freebsd-dev/cddl/contrib/opensolaris/lib/libdtrace/common/dt_printf.c
Rui Paulo 8e648814b0 MFV illumos
4474 DTrace Userland CTF Support
4475 DTrace userland Keyword
4476 DTrace tests should be better citizens
4479 pid provider types
4480 dof emulation is missing checks

MFC after:	2 weeks
2014-06-26 23:21:11 +00:00

2071 lines
55 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
* Copyright (c) 2013, Joyent, Inc. All rights reserved.
* Copyright (c) 2013 by Delphix. All rights reserved.
*/
#if defined(sun)
#include <sys/sysmacros.h>
#else
#define ABS(a) ((a) < 0 ? -(a) : (a))
#endif
#include <string.h>
#include <strings.h>
#include <stdlib.h>
#if defined(sun)
#include <alloca.h>
#endif
#include <assert.h>
#include <ctype.h>
#include <errno.h>
#include <limits.h>
#include <sys/socket.h>
#include <netdb.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <arpa/nameser.h>
#include <dt_printf.h>
#include <dt_string.h>
#include <dt_impl.h>
/*ARGSUSED*/
static int
pfcheck_addr(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp)
{
return (dt_node_is_pointer(dnp) || dt_node_is_integer(dnp));
}
/*ARGSUSED*/
static int
pfcheck_kaddr(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp)
{
return (dt_node_is_pointer(dnp) || dt_node_is_integer(dnp) ||
dt_node_is_symaddr(dnp));
}
/*ARGSUSED*/
static int
pfcheck_uaddr(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp)
{
dtrace_hdl_t *dtp = pfv->pfv_dtp;
dt_ident_t *idp = dt_idhash_lookup(dtp->dt_macros, "target");
if (dt_node_is_usymaddr(dnp))
return (1);
if (idp == NULL || idp->di_id == 0)
return (0);
return (dt_node_is_pointer(dnp) || dt_node_is_integer(dnp));
}
/*ARGSUSED*/
static int
pfcheck_stack(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp)
{
return (dt_node_is_stack(dnp));
}
/*ARGSUSED*/
static int
pfcheck_time(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp)
{
return (dt_node_is_integer(dnp) &&
dt_node_type_size(dnp) == sizeof (uint64_t));
}
/*ARGSUSED*/
static int
pfcheck_str(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp)
{
ctf_file_t *ctfp;
ctf_encoding_t e;
ctf_arinfo_t r;
ctf_id_t base;
uint_t kind;
if (dt_node_is_string(dnp))
return (1);
ctfp = dnp->dn_ctfp;
base = ctf_type_resolve(ctfp, dnp->dn_type);
kind = ctf_type_kind(ctfp, base);
return (kind == CTF_K_ARRAY && ctf_array_info(ctfp, base, &r) == 0 &&
(base = ctf_type_resolve(ctfp, r.ctr_contents)) != CTF_ERR &&
ctf_type_encoding(ctfp, base, &e) == 0 && IS_CHAR(e));
}
/*ARGSUSED*/
static int
pfcheck_wstr(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp)
{
ctf_file_t *ctfp = dnp->dn_ctfp;
ctf_id_t base = ctf_type_resolve(ctfp, dnp->dn_type);
uint_t kind = ctf_type_kind(ctfp, base);
ctf_encoding_t e;
ctf_arinfo_t r;
return (kind == CTF_K_ARRAY && ctf_array_info(ctfp, base, &r) == 0 &&
(base = ctf_type_resolve(ctfp, r.ctr_contents)) != CTF_ERR &&
ctf_type_kind(ctfp, base) == CTF_K_INTEGER &&
ctf_type_encoding(ctfp, base, &e) == 0 && e.cte_bits == 32);
}
/*ARGSUSED*/
static int
pfcheck_csi(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp)
{
return (dt_node_is_integer(dnp) &&
dt_node_type_size(dnp) <= sizeof (int));
}
/*ARGSUSED*/
static int
pfcheck_fp(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp)
{
return (dt_node_is_float(dnp));
}
/*ARGSUSED*/
static int
pfcheck_xint(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp)
{
return (dt_node_is_integer(dnp));
}
/*ARGSUSED*/
static int
pfcheck_dint(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp)
{
if (dnp->dn_flags & DT_NF_SIGNED)
pfd->pfd_fmt[strlen(pfd->pfd_fmt) - 1] = 'i';
else
pfd->pfd_fmt[strlen(pfd->pfd_fmt) - 1] = 'u';
return (dt_node_is_integer(dnp));
}
/*ARGSUSED*/
static int
pfcheck_xshort(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp)
{
ctf_file_t *ctfp = dnp->dn_ctfp;
ctf_id_t type = ctf_type_resolve(ctfp, dnp->dn_type);
char n[DT_TYPE_NAMELEN];
return (ctf_type_name(ctfp, type, n, sizeof (n)) != NULL && (
strcmp(n, "short") == 0 || strcmp(n, "signed short") == 0 ||
strcmp(n, "unsigned short") == 0));
}
/*ARGSUSED*/
static int
pfcheck_xlong(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp)
{
ctf_file_t *ctfp = dnp->dn_ctfp;
ctf_id_t type = ctf_type_resolve(ctfp, dnp->dn_type);
char n[DT_TYPE_NAMELEN];
return (ctf_type_name(ctfp, type, n, sizeof (n)) != NULL && (
strcmp(n, "long") == 0 || strcmp(n, "signed long") == 0 ||
strcmp(n, "unsigned long") == 0));
}
/*ARGSUSED*/
static int
pfcheck_xlonglong(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp)
{
ctf_file_t *ctfp = dnp->dn_ctfp;
ctf_id_t type = dnp->dn_type;
char n[DT_TYPE_NAMELEN];
if (ctf_type_name(ctfp, ctf_type_resolve(ctfp, type), n,
sizeof (n)) != NULL && (strcmp(n, "long long") == 0 ||
strcmp(n, "signed long long") == 0 ||
strcmp(n, "unsigned long long") == 0))
return (1);
/*
* If the type used for %llx or %llX is not an [unsigned] long long, we
* also permit it to be a [u]int64_t or any typedef thereof. We know
* that these typedefs are guaranteed to work with %ll[xX] in either
* compilation environment even though they alias to "long" in LP64.
