-Clause license.

The Software Package Data Exchange (SPDX) group provides a specification
to make it easier for automated tools to detect and summarize well known
opensource licenses. We are gradually adopting the specification, noting
that the tags are considered only advisory and do not, in any way,
superceed or replace the license texts.

Special thanks to Wind River for providing access to "The Duke of
Highlander" tool: an older (2014) run over FreeBSD tree was useful as a
starting point.
2017-11-20 19:43:44 +00:00

768 lines
19 KiB
C

/* $FreeBSD$ */
/* $KAME: if_stf.c,v 1.73 2001/12/03 11:08:30 keiichi Exp $ */
/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (C) 2000 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* 6to4 interface, based on RFC3056.
*
* 6to4 interface is NOT capable of link-layer (I mean, IPv4) multicasting.
* There is no address mapping defined from IPv6 multicast address to IPv4
* address. Therefore, we do not have IFF_MULTICAST on the interface.
*
* Due to the lack of address mapping for link-local addresses, we cannot
* throw packets toward link-local addresses (fe80::x). Also, we cannot throw
* packets to link-local multicast addresses (ff02::x).
*
* Here are interesting symptoms due to the lack of link-local address:
*
* Unicast routing exchange:
* - RIPng: Impossible. Uses link-local multicast packet toward ff02::9,
* and link-local addresses as nexthop.
* - OSPFv6: Impossible. OSPFv6 assumes that there's link-local address
* assigned to the link, and makes use of them. Also, HELLO packets use
* link-local multicast addresses (ff02::5 and ff02::6).
* - BGP4+: Maybe. You can only use global address as nexthop, and global
* address as TCP endpoint address.
*
* Multicast routing protocols:
* - PIM: Hello packet cannot be used to discover adjacent PIM routers.
* Adjacent PIM routers must be configured manually (is it really spec-wise
* correct thing to do?).
*
* ICMPv6:
* - Redirects cannot be used due to the lack of link-local address.
*
* stf interface does not have, and will not need, a link-local address.
* It seems to have no real benefit and does not help the above symptoms much.
* Even if we assign link-locals to interface, we cannot really
* use link-local unicast/multicast on top of 6to4 cloud (since there's no
* encapsulation defined for link-local address), and the above analysis does
* not change. RFC3056 does not mandate the assignment of link-local address
* either.
*
* 6to4 interface has security issues. Refer to
* http://playground.iijlab.net/i-d/draft-itojun-ipv6-transition-abuse-00.txt
* for details. The code tries to filter out some of malicious packets.
* Note that there is no way to be 100% secure.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/errno.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/module.h>
#include <sys/protosw.h>
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/rmlock.h>
#include <sys/sysctl.h>
#include <machine/cpu.h>
#include <sys/malloc.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_clone.h>
#include <net/route.h>
#include <net/netisr.h>
#include <net/if_types.h>
#include <net/vnet.h>
#include <netinet/in.h>
#include <netinet/in_fib.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/ip_var.h>
#include <netinet/in_var.h>
#include <netinet/ip6.h>
#include <netinet6/ip6_var.h>
#include <netinet6/in6_var.h>
#include <netinet/ip_ecn.h>
#include <netinet/ip_encap.h>
#include <machine/stdarg.h>
#include <net/bpf.h>
#include <security/mac/mac_framework.h>
SYSCTL_DECL(_net_link);
static SYSCTL_NODE(_net_link, IFT_STF, stf, CTLFLAG_RW, 0, "6to4 Interface");
static int stf_permit_rfc1918 = 0;
SYSCTL_INT(_net_link_stf, OID_AUTO, permit_rfc1918, CTLFLAG_RWTUN,
&stf_permit_rfc1918, 0, "Permit the use of private IPv4 addresses");
#define STFUNIT 0
#define IN6_IS_ADDR_6TO4(x) (ntohs((x)->s6_addr16[0]) == 0x2002)
/*
* XXX: Return a pointer with 16-bit aligned. Don't cast it to
* struct in_addr *; use bcopy() instead.
