freebsd-dev/sys/kern/sched_ule.c
Konstantin Belousov c6d31b8306 AST: rework
Make most AST handlers dynamically registered.  This allows to have
subsystem-specific handler source located in the subsystem files,
instead of making subr_trap.c aware of it.  For instance, signal
delivery code on return to userspace is now moved to kern_sig.c.

Also, it allows to have some handlers designated as the cleanup (kclear)
type, which are called both at AST and on thread/process exit.  For
instance, ast(), exit1(), and NFS server no longer need to be aware
about UFS softdep processing.

The dynamic registration also allows third-party modules to register AST
handlers if needed.  There is one caveat with loadable modules: the
code does not make any effort to ensure that the module is not unloaded
before all threads processed through AST handler in it.  In fact, this
is already present behavior for hwpmc.ko and ufs.ko.  I do not think it
is worth the efforts and the runtime overhead to try to fix it.

Reviewed by:	markj
Tested by:	emaste (arm64), pho
Discussed with:	jhb
Sponsored by:	The FreeBSD Foundation
MFC after:	1 week
Differential revision:	https://reviews.freebsd.org/D35888
2022-08-02 21:11:09 +03:00

3361 lines
89 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2002-2007, Jeffrey Roberson <jeff@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This file implements the ULE scheduler. ULE supports independent CPU
* run queues and fine grain locking. It has superior interactive
* performance under load even on uni-processor systems.
*
* etymology:
* ULE is the last three letters in schedule. It owes its name to a
* generic user created for a scheduling system by Paul Mikesell at
* Isilon Systems and a general lack of creativity on the part of the author.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_hwpmc_hooks.h"
#include "opt_sched.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kdb.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/resource.h>
#include <sys/resourcevar.h>
#include <sys/sched.h>
#include <sys/sdt.h>
#include <sys/smp.h>
#include <sys/sx.h>
#include <sys/sysctl.h>
#include <sys/sysproto.h>
#include <sys/turnstile.h>
#include <sys/umtxvar.h>
#include <sys/vmmeter.h>
#include <sys/cpuset.h>
#include <sys/sbuf.h>
#ifdef HWPMC_HOOKS
#include <sys/pmckern.h>
#endif
#ifdef KDTRACE_HOOKS
#include <sys/dtrace_bsd.h>
int __read_mostly dtrace_vtime_active;
dtrace_vtime_switch_func_t dtrace_vtime_switch_func;
#endif
#include <machine/cpu.h>
#include <machine/smp.h>
#define KTR_ULE 0
#define TS_NAME_LEN (MAXCOMLEN + sizeof(" td ") + sizeof(__XSTRING(UINT_MAX)))
#define TDQ_NAME_LEN (sizeof("sched lock ") + sizeof(__XSTRING(MAXCPU)))
#define TDQ_LOADNAME_LEN (sizeof("CPU ") + sizeof(__XSTRING(MAXCPU)) - 1 + sizeof(" load"))
/*
* Thread scheduler specific section. All fields are protected
* by the thread lock.
*/
struct td_sched {
struct runq *ts_runq; /* Run-queue we're queued on. */
short ts_flags; /* TSF_* flags. */
int ts_cpu; /* CPU that we have affinity for. */
int ts_rltick; /* Real last tick, for affinity. */
int ts_slice; /* Ticks of slice remaining. */
u_int ts_slptime; /* Number of ticks we vol. slept */
u_int ts_runtime; /* Number of ticks we were running */
int ts_ltick; /* Last tick that we were running on */
int ts_ftick; /* First tick that we were running on */
int ts_ticks; /* Tick count */
#ifdef KTR
char ts_name[TS_NAME_LEN];
#endif
};
/* flags kept in ts_flags */
#define TSF_BOUND 0x0001 /* Thread can not migrate. */
#define TSF_XFERABLE 0x0002 /* Thread was added as transferable. */
#define THREAD_CAN_MIGRATE(td) ((td)->td_pinned == 0)
#define THREAD_CAN_SCHED(td, cpu) \
CPU_ISSET((cpu), &(td)->td_cpuset->cs_mask)
_Static_assert(sizeof(struct thread) + sizeof(struct td_sched) <=
sizeof(struct thread0_storage),
"increase struct thread0_storage.t0st_sched size");
/*
* Priority ranges used for interactive and non-interactive timeshare
* threads. The timeshare priorities are split up into four ranges.
* The first range handles interactive threads. The last three ranges
* (NHALF, x, and NHALF) handle non-interactive threads with the outer
* ranges supporting nice values.
*/
#define PRI_TIMESHARE_RANGE (PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
#define PRI_INTERACT_RANGE ((PRI_TIMESHARE_RANGE - SCHED_PRI_NRESV) / 2)
#define PRI_BATCH_RANGE (PRI_TIMESHARE_RANGE - PRI_INTERACT_RANGE)
#define PRI_MIN_INTERACT PRI_MIN_TIMESHARE
#define PRI_MAX_INTERACT (PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE - 1)
#define PRI_MIN_BATCH (PRI_MIN_TIMESHARE + PRI_INTERACT_RANGE)
#define PRI_MAX_BATCH PRI_MAX_TIMESHARE
/*
* Cpu percentage computation macros and defines.
*
* SCHED_TICK_SECS: Number of seconds to average the cpu usage across.
* SCHED_TICK_TARG: Number of hz ticks to average the cpu usage across.
* SCHED_TICK_MAX: Maximum number of ticks before scaling back.
* SCHED_TICK_SHIFT: Shift factor to avoid rounding away results.
* SCHED_TICK_HZ: Compute the number of hz ticks for a given ticks count.
* SCHED_TICK_TOTAL: Gives the amount of time we've been recording ticks.
*/
#define SCHED_TICK_SECS 10
#define SCHED_TICK_TARG (hz * SCHED_TICK_SECS)
#define SCHED_TICK_MAX (SCHED_TICK_TARG + hz)
#define SCHED_TICK_SHIFT 10
#define SCHED_TICK_HZ(ts) ((ts)->ts_ticks >> SCHED_TICK_SHIFT)
#define SCHED_TICK_TOTAL(ts) (max((ts)->ts_ltick - (ts)->ts_ftick, hz))
/*
* These macros determine priorities for non-interactive threads. They are
* assigned a priority based on their recent cpu utilization as expressed
* by the ratio of ticks to the tick total. NHALF priorities at the start
* and end of the MIN to MAX timeshare range are only reachable with negative
* or positive nice respectively.
*
* PRI_RANGE: Priority range for utilization dependent priorities.
* PRI_NRESV: Number of nice values.
* PRI_TICKS: Compute a priority in PRI_RANGE from the ticks count and total.
* PRI_NICE: Determines the part of the priority inherited from nice.
*/
#define SCHED_PRI_NRESV (PRIO_MAX - PRIO_MIN)
#define SCHED_PRI_NHALF (SCHED_PRI_NRESV / 2)
#define SCHED_PRI_MIN (PRI_MIN_BATCH + SCHED_PRI_NHALF)
#define SCHED_PRI_MAX (PRI_MAX_BATCH - SCHED_PRI_NHALF)
#define SCHED_PRI_RANGE (SCHED_PRI_MAX - SCHED_PRI_MIN + 1)
#define SCHED_PRI_TICKS(ts) \
(SCHED_TICK_HZ((ts)) / \
(roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE))
#define SCHED_PRI_NICE(nice) (nice)
/*
* These determine the interactivity of a process. Interactivity differs from
* cpu utilization in that it expresses the voluntary time slept vs time ran
* while cpu utilization includes all time not running. This more accurately
* models the intent of the thread.
*
* SLP_RUN_MAX: Maximum amount of sleep time + run time we'll accumulate
* before throttling back.
* SLP_RUN_FORK: Maximum slp+run time to inherit at fork time.
* INTERACT_MAX: Maximum interactivity value. Smaller is better.
* INTERACT_THRESH: Threshold for placement on the current runq.
*/
#define SCHED_SLP_RUN_MAX ((hz * 5) << SCHED_TICK_SHIFT)
#define SCHED_SLP_RUN_FORK ((hz / 2) << SCHED_TICK_SHIFT)
#define SCHED_INTERACT_MAX (100)
#define SCHED_INTERACT_HALF (SCHED_INTERACT_MAX / 2)
#define SCHED_INTERACT_THRESH (30)
/*
* These parameters determine the slice behavior for batch work.
*/
#define SCHED_SLICE_DEFAULT_DIVISOR 10 /* ~94 ms, 12 stathz ticks. */
#define SCHED_SLICE_MIN_DIVISOR 6 /* DEFAULT/MIN = ~16 ms. */
/* Flags kept in td_flags. */
#define TDF_PICKCPU TDF_SCHED0 /* Thread should pick new CPU. */
#define TDF_SLICEEND TDF_SCHED2 /* Thread time slice is over. */
/*
* tickincr: Converts a stathz tick into a hz domain scaled by
* the shift factor. Without the shift the error rate
* due to rounding would be unacceptably high.
* realstathz: stathz is sometimes 0 and run off of hz.
* sched_slice: Runtime of each thread before rescheduling.
* preempt_thresh: Priority threshold for preemption and remote IPIs.
*/
static u_int __read_mostly sched_interact = SCHED_INTERACT_THRESH;
static int __read_mostly tickincr = 8 << SCHED_TICK_SHIFT;
static int __read_mostly realstathz = 127; /* reset during boot. */
static int __read_mostly sched_slice = 10; /* reset during boot. */
static int __read_mostly sched_slice_min = 1; /* reset during boot. */
#ifdef PREEMPTION
#ifdef FULL_PREEMPTION
static int __read_mostly preempt_thresh = PRI_MAX_IDLE;
#else
static int __read_mostly preempt_thresh = PRI_MIN_KERN;
#endif
#else
static int __read_mostly preempt_thresh = 0;
#endif
static int __read_mostly static_boost = PRI_MIN_BATCH;
static int __read_mostly sched_idlespins = 10000;
static int __read_mostly sched_idlespinthresh = -1;
/*
* tdq - per processor runqs and statistics. A mutex synchronizes access to
* most fields. Some fields are loaded or modified without the mutex.
*
* Locking protocols:
* (c) constant after initialization
* (f) flag, set with the tdq lock held, cleared on local CPU
* (l) all accesses are CPU-local
* (ls) stores are performed by the local CPU, loads may be lockless
* (t) all accesses are protected by the tdq mutex
* (ts) stores are serialized by the tdq mutex, loads may be lockless
*/
struct tdq {
/*
* Ordered to improve efficiency of cpu_search() and switch().
* tdq_lock is padded to avoid false sharing with tdq_load and
* tdq_cpu_idle.
*/
struct mtx_padalign tdq_lock; /* run queue lock. */
struct cpu_group *tdq_cg; /* (c) Pointer to cpu topology. */
struct thread *tdq_curthread; /* (t) Current executing thread. */
int tdq_load; /* (ts) Aggregate load. */
int tdq_sysload; /* (ts) For loadavg, !ITHD load. */
int tdq_cpu_idle; /* (ls) cpu_idle() is active. */
int tdq_transferable; /* (ts) Transferable thread count. */
short tdq_switchcnt; /* (l) Switches this tick. */
short tdq_oldswitchcnt; /* (l) Switches last tick. */
u_char tdq_lowpri; /* (ts) Lowest priority thread. */
u_char tdq_owepreempt; /* (f) Remote preemption pending. */
u_char tdq_idx; /* (t) Current insert index. */
u_char tdq_ridx; /* (t) Current removal index. */
int tdq_id; /* (c) cpuid. */
struct runq tdq_realtime; /* (t) real-time run queue. */
struct runq tdq_timeshare; /* (t) timeshare run queue. */
struct runq tdq_idle; /* (t) Queue of IDLE threads. */
char tdq_name[TDQ_NAME_LEN];
#ifdef KTR
char tdq_loadname[TDQ_LOADNAME_LEN];
#endif
};
/* Idle thread states and config. */
#define TDQ_RUNNING 1
#define TDQ_IDLE 2
/* Lockless accessors. */
#define TDQ_LOAD(tdq) atomic_load_int(&(tdq)->tdq_load)
#define TDQ_TRANSFERABLE(tdq) atomic_load_int(&(tdq)->tdq_transferable)
#define TDQ_SWITCHCNT(tdq) (atomic_load_short(&(tdq)->tdq_switchcnt) + \
atomic_load_short(&(tdq)->tdq_oldswitchcnt))
#define TDQ_SWITCHCNT_INC(tdq) (atomic_store_short(&(tdq)->tdq_switchcnt, \
atomic_load_short(&(tdq)->tdq_switchcnt) + 1))
#ifdef SMP
struct cpu_group __read_mostly *cpu_top; /* CPU topology */
#define SCHED_AFFINITY_DEFAULT (max(1, hz / 1000))
#define SCHED_AFFINITY(ts, t) ((ts)->ts_rltick > ticks - ((t) * affinity))
/*
* Run-time tunables.
*/
static int rebalance = 1;
static int balance_interval = 128; /* Default set in sched_initticks(). */
static int __read_mostly affinity;
static int __read_mostly steal_idle = 1;
static int __read_mostly steal_thresh = 2;
static int __read_mostly always_steal = 0;
static int __read_mostly trysteal_limit = 2;
/*
* One thread queue per processor.