*/
while (ctf_type_kind(ctfp, type) == CTF_K_TYPEDEF) {
if (ctf_type_name(ctfp, type, n, sizeof (n)) != NULL &&
(strcmp(n, "int64_t") == 0 || strcmp(n, "uint64_t") == 0))
return (1);
type = ctf_type_reference(ctfp, type);
}
return (0);
}
/*ARGSUSED*/
static int
pfcheck_type(dt_pfargv_t *pfv, dt_pfargd_t *pfd, dt_node_t *dnp)
{
return (ctf_type_compat(dnp->dn_ctfp, ctf_type_resolve(dnp->dn_ctfp,
dnp->dn_type), pfd->pfd_conv->pfc_dctfp, pfd->pfd_conv->pfc_dtype));
}
/*ARGSUSED*/
static int
pfprint_sint(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t unormal)
{
int64_t normal = (int64_t)unormal;
int32_t n = (int32_t)normal;
switch (size) {
case sizeof (int8_t):
return (dt_printf(dtp, fp, format,
(int32_t)*((int8_t *)addr) / n));
case sizeof (int16_t):
return (dt_printf(dtp, fp, format,
(int32_t)*((int16_t *)addr) / n));
case sizeof (int32_t):
return (dt_printf(dtp, fp, format,
*((int32_t *)addr) / n));
case sizeof (int64_t):
return (dt_printf(dtp, fp, format,
*((int64_t *)addr) / normal));
default:
return (dt_set_errno(dtp, EDT_DMISMATCH));
}
}
/*ARGSUSED*/
static int
pfprint_uint(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal)
{
uint32_t n = (uint32_t)normal;
switch (size) {
case sizeof (uint8_t):
return (dt_printf(dtp, fp, format,
(uint32_t)*((uint8_t *)addr) / n));
case sizeof (uint16_t):
return (dt_printf(dtp, fp, format,
(uint32_t)*((uint16_t *)addr) / n));
case sizeof (uint32_t):
return (dt_printf(dtp, fp, format,
*((uint32_t *)addr) / n));
case sizeof (uint64_t):
return (dt_printf(dtp, fp, format,
*((uint64_t *)addr) / normal));
default:
return (dt_set_errno(dtp, EDT_DMISMATCH));
}
}
static int
pfprint_dint(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal)
{
if (pfd->pfd_flags & DT_PFCONV_SIGNED)
return (pfprint_sint(dtp, fp, format, pfd, addr, size, normal));
else
return (pfprint_uint(dtp, fp, format, pfd, addr, size, normal));
}
/*ARGSUSED*/
static int
pfprint_fp(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal)
{
double n = (double)normal;
long double ldn = (long double)normal;
switch (size) {
case sizeof (float):
return (dt_printf(dtp, fp, format,
(double)*((float *)addr) / n));
case sizeof (double):
return (dt_printf(dtp, fp, format,
*((double *)addr) / n));
#if !defined(__arm__) && !defined(__powerpc__) && !defined(__mips__)
case sizeof (long double):
return (dt_printf(dtp, fp, format,
*((long double *)addr) / ldn));
#endif
default:
return (dt_set_errno(dtp, EDT_DMISMATCH));
}
}
/*ARGSUSED*/
static int
pfprint_addr(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal)
{
char *s;
int n, len = 256;
uint64_t val;
switch (size) {
case sizeof (uint32_t):
val = *((uint32_t *)addr);
break;
case sizeof (uint64_t):
val = *((uint64_t *)addr);
break;
default:
return (dt_set_errno(dtp, EDT_DMISMATCH));
}
do {
n = len;
s = alloca(n);
} while ((len = dtrace_addr2str(dtp, val, s, n)) > n);
return (dt_printf(dtp, fp, format, s));
}
/*ARGSUSED*/
static int
pfprint_mod(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal)
{
return (dt_print_mod(dtp, fp, format, (caddr_t)addr));
}
/*ARGSUSED*/
static int
pfprint_umod(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal)
{
return (dt_print_umod(dtp, fp, format, (caddr_t)addr));
}
/*ARGSUSED*/
static int
pfprint_uaddr(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal)
{
char *s;
int n, len = 256;
uint64_t val, pid = 0;
dt_ident_t *idp = dt_idhash_lookup(dtp->dt_macros, "target");
switch (size) {
case sizeof (uint32_t):
val = (u_longlong_t)*((uint32_t *)addr);
break;
case sizeof (uint64_t):
val = (u_longlong_t)*((uint64_t *)addr);
break;
case sizeof (uint64_t) * 2:
pid = ((uint64_t *)(uintptr_t)addr)[0];
val = ((uint64_t *)(uintptr_t)addr)[1];
break;
default:
return (dt_set_errno(dtp, EDT_DMISMATCH));
}
if (pid == 0 && dtp->dt_vector == NULL && idp != NULL)
pid = idp->di_id;
do {
n = len;
s = alloca(n);
} while ((len = dtrace_uaddr2str(dtp, pid, val, s, n)) > n);
return (dt_printf(dtp, fp, format, s));
}
/*ARGSUSED*/
static int
pfprint_stack(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *vaddr, size_t size, uint64_t normal)
{
int width;
dtrace_optval_t saved = dtp->dt_options[DTRACEOPT_STACKINDENT];
const dtrace_recdesc_t *rec = pfd->pfd_rec;
caddr_t addr = (caddr_t)vaddr;
int err = 0;
/*
* We have stashed the value of the STACKINDENT option, and we will
* now override it for the purposes of formatting the stack. If the
* field has been specified as left-aligned (i.e. (%-#), we set the
* indentation to be the width. This is a slightly odd semantic, but
* it's useful functionality -- and it's slightly odd to begin with to
* be using a single format specifier to be formatting multiple lines
* of text...
*/
if (pfd->pfd_dynwidth < 0) {
assert(pfd->pfd_flags & DT_PFCONV_DYNWIDTH);
width = -pfd->pfd_dynwidth;
} else if (pfd->pfd_flags & DT_PFCONV_LEFT) {
width = pfd->pfd_dynwidth ? pfd->pfd_dynwidth : pfd->pfd_width;
} else {
width = 0;
}
dtp->dt_options[DTRACEOPT_STACKINDENT] = width;
switch (rec->dtrd_action) {
case DTRACEACT_USTACK:
case DTRACEACT_JSTACK:
err = dt_print_ustack(dtp, fp, format, addr, rec->dtrd_arg);
break;
case DTRACEACT_STACK:
err = dt_print_stack(dtp, fp, format, addr, rec->dtrd_arg,
rec->dtrd_size / rec->dtrd_arg);
break;
default:
assert(0);
}
dtp->dt_options[DTRACEOPT_STACKINDENT] = saved;
return (err);
}
/*ARGSUSED*/
static int
pfprint_time(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal)
{
char src[32], buf[32], *dst = buf;
hrtime_t time = *((uint64_t *)addr);
time_t sec = (time_t)(time / NANOSEC);
int i;
/*
* ctime(3C) returns a string of the form "Dec 3 17:20:00 1973\n\0".
* Below, we turn this into the canonical adb/mdb /[yY] format,
* "1973 Dec 3 17:20:00".
*/
#if defined(sun)
(void) ctime_r(&sec, src, sizeof (src));
#else
(void) ctime_r(&sec, src);
#endif
/*
* Place the 4-digit year at the head of the string...
*/
for (i = 20; i < 24; i++)
*dst++ = src[i];
/*
* ...and follow it with the remainder (month, day, hh:mm:ss).
*/
for (i = 3; i < 19; i++)
*dst++ = src[i];
*dst = '\0';
return (dt_printf(dtp, fp, format, buf));
}
/*
* This prints the time in RFC 822 standard form. This is useful for emitting
* notions of time that are consumed by standard tools (e.g., as part of an
* RSS feed).
*/
/*ARGSUSED*/
static int
pfprint_time822(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal)
{
hrtime_t time = *((uint64_t *)addr);
time_t sec = (time_t)(time / NANOSEC);
struct tm tm;
char buf[64];
(void) localtime_r(&sec, &tm);
(void) strftime(buf, sizeof (buf), "%a, %d %b %G %T %Z", &tm);
return (dt_printf(dtp, fp, format, buf));
}
/*ARGSUSED*/
static int
pfprint_port(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal)
{
uint16_t port = htons(*((uint16_t *)addr));
char buf[256];
struct servent *sv, res;
#if defined(sun)
if ((sv = getservbyport_r(port, NULL, &res, buf, sizeof (buf))) != NULL)
#else
if (getservbyport_r(port, NULL, &res, buf, sizeof (buf), &sv) > 0)
#endif
return (dt_printf(dtp, fp, format, sv->s_name));
(void) snprintf(buf, sizeof (buf), "%d", *((uint16_t *)addr));
return (dt_printf(dtp, fp, format, buf));
}
/*ARGSUSED*/
static int
pfprint_inetaddr(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal)
{
char *s = alloca(size + 1);
struct hostent *host, res;
char inetaddr[NS_IN6ADDRSZ];
char buf[1024];
int e;
bcopy(addr, s, size);
s[size] = '\0';
if (strchr(s, ':') == NULL && inet_pton(AF_INET, s, inetaddr) != -1) {
#if defined(sun)
if ((host = gethostbyaddr_r(inetaddr, NS_INADDRSZ,
AF_INET, &res, buf, sizeof (buf), &e)) != NULL)
#else
if (gethostbyaddr_r(inetaddr, NS_INADDRSZ,
AF_INET, &res, buf, sizeof (buf), &host, &e) > 0)
#endif
return (dt_printf(dtp, fp, format, host->h_name));
} else if (inet_pton(AF_INET6, s, inetaddr) != -1) {
if ((host = getipnodebyaddr(inetaddr, NS_IN6ADDRSZ,
AF_INET6, &e)) != NULL)
return (dt_printf(dtp, fp, format, host->h_name));
}
return (dt_printf(dtp, fp, format, s));
}
/*ARGSUSED*/
static int
pfprint_cstr(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal)
{
char *s = alloca(size + 1);
bcopy(addr, s, size);
s[size] = '\0';
return (dt_printf(dtp, fp, format, s));
}
/*ARGSUSED*/
static int
pfprint_wstr(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal)
{
wchar_t *ws = alloca(size + sizeof (wchar_t));
bcopy(addr, ws, size);
ws[size / sizeof (wchar_t)] = L'\0';
return (dt_printf(dtp, fp, format, ws));
}
/*ARGSUSED*/
static int
pfprint_estr(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal)
{
char *s;
int n;
if ((s = strchr2esc(addr, size)) == NULL)
return (dt_set_errno(dtp, EDT_NOMEM));
n = dt_printf(dtp, fp, format, s);
free(s);
return (n);
}
static int
pfprint_echr(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal)
{
char c;
switch (size) {
case sizeof (int8_t):
c = *(int8_t *)addr;
break;
case sizeof (int16_t):
c = *(int16_t *)addr;
break;
case sizeof (int32_t):
c = *(int32_t *)addr;
break;
default:
return (dt_set_errno(dtp, EDT_DMISMATCH));
}
return (pfprint_estr(dtp, fp, format, pfd, &c, 1, normal));
}
/*ARGSUSED*/
static int
pfprint_pct(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal)
{
return (dt_printf(dtp, fp, "%%"));
}
static const char pfproto_xint[] = "char, short, int, long, or long long";
static const char pfproto_csi[] = "char, short, or int";
static const char pfproto_fp[] = "float, double, or long double";
static const char pfproto_addr[] = "pointer or integer";
static const char pfproto_uaddr[] =
"pointer or integer (with -p/-c) or _usymaddr (without -p/-c)";
static const char pfproto_cstr[] = "char [] or string (or use stringof)";
static const char pfproto_wstr[] = "wchar_t []";
/*
* Printf format conversion dictionary. This table should match the set of
* conversions offered by printf(3C), as well as some additional extensions.