*/
#define GET_V4(x) (&(x)->s6_addr16[1])
struct stf_softc {
struct ifnet *sc_ifp;
u_int sc_fibnum;
const struct encaptab *encap_cookie;
};
#define STF2IFP(sc) ((sc)->sc_ifp)
static const char stfname[] = "stf";
static MALLOC_DEFINE(M_STF, stfname, "6to4 Tunnel Interface");
static const int ip_stf_ttl = 40;
extern struct domain inetdomain;
static int in_stf_input(struct mbuf **, int *, int);
static struct protosw in_stf_protosw = {
.pr_type = SOCK_RAW,
.pr_domain = &inetdomain,
.pr_protocol = IPPROTO_IPV6,
.pr_flags = PR_ATOMIC|PR_ADDR,
.pr_input = in_stf_input,
.pr_output = rip_output,
.pr_ctloutput = rip_ctloutput,
.pr_usrreqs = &rip_usrreqs
};
static char *stfnames[] = {"stf0", "stf", "6to4", NULL};
static int stfmodevent(module_t, int, void *);
static int stf_encapcheck(const struct mbuf *, int, int, void *);
static int stf_getsrcifa6(struct ifnet *, struct in6_addr *, struct in6_addr *);
static int stf_output(struct ifnet *, struct mbuf *, const struct sockaddr *,
struct route *);
static int isrfc1918addr(struct in_addr *);
static int stf_checkaddr4(struct stf_softc *, struct in_addr *,
struct ifnet *);
static int stf_checkaddr6(struct stf_softc *, struct in6_addr *,
struct ifnet *);
static int stf_ioctl(struct ifnet *, u_long, caddr_t);
static int stf_clone_match(struct if_clone *, const char *);
static int stf_clone_create(struct if_clone *, char *, size_t, caddr_t);
static int stf_clone_destroy(struct if_clone *, struct ifnet *);
static struct if_clone *stf_cloner;
static int
stf_clone_match(struct if_clone *ifc, const char *name)
{
int i;
for(i = 0; stfnames[i] != NULL; i++) {
if (strcmp(stfnames[i], name) == 0)
return (1);
}
return (0);
}
static int
stf_clone_create(struct if_clone *ifc, char *name, size_t len, caddr_t params)
{
char *dp;
int err, unit, wildcard;
struct stf_softc *sc;
struct ifnet *ifp;
err = ifc_name2unit(name, &unit);
if (err != 0)
return (err);
wildcard = (unit < 0);
/*
* We can only have one unit, but since unit allocation is
* already locked, we use it to keep from allocating extra
* interfaces.
*/
unit = STFUNIT;
err = ifc_alloc_unit(ifc, &unit);
if (err != 0)
return (err);
sc = malloc(sizeof(struct stf_softc), M_STF, M_WAITOK | M_ZERO);
ifp = STF2IFP(sc) = if_alloc(IFT_STF);
if (ifp == NULL) {
free(sc, M_STF);
ifc_free_unit(ifc, unit);
return (ENOSPC);
}
ifp->if_softc = sc;
sc->sc_fibnum = curthread->td_proc->p_fibnum;
/*
* Set the name manually rather then using if_initname because
* we don't conform to the default naming convention for interfaces.
* In the wildcard case, we need to update the name.
*/
if (wildcard) {
for (dp = name; *dp != '\0'; dp++);
if (snprintf(dp, len - (dp-name), "%d", unit) >
len - (dp-name) - 1) {
/*
* This can only be a programmer error and
* there's no straightforward way to recover if
* it happens.
*/
panic("if_clone_create(): interface name too long");
}
}
strlcpy(ifp->if_xname, name, IFNAMSIZ);
ifp->if_dname = stfname;
ifp->if_dunit = IF_DUNIT_NONE;
sc->encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV6,
stf_encapcheck, &in_stf_protosw, sc);
if (sc->encap_cookie == NULL) {
if_printf(ifp, "attach failed\n");
free(sc, M_STF);
ifc_free_unit(ifc, unit);
return (ENOMEM);
}
ifp->if_mtu = IPV6_MMTU;
ifp->if_ioctl = stf_ioctl;
ifp->if_output = stf_output;
ifp->if_snd.ifq_maxlen = ifqmaxlen;
if_attach(ifp);
bpfattach(ifp, DLT_NULL, sizeof(u_int32_t));
return (0);
}
static int
stf_clone_destroy(struct if_clone *ifc, struct ifnet *ifp)
{
struct stf_softc *sc = ifp->if_softc;
int err;
err = encap_detach(sc->encap_cookie);
KASSERT(err == 0, ("Unexpected error detaching encap_cookie"));
bpfdetach(ifp);
if_detach(ifp);
if_free(ifp);
free(sc, M_STF);
ifc_free_unit(ifc, STFUNIT);
return (0);
}
static int
stfmodevent(module_t mod, int type, void *data)
{
switch (type) {
case MOD_LOAD:
stf_cloner = if_clone_advanced(stfname, 0, stf_clone_match,
stf_clone_create, stf_clone_destroy);
break;
case MOD_UNLOAD:
if_clone_detach(stf_cloner);
break;
default:
return (EOPNOTSUPP);
}
return (0);
}
static moduledata_t stf_mod = {
"if_stf",
stfmodevent,
0
};
DECLARE_MODULE(if_stf, stf_mod, SI_SUB_PSEUDO, SI_ORDER_ANY);
static int
stf_encapcheck(const struct mbuf *m, int off, int proto, void *arg)
{
struct ip ip;
struct stf_softc *sc;
struct in_addr a, b, mask;
struct in6_addr addr6, mask6;
sc = (struct stf_softc *)arg;
if (sc == NULL)
return 0;
if ((STF2IFP(sc)->if_flags & IFF_UP) == 0)
return 0;
/* IFF_LINK0 means "no decapsulation" */
if ((STF2IFP(sc)->if_flags & IFF_LINK0) != 0)
return 0;
if (proto != IPPROTO_IPV6)
return 0;
m_copydata(m, 0, sizeof(ip), (caddr_t)&ip);
if (ip.ip_v != 4)
return 0;
if (stf_getsrcifa6(STF2IFP(sc), &addr6, &mask6) != 0)
return (0);
/*
* check if IPv4 dst matches the IPv4 address derived from the
* local 6to4 address.