*/
static struct tdq __read_mostly *balance_tdq;
static int balance_ticks;
DPCPU_DEFINE_STATIC(struct tdq, tdq);
DPCPU_DEFINE_STATIC(uint32_t, randomval);
#define TDQ_SELF() ((struct tdq *)PCPU_GET(sched))
#define TDQ_CPU(x) (DPCPU_ID_PTR((x), tdq))
#define TDQ_ID(x) ((x)->tdq_id)
#else /* !SMP */
static struct tdq tdq_cpu;
#define TDQ_ID(x) (0)
#define TDQ_SELF() (&tdq_cpu)
#define TDQ_CPU(x) (&tdq_cpu)
#endif
#define TDQ_LOCK_ASSERT(t, type) mtx_assert(TDQ_LOCKPTR((t)), (type))
#define TDQ_LOCK(t) mtx_lock_spin(TDQ_LOCKPTR((t)))
#define TDQ_LOCK_FLAGS(t, f) mtx_lock_spin_flags(TDQ_LOCKPTR((t)), (f))
#define TDQ_TRYLOCK(t) mtx_trylock_spin(TDQ_LOCKPTR((t)))
#define TDQ_TRYLOCK_FLAGS(t, f) mtx_trylock_spin_flags(TDQ_LOCKPTR((t)), (f))
#define TDQ_UNLOCK(t) mtx_unlock_spin(TDQ_LOCKPTR((t)))
#define TDQ_LOCKPTR(t) ((struct mtx *)(&(t)->tdq_lock))
static void sched_setpreempt(int);
static void sched_priority(struct thread *);
static void sched_thread_priority(struct thread *, u_char);
static int sched_interact_score(struct thread *);
static void sched_interact_update(struct thread *);
static void sched_interact_fork(struct thread *);
static void sched_pctcpu_update(struct td_sched *, int);
/* Operations on per processor queues */
static struct thread *tdq_choose(struct tdq *);
static void tdq_setup(struct tdq *, int i);
static void tdq_load_add(struct tdq *, struct thread *);
static void tdq_load_rem(struct tdq *, struct thread *);
static __inline void tdq_runq_add(struct tdq *, struct thread *, int);
static __inline void tdq_runq_rem(struct tdq *, struct thread *);
static inline int sched_shouldpreempt(int, int, int);
static void tdq_print(int cpu);
static void runq_print(struct runq *rq);
static int tdq_add(struct tdq *, struct thread *, int);
#ifdef SMP
static int tdq_move(struct tdq *, struct tdq *);
static int tdq_idled(struct tdq *);
static void tdq_notify(struct tdq *, int lowpri);
static struct thread *tdq_steal(struct tdq *, int);
static struct thread *runq_steal(struct runq *, int);
static int sched_pickcpu(struct thread *, int);
static void sched_balance(void);
static bool sched_balance_pair(struct tdq *, struct tdq *);
static inline struct tdq *sched_setcpu(struct thread *, int, int);
static inline void thread_unblock_switch(struct thread *, struct mtx *);
static int sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS);
static int sysctl_kern_sched_topology_spec_internal(struct sbuf *sb,
struct cpu_group *cg, int indent);
#endif
static void sched_setup(void *dummy);
SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL);
static void sched_initticks(void *dummy);
SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks,
NULL);
SDT_PROVIDER_DEFINE(sched);
SDT_PROBE_DEFINE3(sched, , , change__pri, "struct thread *",
"struct proc *", "uint8_t");
SDT_PROBE_DEFINE3(sched, , , dequeue, "struct thread *",
"struct proc *", "void *");
SDT_PROBE_DEFINE4(sched, , , enqueue, "struct thread *",
"struct proc *", "void *", "int");
SDT_PROBE_DEFINE4(sched, , , lend__pri, "struct thread *",
"struct proc *", "uint8_t", "struct thread *");
SDT_PROBE_DEFINE2(sched, , , load__change, "int", "int");
SDT_PROBE_DEFINE2(sched, , , off__cpu, "struct thread *",
"struct proc *");
SDT_PROBE_DEFINE(sched, , , on__cpu);
SDT_PROBE_DEFINE(sched, , , remain__cpu);
SDT_PROBE_DEFINE2(sched, , , surrender, "struct thread *",
"struct proc *");
/*
* Print the threads waiting on a run-queue.
*/
static void
runq_print(struct runq *rq)
{
struct rqhead *rqh;
struct thread *td;
int pri;
int j;
int i;
for (i = 0; i < RQB_LEN; i++) {
printf("\t\trunq bits %d 0x%zx\n",
i, rq->rq_status.rqb_bits[i]);
for (j = 0; j < RQB_BPW; j++)
if (rq->rq_status.rqb_bits[i] & (1ul << j)) {
pri = j + (i << RQB_L2BPW);
rqh = &rq->rq_queues[pri];
TAILQ_FOREACH(td, rqh, td_runq) {
printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n",
td, td->td_name, td->td_priority,
td->td_rqindex, pri);
}
}
}
}
/*
* Print the status of a per-cpu thread queue. Should be a ddb show cmd.
*/
static void __unused
tdq_print(int cpu)
{
struct tdq *tdq;
tdq = TDQ_CPU(cpu);
printf("tdq %d:\n", TDQ_ID(tdq));
printf("\tlock %p\n", TDQ_LOCKPTR(tdq));
printf("\tLock name: %s\n", tdq->tdq_name);
printf("\tload: %d\n", tdq->tdq_load);
printf("\tswitch cnt: %d\n", tdq->tdq_switchcnt);
printf("\told switch cnt: %d\n", tdq->tdq_oldswitchcnt);
printf("\ttimeshare idx: %d\n", tdq->tdq_idx);
printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx);
printf("\tload transferable: %d\n", tdq->tdq_transferable);
printf("\tlowest priority: %d\n", tdq->tdq_lowpri);
printf("\trealtime runq:\n");
runq_print(&tdq->tdq_realtime);
printf("\ttimeshare runq:\n");
runq_print(&tdq->tdq_timeshare);
printf("\tidle runq:\n");
runq_print(&tdq->tdq_idle);
}
static inline int
sched_shouldpreempt(int pri, int cpri, int remote)
{
/*
* If the new priority is not better than the current priority there is
* nothing to do.
*/
if (pri >= cpri)
return (0);
/*
* Always preempt idle.
*/
if (cpri >= PRI_MIN_IDLE)
return (1);
/*
* If preemption is disabled don't preempt others.
*/
if (preempt_thresh == 0)
return (0);
/*
* Preempt if we exceed the threshold.
*/
if (pri <= preempt_thresh)
return (1);
/*
* If we're interactive or better and there is non-interactive
* or worse running preempt only remote processors.
*/
if (remote && pri <= PRI_MAX_INTERACT && cpri > PRI_MAX_INTERACT)
return (1);
return (0);
}
/*
* Add a thread to the actual run-queue. Keeps transferable counts up to
* date with what is actually on the run-queue. Selects the correct
* queue position for timeshare threads.
*/
static __inline void
tdq_runq_add(struct tdq *tdq, struct thread *td, int flags)
{
struct td_sched *ts;
u_char pri;
TDQ_LOCK_ASSERT(tdq, MA_OWNED);
THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED);
pri = td->td_priority;
ts = td_get_sched(td);
TD_SET_RUNQ(td);
if (THREAD_CAN_MIGRATE(td)) {
tdq->tdq_transferable++;
ts->ts_flags |= TSF_XFERABLE;
}
if (pri < PRI_MIN_BATCH) {
ts->ts_runq = &tdq->tdq_realtime;
} else if (pri <= PRI_MAX_BATCH) {
ts->ts_runq = &tdq->tdq_timeshare;
KASSERT(pri <= PRI_MAX_BATCH && pri >= PRI_MIN_BATCH,
("Invalid priority %d on timeshare runq", pri));
/*
* This queue contains only priorities between MIN and MAX
* batch. Use the whole queue to represent these values.
*/
if ((flags & (SRQ_BORROWING|SRQ_PREEMPTED)) == 0) {
pri = RQ_NQS * (pri - PRI_MIN_BATCH) / PRI_BATCH_RANGE;
pri = (pri + tdq->tdq_idx) % RQ_NQS;
/*
* This effectively shortens the queue by one so we
* can have a one slot difference between idx and
* ridx while we wait for threads to drain.
*/
if (tdq->tdq_ridx != tdq->tdq_idx &&
pri == tdq->tdq_ridx)
pri = (unsigned char)(pri - 1) % RQ_NQS;
} else
pri = tdq->tdq_ridx;
runq_add_pri(ts->ts_runq, td, pri, flags);
return;
} else
ts->ts_runq = &tdq->tdq_idle;
runq_add(ts->ts_runq, td, flags);
}
/*
* Remove a thread from a run-queue. This typically happens when a thread
* is selected to run. Running threads are not on the queue and the
* transferable count does not reflect them.
*/
static __inline void
tdq_runq_rem(struct tdq *tdq, struct thread *td)
{
struct td_sched *ts;
ts = td_get_sched(td);
TDQ_LOCK_ASSERT(tdq, MA_OWNED);
THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED);
KASSERT(ts->ts_runq != NULL,
("tdq_runq_remove: thread %p null ts_runq", td));
if (ts->ts_flags & TSF_XFERABLE) {
tdq->tdq_transferable--;
ts->ts_flags &= ~TSF_XFERABLE;
}
if (ts->ts_runq == &tdq->tdq_timeshare) {
if (tdq->tdq_idx != tdq->tdq_ridx)
runq_remove_idx(ts->ts_runq, td, &tdq->tdq_ridx);
else
runq_remove_idx(ts->ts_runq, td, NULL);
} else
runq_remove(ts->ts_runq, td);
}
/*
* Load is maintained for all threads RUNNING and ON_RUNQ. Add the load
* for this thread to the referenced thread queue.
*/
static void
tdq_load_add(struct tdq *tdq, struct thread *td)
{
TDQ_LOCK_ASSERT(tdq, MA_OWNED);
THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED);
tdq->tdq_load++;
if ((td->td_flags & TDF_NOLOAD) == 0)
tdq->tdq_sysload++;
KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
SDT_PROBE2(sched, , , load__change, (int)TDQ_ID(tdq), tdq->tdq_load);
}
/*
* Remove the load from a thread that is transitioning to a sleep state or
* exiting.
*/
static void
tdq_load_rem(struct tdq *tdq, struct thread *td)
{
TDQ_LOCK_ASSERT(tdq, MA_OWNED);
THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED);
KASSERT(tdq->tdq_load != 0,
("tdq_load_rem: Removing with 0 load on queue %d", TDQ_ID(tdq)));
tdq->tdq_load--;
if ((td->td_flags & TDF_NOLOAD) == 0)
tdq->tdq_sysload--;
KTR_COUNTER0(KTR_SCHED, "load", tdq->tdq_loadname, tdq->tdq_load);
SDT_PROBE2(sched, , , load__change, (int)TDQ_ID(tdq), tdq->tdq_load);
}
/*
* Bound timeshare latency by decreasing slice size as load increases. We
* consider the maximum latency as the sum of the threads waiting to run
* aside from curthread and target no more than sched_slice latency but
* no less than sched_slice_min runtime.
*/
static inline int
tdq_slice(struct tdq *tdq)
{
int load;
/*
* It is safe to use sys_load here because this is called from
* contexts where timeshare threads are running and so there
* cannot be higher priority load in the system.
*/
load = tdq->tdq_sysload - 1;
if (load >= SCHED_SLICE_MIN_DIVISOR)
return (sched_slice_min);
if (load <= 1)
return (sched_slice);
return (sched_slice / load);
}
/*
* Set lowpri to its exact value by searching the run-queue and
* evaluating curthread. curthread may be passed as an optimization.
*/
static void
tdq_setlowpri(struct tdq *tdq, struct thread *ctd)
{
struct thread *td;
TDQ_LOCK_ASSERT(tdq, MA_OWNED);
if (ctd == NULL)
ctd = tdq->tdq_curthread;
td = tdq_choose(tdq);
if (td == NULL || td->td_priority > ctd->td_priority)
tdq->tdq_lowpri = ctd->td_priority;
else
tdq->tdq_lowpri = td->td_priority;
}
#ifdef SMP
/*
* We need some randomness. Implement a classic Linear Congruential
* Generator X_{n+1}=(aX_n+c) mod m. These values are optimized for
* m = 2^32, a = 69069 and c = 5. We only return the upper 16 bits
* of the random state (in the low bits of our answer) to keep
* the maximum randomness.
*/
static uint32_t
sched_random(void)
{
uint32_t *rndptr;
rndptr = DPCPU_PTR(randomval);
*rndptr = *rndptr * 69069 + 5;
return (*rndptr >> 16);
}
struct cpu_search {
cpuset_t *cs_mask; /* The mask of allowed CPUs to choose from. */
int cs_prefer; /* Prefer this CPU and groups including it. */
int cs_running; /* The thread is now running at cs_prefer. */
int cs_pri; /* Min priority for low. */
int cs_load; /* Max load for low, min load for high. */
int cs_trans; /* Min transferable load for high. */
};
struct cpu_search_res {
int csr_cpu; /* The best CPU found. */
int csr_load; /* The load of cs_cpu. */
};
/*
* Search the tree of cpu_groups for the lowest or highest loaded CPU.
* These routines actually compare the load on all paths through the tree
* and find the least loaded cpu on the least loaded path, which may differ
* from the least loaded cpu in the system. This balances work among caches
* and buses.
*/
static int
cpu_search_lowest(const struct cpu_group *cg, const struct cpu_search *s,
struct cpu_search_res *r)
{
struct cpu_search_res lr;
struct tdq *tdq;
int c, bload, l, load, p, total;
total = 0;
bload = INT_MAX;
r->csr_cpu = -1;
/* Loop through children CPU groups if there are any. */
if (cg->cg_children > 0) {
for (c = cg->cg_children - 1; c >= 0; c--) {
load = cpu_search_lowest(&cg->cg_child[c], s, &lr);
total += load;
/*
* When balancing do not prefer SMT groups with load >1.
