53dcfbd18b
interrupt that is shared with other devices(e.g. USB) in system and provide a new tunable "hw.msk.legacy_intr" to activate the legacy interrupt handler. Setting the tunable automatically disables MSI for msk(4). Previously msk(4) used adoptive polling with taskqueue(9) as all msk(4) hardwares I know supports MSI. However, there are cases that MSI couldn't be used on some hardwares due to bugs in MSI implementatins. Tested by: Li-Lun Wang < llwang AT infor DOT org > Approved by: re (kensmith)
4158 lines
120 KiB
C
4158 lines
120 KiB
C
/******************************************************************************
|
|
*
|
|
* Name : sky2.c
|
|
* Project: Gigabit Ethernet Driver for FreeBSD 5.x/6.x
|
|
* Version: $Revision: 1.23 $
|
|
* Date : $Date: 2005/12/22 09:04:11 $
|
|
* Purpose: Main driver source file
|
|
*
|
|
*****************************************************************************/
|
|
|
|
/******************************************************************************
|
|
*
|
|
* LICENSE:
|
|
* Copyright (C) Marvell International Ltd. and/or its affiliates
|
|
*
|
|
* The computer program files contained in this folder ("Files")
|
|
* are provided to you under the BSD-type license terms provided
|
|
* below, and any use of such Files and any derivative works
|
|
* thereof created by you shall be governed by the following terms
|
|
* and conditions:
|
|
*
|
|
* - Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials provided
|
|
* with the distribution.
|
|
* - Neither the name of Marvell nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this
|
|
* software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* /LICENSE
|
|
*
|
|
*****************************************************************************/
|
|
|
|
/*-
|
|
* Copyright (c) 1997, 1998, 1999, 2000
|
|
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Bill Paul.
|
|
* 4. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
/*-
|
|
* Copyright (c) 2003 Nathan L. Binkert <binkertn@umich.edu>
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
/*
|
|
* Device driver for the Marvell Yukon II Ethernet controller.
|
|
* Due to lack of documentation, this driver is based on the code from
|
|
* sk(4) and Marvell's myk(4) driver for FreeBSD 5.x.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/module.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/taskqueue.h>
|
|
|
|
#include <net/bpf.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_vlan_var.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/tcp.h>
|
|
#include <netinet/udp.h>
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/in_cksum.h>
|
|
#include <machine/resource.h>
|
|
#include <sys/rman.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
#include <dev/mii/brgphyreg.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
|
|
#include <dev/msk/if_mskreg.h>
|
|
|
|
MODULE_DEPEND(msk, pci, 1, 1, 1);
|
|
MODULE_DEPEND(msk, ether, 1, 1, 1);
|
|
MODULE_DEPEND(msk, miibus, 1, 1, 1);
|
|
|
|
/* "device miibus" required. See GENERIC if you get errors here. */
|
|
#include "miibus_if.h"
|
|
|
|
/* Tunables. */
|
|
static int msi_disable = 0;
|
|
TUNABLE_INT("hw.msk.msi_disable", &msi_disable);
|
|
static int legacy_intr = 0;
|
|
TUNABLE_INT("hw.msk.legacy_intr", &legacy_intr);
|
|
|
|
#define MSK_CSUM_FEATURES (CSUM_TCP | CSUM_UDP)
|
|
|
|
/*
|
|
* Devices supported by this driver.
|
|
*/
|
|
static struct msk_product {
|
|
uint16_t msk_vendorid;
|
|
uint16_t msk_deviceid;
|
|
const char *msk_name;
|
|
} msk_products[] = {
|
|
{ VENDORID_SK, DEVICEID_SK_YUKON2,
|
|
"SK-9Sxx Gigabit Ethernet" },
|
|
{ VENDORID_SK, DEVICEID_SK_YUKON2_EXPR,
|
|
"SK-9Exx Gigabit Ethernet"},
|
|
{ VENDORID_MARVELL, DEVICEID_MRVL_8021CU,
|
|
"Marvell Yukon 88E8021CU Gigabit Ethernet" },
|
|
{ VENDORID_MARVELL, DEVICEID_MRVL_8021X,
|
|
"Marvell Yukon 88E8021 SX/LX Gigabit Ethernet" },
|
|
{ VENDORID_MARVELL, DEVICEID_MRVL_8022CU,
|
|
"Marvell Yukon 88E8022CU Gigabit Ethernet" },
|
|
{ VENDORID_MARVELL, DEVICEID_MRVL_8022X,
|
|
"Marvell Yukon 88E8022 SX/LX Gigabit Ethernet" },
|
|
{ VENDORID_MARVELL, DEVICEID_MRVL_8061CU,
|
|
"Marvell Yukon 88E8061CU Gigabit Ethernet" },
|
|
{ VENDORID_MARVELL, DEVICEID_MRVL_8061X,
|
|
"Marvell Yukon 88E8061 SX/LX Gigabit Ethernet" },
|
|
{ VENDORID_MARVELL, DEVICEID_MRVL_8062CU,
|
|
"Marvell Yukon 88E8062CU Gigabit Ethernet" },
|
|
{ VENDORID_MARVELL, DEVICEID_MRVL_8062X,
|
|
"Marvell Yukon 88E8062 SX/LX Gigabit Ethernet" },
|
|
{ VENDORID_MARVELL, DEVICEID_MRVL_8035,
|
|
"Marvell Yukon 88E8035 Gigabit Ethernet" },
|
|
{ VENDORID_MARVELL, DEVICEID_MRVL_8036,
|
|
"Marvell Yukon 88E8036 Gigabit Ethernet" },
|
|
{ VENDORID_MARVELL, DEVICEID_MRVL_8038,
|
|
"Marvell Yukon 88E8038 Gigabit Ethernet" },
|
|
{ VENDORID_MARVELL, DEVICEID_MRVL_4361,
|
|
"Marvell Yukon 88E8050 Gigabit Ethernet" },
|
|
{ VENDORID_MARVELL, DEVICEID_MRVL_4360,
|
|
"Marvell Yukon 88E8052 Gigabit Ethernet" },
|
|
{ VENDORID_MARVELL, DEVICEID_MRVL_4362,
|
|
"Marvell Yukon 88E8053 Gigabit Ethernet" },
|
|
{ VENDORID_MARVELL, DEVICEID_MRVL_4363,
|
|
"Marvell Yukon 88E8055 Gigabit Ethernet" },
|
|
{ VENDORID_MARVELL, DEVICEID_MRVL_4364,
|
|
"Marvell Yukon 88E8056 Gigabit Ethernet" },
|
|
{ VENDORID_DLINK, DEVICEID_DLINK_DGE550SX,
|
|
"D-Link 550SX Gigabit Ethernet" },
|
|
{ VENDORID_DLINK, DEVICEID_DLINK_DGE560T,
|
|
"D-Link 560T Gigabit Ethernet" }
|
|
};
|
|
|
|
static const char *model_name[] = {
|
|
"Yukon XL",
|
|
"Yukon EC Ultra",
|
|
"Yukon Unknown",
|
|
"Yukon EC",
|
|
"Yukon FE"
|
|
};
|
|
|
|
static int mskc_probe(device_t);
|
|
static int mskc_attach(device_t);
|
|
static int mskc_detach(device_t);
|
|
static void mskc_shutdown(device_t);
|
|
static int mskc_setup_rambuffer(struct msk_softc *);
|
|
static int mskc_suspend(device_t);
|
|
static int mskc_resume(device_t);
|
|
static void mskc_reset(struct msk_softc *);
|
|
|
|
static int msk_probe(device_t);
|
|
static int msk_attach(device_t);
|
|
static int msk_detach(device_t);
|
|
|
|
static void msk_tick(void *);
|
|
static void msk_legacy_intr(void *);
|
|
static int msk_intr(void *);
|
|
static void msk_int_task(void *, int);
|
|
static void msk_intr_phy(struct msk_if_softc *);
|
|
static void msk_intr_gmac(struct msk_if_softc *);
|
|
static __inline void msk_rxput(struct msk_if_softc *);
|
|
static int msk_handle_events(struct msk_softc *);
|
|
static void msk_handle_hwerr(struct msk_if_softc *, uint32_t);
|
|
static void msk_intr_hwerr(struct msk_softc *);
|
|
static void msk_rxeof(struct msk_if_softc *, uint32_t, int);
|
|
static void msk_jumbo_rxeof(struct msk_if_softc *, uint32_t, int);
|
|
static void msk_txeof(struct msk_if_softc *, int);
|
|
static struct mbuf *msk_defrag(struct mbuf *, int, int);
|
|
static int msk_encap(struct msk_if_softc *, struct mbuf **);
|
|
static void msk_tx_task(void *, int);
|
|
static void msk_start(struct ifnet *);
|
|
static int msk_ioctl(struct ifnet *, u_long, caddr_t);
|
|
static void msk_set_prefetch(struct msk_softc *, int, bus_addr_t, uint32_t);
|
|
static void msk_set_rambuffer(struct msk_if_softc *);
|
|
static void msk_init(void *);
|
|
static void msk_init_locked(struct msk_if_softc *);
|
|
static void msk_stop(struct msk_if_softc *);
|
|
static void msk_watchdog(struct msk_if_softc *);
|
|
static int msk_mediachange(struct ifnet *);
|
|
static void msk_mediastatus(struct ifnet *, struct ifmediareq *);
|
|
static void msk_phy_power(struct msk_softc *, int);
|
|
static void msk_dmamap_cb(void *, bus_dma_segment_t *, int, int);
|
|
static int msk_status_dma_alloc(struct msk_softc *);
|
|
static void msk_status_dma_free(struct msk_softc *);
|
|
static int msk_txrx_dma_alloc(struct msk_if_softc *);
|
|
static void msk_txrx_dma_free(struct msk_if_softc *);
|
|
static void *msk_jalloc(struct msk_if_softc *);
|
|
static void msk_jfree(void *, void *);
|
|
static int msk_init_rx_ring(struct msk_if_softc *);
|
|
static int msk_init_jumbo_rx_ring(struct msk_if_softc *);
|
|
static void msk_init_tx_ring(struct msk_if_softc *);
|
|
static __inline void msk_discard_rxbuf(struct msk_if_softc *, int);
|
|
static __inline void msk_discard_jumbo_rxbuf(struct msk_if_softc *, int);
|
|
static int msk_newbuf(struct msk_if_softc *, int);
|
|
static int msk_jumbo_newbuf(struct msk_if_softc *, int);
|
|
|
|
static int msk_phy_readreg(struct msk_if_softc *, int, int);
|
|
static int msk_phy_writereg(struct msk_if_softc *, int, int, int);
|
|
static int msk_miibus_readreg(device_t, int, int);
|
|
static int msk_miibus_writereg(device_t, int, int, int);
|
|
static void msk_miibus_statchg(device_t);
|
|
static void msk_link_task(void *, int);
|
|
|
|
static void msk_setmulti(struct msk_if_softc *);
|
|
static void msk_setvlan(struct msk_if_softc *, struct ifnet *);
|
|
static void msk_setpromisc(struct msk_if_softc *);
|
|
|
|
static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
|
|
static int sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS);
|
|
|
|
static device_method_t mskc_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, mskc_probe),
|
|
DEVMETHOD(device_attach, mskc_attach),
|
|
DEVMETHOD(device_detach, mskc_detach),
|
|
DEVMETHOD(device_suspend, mskc_suspend),
|
|
DEVMETHOD(device_resume, mskc_resume),
|
|
DEVMETHOD(device_shutdown, mskc_shutdown),
|
|
|
|
/* bus interface */
|
|
DEVMETHOD(bus_print_child, bus_generic_print_child),
|
|
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
|
|
|
|
{ NULL, NULL }
|
|
};
|
|
|
|
static driver_t mskc_driver = {
|
|
"mskc",
|
|
mskc_methods,
|
|
sizeof(struct msk_softc)
|
|
};
|
|
|
|
static devclass_t mskc_devclass;
|
|
|
|
static device_method_t msk_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, msk_probe),
|
|
DEVMETHOD(device_attach, msk_attach),
|
|
DEVMETHOD(device_detach, msk_detach),
|
|
DEVMETHOD(device_shutdown, bus_generic_shutdown),
|
|
|
|
/* bus interface */
|
|
DEVMETHOD(bus_print_child, bus_generic_print_child),
|
|
DEVMETHOD(bus_driver_added, bus_generic_driver_added),
|
|
|
|
/* MII interface */
|
|
DEVMETHOD(miibus_readreg, msk_miibus_readreg),
|
|
DEVMETHOD(miibus_writereg, msk_miibus_writereg),
|
|
DEVMETHOD(miibus_statchg, msk_miibus_statchg),
|
|
|
|
{ NULL, NULL }
|
|
};
|
|
|
|
static driver_t msk_driver = {
|
|
"msk",
|
|
msk_methods,
|
|
sizeof(struct msk_if_softc)
|
|
};
|
|
|
|
static devclass_t msk_devclass;
|
|
|
|
DRIVER_MODULE(mskc, pci, mskc_driver, mskc_devclass, 0, 0);
|
|
DRIVER_MODULE(msk, mskc, msk_driver, msk_devclass, 0, 0);
|
|
DRIVER_MODULE(miibus, msk, miibus_driver, miibus_devclass, 0, 0);
|
|
|
|
static struct resource_spec msk_res_spec_io[] = {
|
|