* success on: dst = 10.1.1.1, ia6->ia_addr = 2002:0a01:0101:...
*/
if (bcmp(GET_V4(&addr6), &ip.ip_dst, sizeof(ip.ip_dst)) != 0)
return 0;
/*
* check if IPv4 src matches the IPv4 address derived from the
* local 6to4 address masked by prefixmask.
* success on: src = 10.1.1.1, ia6->ia_addr = 2002:0a00:.../24
* fail on: src = 10.1.1.1, ia6->ia_addr = 2002:0b00:.../24
*/
bzero(&a, sizeof(a));
bcopy(GET_V4(&addr6), &a, sizeof(a));
bcopy(GET_V4(&mask6), &mask, sizeof(mask));
a.s_addr &= mask.s_addr;
b = ip.ip_src;
b.s_addr &= mask.s_addr;
if (a.s_addr != b.s_addr)
return 0;
/* stf interface makes single side match only */
return 32;
}
static int
stf_getsrcifa6(struct ifnet *ifp, struct in6_addr *addr, struct in6_addr *mask)
{
struct ifaddr *ia;
struct in_ifaddr *ia4;
struct in6_ifaddr *ia6;
struct sockaddr_in6 *sin6;
struct in_addr in;
if_addr_rlock(ifp);
TAILQ_FOREACH(ia, &ifp->if_addrhead, ifa_link) {
if (ia->ifa_addr->sa_family != AF_INET6)
continue;
sin6 = (struct sockaddr_in6 *)ia->ifa_addr;
if (!IN6_IS_ADDR_6TO4(&sin6->sin6_addr))
continue;
bcopy(GET_V4(&sin6->sin6_addr), &in, sizeof(in));
LIST_FOREACH(ia4, INADDR_HASH(in.s_addr), ia_hash)
if (ia4->ia_addr.sin_addr.s_addr == in.s_addr)
break;
if (ia4 == NULL)
continue;
ia6 = (struct in6_ifaddr *)ia;
*addr = sin6->sin6_addr;
*mask = ia6->ia_prefixmask.sin6_addr;
if_addr_runlock(ifp);
return (0);
}
if_addr_runlock(ifp);
return (ENOENT);
}
static int
stf_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
struct route *ro)
{
struct stf_softc *sc;
const struct sockaddr_in6 *dst6;
struct in_addr in4;
const void *ptr;
u_int8_t tos;
struct ip *ip;
struct ip6_hdr *ip6;
struct in6_addr addr6, mask6;
int error;
#ifdef MAC
error = mac_ifnet_check_transmit(ifp, m);
if (error) {
m_freem(m);
return (error);
}
#endif
sc = ifp->if_softc;
dst6 = (const struct sockaddr_in6 *)dst;
/* just in case */
if ((ifp->if_flags & IFF_UP) == 0) {
m_freem(m);
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
return ENETDOWN;
}
/*
* If we don't have an ip4 address that match my inner ip6 address,
* we shouldn't generate output. Without this check, we'll end up
* using wrong IPv4 source.
*/
if (stf_getsrcifa6(ifp, &addr6, &mask6) != 0) {
m_freem(m);
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
return ENETDOWN;
}
if (m->m_len < sizeof(*ip6)) {
m = m_pullup(m, sizeof(*ip6));
if (!m) {
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
return ENOBUFS;
}
}
ip6 = mtod(m, struct ip6_hdr *);
tos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
/*
* Pickup the right outer dst addr from the list of candidates.