* It allows round-robin between SMT groups with equal
* load within parent group for more fair scheduling.
*/
if (__predict_false(s->cs_running) &&
(cg->cg_child[c].cg_flags & CG_FLAG_THREAD) &&
load >= 128 && (load & 128) != 0)
load += 128;
if (lr.csr_cpu >= 0 && (load < bload ||
(load == bload && lr.csr_load < r->csr_load))) {
bload = load;
r->csr_cpu = lr.csr_cpu;
r->csr_load = lr.csr_load;
}
}
return (total);
}
/* Loop through children CPUs otherwise. */
for (c = cg->cg_last; c >= cg->cg_first; c--) {
if (!CPU_ISSET(c, &cg->cg_mask))
continue;
tdq = TDQ_CPU(c);
l = TDQ_LOAD(tdq);
if (c == s->cs_prefer) {
if (__predict_false(s->cs_running))
l--;
p = 128;
} else
p = 0;
load = l * 256;
total += load - p;
/*
* Check this CPU is acceptable.
* If the threads is already on the CPU, don't look on the TDQ
* priority, since it can be the priority of the thread itself.
*/
if (l > s->cs_load ||
(atomic_load_char(&tdq->tdq_lowpri) <= s->cs_pri &&
(!s->cs_running || c != s->cs_prefer)) ||
!CPU_ISSET(c, s->cs_mask))
continue;
/*
* When balancing do not prefer CPUs with load > 1.
* It allows round-robin between CPUs with equal load
* within the CPU group for more fair scheduling.
*/
if (__predict_false(s->cs_running) && l > 0)
p = 0;
load -= sched_random() % 128;
if (bload > load - p) {
bload = load - p;
r->csr_cpu = c;
r->csr_load = load;
}
}
return (total);
}
static int
cpu_search_highest(const struct cpu_group *cg, const struct cpu_search *s,
struct cpu_search_res *r)
{
struct cpu_search_res lr;
struct tdq *tdq;
int c, bload, l, load, total;
total = 0;
bload = INT_MIN;
r->csr_cpu = -1;
/* Loop through children CPU groups if there are any. */
if (cg->cg_children > 0) {
for (c = cg->cg_children - 1; c >= 0; c--) {
load = cpu_search_highest(&cg->cg_child[c], s, &lr);
total += load;
if (lr.csr_cpu >= 0 && (load > bload ||
(load == bload && lr.csr_load > r->csr_load))) {
bload = load;
r->csr_cpu = lr.csr_cpu;
r->csr_load = lr.csr_load;
}
}
return (total);
}
/* Loop through children CPUs otherwise. */
for (c = cg->cg_last; c >= cg->cg_first; c--) {
if (!CPU_ISSET(c, &cg->cg_mask))
continue;
tdq = TDQ_CPU(c);
l = TDQ_LOAD(tdq);
load = l * 256;
total += load;
/*
* Check this CPU is acceptable.
*/
if (l < s->cs_load || TDQ_TRANSFERABLE(tdq) < s->cs_trans ||
!CPU_ISSET(c, s->cs_mask))
continue;
load -= sched_random() % 256;
if (load > bload) {
bload = load;
r->csr_cpu = c;
}
}
r->csr_load = bload;
return (total);
}
/*
* Find the cpu with the least load via the least loaded path that has a
* lowpri greater than pri pri. A pri of -1 indicates any priority is
* acceptable.
*/
static inline int
sched_lowest(const struct cpu_group *cg, cpuset_t *mask, int pri, int maxload,
int prefer, int running)
{
struct cpu_search s;
struct cpu_search_res r;
s.cs_prefer = prefer;
s.cs_running = running;
s.cs_mask = mask;
s.cs_pri = pri;
s.cs_load = maxload;
cpu_search_lowest(cg, &s, &r);
return (r.csr_cpu);
}
/*
* Find the cpu with the highest load via the highest loaded path.
*/
static inline int
sched_highest(const struct cpu_group *cg, cpuset_t *mask, int minload,
int mintrans)
{
struct cpu_search s;
struct cpu_search_res r;
s.cs_mask = mask;
s.cs_load = minload;
s.cs_trans = mintrans;
cpu_search_highest(cg, &s, &r);
return (r.csr_cpu);
}
static void
sched_balance_group(struct cpu_group *cg)
{
struct tdq *tdq;
struct thread *td;
cpuset_t hmask, lmask;
int high, low, anylow;
CPU_FILL(&hmask);
for (;;) {
high = sched_highest(cg, &hmask, 1, 0);
/* Stop if there is no more CPU with transferrable threads. */
if (high == -1)
break;
CPU_CLR(high, &hmask);
CPU_COPY(&hmask, &lmask);
/* Stop if there is no more CPU left for low. */
if (CPU_EMPTY(&lmask))
break;
tdq = TDQ_CPU(high);
if (TDQ_LOAD(tdq) == 1) {
/*
* There is only one running thread. We can't move
* it from here, so tell it to pick new CPU by itself.
*/
TDQ_LOCK(tdq);
td = tdq->tdq_curthread;
if (td->td_lock == TDQ_LOCKPTR(tdq) &&
(td->td_flags & TDF_IDLETD) == 0 &&
THREAD_CAN_MIGRATE(td)) {
td->td_flags |= TDF_PICKCPU;
ast_sched_locked(td, TDA_SCHED);
if (high != curcpu)
ipi_cpu(high, IPI_AST);
}
TDQ_UNLOCK(tdq);
break;
}
anylow = 1;
nextlow:
if (TDQ_TRANSFERABLE(tdq) == 0)
continue;
low = sched_lowest(cg, &lmask, -1, TDQ_LOAD(tdq) - 1, high, 1);
/* Stop if we looked well and found no less loaded CPU. */
if (anylow && low == -1)
break;
/* Go to next high if we found no less loaded CPU. */
if (low == -1)
continue;
/* Transfer thread from high to low. */
if (sched_balance_pair(tdq, TDQ_CPU(low))) {
/* CPU that got thread can no longer be a donor. */
CPU_CLR(low, &hmask);
} else {
/*
* If failed, then there is no threads on high
* that can run on this low. Drop low from low
* mask and look for different one.
*/
CPU_CLR(low, &lmask);
anylow = 0;
goto nextlow;
}
}
}
static void
sched_balance(void)
{
struct tdq *tdq;
balance_ticks = max(balance_interval / 2, 1) +
(sched_random() % balance_interval);
tdq = TDQ_SELF();
TDQ_UNLOCK(tdq);
sched_balance_group(cpu_top);
TDQ_LOCK(tdq);
}
/*
* Lock two thread queues using their address to maintain lock order.
*/
static void
tdq_lock_pair(struct tdq *one, struct tdq *two)
{
if (one < two) {
TDQ_LOCK(one);
TDQ_LOCK_FLAGS(two, MTX_DUPOK);
} else {
TDQ_LOCK(two);
TDQ_LOCK_FLAGS(one, MTX_DUPOK);
}
}
/*
* Unlock two thread queues. Order is not important here.
*/
static void
tdq_unlock_pair(struct tdq *one, struct tdq *two)
{
TDQ_UNLOCK(one);
TDQ_UNLOCK(two);
}
/*
* Transfer load between two imbalanced thread queues. Returns true if a thread
* was moved between the queues, and false otherwise.
*/
static bool
sched_balance_pair(struct tdq *high, struct tdq *low)
{
int cpu, lowpri;
bool ret;
ret = false;
tdq_lock_pair(high, low);
/*
* Transfer a thread from high to low.
*/
if (high->tdq_transferable != 0 && high->tdq_load > low->tdq_load) {
lowpri = tdq_move(high, low);
if (lowpri != -1) {
/*
* In case the target isn't the current CPU notify it of
* the new load, possibly sending an IPI to force it to
* reschedule. Otherwise maybe schedule a preemption.
*/
cpu = TDQ_ID(low);
if (cpu != PCPU_GET(cpuid))
tdq_notify(low, lowpri);
else
sched_setpreempt(low->tdq_lowpri);
ret = true;
}
}
tdq_unlock_pair(high, low);
return (ret);
}
/*
* Move a thread from one thread queue to another. Returns -1 if the source
* queue was empty, else returns the maximum priority of all threads in
* the destination queue prior to the addition of the new thread. In the latter
* case, this priority can be used to determine whether an IPI needs to be
* delivered.
*/
static int
tdq_move(struct tdq *from, struct tdq *to)
{
struct thread *td;
int cpu;
TDQ_LOCK_ASSERT(from, MA_OWNED);
TDQ_LOCK_ASSERT(to, MA_OWNED);
cpu = TDQ_ID(to);
td = tdq_steal(from, cpu);
if (td == NULL)
return (-1);
/*
* Although the run queue is locked the thread may be
* blocked. We can not set the lock until it is unblocked.
*/
thread_lock_block_wait(td);
sched_rem(td);
THREAD_LOCKPTR_ASSERT(td, TDQ_LOCKPTR(from));
td->td_lock = TDQ_LOCKPTR(to);
td_get_sched(td)->ts_cpu = cpu;
return (tdq_add(to, td, SRQ_YIELDING));
}
/*
* This tdq has idled. Try to steal a thread from another cpu and switch
* to it.
*/
static int
tdq_idled(struct tdq *tdq)
{
struct cpu_group *cg, *parent;
struct tdq *steal;
cpuset_t mask;
int cpu, switchcnt, goup;
if (smp_started == 0 || steal_idle == 0 || tdq->tdq_cg == NULL)
return (1);
CPU_FILL(&mask);
CPU_CLR(PCPU_GET(cpuid), &mask);
restart:
switchcnt = TDQ_SWITCHCNT(tdq);
for (cg = tdq->tdq_cg, goup = 0; ; ) {
cpu = sched_highest(cg, &mask, steal_thresh, 1);
/*
* We were assigned a thread but not preempted. Returning
* 0 here will cause our caller to switch to it.
*/
if (TDQ_LOAD(tdq))
return (0);
/*
* We found no CPU to steal from in this group. Escalate to
* the parent and repeat. But if parent has only two children
* groups we can avoid searching this group again by searching
* the other one specifically and then escalating two levels.
*/
if (cpu == -1) {
if (goup) {
cg = cg->cg_parent;
goup = 0;
}
parent = cg->cg_parent;
if (parent == NULL)
return (1);
if (parent->cg_children == 2) {
if (cg == &parent->cg_child[0])
cg = &parent->cg_child[1];
else
cg = &parent->cg_child[0];
goup = 1;
} else
cg = parent;
continue;
}
steal = TDQ_CPU(cpu);
/*
* The data returned by sched_highest() is stale and
* the chosen CPU no longer has an eligible thread.
*
* Testing this ahead of tdq_lock_pair() only catches
* this situation about 20% of the time on an 8 core
* 16 thread Ryzen 7, but it still helps performance.
*/
if (TDQ_LOAD(steal) < steal_thresh ||
TDQ_TRANSFERABLE(steal) == 0)
goto restart;
/*
* Try to lock both queues. If we are assigned a thread while
* waited for the lock, switch to it now instead of stealing.
* If we can't get the lock, then somebody likely got there
* first so continue searching.
*/
TDQ_LOCK(tdq);
if (tdq->tdq_load > 0) {
mi_switch(SW_VOL | SWT_IDLE);
return (0);
}
if (TDQ_TRYLOCK_FLAGS(steal, MTX_DUPOK) == 0) {
TDQ_UNLOCK(tdq);
CPU_CLR(cpu, &mask);
continue;
}
/*
* The data returned by sched_highest() is stale and
* the chosen CPU no longer has an eligible thread, or
* we were preempted and the CPU loading info may be out
* of date. The latter is rare. In either case restart
* the search.
*/
if (TDQ_LOAD(steal) < steal_thresh ||
TDQ_TRANSFERABLE(steal) == 0 ||
switchcnt != TDQ_SWITCHCNT(tdq)) {
tdq_unlock_pair(tdq, steal);
goto restart;
}
/*
* Steal the thread and switch to it.
*/
if (tdq_move(steal, tdq) != -1)
break;
/*
* We failed to acquire a thread even though it looked
* like one was available. This could be due to affinity
* restrictions or for other reasons. Loop again after
* removing this CPU from the set. The restart logic
* above does not restore this CPU to the set due to the
* likelyhood of failing here again.
*/
CPU_CLR(cpu, &mask);
tdq_unlock_pair(tdq, steal);
}
TDQ_UNLOCK(steal);
mi_switch(SW_VOL | SWT_IDLE);
return (0);
}
/*
* Notify a remote cpu of new work. Sends an IPI if criteria are met.
*
* "lowpri" is the minimum scheduling priority among all threads on
* the queue prior to the addition of the new thread.
*/
static void
tdq_notify(struct tdq *tdq, int lowpri)
{
int cpu;
TDQ_LOCK_ASSERT(tdq, MA_OWNED);
KASSERT(tdq->tdq_lowpri <= lowpri,
("tdq_notify: lowpri %d > tdq_lowpri %d", lowpri, tdq->tdq_lowpri));
if (tdq->tdq_owepreempt)
return;
/*
* Check to see if the newly added thread should preempt the one
* currently running.
*/
if (!sched_shouldpreempt(tdq->tdq_lowpri, lowpri, 1))
return;
/*
* Make sure that our caller's earlier update to tdq_load is
* globally visible before we read tdq_cpu_idle. Idle thread
* accesses both of them without locks, and the order is important.