* The second parameter is an ASCII string which is either an actual type
* name we should look up (if pfcheck_type is specified), or just a descriptive
* string of the types expected for use in error messages.
*/
static const dt_pfconv_t _dtrace_conversions[] = {
{ "a", "s", pfproto_addr, pfcheck_kaddr, pfprint_addr },
{ "A", "s", pfproto_uaddr, pfcheck_uaddr, pfprint_uaddr },
{ "c", "c", pfproto_csi, pfcheck_csi, pfprint_sint },
{ "C", "s", pfproto_csi, pfcheck_csi, pfprint_echr },
{ "d", "d", pfproto_xint, pfcheck_dint, pfprint_dint },
{ "e", "e", pfproto_fp, pfcheck_fp, pfprint_fp },
{ "E", "E", pfproto_fp, pfcheck_fp, pfprint_fp },
{ "f", "f", pfproto_fp, pfcheck_fp, pfprint_fp },
{ "g", "g", pfproto_fp, pfcheck_fp, pfprint_fp },
{ "G", "G", pfproto_fp, pfcheck_fp, pfprint_fp },
{ "hd", "d", "short", pfcheck_type, pfprint_sint },
{ "hi", "i", "short", pfcheck_type, pfprint_sint },
{ "ho", "o", "unsigned short", pfcheck_type, pfprint_uint },
{ "hu", "u", "unsigned short", pfcheck_type, pfprint_uint },
{ "hx", "x", "short", pfcheck_xshort, pfprint_uint },
{ "hX", "X", "short", pfcheck_xshort, pfprint_uint },
{ "i", "i", pfproto_xint, pfcheck_xint, pfprint_sint },
{ "I", "s", pfproto_cstr, pfcheck_str, pfprint_inetaddr },
{ "k", "s", "stack", pfcheck_stack, pfprint_stack },
{ "lc", "lc", "int", pfcheck_type, pfprint_sint }, /* a.k.a. wint_t */
{ "ld", "d", "long", pfcheck_type, pfprint_sint },
{ "li", "i", "long", pfcheck_type, pfprint_sint },
{ "lo", "o", "unsigned long", pfcheck_type, pfprint_uint },
{ "lu", "u", "unsigned long", pfcheck_type, pfprint_uint },
{ "ls", "ls", pfproto_wstr, pfcheck_wstr, pfprint_wstr },
{ "lx", "x", "long", pfcheck_xlong, pfprint_uint },
{ "lX", "X", "long", pfcheck_xlong, pfprint_uint },
{ "lld", "d", "long long", pfcheck_type, pfprint_sint },
{ "lli", "i", "long long", pfcheck_type, pfprint_sint },
{ "llo", "o", "unsigned long long", pfcheck_type, pfprint_uint },
{ "llu", "u", "unsigned long long", pfcheck_type, pfprint_uint },
{ "llx", "x", "long long", pfcheck_xlonglong, pfprint_uint },
{ "llX", "X", "long long", pfcheck_xlonglong, pfprint_uint },
{ "Le", "e", "long double", pfcheck_type, pfprint_fp },
{ "LE", "E", "long double", pfcheck_type, pfprint_fp },
{ "Lf", "f", "long double", pfcheck_type, pfprint_fp },
{ "Lg", "g", "long double", pfcheck_type, pfprint_fp },
{ "LG", "G", "long double", pfcheck_type, pfprint_fp },
{ "o", "o", pfproto_xint, pfcheck_xint, pfprint_uint },
{ "p", "x", pfproto_addr, pfcheck_addr, pfprint_uint },
{ "P", "s", "uint16_t", pfcheck_type, pfprint_port },
{ "s", "s", "char [] or string (or use stringof)", pfcheck_str, pfprint_cstr },
{ "S", "s", pfproto_cstr, pfcheck_str, pfprint_estr },
{ "T", "s", "int64_t", pfcheck_time, pfprint_time822 },
{ "u", "u", pfproto_xint, pfcheck_xint, pfprint_uint },
#if defined(sun)
{ "wc", "wc", "int", pfcheck_type, pfprint_sint }, /* a.k.a. wchar_t */
{ "ws", "ws", pfproto_wstr, pfcheck_wstr, pfprint_wstr },
#else
{ "wc", "lc", "int", pfcheck_type, pfprint_sint }, /* a.k.a. wchar_t */
{ "ws", "ls", pfproto_wstr, pfcheck_wstr, pfprint_wstr },
#endif
{ "x", "x", pfproto_xint, pfcheck_xint, pfprint_uint },
{ "X", "X", pfproto_xint, pfcheck_xint, pfprint_uint },
{ "Y", "s", "int64_t", pfcheck_time, pfprint_time },
{ "%", "%", "void", pfcheck_type, pfprint_pct },
{ NULL, NULL, NULL, NULL, NULL }
};
int
dt_pfdict_create(dtrace_hdl_t *dtp)
{
uint_t n = _dtrace_strbuckets;
const dt_pfconv_t *pfd;
dt_pfdict_t *pdi;
if ((pdi = malloc(sizeof (dt_pfdict_t))) == NULL ||
(pdi->pdi_buckets = malloc(sizeof (dt_pfconv_t *) * n)) == NULL) {
free(pdi);
return (dt_set_errno(dtp, EDT_NOMEM));
}
dtp->dt_pfdict = pdi;
bzero(pdi->pdi_buckets, sizeof (dt_pfconv_t *) * n);
pdi->pdi_nbuckets = n;
for (pfd = _dtrace_conversions; pfd->pfc_name != NULL; pfd++) {
dtrace_typeinfo_t dtt;
dt_pfconv_t *pfc;
uint_t h;
if ((pfc = malloc(sizeof (dt_pfconv_t))) == NULL) {
dt_pfdict_destroy(dtp);
return (dt_set_errno(dtp, EDT_NOMEM));
}
bcopy(pfd, pfc, sizeof (dt_pfconv_t));
h = dt_strtab_hash(pfc->pfc_name, NULL) % n;
pfc->pfc_next = pdi->pdi_buckets[h];
pdi->pdi_buckets[h] = pfc;
dtt.dtt_ctfp = NULL;
dtt.dtt_type = CTF_ERR;
/*
* The "D" container or its parent must contain a definition of
* any type referenced by a printf conversion. If none can be
* found, we fail to initialize the printf dictionary.
*/
if (pfc->pfc_check == &pfcheck_type && dtrace_lookup_by_type(
dtp, DTRACE_OBJ_DDEFS, pfc->pfc_tstr, &dtt) != 0) {
dt_pfdict_destroy(dtp);
return (dt_set_errno(dtp, EDT_NOCONV));
}
pfc->pfc_dctfp = dtt.dtt_ctfp;
pfc->pfc_dtype = dtt.dtt_type;
/*
* The "C" container may contain an alternate definition of an
* explicit conversion type. If it does, use it; otherwise
* just set pfc_ctype to pfc_dtype so it is always valid.
