708bc7c7b4
for the DT_IA64_PLT_RESERVE dynamic table entry. When a shared object does not have any PLT relocations, the linker apparently doesn't find it necessary to actually reserve the space for the BOR (Bind On Reference) entries as pointed to by the DTE. As a result, relocatable data in the PLT was overwritten, causing some unexpected control flow with annoyingly predictable outcome: coredump. To reproduce: % echo 'int main() { return 0; }' > foo.c % cc -o foo foo.c -lxpg4
511 lines
13 KiB
C
511 lines
13 KiB
C
/*-
|
|
* Copyright 1996, 1997, 1998, 1999 John D. Polstra.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD$
|
|
*/
|
|
|
|
/*
|
|
* Dynamic linker for ELF.
|
|
*
|
|
* John Polstra <jdp@polstra.com>.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/mman.h>
|
|
#include <machine/ia64_cpu.h>
|
|
|
|
#include <dlfcn.h>
|
|
#include <err.h>
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <stdarg.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
|
|
#include "debug.h"
|
|
#include "rtld.h"
|
|
|
|
extern Elf_Dyn _DYNAMIC;
|
|
|
|
/*
|
|
* Macros for loading/storing unaligned 64-bit values. These are
|
|
* needed because relocations can point to unaligned data. This
|
|
* occurs in the DWARF2 exception frame tables generated by the
|
|
* compiler, for instance.
|
|
*
|
|
* We don't use these when relocating jump slots and GOT entries,
|
|
* since they are guaranteed to be aligned.
|
|
*
|
|
* XXX dfr stub for now.
|
|
*/
|
|
#define load64(p) (*(u_int64_t *) (p))
|
|
#define store64(p, v) (*(u_int64_t *) (p) = (v))
|
|
|
|
/* Allocate an @fptr. */
|
|
|
|
#define FPTR_CHUNK_SIZE 64
|
|
|
|
struct fptr_chunk {
|
|
struct fptr fptrs[FPTR_CHUNK_SIZE];
|
|
};
|
|
|
|
static struct fptr_chunk first_chunk;
|
|
static struct fptr_chunk *current_chunk = &first_chunk;
|
|
static struct fptr *next_fptr = &first_chunk.fptrs[0];
|
|
static struct fptr *last_fptr = &first_chunk.fptrs[FPTR_CHUNK_SIZE];
|
|
|
|
/*
|
|
* We use static storage initially so that we don't have to call
|
|
* malloc during init_rtld().
|
|
*/
|
|
static struct fptr *
|
|
alloc_fptr(Elf_Addr target, Elf_Addr gp)
|
|
{
|
|
struct fptr* fptr;
|
|
|
|
if (next_fptr == last_fptr) {
|
|
current_chunk = malloc(sizeof(struct fptr_chunk));
|
|
next_fptr = ¤t_chunk->fptrs[0];
|
|
last_fptr = ¤t_chunk->fptrs[FPTR_CHUNK_SIZE];
|
|
}
|
|
fptr = next_fptr;
|
|
next_fptr++;
|
|
fptr->target = target;
|
|
fptr->gp = gp;
|
|
return fptr;
|
|
}
|
|
|
|
/* Relocate a non-PLT object with addend. */
|
|
static int
|
|
reloc_non_plt_obj(Obj_Entry *obj_rtld, Obj_Entry *obj, const Elf_Rela *rela,
|
|
SymCache *cache, struct fptr **fptrs)
|
|
{
|
|
Elf_Addr *where = (Elf_Addr *) (obj->relocbase + rela->r_offset);
|
|
|
|
switch (ELF_R_TYPE(rela->r_info)) {
|
|
case R_IA64_REL64LSB:
|
|
/*
|
|
* We handle rtld's relocations in rtld_start.S
|
|
*/
|
|
if (obj != obj_rtld)
|
|
store64(where,
|
|
load64(where) + (Elf_Addr) obj->relocbase);
|
|
break;
|
|
|
|
case R_IA64_DIR64LSB: {
|
|
const Elf_Sym *def;
|
|
const Obj_Entry *defobj;
|
|
Elf_Addr target;
|
|
|
|
def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj,
|
|
false, cache);
|
|
if (def == NULL)
|
|
return -1;
|
|
|
|
target = (def->st_shndx != SHN_UNDEF)
|
|
? (Elf_Addr)(defobj->relocbase + def->st_value) : 0;
|
|
store64(where, target + rela->r_addend);
|
|
break;
|
|
}
|
|
|
|
case R_IA64_FPTR64LSB: {
|
|
/*
|
|
* We have to make sure that all @fptr references to
|
|
* the same function are identical so that code can
|
|
* compare function pointers. We actually only bother
|
|
* to ensure this within a single object. If the
|
|
* caller's alloca failed, we don't even ensure that.