{ SYS_RES_IOPORT, PCIR_BAR(1), RF_ACTIVE },
|
|
{ -1, 0, 0 }
|
|
};
|
|
|
|
static struct resource_spec msk_res_spec_mem[] = {
|
|
{ SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE },
|
|
{ -1, 0, 0 }
|
|
};
|
|
|
|
static struct resource_spec msk_irq_spec_legacy[] = {
|
|
{ SYS_RES_IRQ, 0, RF_ACTIVE | RF_SHAREABLE },
|
|
{ -1, 0, 0 }
|
|
};
|
|
|
|
static struct resource_spec msk_irq_spec_msi[] = {
|
|
{ SYS_RES_IRQ, 1, RF_ACTIVE },
|
|
{ SYS_RES_IRQ, 2, RF_ACTIVE },
|
|
{ -1, 0, 0 }
|
|
};
|
|
|
|
static int
|
|
msk_miibus_readreg(device_t dev, int phy, int reg)
|
|
{
|
|
struct msk_if_softc *sc_if;
|
|
|
|
sc_if = device_get_softc(dev);
|
|
|
|
return (msk_phy_readreg(sc_if, phy, reg));
|
|
}
|
|
|
|
static int
|
|
msk_phy_readreg(struct msk_if_softc *sc_if, int phy, int reg)
|
|
{
|
|
struct msk_softc *sc;
|
|
int i, val;
|
|
|
|
sc = sc_if->msk_softc;
|
|
|
|
GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
|
|
GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
|
|
|
|
for (i = 0; i < MSK_TIMEOUT; i++) {
|
|
DELAY(1);
|
|
val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL);
|
|
if ((val & GM_SMI_CT_RD_VAL) != 0) {
|
|
val = GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_DATA);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i == MSK_TIMEOUT) {
|
|
if_printf(sc_if->msk_ifp, "phy failed to come ready\n");
|
|
val = 0;
|
|
}
|
|
|
|
return (val);
|
|
}
|
|
|
|
static int
|
|
msk_miibus_writereg(device_t dev, int phy, int reg, int val)
|
|
{
|
|
struct msk_if_softc *sc_if;
|
|
|
|
sc_if = device_get_softc(dev);
|
|
|
|
return (msk_phy_writereg(sc_if, phy, reg, val));
|
|
}
|
|
|
|
static int
|
|
msk_phy_writereg(struct msk_if_softc *sc_if, int phy, int reg, int val)
|
|
{
|
|
struct msk_softc *sc;
|
|
int i;
|
|
|
|
sc = sc_if->msk_softc;
|
|
|
|
GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_DATA, val);
|
|
GMAC_WRITE_2(sc, sc_if->msk_port, GM_SMI_CTRL,
|
|
GM_SMI_CT_PHY_AD(phy) | GM_SMI_CT_REG_AD(reg));
|
|
for (i = 0; i < MSK_TIMEOUT; i++) {
|
|
DELAY(1);
|
|
if ((GMAC_READ_2(sc, sc_if->msk_port, GM_SMI_CTRL) &
|
|
GM_SMI_CT_BUSY) == 0)
|
|
break;
|
|
}
|
|
if (i == MSK_TIMEOUT)
|
|
if_printf(sc_if->msk_ifp, "phy write timeout\n");
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
msk_miibus_statchg(device_t dev)
|
|
{
|
|
struct msk_if_softc *sc_if;
|
|
|
|
sc_if = device_get_softc(dev);
|
|
taskqueue_enqueue(taskqueue_swi, &sc_if->msk_link_task);
|
|
}
|
|
|
|
static void
|
|
msk_link_task(void *arg, int pending)
|
|
{
|
|
struct msk_softc *sc;
|
|
struct msk_if_softc *sc_if;
|
|
struct mii_data *mii;
|
|
struct ifnet *ifp;
|
|
uint32_t gmac;
|
|
|
|
sc_if = (struct msk_if_softc *)arg;
|
|
sc = sc_if->msk_softc;
|
|
|
|
MSK_IF_LOCK(sc_if);
|
|
|
|
mii = device_get_softc(sc_if->msk_miibus);
|
|
ifp = sc_if->msk_ifp;
|
|
if (mii == NULL || ifp == NULL) {
|
|
MSK_IF_UNLOCK(sc_if);
|
|
return;
|
|
}
|
|
|
|
if (mii->mii_media_status & IFM_ACTIVE) {
|
|
if (IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
|
|
sc_if->msk_link = 1;
|
|
} else
|
|
sc_if->msk_link = 0;
|
|
|
|
if (sc_if->msk_link != 0) {
|
|
/* Enable Tx FIFO Underrun. */
|
|
CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK),
|
|
GM_IS_TX_FF_UR | GM_IS_RX_FF_OR);
|
|
/*
|
|
* Because mii(4) notify msk(4) that it detected link status
|
|
* change, there is no need to enable automatic
|
|
* speed/flow-control/duplex updates.
|
|
*/
|
|
gmac = GM_GPCR_AU_ALL_DIS;
|
|
switch (IFM_SUBTYPE(mii->mii_media_active)) {
|
|
case IFM_1000_SX:
|
|
case IFM_1000_T:
|
|
gmac |= GM_GPCR_SPEED_1000;
|
|
break;
|
|
case IFM_100_TX:
|
|
gmac |= GM_GPCR_SPEED_100;
|
|
break;
|
|
case IFM_10_T:
|
|
break;
|
|
}
|
|
|
|
if (((mii->mii_media_active & IFM_GMASK) & IFM_FDX) != 0)
|
|
gmac |= GM_GPCR_DUP_FULL;
|
|
/* Disable Rx flow control. */
|
|
if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG0) == 0)
|
|
gmac |= GM_GPCR_FC_RX_DIS;
|
|
/* Disable Tx flow control. */
|
|
if (((mii->mii_media_active & IFM_GMASK) & IFM_FLAG1) == 0)
|
|
gmac |= GM_GPCR_FC_TX_DIS;
|
|
gmac |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
|
|
GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
|
|
/* Read again to ensure writing. */
|
|
GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
|
|
|
|
gmac = GMC_PAUSE_ON;
|
|
if (((mii->mii_media_active & IFM_GMASK) &
|
|
(IFM_FLAG0 | IFM_FLAG1)) == 0)
|
|
gmac = GMC_PAUSE_OFF;
|
|
/* Diable pause for 10/100 Mbps in half-duplex mode. */
|
|
if ((((mii->mii_media_active & IFM_GMASK) & IFM_FDX) == 0) &&
|
|
(IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX ||
|
|
IFM_SUBTYPE(mii->mii_media_active) == IFM_10_T))
|
|
gmac = GMC_PAUSE_OFF;
|
|
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), gmac);
|
|
|
|
/* Enable PHY interrupt for FIFO underrun/overflow. */
|
|
if (sc->msk_marvell_phy)
|
|
msk_phy_writereg(sc_if, PHY_ADDR_MARV,
|
|
PHY_MARV_INT_MASK, PHY_M_IS_FIFO_ERROR);
|
|
} else {
|
|
/*
|
|
* Link state changed to down.
|
|
* Disable PHY interrupts.
|
|
*/
|
|
if (sc->msk_marvell_phy)
|
|
msk_phy_writereg(sc_if, PHY_ADDR_MARV,
|
|
PHY_MARV_INT_MASK, 0);
|
|
/* Disable Rx/Tx MAC. */
|
|
gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
|
|
gmac &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
|
|
GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
|
|
/* Read again to ensure writing. */
|
|
GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
|
|
}
|
|
|
|
MSK_IF_UNLOCK(sc_if);
|
|
}
|
|
|
|
static void
|
|
msk_setmulti(struct msk_if_softc *sc_if)
|
|
{
|
|
struct msk_softc *sc;
|
|
struct ifnet *ifp;
|
|
struct ifmultiaddr *ifma;
|
|
uint32_t mchash[2];
|
|
uint32_t crc;
|
|
uint16_t mode;
|
|
|
|
sc = sc_if->msk_softc;
|
|
|
|
MSK_IF_LOCK_ASSERT(sc_if);
|
|
|
|
ifp = sc_if->msk_ifp;
|
|
|
|
bzero(mchash, sizeof(mchash));
|
|
mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
|
|
mode |= GM_RXCR_UCF_ENA;
|
|
if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
|
|
if ((ifp->if_flags & IFF_PROMISC) != 0)
|
|
mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
|
|
else if ((ifp->if_flags & IFF_ALLMULTI) != 0) {
|
|
mchash[0] = 0xffff;
|
|
mchash[1] = 0xffff;
|
|
}
|
|
} else {
|
|
IF_ADDR_LOCK(ifp);
|
|
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
|
|
if (ifma->ifma_addr->sa_family != AF_LINK)
|
|
continue;
|
|
crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
|
|
ifma->ifma_addr), ETHER_ADDR_LEN);
|
|
/* Just want the 6 least significant bits. */
|
|
crc &= 0x3f;
|
|
/* Set the corresponding bit in the hash table. */
|
|
mchash[crc >> 5] |= 1 << (crc & 0x1f);
|
|
}
|
|
IF_ADDR_UNLOCK(ifp);
|
|
mode |= GM_RXCR_MCF_ENA;
|
|
}
|
|
|
|
GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H1,
|
|
mchash[0] & 0xffff);
|
|
GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H2,
|
|
(mchash[0] >> 16) & 0xffff);
|
|
GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H3,
|
|
mchash[1] & 0xffff);
|
|
GMAC_WRITE_2(sc, sc_if->msk_port, GM_MC_ADDR_H4,
|
|
(mchash[1] >> 16) & 0xffff);
|
|
GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
|
|
}
|
|
|
|
static void
|
|
msk_setvlan(struct msk_if_softc *sc_if, struct ifnet *ifp)
|
|
{
|
|
struct msk_softc *sc;
|
|
|
|
sc = sc_if->msk_softc;
|
|
if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
|
|
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
|
|
RX_VLAN_STRIP_ON);
|
|
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
|
|
TX_VLAN_TAG_ON);
|
|
} else {
|
|
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
|
|
RX_VLAN_STRIP_OFF);
|
|
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
|
|
TX_VLAN_TAG_OFF);
|
|
}
|
|
}
|
|
|
|
static void
|
|
msk_setpromisc(struct msk_if_softc *sc_if)
|
|
{
|
|
struct msk_softc *sc;
|
|
struct ifnet *ifp;
|
|
uint16_t mode;
|
|
|
|
MSK_IF_LOCK_ASSERT(sc_if);
|
|
|
|
sc = sc_if->msk_softc;
|
|
ifp = sc_if->msk_ifp;
|
|
|
|
mode = GMAC_READ_2(sc, sc_if->msk_port, GM_RX_CTRL);
|
|
if (ifp->if_flags & IFF_PROMISC)
|
|
mode &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
|
|
else
|
|
mode |= (GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
|
|
GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, mode);
|
|
}
|
|
|
|
static int
|
|
msk_init_rx_ring(struct msk_if_softc *sc_if)
|
|
{
|
|
struct msk_ring_data *rd;
|
|
struct msk_rxdesc *rxd;
|
|
int i, prod;
|
|
|
|
MSK_IF_LOCK_ASSERT(sc_if);
|
|
|
|
sc_if->msk_cdata.msk_rx_cons = 0;
|
|
sc_if->msk_cdata.msk_rx_prod = 0;
|
|
sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
|
|
|
|
rd = &sc_if->msk_rdata;
|
|
bzero(rd->msk_rx_ring, sizeof(struct msk_rx_desc) * MSK_RX_RING_CNT);
|
|
prod = sc_if->msk_cdata.msk_rx_prod;
|
|
for (i = 0; i < MSK_RX_RING_CNT; i++) {
|
|
rxd = &sc_if->msk_cdata.msk_rxdesc[prod];
|
|
rxd->rx_m = NULL;
|
|
rxd->rx_le = &rd->msk_rx_ring[prod];
|
|
if (msk_newbuf(sc_if, prod) != 0)
|
|
return (ENOBUFS);
|
|
MSK_INC(prod, MSK_RX_RING_CNT);
|
|
}
|
|
|
|
bus_dmamap_sync(sc_if->msk_cdata.msk_rx_ring_tag,
|
|
sc_if->msk_cdata.msk_rx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Update prefetch unit. */
|
|
sc_if->msk_cdata.msk_rx_prod = MSK_RX_RING_CNT - 1;
|
|
CSR_WRITE_2(sc_if->msk_softc,
|
|
Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
|
|
sc_if->msk_cdata.msk_rx_prod);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
msk_init_jumbo_rx_ring(struct msk_if_softc *sc_if)
|
|
{
|
|
struct msk_ring_data *rd;
|
|
struct msk_rxdesc *rxd;
|
|
int i, prod;
|
|
|
|
MSK_IF_LOCK_ASSERT(sc_if);
|
|
|
|
sc_if->msk_cdata.msk_rx_cons = 0;
|
|
sc_if->msk_cdata.msk_rx_prod = 0;
|
|
sc_if->msk_cdata.msk_rx_putwm = MSK_PUT_WM;
|
|
|
|
rd = &sc_if->msk_rdata;
|
|
bzero(rd->msk_jumbo_rx_ring,
|
|
sizeof(struct msk_rx_desc) * MSK_JUMBO_RX_RING_CNT);
|
|
prod = sc_if->msk_cdata.msk_rx_prod;
|
|
for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
|
|
rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[prod];
|
|
rxd->rx_m = NULL;
|
|
rxd->rx_le = &rd->msk_jumbo_rx_ring[prod];
|
|
if (msk_jumbo_newbuf(sc_if, prod) != 0)
|
|
return (ENOBUFS);
|
|
MSK_INC(prod, MSK_JUMBO_RX_RING_CNT);
|
|
}
|
|
|
|
bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
|
|
sc_if->msk_cdata.msk_jumbo_rx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
sc_if->msk_cdata.msk_rx_prod = MSK_JUMBO_RX_RING_CNT - 1;
|
|
CSR_WRITE_2(sc_if->msk_softc,
|
|
Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_PUT_IDX_REG),
|
|
sc_if->msk_cdata.msk_rx_prod);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
msk_init_tx_ring(struct msk_if_softc *sc_if)
|
|
{
|
|
struct msk_ring_data *rd;
|
|
struct msk_txdesc *txd;
|
|
int i;
|
|
|
|
sc_if->msk_cdata.msk_tso_mtu = 0;