*/
if (pfc->pfc_check == &pfcheck_type && dtrace_lookup_by_type(
dtp, DTRACE_OBJ_CDEFS, pfc->pfc_tstr, &dtt) == 0) {
pfc->pfc_cctfp = dtt.dtt_ctfp;
pfc->pfc_ctype = dtt.dtt_type;
} else {
pfc->pfc_cctfp = pfc->pfc_dctfp;
pfc->pfc_ctype = pfc->pfc_dtype;
}
if (pfc->pfc_check == NULL || pfc->pfc_print == NULL ||
pfc->pfc_ofmt == NULL || pfc->pfc_tstr == NULL) {
dt_pfdict_destroy(dtp);
return (dt_set_errno(dtp, EDT_BADCONV));
}
dt_dprintf("loaded printf conversion %%%s\n", pfc->pfc_name);
}
return (0);
}
void
dt_pfdict_destroy(dtrace_hdl_t *dtp)
{
dt_pfdict_t *pdi = dtp->dt_pfdict;
dt_pfconv_t *pfc, *nfc;
uint_t i;
if (pdi == NULL)
return;
for (i = 0; i < pdi->pdi_nbuckets; i++) {
for (pfc = pdi->pdi_buckets[i]; pfc != NULL; pfc = nfc) {
nfc = pfc->pfc_next;
free(pfc);
}
}
free(pdi->pdi_buckets);
free(pdi);
dtp->dt_pfdict = NULL;
}
static const dt_pfconv_t *
dt_pfdict_lookup(dtrace_hdl_t *dtp, const char *name)
{
dt_pfdict_t *pdi = dtp->dt_pfdict;
uint_t h = dt_strtab_hash(name, NULL) % pdi->pdi_nbuckets;
const dt_pfconv_t *pfc;
for (pfc = pdi->pdi_buckets[h]; pfc != NULL; pfc = pfc->pfc_next) {
if (strcmp(pfc->pfc_name, name) == 0)
break;
}
return (pfc);
}
static dt_pfargv_t *
dt_printf_error(dtrace_hdl_t *dtp, int err)
{
if (yypcb != NULL)
longjmp(yypcb->pcb_jmpbuf, err);
(void) dt_set_errno(dtp, err);
return (NULL);
}
dt_pfargv_t *
dt_printf_create(dtrace_hdl_t *dtp, const char *s)
{
dt_pfargd_t *pfd, *nfd = NULL;
dt_pfargv_t *pfv;
const char *p, *q;
char *format;
if ((pfv = malloc(sizeof (dt_pfargv_t))) == NULL ||
(format = strdup(s)) == NULL) {
free(pfv);
return (dt_printf_error(dtp, EDT_NOMEM));
}
pfv->pfv_format = format;
pfv->pfv_argv = NULL;
pfv->pfv_argc = 0;
pfv->pfv_flags = 0;
pfv->pfv_dtp = dtp;
for (q = format; (p = strchr(q, '%')) != NULL; q = *p ? p + 1 : p) {
uint_t namelen = 0;
int digits = 0;
int dot = 0;
char name[8];
char c;
int n;
if ((pfd = malloc(sizeof (dt_pfargd_t))) == NULL) {
dt_printf_destroy(pfv);
return (dt_printf_error(dtp, EDT_NOMEM));
}
if (pfv->pfv_argv != NULL)
nfd->pfd_next = pfd;
else
pfv->pfv_argv = pfd;
bzero(pfd, sizeof (dt_pfargd_t));
pfv->pfv_argc++;
nfd = pfd;
if (p > q) {
pfd->pfd_preflen = (size_t)(p - q);
pfd->pfd_prefix = q;
}
fmt_switch:
switch (c = *++p) {
case '0': case '1': case '2': case '3': case '4':
case '5': case '6': case '7': case '8': case '9':
if (dot == 0 && digits == 0 && c == '0') {
pfd->pfd_flags |= DT_PFCONV_ZPAD;
pfd->pfd_flags &= ~DT_PFCONV_LEFT;
goto fmt_switch;
}
for (n = 0; isdigit(c); c = *++p)
n = n * 10 + c - '0';
if (dot)
pfd->pfd_prec = n;
else
pfd->pfd_width = n;
p--;
digits++;
goto fmt_switch;
case '#':
pfd->pfd_flags |= DT_PFCONV_ALT;
goto fmt_switch;
case '*':
n = dot ? DT_PFCONV_DYNPREC : DT_PFCONV_DYNWIDTH;
if (pfd->pfd_flags & n) {
yywarn("format conversion #%u has more than "
"one '*' specified for the output %s\n",
pfv->pfv_argc, n ? "precision" : "width");
dt_printf_destroy(pfv);
return (dt_printf_error(dtp, EDT_COMPILER));
}
pfd->pfd_flags |= n;
goto fmt_switch;
case '+':
pfd->pfd_flags |= DT_PFCONV_SPOS;
goto fmt_switch;
case '-':
pfd->pfd_flags |= DT_PFCONV_LEFT;
pfd->pfd_flags &= ~DT_PFCONV_ZPAD;
goto fmt_switch;
case '.':
if (dot++ != 0) {
yywarn("format conversion #%u has more than "
"one '.' specified\n", pfv->pfv_argc);
dt_printf_destroy(pfv);
return (dt_printf_error(dtp, EDT_COMPILER));
}
digits = 0;
goto fmt_switch;
case '?':
if (dtp->dt_conf.dtc_ctfmodel == CTF_MODEL_LP64)
pfd->pfd_width = 16;
else
pfd->pfd_width = 8;
goto fmt_switch;
case '@':
pfd->pfd_flags |= DT_PFCONV_AGG;
goto fmt_switch;
case '\'':
pfd->pfd_flags |= DT_PFCONV_GROUP;
goto fmt_switch;
case ' ':
pfd->pfd_flags |= DT_PFCONV_SPACE;
goto fmt_switch;
case '$':
yywarn("format conversion #%u uses unsupported "
"positional format (%%n$)\n", pfv->pfv_argc);
dt_printf_destroy(pfv);
return (dt_printf_error(dtp, EDT_COMPILER));
case '%':
if (p[-1] == '%')
goto default_lbl; /* if %% then use "%" conv */
yywarn("format conversion #%u cannot be combined "
"with other format flags: %%%%\n", pfv->pfv_argc);
dt_printf_destroy(pfv);
return (dt_printf_error(dtp, EDT_COMPILER));
case '\0':
yywarn("format conversion #%u name expected before "
"end of format string\n", pfv->pfv_argc);
dt_printf_destroy(pfv);
return (dt_printf_error(dtp, EDT_COMPILER));
case 'h':
case 'l':
case 'L':
case 'w':
if (namelen < sizeof (name) - 2)
name[namelen++] = c;
goto fmt_switch;
default_lbl:
default:
name[namelen++] = c;
name[namelen] = '\0';
}
pfd->pfd_conv = dt_pfdict_lookup(dtp, name);
if (pfd->pfd_conv == NULL) {
yywarn("format conversion #%u is undefined: %%%s\n",
pfv->pfv_argc, name);
dt_printf_destroy(pfv);
return (dt_printf_error(dtp, EDT_COMPILER));
}
}
if (*q != '\0' || *format == '\0') {
if ((pfd = malloc(sizeof (dt_pfargd_t))) == NULL) {
dt_printf_destroy(pfv);
return (dt_printf_error(dtp, EDT_NOMEM));
}
if (pfv->pfv_argv != NULL)
nfd->pfd_next = pfd;
else
pfv->pfv_argv = pfd;
bzero(pfd, sizeof (dt_pfargd_t));
pfv->pfv_argc++;
pfd->pfd_prefix = q;
pfd->pfd_preflen = strlen(q);
}
return (pfv);
}
void
dt_printf_destroy(dt_pfargv_t *pfv)
{
dt_pfargd_t *pfd, *nfd;
for (pfd = pfv->pfv_argv; pfd != NULL; pfd = nfd) {
nfd = pfd->pfd_next;
free(pfd);
}
free(pfv->pfv_format);
free(pfv);
}
void
dt_printf_validate(dt_pfargv_t *pfv, uint_t flags,
dt_ident_t *idp, int foff, dtrace_actkind_t kind, dt_node_t *dnp)
{
dt_pfargd_t *pfd = pfv->pfv_argv;
const char *func = idp->di_name;
char n[DT_TYPE_NAMELEN];
dtrace_typeinfo_t dtt;
const char *aggtype;
dt_node_t aggnode;
int i, j;
if (pfv->pfv_format[0] == '\0') {
xyerror(D_PRINTF_FMT_EMPTY,
"%s( ) format string is empty\n", func);
}
pfv->pfv_flags = flags;
/*
* We fake up a parse node representing the type that can be used with
* an aggregation result conversion, which -- for all but count() --
* is a signed quantity.