|
|
*/
|
|
const Elf_Sym *def;
|
|
const Obj_Entry *defobj;
|
|
struct fptr *fptr = 0;
|
|
Elf_Addr target, gp;
|
|
|
|
def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj,
|
|
false, cache);
|
|
if (def == NULL)
|
|
return -1;
|
|
|
|
if (def->st_shndx != SHN_UNDEF) {
|
|
target = (Elf_Addr)(defobj->relocbase + def->st_value);
|
|
gp = (Elf_Addr)defobj->pltgot;
|
|
|
|
/*
|
|
* Find the @fptr, using fptrs as a helper.
|
|
*/
|
|
if (fptrs)
|
|
fptr = fptrs[ELF_R_SYM(rela->r_info)];
|
|
if (!fptr) {
|
|
fptr = alloc_fptr(target, gp);
|
|
if (fptrs)
|
|
fptrs[ELF_R_SYM(rela->r_info)] = fptr;
|
|
}
|
|
} else
|
|
fptr = NULL;
|
|
|
|
store64(where, (Elf_Addr)fptr);
|
|
break;
|
|
}
|
|
|
|
case R_IA64_IPLTLSB: {
|
|
/*
|
|
* Relocation typically used to populate C++ virtual function
|
|
* tables. It creates a 128-bit function descriptor at the
|
|
* specified memory address.
|
|
*/
|
|
const Elf_Sym *def;
|
|
const Obj_Entry *defobj;
|
|
struct fptr *fptr;
|
|
Elf_Addr target, gp;
|
|
|
|
def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj,
|
|
false, cache);
|
|
if (def == NULL)
|
|
return -1;
|
|
|
|
if (def->st_shndx != SHN_UNDEF) {
|
|
target = (Elf_Addr)(defobj->relocbase + def->st_value);
|
|
gp = (Elf_Addr)defobj->pltgot;
|
|
} else {
|
|
target = 0;
|
|
gp = 0;
|
|
}
|
|
|
|
fptr = (void*)where;
|
|
store64(&fptr->target, target);
|
|
store64(&fptr->gp, gp);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
_rtld_error("%s: Unsupported relocation type %d"
|
|
" in non-PLT relocations\n", obj->path,
|
|
ELF_R_TYPE(rela->r_info));
|
|
return -1;
|
|
}
|
|
|
|
return(0);
|
|
}
|
|
|
|
/* Process the non-PLT relocations. */
|
|
int
|
|
reloc_non_plt(Obj_Entry *obj, Obj_Entry *obj_rtld)
|
|
{
|
|
const Elf_Rel *rellim;
|
|
const Elf_Rel *rel;
|
|
const Elf_Rela *relalim;
|
|
const Elf_Rela *rela;
|
|
SymCache *cache;
|
|
struct fptr **fptrs;
|
|
int bytes = obj->nchains * sizeof(SymCache);
|
|
int fbytes = obj->nchains * sizeof(struct fptr *);
|
|
int r = -1;
|
|
|
|
/*
|
|
* The dynamic loader may be called from a thread, we have
|
|
* limited amounts of stack available so we cannot use alloca().
|
|
*/
|
|
cache = mmap(NULL, bytes, PROT_READ|PROT_WRITE, MAP_ANON, -1, 0);
|
|
if (cache == MAP_FAILED)
|
|
cache = NULL;
|
|
if (cache != NULL)
|
|
memset(cache, 0, bytes);
|
|
|
|
/*
|
|
* When relocating rtld itself, we need to avoid using malloc.
|
|
*/
|
|
if (obj == obj_rtld) {
|
|
fptrs = mmap(NULL, fbytes, PROT_READ|PROT_WRITE,
|
|
MAP_ANON, -1, 0);
|
|
if (fptrs == MAP_FAILED)
|
|
fptrs = NULL;
|
|
} else {
|
|
fptrs = (struct fptr **)
|
|
malloc(obj->nchains * sizeof(struct fptr *));
|
|
}
|
|
if (fptrs == NULL)
|
|
goto done;
|
|
memset(fptrs, 0, fbytes);
|
|
|
|
/* Perform relocations without addend if there are any: */
|
|
rellim = (const Elf_Rel *) ((caddr_t) obj->rel + obj->relsize);
|
|
for (rel = obj->rel; obj->rel != NULL && rel < rellim; rel++) {
|
|
Elf_Rela locrela;
|
|
|
|
locrela.r_info = rel->r_info;
|
|
locrela.r_offset = rel->r_offset;
|
|
locrela.r_addend = 0;
|
|
if (reloc_non_plt_obj(obj_rtld, obj, &locrela, cache, fptrs))
|
|
goto done;
|
|
}
|
|
|
|
/* Perform relocations with addend if there are any: */
|
|
relalim = (const Elf_Rela *) ((caddr_t) obj->rela + obj->relasize);
|
|
for (rela = obj->rela; obj->rela != NULL && rela < relalim; rela++) {
|
|
if (reloc_non_plt_obj(obj_rtld, obj, rela, cache, fptrs))
|
|
goto done;
|
|
}
|
|
|
|
/*
|
|
* Remember the fptrs in case of later calls to dlsym(). Don't
|
|
* bother for rtld - we will lazily create a table in
|
|
* make_function_pointer(). We still can't risk calling malloc()
|
|
* in the rtld case.