|
|
sc_if->msk_cdata.msk_tx_prod = 0;
|
|
sc_if->msk_cdata.msk_tx_cons = 0;
|
|
sc_if->msk_cdata.msk_tx_cnt = 0;
|
|
|
|
rd = &sc_if->msk_rdata;
|
|
bzero(rd->msk_tx_ring, sizeof(struct msk_tx_desc) * MSK_TX_RING_CNT);
|
|
for (i = 0; i < MSK_TX_RING_CNT; i++) {
|
|
txd = &sc_if->msk_cdata.msk_txdesc[i];
|
|
txd->tx_m = NULL;
|
|
txd->tx_le = &rd->msk_tx_ring[i];
|
|
}
|
|
|
|
bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
|
|
sc_if->msk_cdata.msk_tx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
static __inline void
|
|
msk_discard_rxbuf(struct msk_if_softc *sc_if, int idx)
|
|
{
|
|
struct msk_rx_desc *rx_le;
|
|
struct msk_rxdesc *rxd;
|
|
struct mbuf *m;
|
|
|
|
rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
|
|
m = rxd->rx_m;
|
|
rx_le = rxd->rx_le;
|
|
rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
|
|
}
|
|
|
|
static __inline void
|
|
msk_discard_jumbo_rxbuf(struct msk_if_softc *sc_if, int idx)
|
|
{
|
|
struct msk_rx_desc *rx_le;
|
|
struct msk_rxdesc *rxd;
|
|
struct mbuf *m;
|
|
|
|
rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
|
|
m = rxd->rx_m;
|
|
rx_le = rxd->rx_le;
|
|
rx_le->msk_control = htole32(m->m_len | OP_PACKET | HW_OWNER);
|
|
}
|
|
|
|
static int
|
|
msk_newbuf(struct msk_if_softc *sc_if, int idx)
|
|
{
|
|
struct msk_rx_desc *rx_le;
|
|
struct msk_rxdesc *rxd;
|
|
struct mbuf *m;
|
|
bus_dma_segment_t segs[1];
|
|
bus_dmamap_t map;
|
|
int nsegs;
|
|
|
|
m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
|
|
m->m_len = m->m_pkthdr.len = MCLBYTES;
|
|
m_adj(m, ETHER_ALIGN);
|
|
|
|
if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_rx_tag,
|
|
sc_if->msk_cdata.msk_rx_sparemap, m, segs, &nsegs,
|
|
BUS_DMA_NOWAIT) != 0) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
|
|
|
|
rxd = &sc_if->msk_cdata.msk_rxdesc[idx];
|
|
if (rxd->rx_m != NULL) {
|
|
bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap);
|
|
}
|
|
map = rxd->rx_dmamap;
|
|
rxd->rx_dmamap = sc_if->msk_cdata.msk_rx_sparemap;
|
|
sc_if->msk_cdata.msk_rx_sparemap = map;
|
|
bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag, rxd->rx_dmamap,
|
|
BUS_DMASYNC_PREREAD);
|
|
rxd->rx_m = m;
|
|
rx_le = rxd->rx_le;
|
|
rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
|
|
rx_le->msk_control =
|
|
htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
msk_jumbo_newbuf(struct msk_if_softc *sc_if, int idx)
|
|
{
|
|
struct msk_rx_desc *rx_le;
|
|
struct msk_rxdesc *rxd;
|
|
struct mbuf *m;
|
|
bus_dma_segment_t segs[1];
|
|
bus_dmamap_t map;
|
|
int nsegs;
|
|
void *buf;
|
|
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
buf = msk_jalloc(sc_if);
|
|
if (buf == NULL) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
/* Attach the buffer to the mbuf. */
|
|
MEXTADD(m, buf, MSK_JLEN, msk_jfree, (struct msk_if_softc *)sc_if, 0,
|
|
EXT_NET_DRV);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
m->m_pkthdr.len = m->m_len = MSK_JLEN;
|
|
m_adj(m, ETHER_ALIGN);
|
|
|
|
if (bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_jumbo_rx_tag,
|
|
sc_if->msk_cdata.msk_jumbo_rx_sparemap, m, segs, &nsegs,
|
|
BUS_DMA_NOWAIT) != 0) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
|
|
|
|
rxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[idx];
|
|
if (rxd->rx_m != NULL) {
|
|
bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
|
|
rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
|
|
rxd->rx_dmamap);
|
|
}
|
|
map = rxd->rx_dmamap;
|
|
rxd->rx_dmamap = sc_if->msk_cdata.msk_jumbo_rx_sparemap;
|
|
sc_if->msk_cdata.msk_jumbo_rx_sparemap = map;
|
|
bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag, rxd->rx_dmamap,
|
|
BUS_DMASYNC_PREREAD);
|
|
rxd->rx_m = m;
|
|
rx_le = rxd->rx_le;
|
|
rx_le->msk_addr = htole32(MSK_ADDR_LO(segs[0].ds_addr));
|
|
rx_le->msk_control =
|
|
htole32(segs[0].ds_len | OP_PACKET | HW_OWNER);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Set media options.
|
|
*/
|
|
static int
|
|
msk_mediachange(struct ifnet *ifp)
|
|
{
|
|
struct msk_if_softc *sc_if;
|
|
struct mii_data *mii;
|
|
|
|
sc_if = ifp->if_softc;
|
|
|
|
MSK_IF_LOCK(sc_if);
|
|
mii = device_get_softc(sc_if->msk_miibus);
|
|
mii_mediachg(mii);
|
|
MSK_IF_UNLOCK(sc_if);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Report current media status.
|
|
*/
|
|
static void
|
|
msk_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct msk_if_softc *sc_if;
|
|
struct mii_data *mii;
|
|
|
|
sc_if = ifp->if_softc;
|
|
MSK_IF_LOCK(sc_if);
|
|
mii = device_get_softc(sc_if->msk_miibus);
|
|
|
|
mii_pollstat(mii);
|
|
MSK_IF_UNLOCK(sc_if);
|
|
ifmr->ifm_active = mii->mii_media_active;
|
|
ifmr->ifm_status = mii->mii_media_status;
|
|
}
|
|
|
|
static int
|
|
msk_ioctl(struct ifnet *ifp, u_long command, caddr_t data)
|
|
{
|
|
struct msk_if_softc *sc_if;
|
|
struct ifreq *ifr;
|
|
struct mii_data *mii;
|
|
int error, mask;
|
|
|
|
sc_if = ifp->if_softc;
|
|
ifr = (struct ifreq *)data;
|
|
error = 0;
|
|
|
|
switch(command) {
|
|
case SIOCSIFMTU:
|
|
if (ifr->ifr_mtu > MSK_JUMBO_MTU || ifr->ifr_mtu < ETHERMIN) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
if (sc_if->msk_softc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
|
|
ifr->ifr_mtu > MSK_MAX_FRAMELEN) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
MSK_IF_LOCK(sc_if);
|
|
ifp->if_mtu = ifr->ifr_mtu;
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
|
|
msk_init_locked(sc_if);
|
|
MSK_IF_UNLOCK(sc_if);
|
|
break;
|
|
case SIOCSIFFLAGS:
|
|
MSK_IF_LOCK(sc_if);
|
|
if ((ifp->if_flags & IFF_UP) != 0) {
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
|
|
if (((ifp->if_flags ^ sc_if->msk_if_flags)
|
|
& IFF_PROMISC) != 0) {
|
|
msk_setpromisc(sc_if);
|
|
msk_setmulti(sc_if);
|
|
}
|
|
} else {
|
|
if (sc_if->msk_detach == 0)
|
|
msk_init_locked(sc_if);
|
|
}
|
|
} else {
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
|
|
msk_stop(sc_if);
|
|
}
|
|
sc_if->msk_if_flags = ifp->if_flags;
|
|
MSK_IF_UNLOCK(sc_if);
|
|
break;
|
|
case SIOCADDMULTI:
|
|
case SIOCDELMULTI:
|
|
MSK_IF_LOCK(sc_if);
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
|
|
msk_setmulti(sc_if);
|
|
MSK_IF_UNLOCK(sc_if);
|
|
break;
|
|
case SIOCGIFMEDIA:
|
|
case SIOCSIFMEDIA:
|
|
mii = device_get_softc(sc_if->msk_miibus);
|
|
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
|
|
break;
|
|
case SIOCSIFCAP:
|
|
MSK_IF_LOCK(sc_if);
|
|
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
|
|
if ((mask & IFCAP_TXCSUM) != 0) {
|
|
ifp->if_capenable ^= IFCAP_TXCSUM;
|
|
if ((IFCAP_TXCSUM & ifp->if_capenable) != 0 &&
|
|
(IFCAP_TXCSUM & ifp->if_capabilities) != 0)
|
|
ifp->if_hwassist |= MSK_CSUM_FEATURES;
|
|
else
|
|
ifp->if_hwassist &= ~MSK_CSUM_FEATURES;
|
|
}
|
|
if ((mask & IFCAP_VLAN_HWTAGGING) != 0) {
|
|
ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
|
|
msk_setvlan(sc_if, ifp);
|
|
}
|
|
|
|
if ((mask & IFCAP_TSO4) != 0) {
|
|
ifp->if_capenable ^= IFCAP_TSO4;
|
|
if ((IFCAP_TSO4 & ifp->if_capenable) != 0 &&
|
|
(IFCAP_TSO4 & ifp->if_capabilities) != 0)
|
|
ifp->if_hwassist |= CSUM_TSO;
|
|
else
|
|
ifp->if_hwassist &= ~CSUM_TSO;
|
|
}
|
|
VLAN_CAPABILITIES(ifp);
|
|
MSK_IF_UNLOCK(sc_if);
|
|
break;
|
|
default:
|
|
error = ether_ioctl(ifp, command, data);
|
|
break;
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
mskc_probe(device_t dev)
|
|
{
|
|
struct msk_product *mp;
|
|
uint16_t vendor, devid;
|
|
int i;
|
|
|
|
vendor = pci_get_vendor(dev);
|
|
devid = pci_get_device(dev);
|
|
mp = msk_products;
|
|
for (i = 0; i < sizeof(msk_products)/sizeof(msk_products[0]);
|
|
i++, mp++) {
|
|
if (vendor == mp->msk_vendorid && devid == mp->msk_deviceid) {
|
|
device_set_desc(dev, mp->msk_name);
|
|
return (BUS_PROBE_DEFAULT);
|
|
}
|
|
}
|
|
|
|
return (ENXIO);
|
|
}
|
|
|
|
static int
|
|
mskc_setup_rambuffer(struct msk_softc *sc)
|
|
{
|
|
int totqsize, minqsize;
|
|
int avail, next;
|
|
int i;
|
|
uint8_t val;
|
|
|
|
/* Get adapter SRAM size. */
|
|
val = CSR_READ_1(sc, B2_E_0);
|
|
sc->msk_ramsize = (val == 0) ? 128 : val * 4;
|
|
if (sc->msk_hw_id == CHIP_ID_YUKON_FE)
|
|
sc->msk_ramsize = 4 * 4;
|
|
if (bootverbose)
|
|
device_printf(sc->msk_dev,
|
|
"RAM buffer size : %dKB\n", sc->msk_ramsize);
|
|
|
|
totqsize = sc->msk_ramsize * sc->msk_num_port;
|
|
minqsize = MSK_MIN_RXQ_SIZE + MSK_MIN_TXQ_SIZE;
|
|
if (minqsize > sc->msk_ramsize)
|
|
minqsize = sc->msk_ramsize;
|
|
|
|
if (minqsize * sc->msk_num_port > totqsize) {
|
|
device_printf(sc->msk_dev,
|
|
"not enough RAM buffer memory : %d/%dKB\n",
|
|
minqsize * sc->msk_num_port, totqsize);
|
|
return (ENOSPC);
|
|
}
|
|
|
|
avail = totqsize;
|
|
if (sc->msk_num_port > 1) {
|
|
/*
|
|
* Divide up the memory evenly so that everyone gets a
|
|
* fair share for dual port adapters.
|
|
*/
|
|
avail = sc->msk_ramsize;
|
|
}
|
|
|
|
/* Take away the minimum memory for active queues. */
|
|
avail -= minqsize;
|
|
/* Rx queue gets the minimum + 80% of the rest. */
|
|
sc->msk_rxqsize =
|
|
(avail * MSK_RAM_QUOTA_RX) / 100 + MSK_MIN_RXQ_SIZE;
|
|
avail -= (sc->msk_rxqsize - MSK_MIN_RXQ_SIZE);
|
|
sc->msk_txqsize = avail + MSK_MIN_TXQ_SIZE;
|
|
|
|
for (i = 0, next = 0; i < sc->msk_num_port; i++) {
|
|
sc->msk_rxqstart[i] = next;
|
|
sc->msk_rxqend[i] = next + (sc->msk_rxqsize * 1024) - 1;
|
|
next = sc->msk_rxqend[i] + 1;
|
|
sc->msk_txqstart[i] = next;
|
|
sc->msk_txqend[i] = next + (sc->msk_txqsize * 1024) - 1;
|
|
next = sc->msk_txqend[i] + 1;
|
|
if (bootverbose) {
|
|
device_printf(sc->msk_dev,
|
|
"Port %d : Rx Queue %dKB(0x%08x:0x%08x)\n", i,
|
|
sc->msk_rxqsize, sc->msk_rxqstart[i],
|
|
sc->msk_rxqend[i]);
|
|
device_printf(sc->msk_dev,
|
|
"Port %d : Tx Queue %dKB(0x%08x:0x%08x)\n", i,
|
|
sc->msk_txqsize, sc->msk_txqstart[i],
|
|
sc->msk_txqend[i]);
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
msk_phy_power(struct msk_softc *sc, int mode)
|
|
{
|
|
uint32_t val;
|
|
int i;
|
|
|
|
switch (mode) {
|
|
case MSK_PHY_POWERUP:
|
|
/* Switch power to VCC (WA for VAUX problem). */
|
|
CSR_WRITE_1(sc, B0_POWER_CTRL,
|
|
PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
|
|
/* Disable Core Clock Division, set Clock Select to 0. */
|
|
CSR_WRITE_4(sc, B2_Y2_CLK_CTRL, Y2_CLK_DIV_DIS);
|
|
|
|
val = 0;
|
|
if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
|
|
sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
|
|
/* Enable bits are inverted. */
|
|
val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
|
|
Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
|
|
Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
|
|
}
|
|
/*
|
|
* Enable PCI & Core Clock, enable clock gating for both Links.