*/
if (kind != DTRACEAGG_COUNT)
aggtype = "int64_t";
else
aggtype = "uint64_t";
if (dt_type_lookup(aggtype, &dtt) != 0)
xyerror(D_TYPE_ERR, "failed to lookup agg type %s\n", aggtype);
bzero(&aggnode, sizeof (aggnode));
dt_node_type_assign(&aggnode, dtt.dtt_ctfp, dtt.dtt_type, B_FALSE);
for (i = 0, j = 0; i < pfv->pfv_argc; i++, pfd = pfd->pfd_next) {
const dt_pfconv_t *pfc = pfd->pfd_conv;
const char *dyns[2];
int dync = 0;
char vname[64];
dt_node_t *vnp;
if (pfc == NULL)
continue; /* no checking if argd is just a prefix */
if (pfc->pfc_print == &pfprint_pct) {
(void) strcat(pfd->pfd_fmt, pfc->pfc_ofmt);
continue;
}
if (pfd->pfd_flags & DT_PFCONV_DYNPREC)
dyns[dync++] = ".*";
if (pfd->pfd_flags & DT_PFCONV_DYNWIDTH)
dyns[dync++] = "*";
for (; dync != 0; dync--) {
if (dnp == NULL) {
xyerror(D_PRINTF_DYN_PROTO,
"%s( ) prototype mismatch: conversion "
"#%d (%%%s) is missing a corresponding "
"\"%s\" argument\n", func, i + 1,
pfc->pfc_name, dyns[dync - 1]);
}
if (dt_node_is_integer(dnp) == 0) {
xyerror(D_PRINTF_DYN_TYPE,
"%s( ) argument #%d is incompatible "
"with conversion #%d prototype:\n"
"\tconversion: %% %s %s\n"
"\t prototype: int\n\t argument: %s\n",
func, j + foff + 1, i + 1,
dyns[dync - 1], pfc->pfc_name,
dt_node_type_name(dnp, n, sizeof (n)));
}
dnp = dnp->dn_list;
j++;
}
/*
* If this conversion is consuming the aggregation data, set
* the value node pointer (vnp) to a fake node based on the
* aggregating function result type. Otherwise assign vnp to
* the next parse node in the argument list, if there is one.
*/
if (pfd->pfd_flags & DT_PFCONV_AGG) {
if (!(flags & DT_PRINTF_AGGREGATION)) {
xyerror(D_PRINTF_AGG_CONV,
"%%@ conversion requires an aggregation"
" and is not for use with %s( )\n", func);
}
(void) strlcpy(vname, "aggregating action",
sizeof (vname));
vnp = &aggnode;
} else if (dnp == NULL) {
xyerror(D_PRINTF_ARG_PROTO,
"%s( ) prototype mismatch: conversion #%d (%%"
"%s) is missing a corresponding value argument\n",
func, i + 1, pfc->pfc_name);
} else {
(void) snprintf(vname, sizeof (vname),
"argument #%d", j + foff + 1);
vnp = dnp;
dnp = dnp->dn_list;
j++;
}
/*
* Fill in the proposed final format string by prepending any
* size-related prefixes to the pfconv's format string. The
* pfc_check() function below may optionally modify the format
* as part of validating the type of the input argument.
*/
if (pfc->pfc_print == &pfprint_sint ||
pfc->pfc_print == &pfprint_uint ||
pfc->pfc_print == &pfprint_dint) {
if (dt_node_type_size(vnp) == sizeof (uint64_t))
(void) strcpy(pfd->pfd_fmt, "ll");
} else if (pfc->pfc_print == &pfprint_fp) {
if (dt_node_type_size(vnp) == sizeof (long double))
(void) strcpy(pfd->pfd_fmt, "L");
}
(void) strcat(pfd->pfd_fmt, pfc->pfc_ofmt);
/*
* Validate the format conversion against the value node type.
* If the conversion is good, create the descriptor format
* string by concatenating together any required printf(3C)
* size prefixes with the conversion's native format string.
*/
if (pfc->pfc_check(pfv, pfd, vnp) == 0) {
xyerror(D_PRINTF_ARG_TYPE,
"%s( ) %s is incompatible with "
"conversion #%d prototype:\n\tconversion: %%%s\n"
"\t prototype: %s\n\t argument: %s\n", func,
vname, i + 1, pfc->pfc_name, pfc->pfc_tstr,
dt_node_type_name(vnp, n, sizeof (n)));
}
}
if ((flags & DT_PRINTF_EXACTLEN) && dnp != NULL) {
xyerror(D_PRINTF_ARG_EXTRA,
"%s( ) prototype mismatch: only %d arguments "
"required by this format string\n", func, j);
}
}
void
dt_printa_validate(dt_node_t *lhs, dt_node_t *rhs)
{
dt_ident_t *lid, *rid;
dt_node_t *lproto, *rproto;
int largc, rargc, argn;
char n1[DT_TYPE_NAMELEN];
char n2[DT_TYPE_NAMELEN];
assert(lhs->dn_kind == DT_NODE_AGG);
assert(rhs->dn_kind == DT_NODE_AGG);
lid = lhs->dn_ident;
rid = rhs->dn_ident;
lproto = ((dt_idsig_t *)lid->di_data)->dis_args;
rproto = ((dt_idsig_t *)rid->di_data)->dis_args;
/*
* First, get an argument count on each side. These must match.
*/
for (largc = 0; lproto != NULL; lproto = lproto->dn_list)
largc++;
for (rargc = 0; rproto != NULL; rproto = rproto->dn_list)
rargc++;
if (largc != rargc) {
xyerror(D_PRINTA_AGGKEY, "printa( ): @%s and @%s do not have "
"matching key signatures: @%s has %d key%s, @%s has %d "
"key%s", lid->di_name, rid->di_name,
lid->di_name, largc, largc == 1 ? "" : "s",
rid->di_name, rargc, rargc == 1 ? "" : "s");
}
/*
* Now iterate over the keys to verify that each type matches.
*/
lproto = ((dt_idsig_t *)lid->di_data)->dis_args;
rproto = ((dt_idsig_t *)rid->di_data)->dis_args;
for (argn = 1; lproto != NULL; argn++, lproto = lproto->dn_list,
rproto = rproto->dn_list) {
assert(rproto != NULL);
if (dt_node_is_argcompat(lproto, rproto))
continue;
xyerror(D_PRINTA_AGGPROTO, "printa( ): @%s[ ] key #%d is "
"incompatible with @%s:\n%9s key #%d: %s\n"
"%9s key #%d: %s\n",
rid->di_name, argn, lid->di_name, lid->di_name, argn,
dt_node_type_name(lproto, n1, sizeof (n1)), rid->di_name,
argn, dt_node_type_name(rproto, n2, sizeof (n2)));
}
}
static int
dt_printf_getint(dtrace_hdl_t *dtp, const dtrace_recdesc_t *recp,
uint_t nrecs, const void *buf, size_t len, int *ip)
{
uintptr_t addr;
if (nrecs == 0)
return (dt_set_errno(dtp, EDT_DMISMATCH));
addr = (uintptr_t)buf + recp->dtrd_offset;
if (addr + sizeof (int) > (uintptr_t)buf + len)
return (dt_set_errno(dtp, EDT_DOFFSET));
if (addr & (recp->dtrd_alignment - 1))
return (dt_set_errno(dtp, EDT_DALIGN));
switch (recp->dtrd_size) {
case sizeof (int8_t):
*ip = (int)*((int8_t *)addr);
break;
case sizeof (int16_t):
*ip = (int)*((int16_t *)addr);
break;
case sizeof (int32_t):
*ip = (int)*((int32_t *)addr);
break;
case sizeof (int64_t):
*ip = (int)*((int64_t *)addr);
break;
default:
return (dt_set_errno(dtp, EDT_DMISMATCH));
}
return (0);
}
/*ARGSUSED*/
static int
pfprint_average(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal)
{
const uint64_t *data = addr;
if (size != sizeof (uint64_t) * 2)
return (dt_set_errno(dtp, EDT_DMISMATCH));
return (dt_printf(dtp, fp, format,
data[0] ? data[1] / normal / data[0] : 0));
}
/*ARGSUSED*/
static int
pfprint_stddev(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal)
{
const uint64_t *data = addr;
if (size != sizeof (uint64_t) * 4)
return (dt_set_errno(dtp, EDT_DMISMATCH));
return (dt_printf(dtp, fp, format,
dt_stddev((uint64_t *)data, normal)));
}
/*ARGSUSED*/
static int
pfprint_quantize(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal)
{
return (dt_print_quantize(dtp, fp, addr, size, normal));
}
/*ARGSUSED*/
static int
pfprint_lquantize(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal)
{
return (dt_print_lquantize(dtp, fp, addr, size, normal));
}
/*ARGSUSED*/
static int
pfprint_llquantize(dtrace_hdl_t *dtp, FILE *fp, const char *format,
const dt_pfargd_t *pfd, const void *addr, size_t size, uint64_t normal)
{
return (dt_print_llquantize(dtp, fp, addr, size, normal));
}
static int
dt_printf_format(dtrace_hdl_t *dtp, FILE *fp, const dt_pfargv_t *pfv,
const dtrace_recdesc_t *recs, uint_t nrecs, const void *buf,
size_t len, const dtrace_aggdata_t **aggsdata, int naggvars)
{
dt_pfargd_t *pfd = pfv->pfv_argv;
const dtrace_recdesc_t *recp = recs;
const dtrace_aggdata_t *aggdata;
dtrace_aggdesc_t *agg;
caddr_t lim = (caddr_t)buf + len, limit;
char format[64] = "%";
int i, aggrec, curagg = -1;
uint64_t normal;
/*
* If we are formatting an aggregation, set 'aggrec' to the index of
* the final record description (the aggregation result) so we can use
* this record index with any conversion where DT_PFCONV_AGG is set.