|
|
*
|
|
* When remembering fptrs, NULL out our local fptrs variable so we
|
|
* do not free it.
|
|
*/
|
|
if (obj == obj_rtld) {
|
|
obj->priv = NULL;
|
|
} else {
|
|
obj->priv = fptrs;
|
|
fptrs = NULL;
|
|
}
|
|
|
|
r = 0;
|
|
done:
|
|
if (cache)
|
|
munmap(cache, bytes);
|
|
if (fptrs) {
|
|
if (obj == obj_rtld)
|
|
munmap(fptrs, fbytes);
|
|
else
|
|
free(fptrs);
|
|
}
|
|
return (r);
|
|
}
|
|
|
|
/* Process the PLT relocations. */
|
|
int
|
|
reloc_plt(Obj_Entry *obj)
|
|
{
|
|
/* All PLT relocations are the same kind: Elf_Rel or Elf_Rela. */
|
|
if (obj->pltrelsize != 0) {
|
|
const Elf_Rel *rellim;
|
|
const Elf_Rel *rel;
|
|
|
|
rellim = (const Elf_Rel *)
|
|
((char *)obj->pltrel + obj->pltrelsize);
|
|
for (rel = obj->pltrel; rel < rellim; rel++) {
|
|
Elf_Addr *where;
|
|
|
|
assert(ELF_R_TYPE(rel->r_info) == R_IA64_IPLTLSB);
|
|
|
|
/* Relocate the @fptr pointing into the PLT. */
|
|
where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
|
|
*where += (Elf_Addr)obj->relocbase;
|
|
}
|
|
} else {
|
|
const Elf_Rela *relalim;
|
|
const Elf_Rela *rela;
|
|
|
|
relalim = (const Elf_Rela *)
|
|
((char *)obj->pltrela + obj->pltrelasize);
|
|
for (rela = obj->pltrela; rela < relalim; rela++) {
|
|
Elf_Addr *where;
|
|
|
|
assert(ELF_R_TYPE(rela->r_info) == R_IA64_IPLTLSB);
|
|
|
|
/* Relocate the @fptr pointing into the PLT. */
|
|
where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
|
|
*where += (Elf_Addr)obj->relocbase;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Relocate the jump slots in an object. */
|
|
int
|
|
reloc_jmpslots(Obj_Entry *obj)
|
|
{
|
|
if (obj->jmpslots_done)
|
|
return 0;
|
|
/* All PLT relocations are the same kind: Elf_Rel or Elf_Rela. */
|
|
if (obj->pltrelsize != 0) {
|
|
const Elf_Rel *rellim;
|
|
const Elf_Rel *rel;
|
|
|
|
rellim = (const Elf_Rel *)
|
|
((char *)obj->pltrel + obj->pltrelsize);
|
|
for (rel = obj->pltrel; rel < rellim; rel++) {
|
|
Elf_Addr *where;
|
|
const Elf_Sym *def;
|
|
const Obj_Entry *defobj;
|
|
|
|
assert(ELF_R_TYPE(rel->r_info) == R_IA64_IPLTLSB);
|
|
where = (Elf_Addr *)(obj->relocbase + rel->r_offset);
|
|
def = find_symdef(ELF_R_SYM(rel->r_info), obj,
|
|
&defobj, true, NULL);
|
|
if (def == NULL)
|
|
return -1;
|
|
reloc_jmpslot(where,
|
|
(Elf_Addr)(defobj->relocbase
|
|
+ def->st_value),
|
|
defobj);
|
|
}
|
|
} else {
|
|
const Elf_Rela *relalim;
|
|
const Elf_Rela *rela;
|
|
|
|
relalim = (const Elf_Rela *)
|
|
((char *)obj->pltrela + obj->pltrelasize);
|
|
for (rela = obj->pltrela; rela < relalim; rela++) {
|
|
Elf_Addr *where;
|
|
const Elf_Sym *def;
|
|
const Obj_Entry *defobj;
|
|
|
|
where = (Elf_Addr *)(obj->relocbase + rela->r_offset);
|
|
def = find_symdef(ELF_R_SYM(rela->r_info), obj,
|
|
&defobj, true, NULL);
|
|
if (def == NULL)
|
|
return -1;
|
|
reloc_jmpslot(where,
|
|
(Elf_Addr)(defobj->relocbase
|
|
+ def->st_value),
|
|
defobj);
|
|
}
|
|
}
|
|
obj->jmpslots_done = true;
|
|
return 0;
|
|
}
|
|
|
|
/* Fixup the jump slot at "where" to transfer control to "target". */
|
|
Elf_Addr
|
|
reloc_jmpslot(Elf_Addr *where, Elf_Addr target, const Obj_Entry *obj)
|
|
{
|
|
Elf_Addr stubaddr;
|
|
|
|
dbg(" reloc_jmpslot: where=%p, target=%p, gp=%p",
|
|
(void *)where, (void *)target, (void *)obj->pltgot);
|
|
stubaddr = *where;
|
|
if (stubaddr != target) {
|
|
|
|
/*
|
|
* Point this @fptr directly at the target. Update the
|
|
* gp value first so that we don't break another cpu
|
|
* which is currently executing the PLT entry.