* ip6_dst has priority as it may be able to give us shorter IPv4 hops.
*/
ptr = NULL;
if (IN6_IS_ADDR_6TO4(&ip6->ip6_dst))
ptr = GET_V4(&ip6->ip6_dst);
else if (IN6_IS_ADDR_6TO4(&dst6->sin6_addr))
ptr = GET_V4(&dst6->sin6_addr);
else {
m_freem(m);
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
return ENETUNREACH;
}
bcopy(ptr, &in4, sizeof(in4));
if (bpf_peers_present(ifp->if_bpf)) {
/*
* We need to prepend the address family as
* a four byte field. Cons up a dummy header
* to pacify bpf. This is safe because bpf
* will only read from the mbuf (i.e., it won't
* try to free it or keep a pointer a to it).
*/
u_int af = AF_INET6;
bpf_mtap2(ifp->if_bpf, &af, sizeof(af), m);
}
M_PREPEND(m, sizeof(struct ip), M_NOWAIT);
if (m == NULL) {
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
return ENOBUFS;
}
ip = mtod(m, struct ip *);
bzero(ip, sizeof(*ip));
bcopy(GET_V4(&addr6), &ip->ip_src, sizeof(ip->ip_src));
bcopy(&in4, &ip->ip_dst, sizeof(ip->ip_dst));
ip->ip_p = IPPROTO_IPV6;
ip->ip_ttl = ip_stf_ttl;
ip->ip_len = htons(m->m_pkthdr.len);
if (ifp->if_flags & IFF_LINK1)
ip_ecn_ingress(ECN_ALLOWED, &ip->ip_tos, &tos);
else
ip_ecn_ingress(ECN_NOCARE, &ip->ip_tos, &tos);
M_SETFIB(m, sc->sc_fibnum);
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
error = ip_output(m, NULL, NULL, 0, NULL, NULL);
return error;
}
static int
isrfc1918addr(struct in_addr *in)
{
/*
* returns 1 if private address range:
* 10.0.0.0/8 172.16.0.0/12 192.168.0.0/16
*/
if (stf_permit_rfc1918 == 0 && (
(ntohl(in->s_addr) & 0xff000000) >> 24 == 10 ||
(ntohl(in->s_addr) & 0xfff00000) >> 16 == 172 * 256 + 16 ||
(ntohl(in->s_addr) & 0xffff0000) >> 16 == 192 * 256 + 168))
return 1;
return 0;
}
static int
stf_checkaddr4(struct stf_softc *sc, struct in_addr *in, struct ifnet *inifp)
{
struct rm_priotracker in_ifa_tracker;
struct in_ifaddr *ia4;
/*
* reject packets with the following address:
* 224.0.0.0/4 0.0.0.0/8 127.0.0.0/8 255.0.0.0/8
*/
if (IN_MULTICAST(ntohl(in->s_addr)))
return -1;
switch ((ntohl(in->s_addr) & 0xff000000) >> 24) {
case 0: case 127: case 255:
return -1;
}
/*
* reject packets with private address range.
* (requirement from RFC3056 section 2 1st paragraph)
*/
if (isrfc1918addr(in))
return -1;
/*
* reject packets with broadcast
*/
IN_IFADDR_RLOCK(&in_ifa_tracker);
TAILQ_FOREACH(ia4, &V_in_ifaddrhead, ia_link) {
if ((ia4->ia_ifa.ifa_ifp->if_flags & IFF_BROADCAST) == 0)
continue;
if (in->s_addr == ia4->ia_broadaddr.sin_addr.s_addr) {
IN_IFADDR_RUNLOCK(&in_ifa_tracker);
return -1;
}
}
IN_IFADDR_RUNLOCK(&in_ifa_tracker);
/*
* perform ingress filter
*/
if (sc && (STF2IFP(sc)->if_flags & IFF_LINK2) == 0 && inifp) {
struct nhop4_basic nh4;
if (fib4_lookup_nh_basic(sc->sc_fibnum, *in, 0, 0, &nh4) != 0)
return (-1);
if (nh4.nh_ifp != inifp)
return (-1);
}
return 0;
}
static int
stf_checkaddr6(struct stf_softc *sc, struct in6_addr *in6, struct ifnet *inifp)
{
/*
* check 6to4 addresses
*/
if (IN6_IS_ADDR_6TO4(in6)) {
struct in_addr in4;
bcopy(GET_V4(in6), &in4, sizeof(in4));
return stf_checkaddr4(sc, &in4, inifp);
}
/*
* reject anything that look suspicious. the test is implemented
* in ip6_input too, but we check here as well to
* (1) reject bad packets earlier, and
* (2) to be safe against future ip6_input change.