* (The actual aggregation used will vary as we increment through the
* aggregation variables that we have been passed.) Finally, we
* decrement nrecs to prevent this record from being used with any
* other conversion.
*/
if (pfv->pfv_flags & DT_PRINTF_AGGREGATION) {
assert(aggsdata != NULL);
assert(naggvars > 0);
if (nrecs == 0)
return (dt_set_errno(dtp, EDT_DMISMATCH));
curagg = naggvars > 1 ? 1 : 0;
aggdata = aggsdata[0];
aggrec = aggdata->dtada_desc->dtagd_nrecs - 1;
nrecs--;
}
for (i = 0; i < pfv->pfv_argc; i++, pfd = pfd->pfd_next) {
const dt_pfconv_t *pfc = pfd->pfd_conv;
int width = pfd->pfd_width;
int prec = pfd->pfd_prec;
int rval;
char *f = format + 1; /* skip initial '%' */
const dtrace_recdesc_t *rec;
dt_pfprint_f *func;
caddr_t addr;
size_t size;
uint32_t flags;
if (pfd->pfd_preflen != 0) {
char *tmp = alloca(pfd->pfd_preflen + 1);
bcopy(pfd->pfd_prefix, tmp, pfd->pfd_preflen);
tmp[pfd->pfd_preflen] = '\0';
if ((rval = dt_printf(dtp, fp, tmp)) < 0)
return (rval);
if (pfv->pfv_flags & DT_PRINTF_AGGREGATION) {
/*
* For printa(), we flush the buffer after each
* prefix, setting the flags to indicate that
* this is part of the printa() format string.
*/
flags = DTRACE_BUFDATA_AGGFORMAT;
if (pfc == NULL && i == pfv->pfv_argc - 1)
flags |= DTRACE_BUFDATA_AGGLAST;
if (dt_buffered_flush(dtp, NULL, NULL,
aggdata, flags) < 0)
return (-1);
}
}
if (pfc == NULL) {
if (pfv->pfv_argc == 1)
return (nrecs != 0);
continue;
}
/*
* If the conversion is %%, just invoke the print callback
* with no data record and continue; it consumes no record.
*/
if (pfc->pfc_print == &pfprint_pct) {
if (pfc->pfc_print(dtp, fp, NULL, pfd, NULL, 0, 1) >= 0)
continue;
return (-1); /* errno is set for us */
}
if (pfd->pfd_flags & DT_PFCONV_DYNWIDTH) {
if (dt_printf_getint(dtp, recp++, nrecs--, buf,
len, &width) == -1)
return (-1); /* errno is set for us */
pfd->pfd_dynwidth = width;
} else {
pfd->pfd_dynwidth = 0;
}
if ((pfd->pfd_flags & DT_PFCONV_DYNPREC) && dt_printf_getint(
dtp, recp++, nrecs--, buf, len, &prec) == -1)
return (-1); /* errno is set for us */
if (pfd->pfd_flags & DT_PFCONV_AGG) {
/*
* This should be impossible -- the compiler shouldn't
* create a DT_PFCONV_AGG conversion without an
* aggregation present. Still, we'd rather fail
* gracefully than blow up...
*/
if (aggsdata == NULL)
return (dt_set_errno(dtp, EDT_DMISMATCH));
aggdata = aggsdata[curagg];
agg = aggdata->dtada_desc;
/*
* We increment the current aggregation variable, but
* not beyond the number of aggregation variables that
* we're printing. This has the (desired) effect that
* DT_PFCONV_AGG conversions beyond the number of
* aggregation variables (re-)convert the aggregation
* value of the last aggregation variable.
*/
if (curagg < naggvars - 1)
curagg++;
rec = &agg->dtagd_rec[aggrec];
addr = aggdata->dtada_data + rec->dtrd_offset;
limit = addr + aggdata->dtada_size;
normal = aggdata->dtada_normal;
flags = DTRACE_BUFDATA_AGGVAL;
} else {
if (nrecs == 0)
return (dt_set_errno(dtp, EDT_DMISMATCH));
if (pfv->pfv_flags & DT_PRINTF_AGGREGATION) {
/*
* When printing aggregation keys, we always
* set the aggdata to be the representative
* (zeroth) aggregation. The aggdata isn't
* actually used here in this case, but it is
* passed to the buffer handler and must
* therefore still be correct.
*/
aggdata = aggsdata[0];
flags = DTRACE_BUFDATA_AGGKEY;
}
rec = recp++;
nrecs--;
addr = (caddr_t)buf + rec->dtrd_offset;
limit = lim;
normal = 1;
}
size = rec->dtrd_size;
if (addr + size > limit) {
dt_dprintf("bad size: addr=%p size=0x%x lim=%p\n",
(void *)addr, rec->dtrd_size, (void *)lim);
return (dt_set_errno(dtp, EDT_DOFFSET));
}
if (rec->dtrd_alignment != 0 &&
((uintptr_t)addr & (rec->dtrd_alignment - 1)) != 0) {
dt_dprintf("bad align: addr=%p size=0x%x align=0x%x\n",
(void *)addr, rec->dtrd_size, rec->dtrd_alignment);
return (dt_set_errno(dtp, EDT_DALIGN));
}
switch (rec->dtrd_action) {
case DTRACEAGG_AVG:
func = pfprint_average;
break;
case DTRACEAGG_STDDEV:
func = pfprint_stddev;
break;
case DTRACEAGG_QUANTIZE:
func = pfprint_quantize;
break;
case DTRACEAGG_LQUANTIZE:
func = pfprint_lquantize;
break;
case DTRACEAGG_LLQUANTIZE:
func = pfprint_llquantize;
break;
case DTRACEACT_MOD:
func = pfprint_mod;
break;
case DTRACEACT_UMOD:
func = pfprint_umod;
break;
default:
func = pfc->pfc_print;
break;
}
if (pfd->pfd_flags & DT_PFCONV_ALT)
*f++ = '#';
if (pfd->pfd_flags & DT_PFCONV_ZPAD)
*f++ = '0';
if (width < 0 || (pfd->pfd_flags & DT_PFCONV_LEFT))
*f++ = '-';
if (pfd->pfd_flags & DT_PFCONV_SPOS)
*f++ = '+';
if (pfd->pfd_flags & DT_PFCONV_GROUP)
*f++ = '\'';
if (pfd->pfd_flags & DT_PFCONV_SPACE)
*f++ = ' ';
/*
* If we're printing a stack and DT_PFCONV_LEFT is set, we
* don't add the width to the format string. See the block
* comment in pfprint_stack() for a description of the
* behavior in this case.