*/
atomic_thread_fence_seq_cst();
/*
* Try to figure out if we can signal the idle thread instead of sending
* an IPI. This check is racy; at worst, we will deliever an IPI
* unnecessarily.
*/
cpu = TDQ_ID(tdq);
if (TD_IS_IDLETHREAD(tdq->tdq_curthread) &&
(atomic_load_int(&tdq->tdq_cpu_idle) == 0 || cpu_idle_wakeup(cpu)))
return;
/*
* The run queues have been updated, so any switch on the remote CPU
* will satisfy the preemption request.
*/
tdq->tdq_owepreempt = 1;
ipi_cpu(cpu, IPI_PREEMPT);
}
/*
* Steals load from a timeshare queue. Honors the rotating queue head
* index.
*/
static struct thread *
runq_steal_from(struct runq *rq, int cpu, u_char start)
{
struct rqbits *rqb;
struct rqhead *rqh;
struct thread *td, *first;
int bit;
int i;
rqb = &rq->rq_status;
bit = start & (RQB_BPW -1);
first = NULL;
again:
for (i = RQB_WORD(start); i < RQB_LEN; bit = 0, i++) {
if (rqb->rqb_bits[i] == 0)
continue;
if (bit == 0)
bit = RQB_FFS(rqb->rqb_bits[i]);
for (; bit < RQB_BPW; bit++) {
if ((rqb->rqb_bits[i] & (1ul << bit)) == 0)
continue;
rqh = &rq->rq_queues[bit + (i << RQB_L2BPW)];
TAILQ_FOREACH(td, rqh, td_runq) {
if (first) {
if (THREAD_CAN_MIGRATE(td) &&
THREAD_CAN_SCHED(td, cpu))
return (td);
} else
first = td;
}
}
}
if (start != 0) {
start = 0;
goto again;
}
if (first && THREAD_CAN_MIGRATE(first) &&
THREAD_CAN_SCHED(first, cpu))
return (first);
return (NULL);
}
/*
* Steals load from a standard linear queue.
*/
static struct thread *
runq_steal(struct runq *rq, int cpu)
{
struct rqhead *rqh;
struct rqbits *rqb;
struct thread *td;
int word;
int bit;
rqb = &rq->rq_status;
for (word = 0; word < RQB_LEN; word++) {
if (rqb->rqb_bits[word] == 0)
continue;
for (bit = 0; bit < RQB_BPW; bit++) {
if ((rqb->rqb_bits[word] & (1ul << bit)) == 0)
continue;
rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)];
TAILQ_FOREACH(td, rqh, td_runq)
if (THREAD_CAN_MIGRATE(td) &&
THREAD_CAN_SCHED(td, cpu))
return (td);
}
}
return (NULL);
}
/*
* Attempt to steal a thread in priority order from a thread queue.
*/
static struct thread *
tdq_steal(struct tdq *tdq, int cpu)
{
struct thread *td;
TDQ_LOCK_ASSERT(tdq, MA_OWNED);
if ((td = runq_steal(&tdq->tdq_realtime, cpu)) != NULL)
return (td);
if ((td = runq_steal_from(&tdq->tdq_timeshare,
cpu, tdq->tdq_ridx)) != NULL)
return (td);
return (runq_steal(&tdq->tdq_idle, cpu));
}
/*
* Sets the thread lock and ts_cpu to match the requested cpu. Unlocks the
* current lock and returns with the assigned queue locked.
*/
static inline struct tdq *
sched_setcpu(struct thread *td, int cpu, int flags)
{
struct tdq *tdq;
struct mtx *mtx;
THREAD_LOCK_ASSERT(td, MA_OWNED);
tdq = TDQ_CPU(cpu);
td_get_sched(td)->ts_cpu = cpu;
/*
* If the lock matches just return the queue.
*/
if (td->td_lock == TDQ_LOCKPTR(tdq)) {
KASSERT((flags & SRQ_HOLD) == 0,
("sched_setcpu: Invalid lock for SRQ_HOLD"));
return (tdq);
}
/*
* The hard case, migration, we need to block the thread first to
* prevent order reversals with other cpus locks.
*/
spinlock_enter();
mtx = thread_lock_block(td);
if ((flags & SRQ_HOLD) == 0)
mtx_unlock_spin(mtx);
TDQ_LOCK(tdq);
thread_lock_unblock(td, TDQ_LOCKPTR(tdq));
spinlock_exit();
return (tdq);
}
SCHED_STAT_DEFINE(pickcpu_intrbind, "Soft interrupt binding");
SCHED_STAT_DEFINE(pickcpu_idle_affinity, "Picked idle cpu based on affinity");
SCHED_STAT_DEFINE(pickcpu_affinity, "Picked cpu based on affinity");
SCHED_STAT_DEFINE(pickcpu_lowest, "Selected lowest load");
SCHED_STAT_DEFINE(pickcpu_local, "Migrated to current cpu");
SCHED_STAT_DEFINE(pickcpu_migration, "Selection may have caused migration");
static int
sched_pickcpu(struct thread *td, int flags)
{
struct cpu_group *cg, *ccg;
struct td_sched *ts;
struct tdq *tdq;
cpuset_t *mask;
int cpu, pri, r, self, intr;
self = PCPU_GET(cpuid);
ts = td_get_sched(td);
KASSERT(!CPU_ABSENT(ts->ts_cpu), ("sched_pickcpu: Start scheduler on "
"absent CPU %d for thread %s.", ts->ts_cpu, td->td_name));
if (smp_started == 0)
return (self);
/*
* Don't migrate a running thread from sched_switch().
*/
if ((flags & SRQ_OURSELF) || !THREAD_CAN_MIGRATE(td))
return (ts->ts_cpu);
/*
* Prefer to run interrupt threads on the processors that generate
* the interrupt.
*/
if (td->td_priority <= PRI_MAX_ITHD && THREAD_CAN_SCHED(td, self) &&
curthread->td_intr_nesting_level) {
tdq = TDQ_SELF();
if (tdq->tdq_lowpri >= PRI_MIN_IDLE) {
SCHED_STAT_INC(pickcpu_idle_affinity);
return (self);
}
ts->ts_cpu = self;
intr = 1;
cg = tdq->tdq_cg;
goto llc;
} else {
intr = 0;
tdq = TDQ_CPU(ts->ts_cpu);
cg = tdq->tdq_cg;
}
/*
* If the thread can run on the last cpu and the affinity has not
* expired and it is idle, run it there.
*/
if (THREAD_CAN_SCHED(td, ts->ts_cpu) &&
atomic_load_char(&tdq->tdq_lowpri) >= PRI_MIN_IDLE &&
SCHED_AFFINITY(ts, CG_SHARE_L2)) {
if (cg->cg_flags & CG_FLAG_THREAD) {
/* Check all SMT threads for being idle. */
for (cpu = cg->cg_first; cpu <= cg->cg_last; cpu++) {
pri =
atomic_load_char(&TDQ_CPU(cpu)->tdq_lowpri);
if (CPU_ISSET(cpu, &cg->cg_mask) &&
pri < PRI_MIN_IDLE)
break;
}
if (cpu > cg->cg_last) {
SCHED_STAT_INC(pickcpu_idle_affinity);
return (ts->ts_cpu);
}
} else {
SCHED_STAT_INC(pickcpu_idle_affinity);
return (ts->ts_cpu);
}
}
llc:
/*
* Search for the last level cache CPU group in the tree.
* Skip SMT, identical groups and caches with expired affinity.
* Interrupt threads affinity is explicit and never expires.
*/
for (ccg = NULL; cg != NULL; cg = cg->cg_parent) {
if (cg->cg_flags & CG_FLAG_THREAD)
continue;
if (cg->cg_children == 1 || cg->cg_count == 1)
continue;
if (cg->cg_level == CG_SHARE_NONE ||
(!intr && !SCHED_AFFINITY(ts, cg->cg_level)))
continue;
ccg = cg;
}
/* Found LLC shared by all CPUs, so do a global search. */
if (ccg == cpu_top)
ccg = NULL;
cpu = -1;
mask = &td->td_cpuset->cs_mask;
pri = td->td_priority;
r = TD_IS_RUNNING(td);
/*
* Try hard to keep interrupts within found LLC. Search the LLC for
* the least loaded CPU we can run now. For NUMA systems it should
* be within target domain, and it also reduces scheduling overhead.
*/
if (ccg != NULL && intr) {
cpu = sched_lowest(ccg, mask, pri, INT_MAX, ts->ts_cpu, r);
if (cpu >= 0)
SCHED_STAT_INC(pickcpu_intrbind);
} else
/* Search the LLC for the least loaded idle CPU we can run now. */
if (ccg != NULL) {
cpu = sched_lowest(ccg, mask, max(pri, PRI_MAX_TIMESHARE),
INT_MAX, ts->ts_cpu, r);
if (cpu >= 0)
SCHED_STAT_INC(pickcpu_affinity);
}
/* Search globally for the least loaded CPU we can run now. */
if (cpu < 0) {
cpu = sched_lowest(cpu_top, mask, pri, INT_MAX, ts->ts_cpu, r);
if (cpu >= 0)
SCHED_STAT_INC(pickcpu_lowest);
}
/* Search globally for the least loaded CPU. */
if (cpu < 0) {
cpu = sched_lowest(cpu_top, mask, -1, INT_MAX, ts->ts_cpu, r);
if (cpu >= 0)
SCHED_STAT_INC(pickcpu_lowest);
}
KASSERT(cpu >= 0, ("sched_pickcpu: Failed to find a cpu."));
KASSERT(!CPU_ABSENT(cpu), ("sched_pickcpu: Picked absent CPU %d.", cpu));
/*
* Compare the lowest loaded cpu to current cpu.
*/
tdq = TDQ_CPU(cpu);
if (THREAD_CAN_SCHED(td, self) && TDQ_SELF()->tdq_lowpri > pri &&
atomic_load_char(&tdq->tdq_lowpri) < PRI_MIN_IDLE &&
TDQ_LOAD(TDQ_SELF()) <= TDQ_LOAD(tdq) + 1) {
SCHED_STAT_INC(pickcpu_local);
cpu = self;
}
if (cpu != ts->ts_cpu)
SCHED_STAT_INC(pickcpu_migration);
return (cpu);
}
#endif
/*
* Pick the highest priority task we have and return it.
*/
static struct thread *
tdq_choose(struct tdq *tdq)
{
struct thread *td;
TDQ_LOCK_ASSERT(tdq, MA_OWNED);
td = runq_choose(&tdq->tdq_realtime);
if (td != NULL)
return (td);
td = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx);
if (td != NULL) {
KASSERT(td->td_priority >= PRI_MIN_BATCH,
("tdq_choose: Invalid priority on timeshare queue %d",
td->td_priority));
return (td);
}
td = runq_choose(&tdq->tdq_idle);
if (td != NULL) {
KASSERT(td->td_priority >= PRI_MIN_IDLE,
("tdq_choose: Invalid priority on idle queue %d",
td->td_priority));
return (td);
}
return (NULL);
}
/*
* Initialize a thread queue.
*/
static void
tdq_setup(struct tdq *tdq, int id)
{
if (bootverbose)
printf("ULE: setup cpu %d\n", id);
runq_init(&tdq->tdq_realtime);
runq_init(&tdq->tdq_timeshare);
runq_init(&tdq->tdq_idle);
tdq->tdq_id = id;
snprintf(tdq->tdq_name, sizeof(tdq->tdq_name),
"sched lock %d", (int)TDQ_ID(tdq));
mtx_init(&tdq->tdq_lock, tdq->tdq_name, "sched lock", MTX_SPIN);
#ifdef KTR
snprintf(tdq->tdq_loadname, sizeof(tdq->tdq_loadname),
"CPU %d load", (int)TDQ_ID(tdq));
#endif
}
#ifdef SMP
static void
sched_setup_smp(void)
{
struct tdq *tdq;
int i;
cpu_top = smp_topo();
CPU_FOREACH(i) {
tdq = DPCPU_ID_PTR(i, tdq);
tdq_setup(tdq, i);
tdq->tdq_cg = smp_topo_find(cpu_top, i);
if (tdq->tdq_cg == NULL)
panic("Can't find cpu group for %d\n", i);
DPCPU_ID_SET(i, randomval, i * 69069 + 5);
}
PCPU_SET(sched, DPCPU_PTR(tdq));
balance_tdq = TDQ_SELF();
}
#endif
/*
* Setup the thread queues and initialize the topology based on MD
* information.
*/
static void
sched_setup(void *dummy)
{
struct tdq *tdq;
#ifdef SMP
sched_setup_smp();
#else
tdq_setup(TDQ_SELF(), 0);
#endif
tdq = TDQ_SELF();
/* Add thread0's load since it's running. */
TDQ_LOCK(tdq);
thread0.td_lock = TDQ_LOCKPTR(tdq);
tdq_load_add(tdq, &thread0);
tdq->tdq_curthread = &thread0;
tdq->tdq_lowpri = thread0.td_priority;
TDQ_UNLOCK(tdq);
}
/*
* This routine determines time constants after stathz and hz are setup.
*/
/* ARGSUSED */
static void
sched_initticks(void *dummy)
{
int incr;
realstathz = stathz ? stathz : hz;
sched_slice = realstathz / SCHED_SLICE_DEFAULT_DIVISOR;
sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR;
hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
realstathz);
/*
* tickincr is shifted out by 10 to avoid rounding errors due to
* hz not being evenly divisible by stathz on all platforms.
