freebsd-dev/tools/regression/lib/msun/test-trig.c
David Schultz 45de1d006d Factor out some common code from the libm tests. This is a bit messy
because different tests have different ideas about what it means to be
"close enough" to the right answer, depending on the properties of the
function being tested.  In the process, I fixed some warnings and
added a few more 'volatile' hacks, which are sufficient to make all
the tests pass at -O2 with clang.
2013-06-02 04:30:03 +00:00

281 lines
8.7 KiB
C

/*-
* Copyright (c) 2008 David Schultz <das@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Tests for corner cases in trigonometric functions. Some accuracy tests
* are included as well, but these are very basic sanity checks, not
* intended to be comprehensive.
*
* The program for generating representable numbers near multiples of pi is
* available at http://www.cs.berkeley.edu/~wkahan/testpi/ .
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <assert.h>
#include <fenv.h>
#include <float.h>
#include <math.h>
#include <stdio.h>
#include "test-utils.h"
#define LEN(a) (sizeof(a) / sizeof((a)[0]))
#pragma STDC FENV_ACCESS ON
/*
* Test that a function returns the correct value and sets the
* exception flags correctly. The exceptmask specifies which
* exceptions we should check. We need to be lenient for several
* reasons, but mainly because on some architectures it's impossible
* to raise FE_OVERFLOW without raising FE_INEXACT.
*
* These are macros instead of functions so that assert provides more
* meaningful error messages.
*
* XXX The volatile here is to avoid gcc's bogus constant folding and work
* around the lack of support for the FENV_ACCESS pragma.
*/
#define test(func, x, result, exceptmask, excepts) do { \
volatile long double _d = x; \
assert(feclearexcept(FE_ALL_EXCEPT) == 0); \
assert(fpequal((func)(_d), (result))); \
assert(((void)(func), fetestexcept(exceptmask) == (excepts))); \
} while (0)
#define testall(prefix, x, result, exceptmask, excepts) do { \
test(prefix, x, (double)result, exceptmask, excepts); \
test(prefix##f, x, (float)result, exceptmask, excepts); \
test(prefix##l, x, result, exceptmask, excepts); \
} while (0)
#define testdf(prefix, x, result, exceptmask, excepts) do { \
test(prefix, x, (double)result, exceptmask, excepts); \
test(prefix##f, x, (float)result, exceptmask, excepts); \
} while (0)
/*
* Test special cases in sin(), cos(), and tan().
*/
static void
run_special_tests(void)
{
/* Values at 0 should be exact. */
testall(tan, 0.0, 0.0, ALL_STD_EXCEPT, 0);
testall(tan, -0.0, -0.0, ALL_STD_EXCEPT, 0);
testall(cos, 0.0, 1.0, ALL_STD_EXCEPT, 0);
testall(cos, -0.0, 1.0, ALL_STD_EXCEPT, 0);
testall(sin, 0.0, 0.0, ALL_STD_EXCEPT, 0);
testall(sin, -0.0, -0.0, ALL_STD_EXCEPT, 0);
/* func(+-Inf) == NaN */
testall(tan, INFINITY, NAN, ALL_STD_EXCEPT, FE_INVALID);
testall(sin, INFINITY, NAN, ALL_STD_EXCEPT, FE_INVALID);
testall(cos, INFINITY, NAN, ALL_STD_EXCEPT, FE_INVALID);
testall(tan, -INFINITY, NAN, ALL_STD_EXCEPT, FE_INVALID);
testall(sin, -INFINITY, NAN, ALL_STD_EXCEPT, FE_INVALID);
testall(cos, -INFINITY, NAN, ALL_STD_EXCEPT, FE_INVALID);
/* func(NaN) == NaN */
testall(tan, NAN, NAN, ALL_STD_EXCEPT, 0);
testall(sin, NAN, NAN, ALL_STD_EXCEPT, 0);
testall(cos, NAN, NAN, ALL_STD_EXCEPT, 0);
}
/*
* Tests to ensure argument reduction for large arguments is accurate.