*/
if (func == pfprint_stack && (pfd->pfd_flags & DT_PFCONV_LEFT))
width = 0;
if (width != 0)
f += snprintf(f, sizeof (format), "%d", ABS(width));
if (prec > 0)
f += snprintf(f, sizeof (format), ".%d", prec);
(void) strcpy(f, pfd->pfd_fmt);
pfd->pfd_rec = rec;
if (func(dtp, fp, format, pfd, addr, size, normal) < 0)
return (-1); /* errno is set for us */
if (pfv->pfv_flags & DT_PRINTF_AGGREGATION) {
/*
* For printa(), we flush the buffer after each tuple
* element, inidicating that this is the last record
* as appropriate.
*/
if (i == pfv->pfv_argc - 1)
flags |= DTRACE_BUFDATA_AGGLAST;
if (dt_buffered_flush(dtp, NULL,
rec, aggdata, flags) < 0)
return (-1);
}
}
return ((int)(recp - recs));
}
int
dtrace_sprintf(dtrace_hdl_t *dtp, FILE *fp, void *fmtdata,
const dtrace_recdesc_t *recp, uint_t nrecs, const void *buf, size_t len)
{
dtrace_optval_t size;
int rval;
rval = dtrace_getopt(dtp, "strsize", &size);
assert(rval == 0);
assert(dtp->dt_sprintf_buflen == 0);
if (dtp->dt_sprintf_buf != NULL)
free(dtp->dt_sprintf_buf);
if ((dtp->dt_sprintf_buf = malloc(size)) == NULL)
return (dt_set_errno(dtp, EDT_NOMEM));
bzero(dtp->dt_sprintf_buf, size);
dtp->dt_sprintf_buflen = size;
rval = dt_printf_format(dtp, fp, fmtdata, recp, nrecs, buf, len,
NULL, 0);
dtp->dt_sprintf_buflen = 0;
if (rval == -1)
free(dtp->dt_sprintf_buf);
return (rval);
}
/*ARGSUSED*/
int
dtrace_system(dtrace_hdl_t *dtp, FILE *fp, void *fmtdata,
const dtrace_probedata_t *data, const dtrace_recdesc_t *recp,
uint_t nrecs, const void *buf, size_t len)
{
int rval = dtrace_sprintf(dtp, fp, fmtdata, recp, nrecs, buf, len);
if (rval == -1)
return (rval);
/*
* Before we execute the specified command, flush fp to assure that
* any prior dt_printf()'s appear before the output of the command
* not after it.
*/
(void) fflush(fp);
if (system(dtp->dt_sprintf_buf) == -1)
return (dt_set_errno(dtp, errno));
return (rval);
}
int
dtrace_freopen(dtrace_hdl_t *dtp, FILE *fp, void *fmtdata,
const dtrace_probedata_t *data, const dtrace_recdesc_t *recp,
uint_t nrecs, const void *buf, size_t len)
{
char selfbuf[40], restorebuf[40], *filename;
FILE *nfp;
int rval, errval;
dt_pfargv_t *pfv = fmtdata;
dt_pfargd_t *pfd = pfv->pfv_argv;
rval = dtrace_sprintf(dtp, fp, fmtdata, recp, nrecs, buf, len);
if (rval == -1 || fp == NULL)
return (rval);
#if defined(sun)
if (pfd->pfd_preflen != 0 &&
strcmp(pfd->pfd_prefix, DT_FREOPEN_RESTORE) == 0) {
/*
* The only way to have the format string set to the value
* DT_FREOPEN_RESTORE is via the empty freopen() string --
* denoting that we should restore the old stdout.
*/
assert(strcmp(dtp->dt_sprintf_buf, DT_FREOPEN_RESTORE) == 0);
if (dtp->dt_stdout_fd == -1) {
/*
* We could complain here by generating an error,
* but it seems like overkill: it seems that calling
* freopen() to restore stdout when freopen() has
* never before been called should just be a no-op,
* so we just return in this case.
*/
return (rval);
}
(void) snprintf(restorebuf, sizeof (restorebuf),
"/dev/fd/%d", dtp->dt_stdout_fd);
filename = restorebuf;
} else {
filename = dtp->dt_sprintf_buf;
}
/*
* freopen(3C) will always close the specified stream and underlying
* file descriptor -- even if the specified file can't be opened.
* Even for the semantic cesspool that is standard I/O, this is
* surprisingly brain-dead behavior: it means that any failure to
* open the specified file destroys the specified stream in the
* process -- which is particularly relevant when the specified stream
* happens (or rather, happened) to be stdout. This could be resolved
* were there an "fdreopen()" equivalent of freopen() that allowed one
* to pass a file descriptor instead of the name of a file, but there
* is no such thing. However, we can effect this ourselves by first
* fopen()'ing the desired file, and then (assuming that that works),
* freopen()'ing "/dev/fd/[fileno]", where [fileno] is the underlying
* file descriptor for the fopen()'d file. This way, if the fopen()
* fails, we can fail the operation without destroying stdout.
*/
if ((nfp = fopen(filename, "aF")) == NULL) {
char *msg = strerror(errno);
char *faultstr;
int len = 80;
len += strlen(msg) + strlen(filename);
faultstr = alloca(len);
(void) snprintf(faultstr, len, "couldn't freopen() \"%s\": %s",
filename, strerror(errno));
if ((errval = dt_handle_liberr(dtp, data, faultstr)) == 0)
return (rval);
return (errval);
}
(void) snprintf(selfbuf, sizeof (selfbuf), "/dev/fd/%d", fileno(nfp));
if (dtp->dt_stdout_fd == -1) {
/*
* If this is the first time that we're calling freopen(),
* we're going to stash away the file descriptor for stdout.
* We don't expect the dup(2) to fail, so if it does we must
* return failure.
*/
if ((dtp->dt_stdout_fd = dup(fileno(fp))) == -1) {
(void) fclose(nfp);
return (dt_set_errno(dtp, errno));
}
}
if (freopen(selfbuf, "aF", fp) == NULL) {
(void) fclose(nfp);
return (dt_set_errno(dtp, errno));
}
(void) fclose(nfp);
#else
/*
* The 'standard output' (which is not necessarily stdout)
* treatment on FreeBSD is implemented differently than on
* Solaris because FreeBSD's freopen() will attempt to re-use
* the current file descriptor, causing the previous file to
* be closed and thereby preventing it from be re-activated
* later.
*
* For FreeBSD we use the concept of setting an output file
* pointer in the DTrace handle if a dtrace_freopen() has
* enabled another output file and we leave the caller's
* file pointer untouched. If it was actually stdout, then
* stdout remains open. If it was another file, then that
* file remains open. While a dtrace_freopen() has activated
* another file, we keep a pointer to that which we use in
* the output functions by preference and only use the caller's
* file pointer if no dtrace_freopen() call has been made.
*
* The check to see if we're re-activating the caller's
* output file is much the same as on Solaris.
*/
if (pfd->pfd_preflen != 0 &&
strcmp(pfd->pfd_prefix, DT_FREOPEN_RESTORE) == 0) {
/*
* The only way to have the format string set to the value
* DT_FREOPEN_RESTORE is via the empty freopen() string --
* denoting that we should restore the old stdout.
*/
assert(strcmp(dtp->dt_sprintf_buf, DT_FREOPEN_RESTORE) == 0);
if (dtp->dt_freopen_fp == NULL) {
/*
* We could complain here by generating an error,
* but it seems like overkill: it seems that calling
* freopen() to restore stdout when freopen() has
* never before been called should just be a no-op,
* so we just return in this case.
*/
return (rval);
}
/*
* At this point, to re-active the original output file,
* on FreeBSD we only code the current file that this
* function opened previously.
*/
(void) fclose(dtp->dt_freopen_fp);
dtp->dt_freopen_fp = NULL;
return (rval);
}
if ((nfp = fopen(dtp->dt_sprintf_buf, "a")) == NULL) {
char *msg = strerror(errno);
char *faultstr;
int len = 80;
len += strlen(msg) + strlen(dtp->dt_sprintf_buf);
faultstr = alloca(len);
(void) snprintf(faultstr, len, "couldn't freopen() \"%s\": %s",
dtp->dt_sprintf_buf, strerror(errno));
if ((errval = dt_handle_liberr(dtp, data, faultstr)) == 0)
return (rval);
return (errval);
}
if (dtp->dt_freopen_fp != NULL)
(void) fclose(dtp->dt_freopen_fp);
/* Remember that the output has been redirected to the new file. */
dtp->dt_freopen_fp = nfp;
#endif
return (rval);
}
/*ARGSUSED*/
int
dtrace_fprintf(dtrace_hdl_t *dtp, FILE *fp, void *fmtdata,
const dtrace_probedata_t *data, const dtrace_recdesc_t *recp,
uint_t nrecs, const void *buf, size_t len)
{
return (dt_printf_format(dtp, fp, fmtdata,
recp, nrecs, buf, len, NULL, 0));
}
void *
dtrace_printf_create(dtrace_hdl_t *dtp, const char *s)
{
dt_pfargv_t *pfv = dt_printf_create(dtp, s);
dt_pfargd_t *pfd;
int i;
if (pfv == NULL)
return (NULL); /* errno has been set for us */
pfd = pfv->pfv_argv;
for (i = 0; i < pfv->pfv_argc; i++, pfd = pfd->pfd_next) {
const dt_pfconv_t *pfc = pfd->pfd_conv;
if (pfc == NULL)
continue;
/*
* If the output format is not %s then we assume that we have
* been given a correctly-sized format string, so we copy the
* true format name including the size modifier. If the output
* format is %s, then either the input format is %s as well or
* it is one of our custom formats (e.g. pfprint_addr), so we
* must set pfd_fmt to be the output format conversion "s".