*/
incr = (hz << SCHED_TICK_SHIFT) / realstathz;
/*
* This does not work for values of stathz that are more than
* 1 << SCHED_TICK_SHIFT * hz. In practice this does not happen.
*/
if (incr == 0)
incr = 1;
tickincr = incr;
#ifdef SMP
/*
* Set the default balance interval now that we know
* what realstathz is.
*/
balance_interval = realstathz;
balance_ticks = balance_interval;
affinity = SCHED_AFFINITY_DEFAULT;
#endif
if (sched_idlespinthresh < 0)
sched_idlespinthresh = 2 * max(10000, 6 * hz) / realstathz;
}
/*
* This is the core of the interactivity algorithm. Determines a score based
* on past behavior. It is the ratio of sleep time to run time scaled to
* a [0, 100] integer. This is the voluntary sleep time of a process, which
* differs from the cpu usage because it does not account for time spent
* waiting on a run-queue. Would be prettier if we had floating point.
*
* When a thread's sleep time is greater than its run time the
* calculation is:
*
* scaling factor
* interactivity score = ---------------------
* sleep time / run time
*
*
* When a thread's run time is greater than its sleep time the
* calculation is:
*
* scaling factor
* interactivity score = 2 * scaling factor - ---------------------
* run time / sleep time
*/
static int
sched_interact_score(struct thread *td)
{
struct td_sched *ts;
int div;
ts = td_get_sched(td);
/*
* The score is only needed if this is likely to be an interactive
* task. Don't go through the expense of computing it if there's
* no chance.
*/
if (sched_interact <= SCHED_INTERACT_HALF &&
ts->ts_runtime >= ts->ts_slptime)
return (SCHED_INTERACT_HALF);
if (ts->ts_runtime > ts->ts_slptime) {
div = max(1, ts->ts_runtime / SCHED_INTERACT_HALF);
return (SCHED_INTERACT_HALF +
(SCHED_INTERACT_HALF - (ts->ts_slptime / div)));
}
if (ts->ts_slptime > ts->ts_runtime) {
div = max(1, ts->ts_slptime / SCHED_INTERACT_HALF);
return (ts->ts_runtime / div);
}
/* runtime == slptime */
if (ts->ts_runtime)
return (SCHED_INTERACT_HALF);
/*
* This can happen if slptime and runtime are 0.
*/
return (0);
}
/*
* Scale the scheduling priority according to the "interactivity" of this
* process.
*/
static void
sched_priority(struct thread *td)
{
u_int pri, score;
if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
return;
/*
* If the score is interactive we place the thread in the realtime
* queue with a priority that is less than kernel and interrupt
* priorities. These threads are not subject to nice restrictions.
*
* Scores greater than this are placed on the normal timeshare queue
* where the priority is partially decided by the most recent cpu
* utilization and the rest is decided by nice value.
*
* The nice value of the process has a linear effect on the calculated
* score. Negative nice values make it easier for a thread to be
* considered interactive.
*/
score = imax(0, sched_interact_score(td) + td->td_proc->p_nice);
if (score < sched_interact) {
pri = PRI_MIN_INTERACT;
pri += (PRI_MAX_INTERACT - PRI_MIN_INTERACT + 1) * score /
sched_interact;
KASSERT(pri >= PRI_MIN_INTERACT && pri <= PRI_MAX_INTERACT,
("sched_priority: invalid interactive priority %u score %u",
pri, score));
} else {
pri = SCHED_PRI_MIN;
if (td_get_sched(td)->ts_ticks)
pri += min(SCHED_PRI_TICKS(td_get_sched(td)),
SCHED_PRI_RANGE - 1);
pri += SCHED_PRI_NICE(td->td_proc->p_nice);
KASSERT(pri >= PRI_MIN_BATCH && pri <= PRI_MAX_BATCH,
("sched_priority: invalid priority %u: nice %d, "
"ticks %d ftick %d ltick %d tick pri %d",
pri, td->td_proc->p_nice, td_get_sched(td)->ts_ticks,
td_get_sched(td)->ts_ftick, td_get_sched(td)->ts_ltick,
SCHED_PRI_TICKS(td_get_sched(td))));
}
sched_user_prio(td, pri);
return;
}
/*
* This routine enforces a maximum limit on the amount of scheduling history
* kept. It is called after either the slptime or runtime is adjusted. This
* function is ugly due to integer math.
*/
static void
sched_interact_update(struct thread *td)
{
struct td_sched *ts;
u_int sum;
ts = td_get_sched(td);
sum = ts->ts_runtime + ts->ts_slptime;
if (sum < SCHED_SLP_RUN_MAX)
return;
/*
* This only happens from two places:
* 1) We have added an unusual amount of run time from fork_exit.
* 2) We have added an unusual amount of sleep time from sched_sleep().
*/
if (sum > SCHED_SLP_RUN_MAX * 2) {
if (ts->ts_runtime > ts->ts_slptime) {
ts->ts_runtime = SCHED_SLP_RUN_MAX;
ts->ts_slptime = 1;
} else {
ts->ts_slptime = SCHED_SLP_RUN_MAX;
ts->ts_runtime = 1;
}
return;
}
/*
* If we have exceeded by more than 1/5th then the algorithm below
* will not bring us back into range. Dividing by two here forces
* us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX]
*/
if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) {
ts->ts_runtime /= 2;
ts->ts_slptime /= 2;
return;
}
ts->ts_runtime = (ts->ts_runtime / 5) * 4;
ts->ts_slptime = (ts->ts_slptime / 5) * 4;
}
/*
* Scale back the interactivity history when a child thread is created. The
* history is inherited from the parent but the thread may behave totally
* differently. For example, a shell spawning a compiler process. We want
* to learn that the compiler is behaving badly very quickly.
*/
static void
sched_interact_fork(struct thread *td)
{
struct td_sched *ts;
int ratio;
int sum;
ts = td_get_sched(td);
sum = ts->ts_runtime + ts->ts_slptime;
if (sum > SCHED_SLP_RUN_FORK) {
ratio = sum / SCHED_SLP_RUN_FORK;
ts->ts_runtime /= ratio;
ts->ts_slptime /= ratio;
}
}
/*
* Called from proc0_init() to setup the scheduler fields.
*/
void
schedinit(void)
{
struct td_sched *ts0;
/*
* Set up the scheduler specific parts of thread0.
*/
ts0 = td_get_sched(&thread0);
ts0->ts_ltick = ticks;
ts0->ts_ftick = ticks;
ts0->ts_slice = 0;
ts0->ts_cpu = curcpu; /* set valid CPU number */
}
/*
* schedinit_ap() is needed prior to calling sched_throw(NULL) to ensure that
* the pcpu requirements are met for any calls in the period between curthread
* initialization and sched_throw(). One can safely add threads to the queue
* before sched_throw(), for instance, as long as the thread lock is setup
* correctly.
*
* TDQ_SELF() relies on the below sched pcpu setting; it may be used only
* after schedinit_ap().
*/
void
schedinit_ap(void)
{
#ifdef SMP
PCPU_SET(sched, DPCPU_PTR(tdq));
#endif
PCPU_GET(idlethread)->td_lock = TDQ_LOCKPTR(TDQ_SELF());
}
/*
* This is only somewhat accurate since given many processes of the same
* priority they will switch when their slices run out, which will be
* at most sched_slice stathz ticks.
*/
int
sched_rr_interval(void)
{
/* Convert sched_slice from stathz to hz. */
return (imax(1, (sched_slice * hz + realstathz / 2) / realstathz));
}
/*
* Update the percent cpu tracking information when it is requested or
* the total history exceeds the maximum. We keep a sliding history of
* tick counts that slowly decays. This is less precise than the 4BSD
* mechanism since it happens with less regular and frequent events.
*/
static void
sched_pctcpu_update(struct td_sched *ts, int run)
{
int t = ticks;
/*
* The signed difference may be negative if the thread hasn't run for
* over half of the ticks rollover period.
*/
if ((u_int)(t - ts->ts_ltick) >= SCHED_TICK_TARG) {
ts->ts_ticks = 0;
ts->ts_ftick = t - SCHED_TICK_TARG;
} else if (t - ts->ts_ftick >= SCHED_TICK_MAX) {
ts->ts_ticks = (ts->ts_ticks / (ts->ts_ltick - ts->ts_ftick)) *
(ts->ts_ltick - (t - SCHED_TICK_TARG));
ts->ts_ftick = t - SCHED_TICK_TARG;
}
if (run)
ts->ts_ticks += (t - ts->ts_ltick) << SCHED_TICK_SHIFT;
ts->ts_ltick = t;
}
/*
* Adjust the priority of a thread. Move it to the appropriate run-queue
* if necessary. This is the back-end for several priority related
* functions.
*/
static void
sched_thread_priority(struct thread *td, u_char prio)
{
struct tdq *tdq;
int oldpri;
KTR_POINT3(KTR_SCHED, "thread", sched_tdname(td), "prio",
"prio:%d", td->td_priority, "new prio:%d", prio,
KTR_ATTR_LINKED, sched_tdname(curthread));
SDT_PROBE3(sched, , , change__pri, td, td->td_proc, prio);
if (td != curthread && prio < td->td_priority) {
KTR_POINT3(KTR_SCHED, "thread", sched_tdname(curthread),
"lend prio", "prio:%d", td->td_priority, "new prio:%d",
prio, KTR_ATTR_LINKED, sched_tdname(td));
SDT_PROBE4(sched, , , lend__pri, td, td->td_proc, prio,
curthread);
}
THREAD_LOCK_ASSERT(td, MA_OWNED);
if (td->td_priority == prio)
return;
/*
* If the priority has been elevated due to priority
* propagation, we may have to move ourselves to a new
* queue. This could be optimized to not re-add in some
* cases.
*/
if (TD_ON_RUNQ(td) && prio < td->td_priority) {
sched_rem(td);
td->td_priority = prio;
sched_add(td, SRQ_BORROWING | SRQ_HOLDTD);
return;
}
/*
* If the thread is currently running we may have to adjust the lowpri
* information so other cpus are aware of our current priority.
*/
if (TD_IS_RUNNING(td)) {
tdq = TDQ_CPU(td_get_sched(td)->ts_cpu);
oldpri = td->td_priority;
td->td_priority = prio;
if (prio < tdq->tdq_lowpri)
tdq->tdq_lowpri = prio;
else if (tdq->tdq_lowpri == oldpri)
tdq_setlowpri(tdq, td);
return;
}
td->td_priority = prio;
}
/*
* Update a thread's priority when it is lent another thread's
* priority.
*/
void
sched_lend_prio(struct thread *td, u_char prio)
{
td->td_flags |= TDF_BORROWING;
sched_thread_priority(td, prio);
}
/*
* Restore a thread's priority when priority propagation is
* over. The prio argument is the minimum priority the thread
* needs to have to satisfy other possible priority lending
* requests. If the thread's regular priority is less
* important than prio, the thread will keep a priority boost
* of prio.
*/
void
sched_unlend_prio(struct thread *td, u_char prio)
{
u_char base_pri;
if (td->td_base_pri >= PRI_MIN_TIMESHARE &&
td->td_base_pri <= PRI_MAX_TIMESHARE)
base_pri = td->td_user_pri;
else
base_pri = td->td_base_pri;
if (prio >= base_pri) {
td->td_flags &= ~TDF_BORROWING;
sched_thread_priority(td, base_pri);
} else
sched_lend_prio(td, prio);
}
/*
* Standard entry for setting the priority to an absolute value.
*/
void
sched_prio(struct thread *td, u_char prio)
{
u_char oldprio;
/* First, update the base priority. */
td->td_base_pri = prio;
/*
* If the thread is borrowing another thread's priority, don't
* ever lower the priority.
*/
if (td->td_flags & TDF_BORROWING && td->td_priority < prio)
return;
/* Change the real priority. */
oldprio = td->td_priority;
sched_thread_priority(td, prio);
/*
* If the thread is on a turnstile, then let the turnstile update
* its state.
*/
if (TD_ON_LOCK(td) && oldprio != prio)
turnstile_adjust(td, oldprio);
}
/*
* Set the base interrupt thread priority.
*/
void
sched_ithread_prio(struct thread *td, u_char prio)
{
THREAD_LOCK_ASSERT(td, MA_OWNED);
MPASS(td->td_pri_class == PRI_ITHD);
td->td_base_ithread_pri = prio;
sched_prio(td, prio);
}
/*
* Set the base user priority, does not effect current running priority.
*/
void
sched_user_prio(struct thread *td, u_char prio)
{
td->td_base_user_pri = prio;
if (td->td_lend_user_pri <= prio)
return;
td->td_user_pri = prio;
}
void
sched_lend_user_prio(struct thread *td, u_char prio)
{
THREAD_LOCK_ASSERT(td, MA_OWNED);
td->td_lend_user_pri = prio;
td->td_user_pri = min(prio, td->td_base_user_pri);
if (td->td_priority > td->td_user_pri)
sched_prio(td, td->td_user_pri);
else if (td->td_priority != td->td_user_pri)
ast_sched_locked(td, TDA_SCHED);
}
/*
* Like the above but first check if there is anything to do.
*/
void
sched_lend_user_prio_cond(struct thread *td, u_char prio)
{
if (td->td_lend_user_pri != prio)
goto lend;
if (td->td_user_pri != min(prio, td->td_base_user_pri))
goto lend;
if (td->td_priority != td->td_user_pri)
goto lend;
return;
lend:
thread_lock(td);
sched_lend_user_prio(td, prio);
thread_unlock(td);
}
#ifdef SMP
/*
* This tdq is about to idle. Try to steal a thread from another CPU before
* choosing the idle thread.