|
|
*/
|
|
CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
|
|
|
|
val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
|
|
val &= ~(PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD);
|
|
if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
|
|
sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
|
|
/* Deassert Low Power for 1st PHY. */
|
|
val |= PCI_Y2_PHY1_COMA;
|
|
if (sc->msk_num_port > 1)
|
|
val |= PCI_Y2_PHY2_COMA;
|
|
} else if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
|
|
uint32_t our;
|
|
|
|
CSR_WRITE_2(sc, B0_CTST, Y2_HW_WOL_ON);
|
|
|
|
/* Enable all clocks. */
|
|
pci_write_config(sc->msk_dev, PCI_OUR_REG_3, 0, 4);
|
|
our = pci_read_config(sc->msk_dev, PCI_OUR_REG_4, 4);
|
|
our &= (PCI_FORCE_ASPM_REQUEST|PCI_ASPM_GPHY_LINK_DOWN|
|
|
PCI_ASPM_INT_FIFO_EMPTY|PCI_ASPM_CLKRUN_REQUEST);
|
|
/* Set all bits to 0 except bits 15..12. */
|
|
pci_write_config(sc->msk_dev, PCI_OUR_REG_4, our, 4);
|
|
/* Set to default value. */
|
|
pci_write_config(sc->msk_dev, PCI_OUR_REG_5, 0, 4);
|
|
}
|
|
/* Release PHY from PowerDown/COMA mode. */
|
|
pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
|
|
for (i = 0; i < sc->msk_num_port; i++) {
|
|
CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
|
|
GMLC_RST_SET);
|
|
CSR_WRITE_2(sc, MR_ADDR(i, GMAC_LINK_CTRL),
|
|
GMLC_RST_CLR);
|
|
}
|
|
break;
|
|
case MSK_PHY_POWERDOWN:
|
|
val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
|
|
val |= PCI_Y2_PHY1_POWD | PCI_Y2_PHY2_POWD;
|
|
if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
|
|
sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
|
|
val &= ~PCI_Y2_PHY1_COMA;
|
|
if (sc->msk_num_port > 1)
|
|
val &= ~PCI_Y2_PHY2_COMA;
|
|
}
|
|
pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
|
|
|
|
val = Y2_PCI_CLK_LNK1_DIS | Y2_COR_CLK_LNK1_DIS |
|
|
Y2_CLK_GAT_LNK1_DIS | Y2_PCI_CLK_LNK2_DIS |
|
|
Y2_COR_CLK_LNK2_DIS | Y2_CLK_GAT_LNK2_DIS;
|
|
if (sc->msk_hw_id == CHIP_ID_YUKON_XL &&
|
|
sc->msk_hw_rev > CHIP_REV_YU_XL_A1) {
|
|
/* Enable bits are inverted. */
|
|
val = 0;
|
|
}
|
|
/*
|
|
* Disable PCI & Core Clock, disable clock gating for
|
|
* both Links.
|
|
*/
|
|
CSR_WRITE_1(sc, B2_Y2_CLK_GATE, val);
|
|
CSR_WRITE_1(sc, B0_POWER_CTRL,
|
|
PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void
|
|
mskc_reset(struct msk_softc *sc)
|
|
{
|
|
bus_addr_t addr;
|
|
uint16_t status;
|
|
uint32_t val;
|
|
int i;
|
|
|
|
CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
|
|
|
|
/* Disable ASF. */
|
|
if (sc->msk_hw_id < CHIP_ID_YUKON_XL) {
|
|
CSR_WRITE_4(sc, B28_Y2_ASF_STAT_CMD, Y2_ASF_RESET);
|
|
CSR_WRITE_2(sc, B0_CTST, Y2_ASF_DISABLE);
|
|
}
|
|
/*
|
|
* Since we disabled ASF, S/W reset is required for Power Management.
|
|
*/
|
|
CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
|
|
CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
|
|
|
|
/* Clear all error bits in the PCI status register. */
|
|
status = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
|
|
CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
|
|
|
|
pci_write_config(sc->msk_dev, PCIR_STATUS, status |
|
|
PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
|
|
PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
|
|
CSR_WRITE_2(sc, B0_CTST, CS_MRST_CLR);
|
|
|
|
switch (sc->msk_bustype) {
|
|
case MSK_PEX_BUS:
|
|
/* Clear all PEX errors. */
|
|
CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
|
|
val = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
|
|
if ((val & PEX_RX_OV) != 0) {
|
|
sc->msk_intrmask &= ~Y2_IS_HW_ERR;
|
|
sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
|
|
}
|
|
break;
|
|
case MSK_PCI_BUS:
|
|
case MSK_PCIX_BUS:
|
|
/* Set Cache Line Size to 2(8bytes) if configured to 0. */
|
|
val = pci_read_config(sc->msk_dev, PCIR_CACHELNSZ, 1);
|
|
if (val == 0)
|
|
pci_write_config(sc->msk_dev, PCIR_CACHELNSZ, 2, 1);
|
|
if (sc->msk_bustype == MSK_PCIX_BUS) {
|
|
/* Set Cache Line Size opt. */
|
|
val = pci_read_config(sc->msk_dev, PCI_OUR_REG_1, 4);
|
|
val |= PCI_CLS_OPT;
|
|
pci_write_config(sc->msk_dev, PCI_OUR_REG_1, val, 4);
|
|
}
|
|
break;
|
|
}
|
|
/* Set PHY power state. */
|
|
msk_phy_power(sc, MSK_PHY_POWERUP);
|
|
|
|
/* Reset GPHY/GMAC Control */
|
|
for (i = 0; i < sc->msk_num_port; i++) {
|
|
/* GPHY Control reset. */
|
|
CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_SET);
|
|
CSR_WRITE_4(sc, MR_ADDR(i, GPHY_CTRL), GPC_RST_CLR);
|
|
/* GMAC Control reset. */
|
|
CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_SET);
|
|
CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_RST_CLR);
|
|
CSR_WRITE_4(sc, MR_ADDR(i, GMAC_CTRL), GMC_F_LOOPB_OFF);
|
|
}
|
|
CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
|
|
|
|
/* LED On. */
|
|
CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_ON);
|
|
|
|
/* Clear TWSI IRQ. */
|
|
CSR_WRITE_4(sc, B2_I2C_IRQ, I2C_CLR_IRQ);
|
|
|
|
/* Turn off hardware timer. */
|
|
CSR_WRITE_1(sc, B2_TI_CTRL, TIM_STOP);
|
|
CSR_WRITE_1(sc, B2_TI_CTRL, TIM_CLR_IRQ);
|
|
|
|
/* Turn off descriptor polling. */
|
|
CSR_WRITE_1(sc, B28_DPT_CTRL, DPT_STOP);
|
|
|
|
/* Turn off time stamps. */
|
|
CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_STOP);
|
|
CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
|
|
|
|
/* Configure timeout values. */
|
|
for (i = 0; i < sc->msk_num_port; i++) {
|
|
CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_SET);
|
|
CSR_WRITE_2(sc, SELECT_RAM_BUFFER(i, B3_RI_CTRL), RI_RST_CLR);
|
|
CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R1),
|
|
MSK_RI_TO_53);
|
|
CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA1),
|
|
MSK_RI_TO_53);
|
|
CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS1),
|
|
MSK_RI_TO_53);
|
|
CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R1),
|
|
MSK_RI_TO_53);
|
|
CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA1),
|
|
MSK_RI_TO_53);
|
|
CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS1),
|
|
MSK_RI_TO_53);
|
|
CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_R2),
|
|
MSK_RI_TO_53);
|
|
CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XA2),
|
|
MSK_RI_TO_53);
|
|
CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_WTO_XS2),
|
|
MSK_RI_TO_53);
|
|
CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_R2),
|
|
MSK_RI_TO_53);
|
|
CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XA2),
|
|
MSK_RI_TO_53);
|
|
CSR_WRITE_1(sc, SELECT_RAM_BUFFER(i, B3_RI_RTO_XS2),
|
|
MSK_RI_TO_53);
|
|
}
|
|
|
|
/* Disable all interrupts. */
|
|
CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
|
|
CSR_READ_4(sc, B0_HWE_IMSK);
|
|
CSR_WRITE_4(sc, B0_IMSK, 0);
|
|
CSR_READ_4(sc, B0_IMSK);
|
|
|
|
/*
|
|
* On dual port PCI-X card, there is an problem where status
|
|
* can be received out of order due to split transactions.
|
|
*/
|
|
if (sc->msk_bustype == MSK_PCIX_BUS && sc->msk_num_port > 1) {
|
|
int pcix;
|
|
uint16_t pcix_cmd;
|
|
|
|
if (pci_find_extcap(sc->msk_dev, PCIY_PCIX, &pcix) == 0) {
|
|
pcix_cmd = pci_read_config(sc->msk_dev, pcix + 2, 2);
|
|
/* Clear Max Outstanding Split Transactions. */
|
|
pcix_cmd &= ~0x70;
|
|
CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
|
|
pci_write_config(sc->msk_dev, pcix + 2, pcix_cmd, 2);
|
|
CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
|
|
}
|
|
}
|
|
if (sc->msk_bustype == MSK_PEX_BUS) {
|
|
uint16_t v, width;
|
|
|
|
v = pci_read_config(sc->msk_dev, PEX_DEV_CTRL, 2);
|
|
/* Change Max. Read Request Size to 4096 bytes. */
|
|
v &= ~PEX_DC_MAX_RRS_MSK;
|
|
v |= PEX_DC_MAX_RD_RQ_SIZE(5);
|
|
pci_write_config(sc->msk_dev, PEX_DEV_CTRL, v, 2);
|
|
width = pci_read_config(sc->msk_dev, PEX_LNK_STAT, 2);
|
|
width = (width & PEX_LS_LINK_WI_MSK) >> 4;
|
|
v = pci_read_config(sc->msk_dev, PEX_LNK_CAP, 2);
|
|
v = (v & PEX_LS_LINK_WI_MSK) >> 4;
|
|
if (v != width)
|
|
device_printf(sc->msk_dev,
|
|
"negotiated width of link(x%d) != "
|
|
"max. width of link(x%d)\n", width, v);
|
|
}
|
|
|
|
/* Clear status list. */
|
|
bzero(sc->msk_stat_ring,
|
|
sizeof(struct msk_stat_desc) * MSK_STAT_RING_CNT);
|
|
sc->msk_stat_cons = 0;
|
|
bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_SET);
|
|
CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_RST_CLR);
|
|
/* Set the status list base address. */
|
|
addr = sc->msk_stat_ring_paddr;
|
|
CSR_WRITE_4(sc, STAT_LIST_ADDR_LO, MSK_ADDR_LO(addr));
|
|
CSR_WRITE_4(sc, STAT_LIST_ADDR_HI, MSK_ADDR_HI(addr));
|
|
/* Set the status list last index. */
|
|
CSR_WRITE_2(sc, STAT_LAST_IDX, MSK_STAT_RING_CNT - 1);
|
|
if (HW_FEATURE(sc, HWF_WA_DEV_43_418)) {
|
|
/* WA for dev. #4.3 */
|
|
CSR_WRITE_2(sc, STAT_TX_IDX_TH, ST_TXTH_IDX_MASK);
|
|
/* WA for dev. #4.18 */
|
|
CSR_WRITE_1(sc, STAT_FIFO_WM, 0x21);
|
|
CSR_WRITE_1(sc, STAT_FIFO_ISR_WM, 0x07);
|
|
} else {
|
|
CSR_WRITE_2(sc, STAT_TX_IDX_TH, 0x0a);
|
|
CSR_WRITE_1(sc, STAT_FIFO_WM, 0x10);
|
|
CSR_WRITE_1(sc, STAT_FIFO_ISR_WM,
|
|
HW_FEATURE(sc, HWF_WA_DEV_4109) ? 0x10 : 0x04);
|
|
CSR_WRITE_4(sc, STAT_ISR_TIMER_INI, 0x0190);
|
|
}
|
|
/*
|
|
* Use default value for STAT_ISR_TIMER_INI, STAT_LEV_TIMER_INI.
|
|
*/
|
|
CSR_WRITE_4(sc, STAT_TX_TIMER_INI, MSK_USECS(sc, 1000));
|
|
|
|
/* Enable status unit. */
|
|
CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_OP_ON);
|
|
|
|
CSR_WRITE_1(sc, STAT_TX_TIMER_CTRL, TIM_START);
|
|
CSR_WRITE_1(sc, STAT_LEV_TIMER_CTRL, TIM_START);
|
|
CSR_WRITE_1(sc, STAT_ISR_TIMER_CTRL, TIM_START);
|
|
}
|
|
|
|
static int
|
|
msk_probe(device_t dev)
|
|
{
|
|
struct msk_softc *sc;
|
|
char desc[100];
|
|
|
|
sc = device_get_softc(device_get_parent(dev));
|
|
/*
|
|
* Not much to do here. We always know there will be
|
|
* at least one GMAC present, and if there are two,
|
|
* mskc_attach() will create a second device instance
|
|
* for us.