*/
if (strcmp(pfc->pfc_ofmt, "s") != 0)
(void) strcat(pfd->pfd_fmt, pfc->pfc_name);
else
(void) strcat(pfd->pfd_fmt, pfc->pfc_ofmt);
}
return (pfv);
}
void *
dtrace_printa_create(dtrace_hdl_t *dtp, const char *s)
{
dt_pfargv_t *pfv = dtrace_printf_create(dtp, s);
if (pfv == NULL)
return (NULL); /* errno has been set for us */
pfv->pfv_flags |= DT_PRINTF_AGGREGATION;
return (pfv);
}
/*ARGSUSED*/
size_t
dtrace_printf_format(dtrace_hdl_t *dtp, void *fmtdata, char *s, size_t len)
{
dt_pfargv_t *pfv = fmtdata;
dt_pfargd_t *pfd = pfv->pfv_argv;
/*
* An upper bound on the string length is the length of the original
* format string, plus three times the number of conversions (each
* conversion could add up an additional "ll" and/or pfd_width digit
* in the case of converting %? to %16) plus one for a terminating \0.
*/
size_t formatlen = strlen(pfv->pfv_format) + 3 * pfv->pfv_argc + 1;
char *format = alloca(formatlen);
char *f = format;
int i, j;
for (i = 0; i < pfv->pfv_argc; i++, pfd = pfd->pfd_next) {
const dt_pfconv_t *pfc = pfd->pfd_conv;
const char *str;
int width = pfd->pfd_width;
int prec = pfd->pfd_prec;
if (pfd->pfd_preflen != 0) {
for (j = 0; j < pfd->pfd_preflen; j++)
*f++ = pfd->pfd_prefix[j];
}
if (pfc == NULL)
continue;
*f++ = '%';
if (pfd->pfd_flags & DT_PFCONV_ALT)
*f++ = '#';
if (pfd->pfd_flags & DT_PFCONV_ZPAD)
*f++ = '0';
if (pfd->pfd_flags & DT_PFCONV_LEFT)
*f++ = '-';
if (pfd->pfd_flags & DT_PFCONV_SPOS)
*f++ = '+';
if (pfd->pfd_flags & DT_PFCONV_DYNWIDTH)
*f++ = '*';
if (pfd->pfd_flags & DT_PFCONV_DYNPREC) {
*f++ = '.';
*f++ = '*';
}
if (pfd->pfd_flags & DT_PFCONV_GROUP)
*f++ = '\'';
if (pfd->pfd_flags & DT_PFCONV_SPACE)
*f++ = ' ';
if (pfd->pfd_flags & DT_PFCONV_AGG)
*f++ = '@';
if (width != 0)
f += snprintf(f, sizeof (format), "%d", width);
if (prec != 0)
f += snprintf(f, sizeof (format), ".%d", prec);
/*
* If the output format is %s, then either %s is the underlying
* conversion or the conversion is one of our customized ones,
* e.g. pfprint_addr. In these cases, put the original string
* name of the conversion (pfc_name) into the pickled format
* string rather than the derived conversion (pfd_fmt).
*/
if (strcmp(pfc->pfc_ofmt, "s") == 0)
str = pfc->pfc_name;
else
str = pfd->pfd_fmt;
for (j = 0; str[j] != '\0'; j++)
*f++ = str[j];
}
*f = '\0'; /* insert nul byte; do not count in return value */
assert(f < format + formatlen);
(void) strncpy(s, format, len);
return ((size_t)(f - format));
}
static int
dt_fprinta(const dtrace_aggdata_t *adp, void *arg)
{
const dtrace_aggdesc_t *agg = adp->dtada_desc;
const dtrace_recdesc_t *recp = &agg->dtagd_rec[0];
uint_t nrecs = agg->dtagd_nrecs;
dt_pfwalk_t *pfw = arg;
dtrace_hdl_t *dtp = pfw->pfw_argv->pfv_dtp;
int id;
if (dt_printf_getint(dtp, recp++, nrecs--,
adp->dtada_data, adp->dtada_size, &id) != 0 || pfw->pfw_aid != id)
return (0); /* no aggregation id or id does not match */
if (dt_printf_format(dtp, pfw->pfw_fp, pfw->pfw_argv,
recp, nrecs, adp->dtada_data, adp->dtada_size, &adp, 1) == -1)
return (pfw->pfw_err = dtp->dt_errno);
/*
* Cast away the const to set the bit indicating that this aggregation
* has been printed.
*/
((dtrace_aggdesc_t *)agg)->dtagd_flags |= DTRACE_AGD_PRINTED;
return (0);
}
static int
dt_fprintas(const dtrace_aggdata_t **aggsdata, int naggvars, void *arg)
{
const dtrace_aggdata_t *aggdata = aggsdata[0];
const dtrace_aggdesc_t *agg = aggdata->dtada_desc;
const dtrace_recdesc_t *rec = &agg->dtagd_rec[1];
uint_t nrecs = agg->dtagd_nrecs - 1;
dt_pfwalk_t *pfw = arg;
dtrace_hdl_t *dtp = pfw->pfw_argv->pfv_dtp;
int i;
if (dt_printf_format(dtp, pfw->pfw_fp, pfw->pfw_argv,
rec, nrecs, aggdata->dtada_data, aggdata->dtada_size,
aggsdata, naggvars) == -1)
return (pfw->pfw_err = dtp->dt_errno);
/*
* For each aggregation, indicate that it has been printed, casting
* away the const as necessary.
*/
for (i = 1; i < naggvars; i++) {
agg = aggsdata[i]->dtada_desc;
((dtrace_aggdesc_t *)agg)->dtagd_flags |= DTRACE_AGD_PRINTED;
}
return (0);
}
/*ARGSUSED*/
int
dtrace_fprinta(dtrace_hdl_t *dtp, FILE *fp, void *fmtdata,
const dtrace_probedata_t *data, const dtrace_recdesc_t *recs,
uint_t nrecs, const void *buf, size_t len)
{
dt_pfwalk_t pfw;
int i, naggvars = 0;
dtrace_aggvarid_t *aggvars;
aggvars = alloca(nrecs * sizeof (dtrace_aggvarid_t));
/*
* This might be a printa() with multiple aggregation variables. We
* need to scan forward through the records until we find a record from
* a different statement.
*/
for (i = 0; i < nrecs; i++) {
const dtrace_recdesc_t *nrec = &recs[i];
if (nrec->dtrd_uarg != recs->dtrd_uarg)
break;
if (nrec->dtrd_action != recs->dtrd_action)
return (dt_set_errno(dtp, EDT_BADAGG));
aggvars[naggvars++] =
/* LINTED - alignment */
*((dtrace_aggvarid_t *)((caddr_t)buf + nrec->dtrd_offset));
}
if (naggvars == 0)
return (dt_set_errno(dtp, EDT_BADAGG));
pfw.pfw_argv = fmtdata;
pfw.pfw_fp = fp;
pfw.pfw_err = 0;
if (naggvars == 1) {
pfw.pfw_aid = aggvars[0];
if (dtrace_aggregate_walk_sorted(dtp,
dt_fprinta, &pfw) == -1 || pfw.pfw_err != 0)
return (-1); /* errno is set for us */
} else {
if (dtrace_aggregate_walk_joined(dtp, aggvars, naggvars,
dt_fprintas, &pfw) == -1 || pfw.pfw_err != 0)
return (-1); /* errno is set for us */
}
return (i);
}