*/
static void
tdq_trysteal(struct tdq *tdq)
{
struct cpu_group *cg, *parent;
struct tdq *steal;
cpuset_t mask;
int cpu, i, goup;
if (smp_started == 0 || steal_idle == 0 || trysteal_limit == 0 ||
tdq->tdq_cg == NULL)
return;
CPU_FILL(&mask);
CPU_CLR(PCPU_GET(cpuid), &mask);
/* We don't want to be preempted while we're iterating. */
spinlock_enter();
TDQ_UNLOCK(tdq);
for (i = 1, cg = tdq->tdq_cg, goup = 0; ; ) {
cpu = sched_highest(cg, &mask, steal_thresh, 1);
/*
* If a thread was added while interrupts were disabled don't
* steal one here.
*/
if (TDQ_LOAD(tdq) > 0) {
TDQ_LOCK(tdq);
break;
}
/*
* We found no CPU to steal from in this group. Escalate to
* the parent and repeat. But if parent has only two children
* groups we can avoid searching this group again by searching
* the other one specifically and then escalating two levels.
*/
if (cpu == -1) {
if (goup) {
cg = cg->cg_parent;
goup = 0;
}
if (++i > trysteal_limit) {
TDQ_LOCK(tdq);
break;
}
parent = cg->cg_parent;
if (parent == NULL) {
TDQ_LOCK(tdq);
break;
}
if (parent->cg_children == 2) {
if (cg == &parent->cg_child[0])
cg = &parent->cg_child[1];
else
cg = &parent->cg_child[0];
goup = 1;
} else
cg = parent;
continue;
}
steal = TDQ_CPU(cpu);
/*
* The data returned by sched_highest() is stale and
* the chosen CPU no longer has an eligible thread.
* At this point unconditionally exit the loop to bound
* the time spent in the critcal section.
*/
if (TDQ_LOAD(steal) < steal_thresh ||
TDQ_TRANSFERABLE(steal) == 0)
continue;
/*
* Try to lock both queues. If we are assigned a thread while
* waited for the lock, switch to it now instead of stealing.
* If we can't get the lock, then somebody likely got there
* first.
*/
TDQ_LOCK(tdq);
if (tdq->tdq_load > 0)
break;
if (TDQ_TRYLOCK_FLAGS(steal, MTX_DUPOK) == 0)
break;
/*
* The data returned by sched_highest() is stale and
* the chosen CPU no longer has an eligible thread.
*/
if (TDQ_LOAD(steal) < steal_thresh ||
TDQ_TRANSFERABLE(steal) == 0) {
TDQ_UNLOCK(steal);
break;
}
/*
* If we fail to acquire one due to affinity restrictions,
* bail out and let the idle thread to a more complete search
* outside of a critical section.
*/
if (tdq_move(steal, tdq) == -1) {
TDQ_UNLOCK(steal);
break;
}
TDQ_UNLOCK(steal);
break;
}
spinlock_exit();
}
#endif
/*
* Handle migration from sched_switch(). This happens only for
* cpu binding.
*/
static struct mtx *
sched_switch_migrate(struct tdq *tdq, struct thread *td, int flags)
{
struct tdq *tdn;
#ifdef SMP
int lowpri;
#endif
KASSERT(THREAD_CAN_MIGRATE(td) ||
(td_get_sched(td)->ts_flags & TSF_BOUND) != 0,
("Thread %p shouldn't migrate", td));
KASSERT(!CPU_ABSENT(td_get_sched(td)->ts_cpu), ("sched_switch_migrate: "
"thread %s queued on absent CPU %d.", td->td_name,
td_get_sched(td)->ts_cpu));
tdn = TDQ_CPU(td_get_sched(td)->ts_cpu);
#ifdef SMP
tdq_load_rem(tdq, td);
/*
* Do the lock dance required to avoid LOR. We have an
* extra spinlock nesting from sched_switch() which will
* prevent preemption while we're holding neither run-queue lock.
*/
TDQ_UNLOCK(tdq);
TDQ_LOCK(tdn);
lowpri = tdq_add(tdn, td, flags);
tdq_notify(tdn, lowpri);
TDQ_UNLOCK(tdn);
TDQ_LOCK(tdq);
#endif
return (TDQ_LOCKPTR(tdn));
}
/*
* thread_lock_unblock() that does not assume td_lock is blocked.
*/
static inline void
thread_unblock_switch(struct thread *td, struct mtx *mtx)
{
atomic_store_rel_ptr((volatile uintptr_t *)&td->td_lock,
(uintptr_t)mtx);
}
/*
* Switch threads. This function has to handle threads coming in while
* blocked for some reason, running, or idle. It also must deal with
* migrating a thread from one queue to another as running threads may
* be assigned elsewhere via binding.
*/
void
sched_switch(struct thread *td, int flags)
{
struct thread *newtd;
struct tdq *tdq;
struct td_sched *ts;
struct mtx *mtx;
int srqflag;
int cpuid, preempted;
#ifdef SMP
int pickcpu;
#endif
THREAD_LOCK_ASSERT(td, MA_OWNED);
cpuid = PCPU_GET(cpuid);
tdq = TDQ_SELF();
ts = td_get_sched(td);
sched_pctcpu_update(ts, 1);
#ifdef SMP
pickcpu = (td->td_flags & TDF_PICKCPU) != 0;
if (pickcpu)
ts->ts_rltick = ticks - affinity * MAX_CACHE_LEVELS;
else
ts->ts_rltick = ticks;
#endif
td->td_lastcpu = td->td_oncpu;
preempted = (td->td_flags & TDF_SLICEEND) == 0 &&
(flags & SW_PREEMPT) != 0;
td->td_flags &= ~(TDF_PICKCPU | TDF_SLICEEND);
ast_unsched_locked(td, TDA_SCHED);
td->td_owepreempt = 0;
atomic_store_char(&tdq->tdq_owepreempt, 0);
if (!TD_IS_IDLETHREAD(td))
TDQ_SWITCHCNT_INC(tdq);
/*
* Always block the thread lock so we can drop the tdq lock early.
*/
mtx = thread_lock_block(td);
spinlock_enter();
if (TD_IS_IDLETHREAD(td)) {
MPASS(mtx == TDQ_LOCKPTR(tdq));
TD_SET_CAN_RUN(td);
} else if (TD_IS_RUNNING(td)) {
MPASS(mtx == TDQ_LOCKPTR(tdq));
srqflag = preempted ?
SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED :
SRQ_OURSELF|SRQ_YIELDING;
#ifdef SMP
if (THREAD_CAN_MIGRATE(td) && (!THREAD_CAN_SCHED(td, ts->ts_cpu)
|| pickcpu))
ts->ts_cpu = sched_pickcpu(td, 0);
#endif
if (ts->ts_cpu == cpuid)
tdq_runq_add(tdq, td, srqflag);
else
mtx = sched_switch_migrate(tdq, td, srqflag);
} else {
/* This thread must be going to sleep. */
if (mtx != TDQ_LOCKPTR(tdq)) {
mtx_unlock_spin(mtx);
TDQ_LOCK(tdq);
}
tdq_load_rem(tdq, td);
#ifdef SMP
if (tdq->tdq_load == 0)
tdq_trysteal(tdq);
#endif
}
#if (KTR_COMPILE & KTR_SCHED) != 0
if (TD_IS_IDLETHREAD(td))
KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "idle",
"prio:%d", td->td_priority);
else
KTR_STATE3(KTR_SCHED, "thread", sched_tdname(td), KTDSTATE(td),
"prio:%d", td->td_priority, "wmesg:\"%s\"", td->td_wmesg,
"lockname:\"%s\"", td->td_lockname);
#endif
/*
* We enter here with the thread blocked and assigned to the
* appropriate cpu run-queue or sleep-queue and with the current
* thread-queue locked.
*/
TDQ_LOCK_ASSERT(tdq, MA_OWNED | MA_NOTRECURSED);
MPASS(td == tdq->tdq_curthread);
newtd = choosethread();
sched_pctcpu_update(td_get_sched(newtd), 0);
TDQ_UNLOCK(tdq);
/*
* Call the MD code to switch contexts if necessary.
*/
if (td != newtd) {
#ifdef HWPMC_HOOKS
if (PMC_PROC_IS_USING_PMCS(td->td_proc))
PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT);
#endif
SDT_PROBE2(sched, , , off__cpu, newtd, newtd->td_proc);
#ifdef KDTRACE_HOOKS
/*
* If DTrace has set the active vtime enum to anything
* other than INACTIVE (0), then it should have set the
* function to call.
*/
if (dtrace_vtime_active)
(*dtrace_vtime_switch_func)(newtd);
#endif
td->td_oncpu = NOCPU;
cpu_switch(td, newtd, mtx);
cpuid = td->td_oncpu = PCPU_GET(cpuid);
SDT_PROBE0(sched, , , on__cpu);
#ifdef HWPMC_HOOKS
if (PMC_PROC_IS_USING_PMCS(td->td_proc))
PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN);
#endif
} else {
thread_unblock_switch(td, mtx);
SDT_PROBE0(sched, , , remain__cpu);
}
KASSERT(curthread->td_md.md_spinlock_count == 1,
("invalid count %d", curthread->td_md.md_spinlock_count));
KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
"prio:%d", td->td_priority);
}
/*
* Adjust thread priorities as a result of a nice request.
*/
void
sched_nice(struct proc *p, int nice)
{
struct thread *td;
PROC_LOCK_ASSERT(p, MA_OWNED);
p->p_nice = nice;
FOREACH_THREAD_IN_PROC(p, td) {
thread_lock(td);
sched_priority(td);
sched_prio(td, td->td_base_user_pri);
thread_unlock(td);
}
}
/*
* Record the sleep time for the interactivity scorer.
*/
void
sched_sleep(struct thread *td, int prio)
{
THREAD_LOCK_ASSERT(td, MA_OWNED);
td->td_slptick = ticks;
if (TD_IS_SUSPENDED(td) || prio >= PSOCK)
td->td_flags |= TDF_CANSWAP;
if (PRI_BASE(td->td_pri_class) != PRI_TIMESHARE)
return;
if (static_boost == 1 && prio)
sched_prio(td, prio);
else if (static_boost && td->td_priority > static_boost)
sched_prio(td, static_boost);
}
/*
* Schedule a thread to resume execution and record how long it voluntarily
* slept. We also update the pctcpu, interactivity, and priority.
*
* Requires the thread lock on entry, drops on exit.
*/
void
sched_wakeup(struct thread *td, int srqflags)
{
struct td_sched *ts;
int slptick;
THREAD_LOCK_ASSERT(td, MA_OWNED);
ts = td_get_sched(td);
td->td_flags &= ~TDF_CANSWAP;
/*
* If we slept for more than a tick update our interactivity and
* priority.
*/
slptick = td->td_slptick;
td->td_slptick = 0;
if (slptick && slptick != ticks) {
ts->ts_slptime += (ticks - slptick) << SCHED_TICK_SHIFT;
sched_interact_update(td);
sched_pctcpu_update(ts, 0);
}
/*
* When resuming an idle ithread, restore its base ithread
* priority.
*/
if (PRI_BASE(td->td_pri_class) == PRI_ITHD &&
td->td_priority != td->td_base_ithread_pri)
sched_prio(td, td->td_base_ithread_pri);
/*
* Reset the slice value since we slept and advanced the round-robin.
*/
ts->ts_slice = 0;
sched_add(td, SRQ_BORING | srqflags);
}
/*
* Penalize the parent for creating a new child and initialize the child's
* priority.
*/
void
sched_fork(struct thread *td, struct thread *child)
{
THREAD_LOCK_ASSERT(td, MA_OWNED);
sched_pctcpu_update(td_get_sched(td), 1);
sched_fork_thread(td, child);
/*
* Penalize the parent and child for forking.
*/
sched_interact_fork(child);
sched_priority(child);
td_get_sched(td)->ts_runtime += tickincr;
sched_interact_update(td);
sched_priority(td);
}
/*
* Fork a new thread, may be within the same process.
*/
void
sched_fork_thread(struct thread *td, struct thread *child)
{
struct td_sched *ts;
struct td_sched *ts2;
struct tdq *tdq;
tdq = TDQ_SELF();
THREAD_LOCK_ASSERT(td, MA_OWNED);
/*
* Initialize child.
*/
ts = td_get_sched(td);
ts2 = td_get_sched(child);
child->td_oncpu = NOCPU;
child->td_lastcpu = NOCPU;
child->td_lock = TDQ_LOCKPTR(tdq);
child->td_cpuset = cpuset_ref(td->td_cpuset);
child->td_domain.dr_policy = td->td_cpuset->cs_domain;
ts2->ts_cpu = ts->ts_cpu;
ts2->ts_flags = 0;
/*
* Grab our parents cpu estimation information.
*/
ts2->ts_ticks = ts->ts_ticks;
ts2->ts_ltick = ts->ts_ltick;
ts2->ts_ftick = ts->ts_ftick;
/*
* Do not inherit any borrowed priority from the parent.
*/
child->td_priority = child->td_base_pri;
/*
* And update interactivity score.
*/
ts2->ts_slptime = ts->ts_slptime;
ts2->ts_runtime = ts->ts_runtime;
/* Attempt to quickly learn interactivity. */
ts2->ts_slice = tdq_slice(tdq) - sched_slice_min;
#ifdef KTR
bzero(ts2->ts_name, sizeof(ts2->ts_name));
#endif
}
/*
* Adjust the priority class of a thread.