*/
if (IN6_IS_ADDR_V4COMPAT(in6) || IN6_IS_ADDR_V4MAPPED(in6))
return -1;
return 0;
}
static int
in_stf_input(struct mbuf **mp, int *offp, int proto)
{
struct stf_softc *sc;
struct ip *ip;
struct ip6_hdr *ip6;
struct mbuf *m;
u_int8_t otos, itos;
struct ifnet *ifp;
int off;
m = *mp;
off = *offp;
if (proto != IPPROTO_IPV6) {
m_freem(m);
return (IPPROTO_DONE);
}
ip = mtod(m, struct ip *);
sc = (struct stf_softc *)encap_getarg(m);
if (sc == NULL || (STF2IFP(sc)->if_flags & IFF_UP) == 0) {
m_freem(m);
return (IPPROTO_DONE);
}
ifp = STF2IFP(sc);
#ifdef MAC
mac_ifnet_create_mbuf(ifp, m);
#endif
/*
* perform sanity check against outer src/dst.
* for source, perform ingress filter as well.
*/
if (stf_checkaddr4(sc, &ip->ip_dst, NULL) < 0 ||
stf_checkaddr4(sc, &ip->ip_src, m->m_pkthdr.rcvif) < 0) {
m_freem(m);
return (IPPROTO_DONE);
}
otos = ip->ip_tos;
m_adj(m, off);
if (m->m_len < sizeof(*ip6)) {
m = m_pullup(m, sizeof(*ip6));
if (!m)
return (IPPROTO_DONE);
}
ip6 = mtod(m, struct ip6_hdr *);
/*
* perform sanity check against inner src/dst.
* for source, perform ingress filter as well.
*/
if (stf_checkaddr6(sc, &ip6->ip6_dst, NULL) < 0 ||
stf_checkaddr6(sc, &ip6->ip6_src, m->m_pkthdr.rcvif) < 0) {
m_freem(m);
return (IPPROTO_DONE);
}
itos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
if ((ifp->if_flags & IFF_LINK1) != 0)
ip_ecn_egress(ECN_ALLOWED, &otos, &itos);
else
ip_ecn_egress(ECN_NOCARE, &otos, &itos);
ip6->ip6_flow &= ~htonl(0xff << 20);
ip6->ip6_flow |= htonl((u_int32_t)itos << 20);
m->m_pkthdr.rcvif = ifp;
if (bpf_peers_present(ifp->if_bpf)) {
/*
* We need to prepend the address family as
* a four byte field. Cons up a dummy header
* to pacify bpf. This is safe because bpf
* will only read from the mbuf (i.e., it won't
* try to free it or keep a pointer a to it).
*/
u_int32_t af = AF_INET6;
bpf_mtap2(ifp->if_bpf, &af, sizeof(af), m);
}
/*
* Put the packet to the network layer input queue according to the
* specified address family.
* See net/if_gif.c for possible issues with packet processing
* reorder due to extra queueing.
*/
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
if_inc_counter(ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len);
M_SETFIB(m, ifp->if_fib);
netisr_dispatch(NETISR_IPV6, m);
return (IPPROTO_DONE);
}
static int
stf_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct ifaddr *ifa;
struct ifreq *ifr;
struct sockaddr_in6 *sin6;
struct in_addr addr;
int error, mtu;
error = 0;
switch (cmd) {
case SIOCSIFADDR:
ifa = (struct ifaddr *)data;
if (ifa == NULL || ifa->ifa_addr->sa_family != AF_INET6) {
error = EAFNOSUPPORT;
break;
}
sin6 = (struct sockaddr_in6 *)ifa->ifa_addr;
if (!IN6_IS_ADDR_6TO4(&sin6->sin6_addr)) {
error = EINVAL;
break;
}
bcopy(GET_V4(&sin6->sin6_addr), &addr, sizeof(addr));
if (isrfc1918addr(&addr)) {
error = EINVAL;
break;
}
ifp->if_flags |= IFF_UP;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
ifr = (struct ifreq *)data;
if (ifr && ifr->ifr_addr.sa_family == AF_INET6)
;
else
error = EAFNOSUPPORT;
break;
case SIOCGIFMTU:
break;
case SIOCSIFMTU:
ifr = (struct ifreq *)data;
mtu = ifr->ifr_mtu;
/* RFC 4213 3.2 ideal world MTU */
if (mtu < IPV6_MINMTU || mtu > IF_MAXMTU - 20)
return (EINVAL);
ifp->if_mtu = mtu;
break;
default:
error = EINVAL;
break;
}
return error;
}