|
|
*/
|
|
where[1] = (Elf_Addr) obj->pltgot;
|
|
ia64_mf();
|
|
where[0] = target;
|
|
ia64_mf();
|
|
}
|
|
|
|
/*
|
|
* The caller needs an @fptr for the adjusted entry. The PLT
|
|
* entry serves this purpose nicely.
|
|
*/
|
|
return (Elf_Addr) where;
|
|
}
|
|
|
|
/*
|
|
* XXX ia64 doesn't seem to have copy relocations.
|
|
*
|
|
* Returns 0 on success, -1 on failure.
|
|
*/
|
|
int
|
|
do_copy_relocations(Obj_Entry *dstobj)
|
|
{
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return the @fptr representing a given function symbol.
|
|
*/
|
|
void *
|
|
make_function_pointer(const Elf_Sym *sym, const Obj_Entry *obj)
|
|
{
|
|
struct fptr **fptrs = obj->priv;
|
|
int index = sym - obj->symtab;
|
|
|
|
if (!fptrs) {
|
|
/*
|
|
* This should only happen for something like
|
|
* dlsym("dlopen"). Actually, I'm not sure it can ever
|
|
* happen.
|
|
*/
|
|
fptrs = (struct fptr **)
|
|
malloc(obj->nchains * sizeof(struct fptr *));
|
|
memset(fptrs, 0, obj->nchains * sizeof(struct fptr *));
|
|
((Obj_Entry*) obj)->priv = fptrs;
|
|
}
|
|
if (!fptrs[index]) {
|
|
Elf_Addr target, gp;
|
|
target = (Elf_Addr) (obj->relocbase + sym->st_value);
|
|
gp = (Elf_Addr) obj->pltgot;
|
|
fptrs[index] = alloc_fptr(target, gp);
|
|
}
|
|
return fptrs[index];
|
|
}
|
|
|
|
void
|
|
call_initfini_pointer(const Obj_Entry *obj, Elf_Addr target)
|
|
{
|
|
struct fptr fptr;
|
|
|
|
fptr.gp = (Elf_Addr) obj->pltgot;
|
|
fptr.target = target;
|
|
dbg(" initfini: target=%p, gp=%p",
|
|
(void *) fptr.target, (void *) fptr.gp);
|
|
((InitFunc) &fptr)();
|
|
}
|
|
|
|
/* Initialize the special PLT entries. */
|
|
void
|
|
init_pltgot(Obj_Entry *obj)
|
|
{
|
|
const Elf_Dyn *dynp;
|
|
Elf_Addr *pltres = 0;
|
|
|
|
/*
|
|
* When there are no PLT relocations, the DT_IA64_PLT_RESERVE entry
|
|
* is bogus. Do not setup the BOR pointers in that case. An example
|
|
* of where this happens is /usr/lib/libxpg4.so.3.
|
|
*/
|
|
if (obj->pltrelasize == 0 && obj->pltrelsize == 0)
|
|
return;
|
|
|
|
/*
|
|
* Find the PLT RESERVE section.
|
|
*/
|
|
for (dynp = obj->dynamic; dynp->d_tag != DT_NULL; dynp++) {
|
|
if (dynp->d_tag == DT_IA64_PLT_RESERVE)
|
|
pltres = (u_int64_t *)
|
|
(obj->relocbase + dynp->d_un.d_ptr);
|
|
}
|
|
if (!pltres)
|
|
errx(1, "Can't find DT_IA64_PLT_RESERVE entry");
|
|
|
|
/*
|
|
* The PLT RESERVE section is used to get values to pass to
|
|
* _rtld_bind when lazy binding.
|
|
*/
|
|
pltres[0] = (Elf_Addr) obj;
|
|
pltres[1] = FPTR_TARGET(_rtld_bind_start);
|
|
pltres[2] = FPTR_GP(_rtld_bind_start);
|
|
}
|