*/
void
sched_class(struct thread *td, int class)
{
THREAD_LOCK_ASSERT(td, MA_OWNED);
if (td->td_pri_class == class)
return;
td->td_pri_class = class;
}
/*
* Return some of the child's priority and interactivity to the parent.
*/
void
sched_exit(struct proc *p, struct thread *child)
{
struct thread *td;
KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "proc exit",
"prio:%d", child->td_priority);
PROC_LOCK_ASSERT(p, MA_OWNED);
td = FIRST_THREAD_IN_PROC(p);
sched_exit_thread(td, child);
}
/*
* Penalize another thread for the time spent on this one. This helps to
* worsen the priority and interactivity of processes which schedule batch
* jobs such as make. This has little effect on the make process itself but
* causes new processes spawned by it to receive worse scores immediately.
*/
void
sched_exit_thread(struct thread *td, struct thread *child)
{
KTR_STATE1(KTR_SCHED, "thread", sched_tdname(child), "thread exit",
"prio:%d", child->td_priority);
/*
* Give the child's runtime to the parent without returning the
* sleep time as a penalty to the parent. This causes shells that
* launch expensive things to mark their children as expensive.
*/
thread_lock(td);
td_get_sched(td)->ts_runtime += td_get_sched(child)->ts_runtime;
sched_interact_update(td);
sched_priority(td);
thread_unlock(td);
}
void
sched_preempt(struct thread *td)
{
struct tdq *tdq;
int flags;
SDT_PROBE2(sched, , , surrender, td, td->td_proc);
thread_lock(td);
tdq = TDQ_SELF();
TDQ_LOCK_ASSERT(tdq, MA_OWNED);
if (td->td_priority > tdq->tdq_lowpri) {
if (td->td_critnest == 1) {
flags = SW_INVOL | SW_PREEMPT;
flags |= TD_IS_IDLETHREAD(td) ? SWT_REMOTEWAKEIDLE :
SWT_REMOTEPREEMPT;
mi_switch(flags);
/* Switch dropped thread lock. */
return;
}
td->td_owepreempt = 1;
} else {
tdq->tdq_owepreempt = 0;
}
thread_unlock(td);
}
/*
* Fix priorities on return to user-space. Priorities may be elevated due
* to static priorities in msleep() or similar.
*/
void
sched_userret_slowpath(struct thread *td)
{
thread_lock(td);
td->td_priority = td->td_user_pri;
td->td_base_pri = td->td_user_pri;
tdq_setlowpri(TDQ_SELF(), td);
thread_unlock(td);
}
SCHED_STAT_DEFINE(ithread_demotions, "Interrupt thread priority demotions");
SCHED_STAT_DEFINE(ithread_preemptions,
"Interrupt thread preemptions due to time-sharing");
/*
* Return time slice for a given thread. For ithreads this is
* sched_slice. For other threads it is tdq_slice(tdq).
*/
static inline int
td_slice(struct thread *td, struct tdq *tdq)
{
if (PRI_BASE(td->td_pri_class) == PRI_ITHD)
return (sched_slice);
return (tdq_slice(tdq));
}
/*
* Handle a stathz tick. This is really only relevant for timeshare
* and interrupt threads.
*/
void
sched_clock(struct thread *td, int cnt)
{
struct tdq *tdq;
struct td_sched *ts;
THREAD_LOCK_ASSERT(td, MA_OWNED);
tdq = TDQ_SELF();
#ifdef SMP
/*
* We run the long term load balancer infrequently on the first cpu.
*/
if (balance_tdq == tdq && smp_started != 0 && rebalance != 0 &&
balance_ticks != 0) {
balance_ticks -= cnt;
if (balance_ticks <= 0)
sched_balance();
}
#endif
/*
* Save the old switch count so we have a record of the last ticks
* activity. Initialize the new switch count based on our load.
* If there is some activity seed it to reflect that.
*/
tdq->tdq_oldswitchcnt = tdq->tdq_switchcnt;
tdq->tdq_switchcnt = tdq->tdq_load;
/*
* Advance the insert index once for each tick to ensure that all
* threads get a chance to run.
*/
if (tdq->tdq_idx == tdq->tdq_ridx) {
tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS;
if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx]))
tdq->tdq_ridx = tdq->tdq_idx;
}
ts = td_get_sched(td);
sched_pctcpu_update(ts, 1);
if ((td->td_pri_class & PRI_FIFO_BIT) || TD_IS_IDLETHREAD(td))
return;
if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE) {
/*
* We used a tick; charge it to the thread so
* that we can compute our interactivity.
*/
td_get_sched(td)->ts_runtime += tickincr * cnt;
sched_interact_update(td);
sched_priority(td);
}
/*
* Force a context switch if the current thread has used up a full
* time slice (default is 100ms).
*/
ts->ts_slice += cnt;
if (ts->ts_slice >= td_slice(td, tdq)) {
ts->ts_slice = 0;
/*
* If an ithread uses a full quantum, demote its
* priority and preempt it.
*/
if (PRI_BASE(td->td_pri_class) == PRI_ITHD) {
SCHED_STAT_INC(ithread_preemptions);
td->td_owepreempt = 1;
if (td->td_base_pri + RQ_PPQ < PRI_MAX_ITHD) {
SCHED_STAT_INC(ithread_demotions);
sched_prio(td, td->td_base_pri + RQ_PPQ);
}
} else {
ast_sched_locked(td, TDA_SCHED);
td->td_flags |= TDF_SLICEEND;
}
}
}
u_int
sched_estcpu(struct thread *td __unused)
{
return (0);
}
/*
* Return whether the current CPU has runnable tasks. Used for in-kernel
* cooperative idle threads.
*/
int
sched_runnable(void)
{
struct tdq *tdq;
int load;
load = 1;
tdq = TDQ_SELF();
if ((curthread->td_flags & TDF_IDLETD) != 0) {
if (TDQ_LOAD(tdq) > 0)
goto out;
} else
if (TDQ_LOAD(tdq) - 1 > 0)
goto out;
load = 0;
out:
return (load);
}
/*
* Choose the highest priority thread to run. The thread is removed from
* the run-queue while running however the load remains.
*/
struct thread *
sched_choose(void)
{
struct thread *td;
struct tdq *tdq;
tdq = TDQ_SELF();
TDQ_LOCK_ASSERT(tdq, MA_OWNED);
td = tdq_choose(tdq);
if (td != NULL) {
tdq_runq_rem(tdq, td);
tdq->tdq_lowpri = td->td_priority;
} else {
tdq->tdq_lowpri = PRI_MAX_IDLE;
td = PCPU_GET(idlethread);
}
tdq->tdq_curthread = td;
return (td);
}
/*
* Set owepreempt if the currently running thread has lower priority than "pri".
* Preemption never happens directly in ULE, we always request it once we exit a
* critical section.
*/
static void
sched_setpreempt(int pri)
{
struct thread *ctd;
int cpri;
ctd = curthread;
THREAD_LOCK_ASSERT(ctd, MA_OWNED);
cpri = ctd->td_priority;
if (pri < cpri)
ast_sched_locked(ctd, TDA_SCHED);
if (KERNEL_PANICKED() || pri >= cpri || cold || TD_IS_INHIBITED(ctd))
return;
if (!sched_shouldpreempt(pri, cpri, 0))
return;
ctd->td_owepreempt = 1;
}
/*
* Add a thread to a thread queue. Select the appropriate runq and add the
* thread to it. This is the internal function called when the tdq is
* predetermined.
*/
static int
tdq_add(struct tdq *tdq, struct thread *td, int flags)
{
int lowpri;
TDQ_LOCK_ASSERT(tdq, MA_OWNED);
THREAD_LOCK_BLOCKED_ASSERT(td, MA_OWNED);
KASSERT((td->td_inhibitors == 0),
("sched_add: trying to run inhibited thread"));
KASSERT((TD_CAN_RUN(td) || TD_IS_RUNNING(td)),
("sched_add: bad thread state"));
KASSERT(td->td_flags & TDF_INMEM,
("sched_add: thread swapped out"));
lowpri = tdq->tdq_lowpri;
if (td->td_priority < lowpri)
tdq->tdq_lowpri = td->td_priority;
tdq_runq_add(tdq, td, flags);
tdq_load_add(tdq, td);
return (lowpri);
}
/*
* Select the target thread queue and add a thread to it. Request
* preemption or IPI a remote processor if required.
*
* Requires the thread lock on entry, drops on exit.
*/
void
sched_add(struct thread *td, int flags)
{
struct tdq *tdq;
#ifdef SMP
int cpu, lowpri;
#endif
KTR_STATE2(KTR_SCHED, "thread", sched_tdname(td), "runq add",
"prio:%d", td->td_priority, KTR_ATTR_LINKED,
sched_tdname(curthread));
KTR_POINT1(KTR_SCHED, "thread", sched_tdname(curthread), "wokeup",
KTR_ATTR_LINKED, sched_tdname(td));
SDT_PROBE4(sched, , , enqueue, td, td->td_proc, NULL,
flags & SRQ_PREEMPTED);
THREAD_LOCK_ASSERT(td, MA_OWNED);
/*
* Recalculate the priority before we select the target cpu or
* run-queue.
*/
if (PRI_BASE(td->td_pri_class) == PRI_TIMESHARE)
sched_priority(td);
#ifdef SMP
/*
* Pick the destination cpu and if it isn't ours transfer to the
* target cpu.
*/
cpu = sched_pickcpu(td, flags);
tdq = sched_setcpu(td, cpu, flags);
lowpri = tdq_add(tdq, td, flags);
if (cpu != PCPU_GET(cpuid))
tdq_notify(tdq, lowpri);
else if (!(flags & SRQ_YIELDING))
sched_setpreempt(td->td_priority);
#else
tdq = TDQ_SELF();
/*
* Now that the thread is moving to the run-queue, set the lock
* to the scheduler's lock.
*/
if (td->td_lock != TDQ_LOCKPTR(tdq)) {
TDQ_LOCK(tdq);
if ((flags & SRQ_HOLD) != 0)
td->td_lock = TDQ_LOCKPTR(tdq);
else
thread_lock_set(td, TDQ_LOCKPTR(tdq));
}
(void)tdq_add(tdq, td, flags);
if (!(flags & SRQ_YIELDING))
sched_setpreempt(td->td_priority);
#endif
if (!(flags & SRQ_HOLDTD))
thread_unlock(td);
}
/*
* Remove a thread from a run-queue without running it. This is used
* when we're stealing a thread from a remote queue. Otherwise all threads
* exit by calling sched_exit_thread() and sched_throw() themselves.
*/
void
sched_rem(struct thread *td)
{
struct tdq *tdq;
KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "runq rem",
"prio:%d", td->td_priority);
SDT_PROBE3(sched, , , dequeue, td, td->td_proc, NULL);
tdq = TDQ_CPU(td_get_sched(td)->ts_cpu);
TDQ_LOCK_ASSERT(tdq, MA_OWNED);
MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
KASSERT(TD_ON_RUNQ(td),
("sched_rem: thread not on run queue"));
tdq_runq_rem(tdq, td);
tdq_load_rem(tdq, td);
TD_SET_CAN_RUN(td);
if (td->td_priority == tdq->tdq_lowpri)
tdq_setlowpri(tdq, NULL);
}
/*
* Fetch cpu utilization information. Updates on demand.
*/
fixpt_t
sched_pctcpu(struct thread *td)
{
fixpt_t pctcpu;
struct td_sched *ts;
pctcpu = 0;
ts = td_get_sched(td);
THREAD_LOCK_ASSERT(td, MA_OWNED);
sched_pctcpu_update(ts, TD_IS_RUNNING(td));
if (ts->ts_ticks) {
int rtick;
/* How many rtick per second ? */
rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz);
pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT;
}
return (pctcpu);
}
/*
* Enforce affinity settings for a thread. Called after adjustments to
* cpumask.
*/
void
sched_affinity(struct thread *td)
{
#ifdef SMP
struct td_sched *ts;
THREAD_LOCK_ASSERT(td, MA_OWNED);
ts = td_get_sched(td);
if (THREAD_CAN_SCHED(td, ts->ts_cpu))
return;
if (TD_ON_RUNQ(td)) {
sched_rem(td);
sched_add(td, SRQ_BORING | SRQ_HOLDTD);
return;
}
if (!TD_IS_RUNNING(td))
return;
/*
* Force a switch before returning to userspace. If the
* target thread is not running locally send an ipi to force
* the issue.
*/
ast_sched_locked(td, TDA_SCHED);
if (td != curthread)
ipi_cpu(ts->ts_cpu, IPI_PREEMPT);
#endif
}
/*
* Bind a thread to a target cpu.
*/
void
sched_bind(struct thread *td, int cpu)
{
struct td_sched *ts;
THREAD_LOCK_ASSERT(td, MA_OWNED|MA_NOTRECURSED);
KASSERT(td == curthread, ("sched_bind: can only bind curthread"));
ts = td_get_sched(td);
if (ts->ts_flags & TSF_BOUND)
sched_unbind(td);
KASSERT(THREAD_CAN_MIGRATE(td), ("%p must be migratable", td));
ts->ts_flags |= TSF_BOUND;
sched_pin();
if (PCPU_GET(cpuid) == cpu)
return;
ts->ts_cpu = cpu;
/* When we return from mi_switch we'll be on the correct cpu. */
mi_switch(SW_VOL);
thread_lock(td);
}
/*
* Release a bound thread.