*/
static void
run_reduction_tests(void)
{
/* floats very close to odd multiples of pi */
static const float f_pi_odd[] = {
85563208.0f,
43998769152.0f,
9.2763667655669323e+25f,
1.5458357838905804e+29f,
};
/* doubles very close to odd multiples of pi */
static const double d_pi_odd[] = {
3.1415926535897931,
91.106186954104004,
642615.9188844458,
3397346.5699258847,
6134899525417045.0,
3.0213551960457761e+43,
1.2646209897993783e+295,
6.2083625380677099e+307,
};
/* long doubles very close to odd multiples of pi */
#if LDBL_MANT_DIG == 64
static const long double ld_pi_odd[] = {
1.1891886960373841596e+101L,
1.07999475322710967206e+2087L,
6.522151627890431836e+2147L,
8.9368974898260328229e+2484L,
9.2961044110572205863e+2555L,
4.90208421886578286e+3189L,
1.5275546401232615884e+3317L,
1.7227465626338900093e+3565L,
2.4160090594000745334e+3808L,
9.8477555741888350649e+4314L,
1.6061597222105160737e+4326L,
};
#elif LDBL_MANT_DIG == 113
static const long double ld_pi_odd[] = {
/* XXX */
};
#endif
int i;
for (i = 0; i < LEN(f_pi_odd); i++) {
assert(fabs(sinf(f_pi_odd[i])) < FLT_EPSILON);
assert(cosf(f_pi_odd[i]) == -1.0);
assert(fabs(tan(f_pi_odd[i])) < FLT_EPSILON);
assert(fabs(sinf(-f_pi_odd[i])) < FLT_EPSILON);
assert(cosf(-f_pi_odd[i]) == -1.0);
assert(fabs(tanf(-f_pi_odd[i])) < FLT_EPSILON);
assert(fabs(sinf(f_pi_odd[i] * 2)) < FLT_EPSILON);
assert(cosf(f_pi_odd[i] * 2) == 1.0);
assert(fabs(tanf(f_pi_odd[i] * 2)) < FLT_EPSILON);
assert(fabs(sinf(-f_pi_odd[i] * 2)) < FLT_EPSILON);
assert(cosf(-f_pi_odd[i] * 2) == 1.0);
assert(fabs(tanf(-f_pi_odd[i] * 2)) < FLT_EPSILON);
}
for (i = 0; i < LEN(d_pi_odd); i++) {
assert(fabs(sin(d_pi_odd[i])) < 2 * DBL_EPSILON);
assert(cos(d_pi_odd[i]) == -1.0);
assert(fabs(tan(d_pi_odd[i])) < 2 * DBL_EPSILON);
assert(fabs(sin(-d_pi_odd[i])) < 2 * DBL_EPSILON);
assert(cos(-d_pi_odd[i]) == -1.0);
assert(fabs(tan(-d_pi_odd[i])) < 2 * DBL_EPSILON);
assert(fabs(sin(d_pi_odd[i] * 2)) < 2 * DBL_EPSILON);
assert(cos(d_pi_odd[i] * 2) == 1.0);
assert(fabs(tan(d_pi_odd[i] * 2)) < 2 * DBL_EPSILON);
assert(fabs(sin(-d_pi_odd[i] * 2)) < 2 * DBL_EPSILON);
assert(cos(-d_pi_odd[i] * 2) == 1.0);
assert(fabs(tan(-d_pi_odd[i] * 2)) < 2 * DBL_EPSILON);
}
#if LDBL_MANT_DIG > 53
for (i = 0; i < LEN(ld_pi_odd); i++) {
assert(fabsl(sinl(ld_pi_odd[i])) < LDBL_EPSILON);
assert(cosl(ld_pi_odd[i]) == -1.0);
assert(fabsl(tanl(ld_pi_odd[i])) < LDBL_EPSILON);
assert(fabsl(sinl(-ld_pi_odd[i])) < LDBL_EPSILON);
assert(cosl(-ld_pi_odd[i]) == -1.0);
assert(fabsl(tanl(-ld_pi_odd[i])) < LDBL_EPSILON);
assert(fabsl(sinl(ld_pi_odd[i] * 2)) < LDBL_EPSILON);
assert(cosl(ld_pi_odd[i] * 2) == 1.0);
assert(fabsl(tanl(ld_pi_odd[i] * 2)) < LDBL_EPSILON);
assert(fabsl(sinl(-ld_pi_odd[i] * 2)) < LDBL_EPSILON);
assert(cosl(-ld_pi_odd[i] * 2) == 1.0);
assert(fabsl(tanl(-ld_pi_odd[i] * 2)) < LDBL_EPSILON);
}
#endif
}
/*
* Tests the accuracy of these functions over the primary range.
*/
static void
run_accuracy_tests(void)
{
/* For small args, sin(x) = tan(x) = x, and cos(x) = 1. */
testall(sin, 0xd.50ee515fe4aea16p-114L, 0xd.50ee515fe4aea16p-114L,
ALL_STD_EXCEPT, FE_INEXACT);
testall(tan, 0xd.50ee515fe4aea16p-114L, 0xd.50ee515fe4aea16p-114L,
ALL_STD_EXCEPT, FE_INEXACT);
testall(cos, 0xd.50ee515fe4aea16p-114L, 1.0,
ALL_STD_EXCEPT, FE_INEXACT);
/*
* These tests should pass for f32, d64, and ld80 as long as
* the error is <= 0.75 ulp (round to nearest)
*/
#if LDBL_MANT_DIG <= 64
#define testacc testall
#else
#define testacc testdf
#endif
testacc(sin, 0.17255452780841205174L, 0.17169949801444412683L,
ALL_STD_EXCEPT, FE_INEXACT);
testacc(sin, -0.75431944555904520893L, -0.68479288156557286353L,
ALL_STD_EXCEPT, FE_INEXACT);
testacc(cos, 0.70556358769838947292L, 0.76124620693117771850L,
ALL_STD_EXCEPT, FE_INEXACT);
testacc(cos, -0.34061437849088045332L, 0.94254960031831729956L,
ALL_STD_EXCEPT, FE_INEXACT);
testacc(tan, -0.15862817413325692897L, -0.15997221861309522115L,
ALL_STD_EXCEPT, FE_INEXACT);
testacc(tan, 0.38374784931303813530L, 0.40376500259976759951L,
ALL_STD_EXCEPT, FE_INEXACT);
/*
* XXX missing:
* - tests for ld128
* - tests for other rounding modes (probably won't pass for now)
* - tests for large numbers that get reduced to hi+lo with lo!=0
*/
}
int
main(int argc, char *argv[])
{
printf("1..3\n");
run_special_tests();
printf("ok 1 - trig\n");
#ifndef __i386__
run_reduction_tests();
#endif
printf("ok 2 - trig\n");
#ifndef __i386__
run_accuracy_tests();
#endif
printf("ok 3 - trig\n");
return (0);
}