|
|
*/
|
|
snprintf(desc, sizeof(desc),
|
|
"Marvell Technology Group Ltd. %s Id 0x%02x Rev 0x%02x",
|
|
model_name[sc->msk_hw_id - CHIP_ID_YUKON_XL], sc->msk_hw_id,
|
|
sc->msk_hw_rev);
|
|
device_set_desc_copy(dev, desc);
|
|
|
|
return (BUS_PROBE_DEFAULT);
|
|
}
|
|
|
|
static int
|
|
msk_attach(device_t dev)
|
|
{
|
|
struct msk_softc *sc;
|
|
struct msk_if_softc *sc_if;
|
|
struct ifnet *ifp;
|
|
int i, port, error;
|
|
uint8_t eaddr[6];
|
|
|
|
if (dev == NULL)
|
|
return (EINVAL);
|
|
|
|
error = 0;
|
|
sc_if = device_get_softc(dev);
|
|
sc = device_get_softc(device_get_parent(dev));
|
|
port = *(int *)device_get_ivars(dev);
|
|
|
|
sc_if->msk_if_dev = dev;
|
|
sc_if->msk_port = port;
|
|
sc_if->msk_softc = sc;
|
|
sc->msk_if[port] = sc_if;
|
|
/* Setup Tx/Rx queue register offsets. */
|
|
if (port == MSK_PORT_A) {
|
|
sc_if->msk_txq = Q_XA1;
|
|
sc_if->msk_txsq = Q_XS1;
|
|
sc_if->msk_rxq = Q_R1;
|
|
} else {
|
|
sc_if->msk_txq = Q_XA2;
|
|
sc_if->msk_txsq = Q_XS2;
|
|
sc_if->msk_rxq = Q_R2;
|
|
}
|
|
|
|
callout_init_mtx(&sc_if->msk_tick_ch, &sc_if->msk_softc->msk_mtx, 0);
|
|
TASK_INIT(&sc_if->msk_link_task, 0, msk_link_task, sc_if);
|
|
|
|
if ((error = msk_txrx_dma_alloc(sc_if) != 0))
|
|
goto fail;
|
|
|
|
ifp = sc_if->msk_ifp = if_alloc(IFT_ETHER);
|
|
if (ifp == NULL) {
|
|
device_printf(sc_if->msk_if_dev, "can not if_alloc()\n");
|
|
error = ENOSPC;
|
|
goto fail;
|
|
}
|
|
ifp->if_softc = sc_if;
|
|
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
|
|
ifp->if_mtu = ETHERMTU;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
/*
|
|
* IFCAP_RXCSUM capability is intentionally disabled as the hardware
|
|
* has serious bug in Rx checksum offload for all Yukon II family
|
|
* hardware. It seems there is a workaround to make it work somtimes.
|
|
* However, the workaround also have to check OP code sequences to
|
|
* verify whether the OP code is correct. Sometimes it should compute
|
|
* IP/TCP/UDP checksum in driver in order to verify correctness of
|
|
* checksum computed by hardware. If you have to compute checksum
|
|
* with software to verify the hardware's checksum why have hardware
|
|
* compute the checksum? I think there is no reason to spend time to
|
|
* make Rx checksum offload work on Yukon II hardware.
|
|
*/
|
|
ifp->if_capabilities = IFCAP_TXCSUM;
|
|
ifp->if_hwassist = MSK_CSUM_FEATURES;
|
|
if (sc->msk_hw_id != CHIP_ID_YUKON_EC_U) {
|
|
/* It seems Yukon EC Ultra doesn't support TSO. */
|
|
ifp->if_capabilities |= IFCAP_TSO4;
|
|
ifp->if_hwassist |= CSUM_TSO;
|
|
}
|
|
ifp->if_capenable = ifp->if_capabilities;
|
|
ifp->if_ioctl = msk_ioctl;
|
|
ifp->if_start = msk_start;
|
|
ifp->if_timer = 0;
|
|
ifp->if_watchdog = NULL;
|
|
ifp->if_init = msk_init;
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, MSK_TX_RING_CNT - 1);
|
|
ifp->if_snd.ifq_drv_maxlen = MSK_TX_RING_CNT - 1;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
TASK_INIT(&sc_if->msk_tx_task, 1, msk_tx_task, ifp);
|
|
|
|
/*
|
|
* Get station address for this interface. Note that
|
|
* dual port cards actually come with three station
|
|
* addresses: one for each port, plus an extra. The
|
|
* extra one is used by the SysKonnect driver software
|
|
* as a 'virtual' station address for when both ports
|
|
* are operating in failover mode. Currently we don't
|
|
* use this extra address.
|
|
*/
|
|
MSK_IF_LOCK(sc_if);
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++)
|
|
eaddr[i] = CSR_READ_1(sc, B2_MAC_1 + (port * 8) + i);
|
|
|
|
/*
|
|
* Call MI attach routine. Can't hold locks when calling into ether_*.
|
|
*/
|
|
MSK_IF_UNLOCK(sc_if);
|
|
ether_ifattach(ifp, eaddr);
|
|
MSK_IF_LOCK(sc_if);
|
|
|
|
/* VLAN capability setup */
|
|
ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING;
|
|
if (ifp->if_capabilities & IFCAP_HWCSUM)
|
|
ifp->if_capabilities |= IFCAP_VLAN_HWCSUM;
|
|
ifp->if_capenable = ifp->if_capabilities;
|
|
|
|
/*
|
|
* Tell the upper layer(s) we support long frames.
|
|
* Must appear after the call to ether_ifattach() because
|
|
* ether_ifattach() sets ifi_hdrlen to the default value.
|
|
*/
|
|
ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
|
|
|
|
/*
|
|
* Do miibus setup.
|
|
*/
|
|
MSK_IF_UNLOCK(sc_if);
|
|
error = mii_phy_probe(dev, &sc_if->msk_miibus, msk_mediachange,
|
|
msk_mediastatus);
|
|
if (error != 0) {
|
|
device_printf(sc_if->msk_if_dev, "no PHY found!\n");
|
|
ether_ifdetach(ifp);
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
/* Check whether PHY Id is MARVELL. */
|
|
if (msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_ID0)
|
|
== PHY_MARV_ID0_VAL)
|
|
sc->msk_marvell_phy = 1;
|
|
|
|
fail:
|
|
if (error != 0) {
|
|
/* Access should be ok even though lock has been dropped */
|
|
sc->msk_if[port] = NULL;
|
|
msk_detach(dev);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Attach the interface. Allocate softc structures, do ifmedia
|
|
* setup and ethernet/BPF attach.
|
|
*/
|
|
static int
|
|
mskc_attach(device_t dev)
|
|
{
|
|
struct msk_softc *sc;
|
|
int error, msic, *port, reg;
|
|
|
|
sc = device_get_softc(dev);
|
|
sc->msk_dev = dev;
|
|
mtx_init(&sc->msk_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
|
|
MTX_DEF);
|
|
|
|
/*
|
|
* Map control/status registers.
|
|
*/
|
|
pci_enable_busmaster(dev);
|
|
|
|
/* Allocate I/O resource */
|
|
#ifdef MSK_USEIOSPACE
|
|
sc->msk_res_spec = msk_res_spec_io;
|
|
#else
|
|
sc->msk_res_spec = msk_res_spec_mem;
|
|
#endif
|
|
sc->msk_irq_spec = msk_irq_spec_legacy;
|
|
error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
|
|
if (error) {
|
|
if (sc->msk_res_spec == msk_res_spec_mem)
|
|
sc->msk_res_spec = msk_res_spec_io;
|
|
else
|
|
sc->msk_res_spec = msk_res_spec_mem;
|
|
error = bus_alloc_resources(dev, sc->msk_res_spec, sc->msk_res);
|
|
if (error) {
|
|
device_printf(dev, "couldn't allocate %s resources\n",
|
|
sc->msk_res_spec == msk_res_spec_mem ? "memory" :
|
|
"I/O");
|
|
mtx_destroy(&sc->msk_mtx);
|
|
return (ENXIO);
|
|
}
|
|
}
|
|
|
|
CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
|
|
sc->msk_hw_id = CSR_READ_1(sc, B2_CHIP_ID);
|
|
sc->msk_hw_rev = (CSR_READ_1(sc, B2_MAC_CFG) >> 4) & 0x0f;
|
|
/* Bail out if chip is not recognized. */
|
|
if (sc->msk_hw_id < CHIP_ID_YUKON_XL ||
|
|
sc->msk_hw_id > CHIP_ID_YUKON_FE) {
|
|
device_printf(dev, "unknown device: id=0x%02x, rev=0x%02x\n",
|
|
sc->msk_hw_id, sc->msk_hw_rev);
|
|
mtx_destroy(&sc->msk_mtx);
|
|
return (ENXIO);
|
|
}
|
|
|
|
SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
|
|
SYSCTL_CHILDREN(device_get_sysctl_tree(dev)),
|
|
OID_AUTO, "process_limit", CTLTYPE_INT | CTLFLAG_RW,
|
|
&sc->msk_process_limit, 0, sysctl_hw_msk_proc_limit, "I",
|
|
"max number of Rx events to process");
|
|
|
|
sc->msk_process_limit = MSK_PROC_DEFAULT;
|
|
error = resource_int_value(device_get_name(dev), device_get_unit(dev),
|
|
"process_limit", &sc->msk_process_limit);
|
|
if (error == 0) {
|
|
if (sc->msk_process_limit < MSK_PROC_MIN ||
|
|
sc->msk_process_limit > MSK_PROC_MAX) {
|
|
device_printf(dev, "process_limit value out of range; "
|
|
"using default: %d\n", MSK_PROC_DEFAULT);
|
|
sc->msk_process_limit = MSK_PROC_DEFAULT;
|
|
}
|
|
}
|
|
|
|
/* Soft reset. */
|
|
CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
|
|
CSR_WRITE_2(sc, B0_CTST, CS_RST_CLR);
|
|
sc->msk_pmd = CSR_READ_1(sc, B2_PMD_TYP);
|
|
if (sc->msk_pmd == 'L' || sc->msk_pmd == 'S')
|
|
sc->msk_coppertype = 0;
|
|
else
|
|
sc->msk_coppertype = 1;
|
|
/* Check number of MACs. */
|
|
sc->msk_num_port = 1;
|
|
if ((CSR_READ_1(sc, B2_Y2_HW_RES) & CFG_DUAL_MAC_MSK) ==
|
|
CFG_DUAL_MAC_MSK) {
|
|
if (!(CSR_READ_1(sc, B2_Y2_CLK_GATE) & Y2_STATUS_LNK2_INAC))
|
|
sc->msk_num_port++;
|
|
}
|
|
|
|
/* Check bus type. */
|
|
if (pci_find_extcap(sc->msk_dev, PCIY_EXPRESS, ®) == 0)
|
|
sc->msk_bustype = MSK_PEX_BUS;
|
|
else if (pci_find_extcap(sc->msk_dev, PCIY_PCIX, ®) == 0)
|
|
sc->msk_bustype = MSK_PCIX_BUS;
|
|
else
|
|
sc->msk_bustype = MSK_PCI_BUS;
|
|
|
|
/* Get H/W features(bugs). */
|
|
switch (sc->msk_hw_id) {
|
|
case CHIP_ID_YUKON_EC:
|
|
sc->msk_clock = 125; /* 125 Mhz */
|
|
if (sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
|
|
sc->msk_hw_feature =
|
|
HWF_WA_DEV_42 | HWF_WA_DEV_46 | HWF_WA_DEV_43_418 |
|
|
HWF_WA_DEV_420 | HWF_WA_DEV_423 |
|
|
HWF_WA_DEV_424 | HWF_WA_DEV_425 | HWF_WA_DEV_427 |
|
|
HWF_WA_DEV_428 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 |
|
|
HWF_WA_DEV_4152 | HWF_WA_DEV_4167;
|
|
} else {
|
|
/* A2/A3 */
|
|
sc->msk_hw_feature =
|
|
HWF_WA_DEV_424 | HWF_WA_DEV_425 | HWF_WA_DEV_427 |
|
|
HWF_WA_DEV_428 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 |
|
|
HWF_WA_DEV_4152 | HWF_WA_DEV_4167;
|
|
}
|
|
break;
|
|
case CHIP_ID_YUKON_EC_U:
|
|
sc->msk_clock = 125; /* 125 Mhz */
|
|
if (sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
|
|
sc->msk_hw_feature = HWF_WA_DEV_427 | HWF_WA_DEV_483 |
|
|
HWF_WA_DEV_4109;
|
|
} else if (sc->msk_hw_rev == CHIP_REV_YU_EC_A1) {
|
|
uint16_t v;
|
|
|
|
sc->msk_hw_feature = HWF_WA_DEV_427 | HWF_WA_DEV_4109 |
|
|
HWF_WA_DEV_4185;
|
|
v = CSR_READ_2(sc, Q_ADDR(Q_XA1, Q_WM));
|
|
if (v == 0)
|
|
sc->msk_hw_feature |= HWF_WA_DEV_4185CS |
|
|
HWF_WA_DEV_4200;
|
|
}
|
|
break;
|
|
case CHIP_ID_YUKON_FE:
|
|
sc->msk_clock = 100; /* 100 Mhz */
|
|
sc->msk_hw_feature = HWF_WA_DEV_427 | HWF_WA_DEV_4109 |
|
|
HWF_WA_DEV_4152 | HWF_WA_DEV_4167;
|
|
break;
|
|
case CHIP_ID_YUKON_XL:
|
|
sc->msk_clock = 156; /* 156 Mhz */
|
|
switch (sc->msk_hw_rev) {
|
|
case CHIP_REV_YU_XL_A0:
|
|
sc->msk_hw_feature =
|
|
HWF_WA_DEV_427 | HWF_WA_DEV_463 | HWF_WA_DEV_472 |
|
|
HWF_WA_DEV_479 | HWF_WA_DEV_483 | HWF_WA_DEV_4115 |
|
|
HWF_WA_DEV_4152 | HWF_WA_DEV_4167;
|
|
break;
|
|
case CHIP_REV_YU_XL_A1:
|
|
sc->msk_hw_feature =
|
|
HWF_WA_DEV_427 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 |
|
|
HWF_WA_DEV_4115 | HWF_WA_DEV_4152 | HWF_WA_DEV_4167;
|
|
break;
|
|
case CHIP_REV_YU_XL_A2:
|
|
sc->msk_hw_feature =
|
|
HWF_WA_DEV_427 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 |
|
|
HWF_WA_DEV_4115 | HWF_WA_DEV_4167;
|
|
break;
|
|
case CHIP_REV_YU_XL_A3:
|
|
sc->msk_hw_feature =
|
|
HWF_WA_DEV_427 | HWF_WA_DEV_483 | HWF_WA_DEV_4109 |
|
|
HWF_WA_DEV_4115;
|
|
}
|
|
break;
|
|
default:
|
|
sc->msk_clock = 156; /* 156 Mhz */
|
|
sc->msk_hw_feature = 0;
|
|
}
|
|
|
|
/* Allocate IRQ resources. */
|
|
msic = pci_msi_count(dev);
|
|
if (bootverbose)
|
|
device_printf(dev, "MSI count : %d\n", msic);
|
|
/*
|
|
* The Yukon II reports it can handle two messages, one for each
|
|
* possible port. We go ahead and allocate two messages and only
|
|
* setup a handler for both if we have a dual port card.