*/
void
sched_unbind(struct thread *td)
{
struct td_sched *ts;
THREAD_LOCK_ASSERT(td, MA_OWNED);
KASSERT(td == curthread, ("sched_unbind: can only bind curthread"));
ts = td_get_sched(td);
if ((ts->ts_flags & TSF_BOUND) == 0)
return;
ts->ts_flags &= ~TSF_BOUND;
sched_unpin();
}
int
sched_is_bound(struct thread *td)
{
THREAD_LOCK_ASSERT(td, MA_OWNED);
return (td_get_sched(td)->ts_flags & TSF_BOUND);
}
/*
* Basic yield call.
*/
void
sched_relinquish(struct thread *td)
{
thread_lock(td);
mi_switch(SW_VOL | SWT_RELINQUISH);
}
/*
* Return the total system load.
*/
int
sched_load(void)
{
#ifdef SMP
int total;
int i;
total = 0;
CPU_FOREACH(i)
total += atomic_load_int(&TDQ_CPU(i)->tdq_sysload);
return (total);
#else
return (atomic_load_int(&TDQ_SELF()->tdq_sysload));
#endif
}
int
sched_sizeof_proc(void)
{
return (sizeof(struct proc));
}
int
sched_sizeof_thread(void)
{
return (sizeof(struct thread) + sizeof(struct td_sched));
}
#ifdef SMP
#define TDQ_IDLESPIN(tdq) \
((tdq)->tdq_cg != NULL && ((tdq)->tdq_cg->cg_flags & CG_FLAG_THREAD) == 0)
#else
#define TDQ_IDLESPIN(tdq) 1
#endif
/*
* The actual idle process.
*/
void
sched_idletd(void *dummy)
{
struct thread *td;
struct tdq *tdq;
int oldswitchcnt, switchcnt;
int i;
mtx_assert(&Giant, MA_NOTOWNED);
td = curthread;
tdq = TDQ_SELF();
THREAD_NO_SLEEPING();
oldswitchcnt = -1;
for (;;) {
if (TDQ_LOAD(tdq)) {
thread_lock(td);
mi_switch(SW_VOL | SWT_IDLE);
}
switchcnt = TDQ_SWITCHCNT(tdq);
#ifdef SMP
if (always_steal || switchcnt != oldswitchcnt) {
oldswitchcnt = switchcnt;
if (tdq_idled(tdq) == 0)
continue;
}
switchcnt = TDQ_SWITCHCNT(tdq);
#else
oldswitchcnt = switchcnt;
#endif
/*
* If we're switching very frequently, spin while checking
* for load rather than entering a low power state that
* may require an IPI. However, don't do any busy
* loops while on SMT machines as this simply steals
* cycles from cores doing useful work.
*/
if (TDQ_IDLESPIN(tdq) && switchcnt > sched_idlespinthresh) {
for (i = 0; i < sched_idlespins; i++) {
if (TDQ_LOAD(tdq))
break;
cpu_spinwait();
}
}
/* If there was context switch during spin, restart it. */
switchcnt = TDQ_SWITCHCNT(tdq);
if (TDQ_LOAD(tdq) != 0 || switchcnt != oldswitchcnt)
continue;
/* Run main MD idle handler. */
atomic_store_int(&tdq->tdq_cpu_idle, 1);
/*
* Make sure that the tdq_cpu_idle update is globally visible
* before cpu_idle() reads tdq_load. The order is important
* to avoid races with tdq_notify().
*/
atomic_thread_fence_seq_cst();
/*
* Checking for again after the fence picks up assigned
* threads often enough to make it worthwhile to do so in
* order to avoid calling cpu_idle().
*/
if (TDQ_LOAD(tdq) != 0) {
atomic_store_int(&tdq->tdq_cpu_idle, 0);
continue;
}
cpu_idle(switchcnt * 4 > sched_idlespinthresh);
atomic_store_int(&tdq->tdq_cpu_idle, 0);
/*
* Account thread-less hardware interrupts and
* other wakeup reasons equal to context switches.
*/
switchcnt = TDQ_SWITCHCNT(tdq);
if (switchcnt != oldswitchcnt)
continue;
TDQ_SWITCHCNT_INC(tdq);
oldswitchcnt++;
}
}
/*
* sched_throw_grab() chooses a thread from the queue to switch to
* next. It returns with the tdq lock dropped in a spinlock section to
* keep interrupts disabled until the CPU is running in a proper threaded
* context.
*/
static struct thread *
sched_throw_grab(struct tdq *tdq)
{
struct thread *newtd;
newtd = choosethread();
spinlock_enter();
TDQ_UNLOCK(tdq);
KASSERT(curthread->td_md.md_spinlock_count == 1,
("invalid count %d", curthread->td_md.md_spinlock_count));
return (newtd);
}
/*
* A CPU is entering for the first time.
*/
void
sched_ap_entry(void)
{
struct thread *newtd;
struct tdq *tdq;
tdq = TDQ_SELF();
/* This should have been setup in schedinit_ap(). */
THREAD_LOCKPTR_ASSERT(curthread, TDQ_LOCKPTR(tdq));
TDQ_LOCK(tdq);
/* Correct spinlock nesting. */
spinlock_exit();
PCPU_SET(switchtime, cpu_ticks());
PCPU_SET(switchticks, ticks);
newtd = sched_throw_grab(tdq);
/* doesn't return */
cpu_throw(NULL, newtd);
}
/*
* A thread is exiting.
*/
void
sched_throw(struct thread *td)
{
struct thread *newtd;
struct tdq *tdq;
tdq = TDQ_SELF();
MPASS(td != NULL);
THREAD_LOCK_ASSERT(td, MA_OWNED);
THREAD_LOCKPTR_ASSERT(td, TDQ_LOCKPTR(tdq));
tdq_load_rem(tdq, td);
td->td_lastcpu = td->td_oncpu;
td->td_oncpu = NOCPU;
thread_lock_block(td);
newtd = sched_throw_grab(tdq);
/* doesn't return */
cpu_switch(td, newtd, TDQ_LOCKPTR(tdq));
}
/*
* This is called from fork_exit(). Just acquire the correct locks and
* let fork do the rest of the work.
*/
void
sched_fork_exit(struct thread *td)
{
struct tdq *tdq;
int cpuid;
/*
* Finish setting up thread glue so that it begins execution in a
* non-nested critical section with the scheduler lock held.
*/
KASSERT(curthread->td_md.md_spinlock_count == 1,
("invalid count %d", curthread->td_md.md_spinlock_count));
cpuid = PCPU_GET(cpuid);
tdq = TDQ_SELF();
TDQ_LOCK(tdq);
spinlock_exit();
MPASS(td->td_lock == TDQ_LOCKPTR(tdq));
td->td_oncpu = cpuid;
KTR_STATE1(KTR_SCHED, "thread", sched_tdname(td), "running",
"prio:%d", td->td_priority);
SDT_PROBE0(sched, , , on__cpu);
}
/*
* Create on first use to catch odd startup conditions.
*/
char *
sched_tdname(struct thread *td)
{
#ifdef KTR
struct td_sched *ts;
ts = td_get_sched(td);
if (ts->ts_name[0] == '\0')
snprintf(ts->ts_name, sizeof(ts->ts_name),
"%s tid %d", td->td_name, td->td_tid);
return (ts->ts_name);
#else
return (td->td_name);
#endif
}
#ifdef KTR
void
sched_clear_tdname(struct thread *td)
{
struct td_sched *ts;
ts = td_get_sched(td);
ts->ts_name[0] = '\0';
}
#endif
#ifdef SMP
/*
* Build the CPU topology dump string. Is recursively called to collect
* the topology tree.
*/
static int
sysctl_kern_sched_topology_spec_internal(struct sbuf *sb, struct cpu_group *cg,
int indent)
{
char cpusetbuf[CPUSETBUFSIZ];
int i, first;
sbuf_printf(sb, "%*s<group level=\"%d\" cache-level=\"%d\">\n", indent,
"", 1 + indent / 2, cg->cg_level);
sbuf_printf(sb, "%*s <cpu count=\"%d\" mask=\"%s\">", indent, "",
cg->cg_count, cpusetobj_strprint(cpusetbuf, &cg->cg_mask));
first = TRUE;
for (i = cg->cg_first; i <= cg->cg_last; i++) {
if (CPU_ISSET(i, &cg->cg_mask)) {
if (!first)
sbuf_printf(sb, ", ");
else
first = FALSE;
sbuf_printf(sb, "%d", i);
}
}
sbuf_printf(sb, "</cpu>\n");
if (cg->cg_flags != 0) {
sbuf_printf(sb, "%*s <flags>", indent, "");
if ((cg->cg_flags & CG_FLAG_HTT) != 0)
sbuf_printf(sb, "<flag name=\"HTT\">HTT group</flag>");
if ((cg->cg_flags & CG_FLAG_THREAD) != 0)
sbuf_printf(sb, "<flag name=\"THREAD\">THREAD group</flag>");
if ((cg->cg_flags & CG_FLAG_SMT) != 0)
sbuf_printf(sb, "<flag name=\"SMT\">SMT group</flag>");
if ((cg->cg_flags & CG_FLAG_NODE) != 0)
sbuf_printf(sb, "<flag name=\"NODE\">NUMA node</flag>");
sbuf_printf(sb, "</flags>\n");
}
if (cg->cg_children > 0) {
sbuf_printf(sb, "%*s <children>\n", indent, "");
for (i = 0; i < cg->cg_children; i++)
sysctl_kern_sched_topology_spec_internal(sb,
&cg->cg_child[i], indent+2);
sbuf_printf(sb, "%*s </children>\n", indent, "");
}
sbuf_printf(sb, "%*s</group>\n", indent, "");
return (0);
}
/*
* Sysctl handler for retrieving topology dump. It's a wrapper for
* the recursive sysctl_kern_smp_topology_spec_internal().
*/
static int
sysctl_kern_sched_topology_spec(SYSCTL_HANDLER_ARGS)
{
struct sbuf *topo;
int err;
KASSERT(cpu_top != NULL, ("cpu_top isn't initialized"));
topo = sbuf_new_for_sysctl(NULL, NULL, 512, req);
if (topo == NULL)
return (ENOMEM);
sbuf_printf(topo, "<groups>\n");
err = sysctl_kern_sched_topology_spec_internal(topo, cpu_top, 1);
sbuf_printf(topo, "</groups>\n");
if (err == 0) {
err = sbuf_finish(topo);
}
sbuf_delete(topo);
return (err);
}
#endif
static int
sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
{
int error, new_val, period;
period = 1000000 / realstathz;
new_val = period * sched_slice;
error = sysctl_handle_int(oidp, &new_val, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
if (new_val <= 0)
return (EINVAL);
sched_slice = imax(1, (new_val + period / 2) / period);
sched_slice_min = sched_slice / SCHED_SLICE_MIN_DIVISOR;
hogticks = imax(1, (2 * hz * sched_slice + realstathz / 2) /
realstathz);
return (0);
}
SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW | CTLFLAG_MPSAFE, 0,
"Scheduler");
SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ULE", 0,
"Scheduler name");
SYSCTL_PROC(_kern_sched, OID_AUTO, quantum,
CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, NULL, 0,
sysctl_kern_quantum, "I",
"Quantum for timeshare threads in microseconds");
SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0,
"Quantum for timeshare threads in stathz ticks");
SYSCTL_UINT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0,
"Interactivity score threshold");
SYSCTL_INT(_kern_sched, OID_AUTO, preempt_thresh, CTLFLAG_RW,
&preempt_thresh, 0,
"Maximal (lowest) priority for preemption");
SYSCTL_INT(_kern_sched, OID_AUTO, static_boost, CTLFLAG_RW, &static_boost, 0,
"Assign static kernel priorities to sleeping threads");
SYSCTL_INT(_kern_sched, OID_AUTO, idlespins, CTLFLAG_RW, &sched_idlespins, 0,
"Number of times idle thread will spin waiting for new work");
SYSCTL_INT(_kern_sched, OID_AUTO, idlespinthresh, CTLFLAG_RW,
&sched_idlespinthresh, 0,
"Threshold before we will permit idle thread spinning");
#ifdef SMP
SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0,
"Number of hz ticks to keep thread affinity for");
SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0,
"Enables the long-term load balancer");
SYSCTL_INT(_kern_sched, OID_AUTO, balance_interval, CTLFLAG_RW,
&balance_interval, 0,
"Average period in stathz ticks to run the long-term balancer");
SYSCTL_INT(_kern_sched, OID_AUTO, steal_idle, CTLFLAG_RW, &steal_idle, 0,
"Attempts to steal work from other cores before idling");
SYSCTL_INT(_kern_sched, OID_AUTO, steal_thresh, CTLFLAG_RW, &steal_thresh, 0,
"Minimum load on remote CPU before we'll steal");
SYSCTL_INT(_kern_sched, OID_AUTO, trysteal_limit, CTLFLAG_RW, &trysteal_limit,
0, "Topological distance limit for stealing threads in sched_switch()");
SYSCTL_INT(_kern_sched, OID_AUTO, always_steal, CTLFLAG_RW, &always_steal, 0,
"Always run the stealer from the idle thread");
SYSCTL_PROC(_kern_sched, OID_AUTO, topology_spec, CTLTYPE_STRING |
CTLFLAG_MPSAFE | CTLFLAG_RD, NULL, 0, sysctl_kern_sched_topology_spec, "A",
"XML dump of detected CPU topology");
#endif
/* ps compat. All cpu percentages from ULE are weighted. */
static int ccpu = 0;
SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0,
"Decay factor used for updating %CPU in 4BSD scheduler");