|
|
*
|
|
* XXX: I haven't untangled the interrupt handler to handle dual
|
|
* port cards with separate MSI messages, so for now I disable MSI
|
|
* on dual port cards.
|
|
*/
|
|
if (legacy_intr != 0)
|
|
msi_disable = 1;
|
|
if (msic == 2 && msi_disable == 0 && sc->msk_num_port == 1 &&
|
|
pci_alloc_msi(dev, &msic) == 0) {
|
|
if (msic == 2) {
|
|
sc->msk_msi = 1;
|
|
sc->msk_irq_spec = msk_irq_spec_msi;
|
|
} else
|
|
pci_release_msi(dev);
|
|
}
|
|
|
|
error = bus_alloc_resources(dev, sc->msk_irq_spec, sc->msk_irq);
|
|
if (error) {
|
|
device_printf(dev, "couldn't allocate IRQ resources\n");
|
|
goto fail;
|
|
}
|
|
|
|
if ((error = msk_status_dma_alloc(sc)) != 0)
|
|
goto fail;
|
|
|
|
/* Set base interrupt mask. */
|
|
sc->msk_intrmask = Y2_IS_HW_ERR | Y2_IS_STAT_BMU;
|
|
sc->msk_intrhwemask = Y2_IS_TIST_OV | Y2_IS_MST_ERR |
|
|
Y2_IS_IRQ_STAT | Y2_IS_PCI_EXP | Y2_IS_PCI_NEXP;
|
|
|
|
/* Reset the adapter. */
|
|
mskc_reset(sc);
|
|
|
|
if ((error = mskc_setup_rambuffer(sc)) != 0)
|
|
goto fail;
|
|
|
|
sc->msk_devs[MSK_PORT_A] = device_add_child(dev, "msk", -1);
|
|
if (sc->msk_devs[MSK_PORT_A] == NULL) {
|
|
device_printf(dev, "failed to add child for PORT_A\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
port = malloc(sizeof(int), M_DEVBUF, M_WAITOK);
|
|
if (port == NULL) {
|
|
device_printf(dev, "failed to allocate memory for "
|
|
"ivars of PORT_A\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
*port = MSK_PORT_A;
|
|
device_set_ivars(sc->msk_devs[MSK_PORT_A], port);
|
|
|
|
if (sc->msk_num_port > 1) {
|
|
sc->msk_devs[MSK_PORT_B] = device_add_child(dev, "msk", -1);
|
|
if (sc->msk_devs[MSK_PORT_B] == NULL) {
|
|
device_printf(dev, "failed to add child for PORT_B\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
port = malloc(sizeof(int), M_DEVBUF, M_WAITOK);
|
|
if (port == NULL) {
|
|
device_printf(dev, "failed to allocate memory for "
|
|
"ivars of PORT_B\n");
|
|
error = ENXIO;
|
|
goto fail;
|
|
}
|
|
*port = MSK_PORT_B;
|
|
device_set_ivars(sc->msk_devs[MSK_PORT_B], port);
|
|
}
|
|
|
|
error = bus_generic_attach(dev);
|
|
if (error) {
|
|
device_printf(dev, "failed to attach port(s)\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Hook interrupt last to avoid having to lock softc. */
|
|
if (legacy_intr)
|
|
error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET |
|
|
INTR_MPSAFE, NULL, msk_legacy_intr, sc,
|
|
&sc->msk_intrhand[0]);
|
|
else {
|
|
TASK_INIT(&sc->msk_int_task, 0, msk_int_task, sc);
|
|
sc->msk_tq = taskqueue_create_fast("msk_taskq", M_WAITOK,
|
|
taskqueue_thread_enqueue, &sc->msk_tq);
|
|
taskqueue_start_threads(&sc->msk_tq, 1, PI_NET, "%s taskq",
|
|
device_get_nameunit(sc->msk_dev));
|
|
error = bus_setup_intr(dev, sc->msk_irq[0], INTR_TYPE_NET |
|
|
INTR_MPSAFE, msk_intr, NULL, sc, &sc->msk_intrhand[0]);
|
|
}
|
|
|
|
if (error != 0) {
|
|
device_printf(dev, "couldn't set up interrupt handler\n");
|
|
if (legacy_intr == 0)
|
|
taskqueue_free(sc->msk_tq);
|
|
sc->msk_tq = NULL;
|
|
goto fail;
|
|
}
|
|
fail:
|
|
if (error != 0)
|
|
mskc_detach(dev);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Shutdown hardware and free up resources. This can be called any
|
|
* time after the mutex has been initialized. It is called in both
|
|
* the error case in attach and the normal detach case so it needs
|
|
* to be careful about only freeing resources that have actually been
|
|
* allocated.
|
|
*/
|
|
static int
|
|
msk_detach(device_t dev)
|
|
{
|
|
struct msk_softc *sc;
|
|
struct msk_if_softc *sc_if;
|
|
struct ifnet *ifp;
|
|
|
|
sc_if = device_get_softc(dev);
|
|
KASSERT(mtx_initialized(&sc_if->msk_softc->msk_mtx),
|
|
("msk mutex not initialized in msk_detach"));
|
|
MSK_IF_LOCK(sc_if);
|
|
|
|
ifp = sc_if->msk_ifp;
|
|
if (device_is_attached(dev)) {
|
|
/* XXX */
|
|
sc_if->msk_detach = 1;
|
|
msk_stop(sc_if);
|
|
/* Can't hold locks while calling detach. */
|
|
MSK_IF_UNLOCK(sc_if);
|
|
callout_drain(&sc_if->msk_tick_ch);
|
|
taskqueue_drain(taskqueue_fast, &sc_if->msk_tx_task);
|
|
taskqueue_drain(taskqueue_swi, &sc_if->msk_link_task);
|
|
ether_ifdetach(ifp);
|
|
MSK_IF_LOCK(sc_if);
|
|
}
|
|
|
|
/*
|
|
* We're generally called from mskc_detach() which is using
|
|
* device_delete_child() to get to here. It's already trashed
|
|
* miibus for us, so don't do it here or we'll panic.
|
|
*
|
|
* if (sc_if->msk_miibus != NULL) {
|
|
* device_delete_child(dev, sc_if->msk_miibus);
|
|
* sc_if->msk_miibus = NULL;
|
|
* }
|
|
*/
|
|
|
|
msk_txrx_dma_free(sc_if);
|
|
bus_generic_detach(dev);
|
|
|
|
if (ifp)
|
|
if_free(ifp);
|
|
sc = sc_if->msk_softc;
|
|
sc->msk_if[sc_if->msk_port] = NULL;
|
|
MSK_IF_UNLOCK(sc_if);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
mskc_detach(device_t dev)
|
|
{
|
|
struct msk_softc *sc;
|
|
|
|
sc = device_get_softc(dev);
|
|
KASSERT(mtx_initialized(&sc->msk_mtx), ("msk mutex not initialized"));
|
|
|
|
if (device_is_alive(dev)) {
|
|
if (sc->msk_devs[MSK_PORT_A] != NULL) {
|
|
free(device_get_ivars(sc->msk_devs[MSK_PORT_A]),
|
|
M_DEVBUF);
|
|
device_delete_child(dev, sc->msk_devs[MSK_PORT_A]);
|
|
}
|
|
if (sc->msk_devs[MSK_PORT_B] != NULL) {
|
|
free(device_get_ivars(sc->msk_devs[MSK_PORT_B]),
|
|
M_DEVBUF);
|
|
device_delete_child(dev, sc->msk_devs[MSK_PORT_B]);
|
|
}
|
|
bus_generic_detach(dev);
|
|
}
|
|
|
|
/* Disable all interrupts. */
|
|
CSR_WRITE_4(sc, B0_IMSK, 0);
|
|
CSR_READ_4(sc, B0_IMSK);
|
|
CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
|
|
CSR_READ_4(sc, B0_HWE_IMSK);
|
|
|
|
/* LED Off. */
|
|
CSR_WRITE_2(sc, B0_CTST, Y2_LED_STAT_OFF);
|
|
|
|
/* Put hardware reset. */
|
|
CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
|
|
|
|
msk_status_dma_free(sc);
|
|
|
|
if (legacy_intr == 0 && sc->msk_tq != NULL) {
|
|
taskqueue_drain(sc->msk_tq, &sc->msk_int_task);
|
|
taskqueue_free(sc->msk_tq);
|
|
sc->msk_tq = NULL;
|
|
}
|
|
if (sc->msk_intrhand[0]) {
|
|
bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand[0]);
|
|
sc->msk_intrhand[0] = NULL;
|
|
}
|
|
if (sc->msk_intrhand[1]) {
|
|
bus_teardown_intr(dev, sc->msk_irq[0], sc->msk_intrhand[0]);
|
|
sc->msk_intrhand[1] = NULL;
|
|
}
|
|
bus_release_resources(dev, sc->msk_irq_spec, sc->msk_irq);
|
|
if (sc->msk_msi)
|
|
pci_release_msi(dev);
|
|
bus_release_resources(dev, sc->msk_res_spec, sc->msk_res);
|
|
mtx_destroy(&sc->msk_mtx);
|
|
|
|
return (0);
|
|
}
|
|
|
|
struct msk_dmamap_arg {
|
|
bus_addr_t msk_busaddr;
|
|
};
|
|
|
|
static void
|
|
msk_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error)
|
|
{
|
|
struct msk_dmamap_arg *ctx;
|
|
|
|
if (error != 0)
|
|
return;
|
|
ctx = arg;
|
|
ctx->msk_busaddr = segs[0].ds_addr;
|
|
}
|
|
|
|
/* Create status DMA region. */
|
|
static int
|
|
msk_status_dma_alloc(struct msk_softc *sc)
|
|
{
|
|
struct msk_dmamap_arg ctx;
|
|
int error;
|
|
|
|
error = bus_dma_tag_create(
|
|
bus_get_dma_tag(sc->msk_dev), /* parent */
|
|
MSK_STAT_ALIGN, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MSK_STAT_RING_SZ, /* maxsize */
|
|
1, /* nsegments */
|
|
MSK_STAT_RING_SZ, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc->msk_stat_tag);
|
|
if (error != 0) {
|
|
device_printf(sc->msk_dev,
|
|
"failed to create status DMA tag\n");
|
|
return (error);
|
|
}
|
|
|
|
/* Allocate DMA'able memory and load the DMA map for status ring. */
|
|
error = bus_dmamem_alloc(sc->msk_stat_tag,
|
|
(void **)&sc->msk_stat_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT |
|
|
BUS_DMA_ZERO, &sc->msk_stat_map);
|
|
if (error != 0) {
|
|
device_printf(sc->msk_dev,
|
|
"failed to allocate DMA'able memory for status ring\n");
|
|
return (error);
|
|
}
|
|
|
|
ctx.msk_busaddr = 0;
|
|
error = bus_dmamap_load(sc->msk_stat_tag,
|
|
sc->msk_stat_map, sc->msk_stat_ring, MSK_STAT_RING_SZ,
|
|
msk_dmamap_cb, &ctx, 0);
|
|
if (error != 0) {
|
|
device_printf(sc->msk_dev,
|
|
"failed to load DMA'able memory for status ring\n");
|
|
return (error);
|
|
}
|
|
sc->msk_stat_ring_paddr = ctx.msk_busaddr;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
msk_status_dma_free(struct msk_softc *sc)
|
|
{
|
|
|
|
/* Destroy status block. */
|
|
if (sc->msk_stat_tag) {
|
|
if (sc->msk_stat_map) {
|
|
bus_dmamap_unload(sc->msk_stat_tag, sc->msk_stat_map);
|
|
if (sc->msk_stat_ring) {
|
|
bus_dmamem_free(sc->msk_stat_tag,
|
|
sc->msk_stat_ring, sc->msk_stat_map);
|
|
sc->msk_stat_ring = NULL;
|
|
}
|
|
sc->msk_stat_map = NULL;
|
|
}
|
|
bus_dma_tag_destroy(sc->msk_stat_tag);
|
|
sc->msk_stat_tag = NULL;
|
|
}
|
|
}
|
|
|
|
static int
|
|
msk_txrx_dma_alloc(struct msk_if_softc *sc_if)
|
|
{
|
|
struct msk_dmamap_arg ctx;
|
|
struct msk_txdesc *txd;
|
|
struct msk_rxdesc *rxd;
|
|
struct msk_rxdesc *jrxd;
|
|
struct msk_jpool_entry *entry;
|
|
uint8_t *ptr;
|
|
int error, i;
|
|
|
|
mtx_init(&sc_if->msk_jlist_mtx, "msk_jlist_mtx", NULL, MTX_DEF);
|
|
SLIST_INIT(&sc_if->msk_jfree_listhead);
|
|
SLIST_INIT(&sc_if->msk_jinuse_listhead);
|
|
|
|
/* Create parent DMA tag. */
|
|
/*
|
|
* XXX
|
|
* It seems that Yukon II supports full 64bits DMA operations. But
|
|
* it needs two descriptors(list elements) for 64bits DMA operations.
|
|
* Since we don't know what DMA address mappings(32bits or 64bits)
|
|
* would be used in advance for each mbufs, we limits its DMA space
|
|
* to be in range of 32bits address space. Otherwise, we should check
|
|
* what DMA address is used and chain another descriptor for the
|
|
* 64bits DMA operation. This also means descriptor ring size is
|
|
* variable. Limiting DMA address to be in 32bit address space greatly
|
|
* simplyfies descriptor handling and possibly would increase
|
|
* performance a bit due to efficient handling of descriptors.
|
|
* Apart from harassing checksum offloading mechanisms, it seems
|
|
* it's really bad idea to use a seperate descriptor for 64bit
|
|
* DMA operation to save small descriptor memory. Anyway, I've
|
|
* never seen these exotic scheme on ethernet interface hardware.
|
|
*/
|
|
error = bus_dma_tag_create(
|
|
bus_get_dma_tag(sc_if->msk_if_dev), /* parent */
|
|
1, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR_32BIT, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
BUS_SPACE_MAXSIZE_32BIT, /* maxsize */
|
|
0, /* nsegments */
|
|
BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc_if->msk_cdata.msk_parent_tag);
|
|
if (error != 0) {
|
|
device_printf(sc_if->msk_if_dev,
|
|
"failed to create parent DMA tag\n");
|
|
goto fail;
|
|
}
|
|
/* Create tag for Tx ring. */
|
|
error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
|
|
MSK_RING_ALIGN, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MSK_TX_RING_SZ, /* maxsize */
|
|
1, /* nsegments */
|
|
MSK_TX_RING_SZ, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc_if->msk_cdata.msk_tx_ring_tag);
|
|
if (error != 0) {
|
|
device_printf(sc_if->msk_if_dev,
|
|
"failed to create Tx ring DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Create tag for Rx ring. */
|
|
error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
|
|
MSK_RING_ALIGN, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MSK_RX_RING_SZ, /* maxsize */
|
|
1, /* nsegments */
|
|
MSK_RX_RING_SZ, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc_if->msk_cdata.msk_rx_ring_tag);
|
|
if (error != 0) {
|
|
device_printf(sc_if->msk_if_dev,
|
|
"failed to create Rx ring DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Create tag for jumbo Rx ring. */
|
|
error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
|
|
MSK_RING_ALIGN, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MSK_JUMBO_RX_RING_SZ, /* maxsize */
|
|
1, /* nsegments */
|
|
MSK_JUMBO_RX_RING_SZ, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
|
|
if (error != 0) {
|
|
device_printf(sc_if->msk_if_dev,
|
|
"failed to create jumbo Rx ring DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Create tag for jumbo buffer blocks. */
|
|
error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
|
|
PAGE_SIZE, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MSK_JMEM, /* maxsize */
|
|
1, /* nsegments */
|
|
MSK_JMEM, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc_if->msk_cdata.msk_jumbo_tag);
|
|
if (error != 0) {
|
|
device_printf(sc_if->msk_if_dev,
|
|
"failed to create jumbo Rx buffer block DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Create tag for Tx buffers. */
|
|
error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
|
|
1, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MSK_TSO_MAXSIZE, /* maxsize */
|
|
MSK_MAXTXSEGS, /* nsegments */
|
|
MSK_TSO_MAXSGSIZE, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc_if->msk_cdata.msk_tx_tag);
|
|
if (error != 0) {
|
|
device_printf(sc_if->msk_if_dev,
|
|
"failed to create Tx DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Create tag for Rx buffers. */
|
|
error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
|
|
1, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MCLBYTES, /* maxsize */
|
|
1, /* nsegments */
|
|
MCLBYTES, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc_if->msk_cdata.msk_rx_tag);
|
|
if (error != 0) {
|
|
device_printf(sc_if->msk_if_dev,
|
|
"failed to create Rx DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Create tag for jumbo Rx buffers. */
|
|
error = bus_dma_tag_create(sc_if->msk_cdata.msk_parent_tag,/* parent */
|
|
PAGE_SIZE, 0, /* alignment, boundary */
|
|
BUS_SPACE_MAXADDR, /* lowaddr */
|
|
BUS_SPACE_MAXADDR, /* highaddr */
|
|
NULL, NULL, /* filter, filterarg */
|
|
MCLBYTES * MSK_MAXRXSEGS, /* maxsize */
|
|
MSK_MAXRXSEGS, /* nsegments */
|
|
MSK_JLEN, /* maxsegsize */
|
|
0, /* flags */
|
|
NULL, NULL, /* lockfunc, lockarg */
|
|
&sc_if->msk_cdata.msk_jumbo_rx_tag);
|
|
if (error != 0) {
|
|
device_printf(sc_if->msk_if_dev,
|
|
"failed to create jumbo Rx DMA tag\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Allocate DMA'able memory and load the DMA map for Tx ring. */
|
|
error = bus_dmamem_alloc(sc_if->msk_cdata.msk_tx_ring_tag,
|
|
(void **)&sc_if->msk_rdata.msk_tx_ring, BUS_DMA_WAITOK |
|
|
BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_tx_ring_map);
|
|
if (error != 0) {
|
|
device_printf(sc_if->msk_if_dev,
|
|
"failed to allocate DMA'able memory for Tx ring\n");
|
|
goto fail;
|
|
}
|
|
|
|
ctx.msk_busaddr = 0;
|
|
error = bus_dmamap_load(sc_if->msk_cdata.msk_tx_ring_tag,
|
|
sc_if->msk_cdata.msk_tx_ring_map, sc_if->msk_rdata.msk_tx_ring,
|
|
MSK_TX_RING_SZ, msk_dmamap_cb, &ctx, 0);
|
|
if (error != 0) {
|
|
device_printf(sc_if->msk_if_dev,
|
|
"failed to load DMA'able memory for Tx ring\n");
|
|
goto fail;
|
|
}
|
|
sc_if->msk_rdata.msk_tx_ring_paddr = ctx.msk_busaddr;
|
|
|
|
/* Allocate DMA'able memory and load the DMA map for Rx ring. */
|
|
error = bus_dmamem_alloc(sc_if->msk_cdata.msk_rx_ring_tag,
|
|
(void **)&sc_if->msk_rdata.msk_rx_ring, BUS_DMA_WAITOK |
|
|
BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc_if->msk_cdata.msk_rx_ring_map);
|
|
if (error != 0) {
|
|
device_printf(sc_if->msk_if_dev,
|
|
"failed to allocate DMA'able memory for Rx ring\n");
|
|
goto fail;
|
|
}
|
|
|
|
ctx.msk_busaddr = 0;
|
|
error = bus_dmamap_load(sc_if->msk_cdata.msk_rx_ring_tag,
|
|
sc_if->msk_cdata.msk_rx_ring_map, sc_if->msk_rdata.msk_rx_ring,
|
|
MSK_RX_RING_SZ, msk_dmamap_cb, &ctx, 0);
|
|
if (error != 0) {
|
|
device_printf(sc_if->msk_if_dev,
|
|
"failed to load DMA'able memory for Rx ring\n");
|
|
goto fail;
|
|
}
|
|
sc_if->msk_rdata.msk_rx_ring_paddr = ctx.msk_busaddr;
|
|
|
|
/* Allocate DMA'able memory and load the DMA map for jumbo Rx ring. */
|
|
error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
|
|
(void **)&sc_if->msk_rdata.msk_jumbo_rx_ring,
|
|
BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
|
|
&sc_if->msk_cdata.msk_jumbo_rx_ring_map);
|
|
if (error != 0) {
|
|
device_printf(sc_if->msk_if_dev,
|
|
"failed to allocate DMA'able memory for jumbo Rx ring\n");
|
|
goto fail;
|
|
}
|
|
|
|
ctx.msk_busaddr = 0;
|
|
error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
|
|
sc_if->msk_cdata.msk_jumbo_rx_ring_map,
|
|
sc_if->msk_rdata.msk_jumbo_rx_ring, MSK_JUMBO_RX_RING_SZ,
|
|
msk_dmamap_cb, &ctx, 0);
|
|
if (error != 0) {
|
|
device_printf(sc_if->msk_if_dev,
|
|
"failed to load DMA'able memory for jumbo Rx ring\n");
|
|
goto fail;
|
|
}
|
|
sc_if->msk_rdata.msk_jumbo_rx_ring_paddr = ctx.msk_busaddr;
|
|
|
|
/* Create DMA maps for Tx buffers. */
|
|
for (i = 0; i < MSK_TX_RING_CNT; i++) {
|
|
txd = &sc_if->msk_cdata.msk_txdesc[i];
|
|
txd->tx_m = NULL;
|
|
txd->tx_dmamap = NULL;
|
|
error = bus_dmamap_create(sc_if->msk_cdata.msk_tx_tag, 0,
|
|
&txd->tx_dmamap);
|
|
if (error != 0) {
|
|
device_printf(sc_if->msk_if_dev,
|
|
"failed to create Tx dmamap\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
/* Create DMA maps for Rx buffers. */
|
|
if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
|
|
&sc_if->msk_cdata.msk_rx_sparemap)) != 0) {
|
|
device_printf(sc_if->msk_if_dev,
|
|
"failed to create spare Rx dmamap\n");
|
|
goto fail;
|
|
}
|
|
for (i = 0; i < MSK_RX_RING_CNT; i++) {
|
|
rxd = &sc_if->msk_cdata.msk_rxdesc[i];
|
|
rxd->rx_m = NULL;
|
|
rxd->rx_dmamap = NULL;
|
|
error = bus_dmamap_create(sc_if->msk_cdata.msk_rx_tag, 0,
|
|
&rxd->rx_dmamap);
|
|
if (error != 0) {
|
|
device_printf(sc_if->msk_if_dev,
|
|
"failed to create Rx dmamap\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
/* Create DMA maps for jumbo Rx buffers. */
|
|
if ((error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
|
|
&sc_if->msk_cdata.msk_jumbo_rx_sparemap)) != 0) {
|
|
device_printf(sc_if->msk_if_dev,
|
|
"failed to create spare jumbo Rx dmamap\n");
|
|
goto fail;
|
|
}
|
|
for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
|
|
jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
|
|
jrxd->rx_m = NULL;
|
|
jrxd->rx_dmamap = NULL;
|
|
error = bus_dmamap_create(sc_if->msk_cdata.msk_jumbo_rx_tag, 0,
|
|
&jrxd->rx_dmamap);
|
|
if (error != 0) {
|
|
device_printf(sc_if->msk_if_dev,
|
|
"failed to create jumbo Rx dmamap\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
/* Allocate DMA'able memory and load the DMA map for jumbo buf. */
|
|
error = bus_dmamem_alloc(sc_if->msk_cdata.msk_jumbo_tag,
|
|
(void **)&sc_if->msk_rdata.msk_jumbo_buf,
|
|
BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
|
|
&sc_if->msk_cdata.msk_jumbo_map);
|
|
if (error != 0) {
|
|
device_printf(sc_if->msk_if_dev,
|
|
"failed to allocate DMA'able memory for jumbo buf\n");
|
|
goto fail;
|
|
}
|
|
|
|
ctx.msk_busaddr = 0;
|
|
error = bus_dmamap_load(sc_if->msk_cdata.msk_jumbo_tag,
|
|
sc_if->msk_cdata.msk_jumbo_map, sc_if->msk_rdata.msk_jumbo_buf,
|
|
MSK_JMEM, msk_dmamap_cb, &ctx, 0);
|
|
if (error != 0) {
|
|
device_printf(sc_if->msk_if_dev,
|
|
"failed to load DMA'able memory for jumbobuf\n");
|
|
goto fail;
|
|
}
|
|
sc_if->msk_rdata.msk_jumbo_buf_paddr = ctx.msk_busaddr;
|
|
|
|
/*
|
|
* Now divide it up into 9K pieces and save the addresses
|
|
* in an array.
|
|
*/
|
|
ptr = sc_if->msk_rdata.msk_jumbo_buf;
|
|
for (i = 0; i < MSK_JSLOTS; i++) {
|
|
sc_if->msk_cdata.msk_jslots[i] = ptr;
|
|
ptr += MSK_JLEN;
|
|
entry = malloc(sizeof(struct msk_jpool_entry),
|
|
M_DEVBUF, M_WAITOK);
|
|
if (entry == NULL) {
|
|
device_printf(sc_if->msk_if_dev,
|
|
"no memory for jumbo buffers!\n");
|
|
error = ENOMEM;
|
|
goto fail;
|
|
}
|
|
entry->slot = i;
|
|
SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry,
|
|
jpool_entries);
|
|
}
|
|
|
|
fail:
|
|
return (error);
|
|
}
|
|
|
|
static void
|
|
msk_txrx_dma_free(struct msk_if_softc *sc_if)
|
|
{
|
|
struct msk_txdesc *txd;
|
|
struct msk_rxdesc *rxd;
|
|
struct msk_rxdesc *jrxd;
|
|
struct msk_jpool_entry *entry;
|
|
int i;
|
|
|
|
MSK_JLIST_LOCK(sc_if);
|
|
while ((entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead))) {
|
|
device_printf(sc_if->msk_if_dev,
|
|
"asked to free buffer that is in use!\n");
|
|
SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries);
|
|
SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry,
|
|
jpool_entries);
|
|
}
|
|
|
|
while (!SLIST_EMPTY(&sc_if->msk_jfree_listhead)) {
|
|
entry = SLIST_FIRST(&sc_if->msk_jfree_listhead);
|
|
SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries);
|
|
free(entry, M_DEVBUF);
|
|
}
|
|
MSK_JLIST_UNLOCK(sc_if);
|
|
|
|
/* Destroy jumbo buffer block. */
|
|
if (sc_if->msk_cdata.msk_jumbo_map)
|
|
bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_tag,
|
|
sc_if->msk_cdata.msk_jumbo_map);
|
|
|
|
if (sc_if->msk_rdata.msk_jumbo_buf) {
|
|
bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_tag,
|
|
sc_if->msk_rdata.msk_jumbo_buf,
|
|
sc_if->msk_cdata.msk_jumbo_map);
|
|
sc_if->msk_rdata.msk_jumbo_buf = NULL;
|
|
sc_if->msk_cdata.msk_jumbo_map = NULL;
|
|
}
|
|
|
|
/* Tx ring. */
|
|
if (sc_if->msk_cdata.msk_tx_ring_tag) {
|
|
if (sc_if->msk_cdata.msk_tx_ring_map)
|
|
bus_dmamap_unload(sc_if->msk_cdata.msk_tx_ring_tag,
|
|
sc_if->msk_cdata.msk_tx_ring_map);
|
|
if (sc_if->msk_cdata.msk_tx_ring_map &&
|
|
sc_if->msk_rdata.msk_tx_ring)
|
|
bus_dmamem_free(sc_if->msk_cdata.msk_tx_ring_tag,
|
|
sc_if->msk_rdata.msk_tx_ring,
|
|
sc_if->msk_cdata.msk_tx_ring_map);
|
|
sc_if->msk_rdata.msk_tx_ring = NULL;
|
|
sc_if->msk_cdata.msk_tx_ring_map = NULL;
|
|
bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_ring_tag);
|
|
sc_if->msk_cdata.msk_tx_ring_tag = NULL;
|
|
}
|
|
/* Rx ring. */
|
|
if (sc_if->msk_cdata.msk_rx_ring_tag) {
|
|
if (sc_if->msk_cdata.msk_rx_ring_map)
|
|
bus_dmamap_unload(sc_if->msk_cdata.msk_rx_ring_tag,
|
|
sc_if->msk_cdata.msk_rx_ring_map);
|
|
if (sc_if->msk_cdata.msk_rx_ring_map &&
|
|
sc_if->msk_rdata.msk_rx_ring)
|
|
bus_dmamem_free(sc_if->msk_cdata.msk_rx_ring_tag,
|
|
sc_if->msk_rdata.msk_rx_ring,
|
|
sc_if->msk_cdata.msk_rx_ring_map);
|
|
sc_if->msk_rdata.msk_rx_ring = NULL;
|
|
sc_if->msk_cdata.msk_rx_ring_map = NULL;
|
|
bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_ring_tag);
|
|
sc_if->msk_cdata.msk_rx_ring_tag = NULL;
|
|
}
|
|
/* Jumbo Rx ring. */
|
|
if (sc_if->msk_cdata.msk_jumbo_rx_ring_tag) {
|
|
if (sc_if->msk_cdata.msk_jumbo_rx_ring_map)
|
|
bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
|
|
sc_if->msk_cdata.msk_jumbo_rx_ring_map);
|
|
if (sc_if->msk_cdata.msk_jumbo_rx_ring_map &&
|
|
sc_if->msk_rdata.msk_jumbo_rx_ring)
|
|
bus_dmamem_free(sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
|
|
sc_if->msk_rdata.msk_jumbo_rx_ring,
|
|
sc_if->msk_cdata.msk_jumbo_rx_ring_map);
|
|
sc_if->msk_rdata.msk_jumbo_rx_ring = NULL;
|
|
sc_if->msk_cdata.msk_jumbo_rx_ring_map = NULL;
|
|
bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_ring_tag);
|
|
sc_if->msk_cdata.msk_jumbo_rx_ring_tag = NULL;
|
|
}
|
|
/* Tx buffers. */
|
|
if (sc_if->msk_cdata.msk_tx_tag) {
|
|
for (i = 0; i < MSK_TX_RING_CNT; i++) {
|
|
txd = &sc_if->msk_cdata.msk_txdesc[i];
|
|
if (txd->tx_dmamap) {
|
|
bus_dmamap_destroy(sc_if->msk_cdata.msk_tx_tag,
|
|
txd->tx_dmamap);
|
|
txd->tx_dmamap = NULL;
|
|
}
|
|
}
|
|
bus_dma_tag_destroy(sc_if->msk_cdata.msk_tx_tag);
|
|
sc_if->msk_cdata.msk_tx_tag = NULL;
|
|
}
|
|
/* Rx buffers. */
|
|
if (sc_if->msk_cdata.msk_rx_tag) {
|
|
for (i = 0; i < MSK_RX_RING_CNT; i++) {
|
|
rxd = &sc_if->msk_cdata.msk_rxdesc[i];
|
|
if (rxd->rx_dmamap) {
|
|
bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
|
|
rxd->rx_dmamap);
|
|
rxd->rx_dmamap = NULL;
|
|
}
|
|
}
|
|
if (sc_if->msk_cdata.msk_rx_sparemap) {
|
|
bus_dmamap_destroy(sc_if->msk_cdata.msk_rx_tag,
|
|
sc_if->msk_cdata.msk_rx_sparemap);
|
|
sc_if->msk_cdata.msk_rx_sparemap = 0;
|
|
}
|
|
bus_dma_tag_destroy(sc_if->msk_cdata.msk_rx_tag);
|
|
sc_if->msk_cdata.msk_rx_tag = NULL;
|
|
}
|
|
/* Jumbo Rx buffers. */
|
|
if (sc_if->msk_cdata.msk_jumbo_rx_tag) {
|
|
for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
|
|
jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
|
|
if (jrxd->rx_dmamap) {
|
|
bus_dmamap_destroy(
|
|
sc_if->msk_cdata.msk_jumbo_rx_tag,
|
|
jrxd->rx_dmamap);
|
|
jrxd->rx_dmamap = NULL;
|
|
}
|
|
}
|
|
if (sc_if->msk_cdata.msk_jumbo_rx_sparemap) {
|
|
bus_dmamap_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag,
|
|
sc_if->msk_cdata.msk_jumbo_rx_sparemap);
|
|
sc_if->msk_cdata.msk_jumbo_rx_sparemap = 0;
|
|
}
|
|
bus_dma_tag_destroy(sc_if->msk_cdata.msk_jumbo_rx_tag);
|
|
sc_if->msk_cdata.msk_jumbo_rx_tag = NULL;
|
|
}
|
|
|
|
if (sc_if->msk_cdata.msk_parent_tag) {
|
|
bus_dma_tag_destroy(sc_if->msk_cdata.msk_parent_tag);
|
|
sc_if->msk_cdata.msk_parent_tag = NULL;
|
|
}
|
|
mtx_destroy(&sc_if->msk_jlist_mtx);
|
|
}
|
|
|
|
/*
|
|
* Allocate a jumbo buffer.
|
|
*/
|
|
static void *
|
|
msk_jalloc(struct msk_if_softc *sc_if)
|
|
{
|
|
struct msk_jpool_entry *entry;
|
|
|
|
MSK_JLIST_LOCK(sc_if);
|
|
|
|
entry = SLIST_FIRST(&sc_if->msk_jfree_listhead);
|
|
|
|
if (entry == NULL) {
|
|
MSK_JLIST_UNLOCK(sc_if);
|
|
return (NULL);
|
|
}
|
|
|
|
SLIST_REMOVE_HEAD(&sc_if->msk_jfree_listhead, jpool_entries);
|
|
SLIST_INSERT_HEAD(&sc_if->msk_jinuse_listhead, entry, jpool_entries);
|
|
|
|
MSK_JLIST_UNLOCK(sc_if);
|
|
|
|
return (sc_if->msk_cdata.msk_jslots[entry->slot]);
|
|
}
|
|
|
|
/*
|
|
* Release a jumbo buffer.
|
|
*/
|
|
static void
|
|
msk_jfree(void *buf, void *args)
|
|
{
|
|
struct msk_if_softc *sc_if;
|
|
struct msk_jpool_entry *entry;
|
|
int i;
|
|
|
|
/* Extract the softc struct pointer. */
|
|
sc_if = (struct msk_if_softc *)args;
|
|
KASSERT(sc_if != NULL, ("%s: can't find softc pointer!", __func__));
|
|
|
|
MSK_JLIST_LOCK(sc_if);
|
|
/* Calculate the slot this buffer belongs to. */
|
|
i = ((vm_offset_t)buf
|
|
- (vm_offset_t)sc_if->msk_rdata.msk_jumbo_buf) / MSK_JLEN;
|
|
KASSERT(i >= 0 && i < MSK_JSLOTS,
|
|
("%s: asked to free buffer that we don't manage!", __func__));
|
|
|
|
entry = SLIST_FIRST(&sc_if->msk_jinuse_listhead);
|
|
KASSERT(entry != NULL, ("%s: buffer not in use!", __func__));
|
|
entry->slot = i;
|
|
SLIST_REMOVE_HEAD(&sc_if->msk_jinuse_listhead, jpool_entries);
|
|
SLIST_INSERT_HEAD(&sc_if->msk_jfree_listhead, entry, jpool_entries);
|
|
if (SLIST_EMPTY(&sc_if->msk_jinuse_listhead))
|
|
wakeup(sc_if);
|
|
|
|
MSK_JLIST_UNLOCK(sc_if);
|
|
}
|
|
|
|
/*
|
|
* It's copy of ath_defrag(ath(4)).
|
|
*
|
|
* Defragment an mbuf chain, returning at most maxfrags separate
|
|
* mbufs+clusters. If this is not possible NULL is returned and
|
|
* the original mbuf chain is left in it's present (potentially
|
|
* modified) state. We use two techniques: collapsing consecutive
|
|
* mbufs and replacing consecutive mbufs by a cluster.
|
|
*/
|
|
static struct mbuf *
|
|
msk_defrag(struct mbuf *m0, int how, int maxfrags)
|
|
{
|
|
struct mbuf *m, *n, *n2, **prev;
|
|
u_int curfrags;
|
|
|
|
/*
|
|
* Calculate the current number of frags.
|
|
*/
|
|
curfrags = 0;
|
|
for (m = m0; m != NULL; m = m->m_next)
|
|
curfrags++;
|
|
/*
|
|
* First, try to collapse mbufs. Note that we always collapse
|
|
* towards the front so we don't need to deal with moving the
|
|
* pkthdr. This may be suboptimal if the first mbuf has much
|
|
* less data than the following.
|
|
*/
|
|
m = m0;
|
|
again:
|
|
for (;;) {
|
|
n = m->m_next;
|
|
if (n == NULL)
|
|
break;
|
|
if ((m->m_flags & M_RDONLY) == 0 &&
|
|
n->m_len < M_TRAILINGSPACE(m)) {
|
|
bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
|
|
n->m_len);
|
|
m->m_len += n->m_len;
|
|
m->m_next = n->m_next;
|
|
m_free(n);
|
|
if (--curfrags <= maxfrags)
|
|
return (m0);
|
|
} else
|
|
m = n;
|
|
}
|
|
KASSERT(maxfrags > 1,
|
|
("maxfrags %u, but normal collapse failed", maxfrags));
|
|
/*
|
|
* Collapse consecutive mbufs to a cluster.
|
|
*/
|
|
prev = &m0->m_next; /* NB: not the first mbuf */
|
|
while ((n = *prev) != NULL) {
|
|
if ((n2 = n->m_next) != NULL &&
|
|
n->m_len + n2->m_len < MCLBYTES) {
|
|
m = m_getcl(how, MT_DATA, 0);
|
|
if (m == NULL)
|
|
goto bad;
|
|
bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
|
|
bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
|
|
n2->m_len);
|
|
m->m_len = n->m_len + n2->m_len;
|
|
m->m_next = n2->m_next;
|
|
*prev = m;
|
|
m_free(n);
|
|
m_free(n2);
|
|
if (--curfrags <= maxfrags) /* +1 cl -2 mbufs */
|
|
return m0;
|
|
/*
|
|
* Still not there, try the normal collapse
|
|
* again before we allocate another cluster.
|
|
*/
|
|
goto again;
|
|
}
|
|
prev = &n->m_next;
|
|
}
|
|
/*
|
|
* No place where we can collapse to a cluster; punt.
|
|
* This can occur if, for example, you request 2 frags
|
|
* but the packet requires that both be clusters (we
|
|
* never reallocate the first mbuf to avoid moving the
|
|
* packet header).
|
|
*/
|
|
bad:
|
|
return (NULL);
|
|
}
|
|
|
|
static int
|
|
msk_encap(struct msk_if_softc *sc_if, struct mbuf **m_head)
|
|
{
|
|
struct msk_txdesc *txd, *txd_last;
|
|
struct msk_tx_desc *tx_le;
|
|
struct mbuf *m;
|
|
bus_dmamap_t map;
|
|
bus_dma_segment_t txsegs[MSK_MAXTXSEGS];
|
|
uint32_t control, prod, si;
|
|
uint16_t offset, tcp_offset, tso_mtu;
|
|
int error, i, nseg, tso;
|
|
|
|
MSK_IF_LOCK_ASSERT(sc_if);
|
|
|
|
tcp_offset = offset = 0;
|
|
m = *m_head;
|
|
if ((m->m_pkthdr.csum_flags & (MSK_CSUM_FEATURES | CSUM_TSO)) != 0) {
|
|
/*
|
|
* Since mbuf has no protocol specific structure information
|
|
* in it we have to inspect protocol information here to
|
|
* setup TSO and checksum offload. I don't know why Marvell
|
|
* made a such decision in chip design because other GigE
|
|
* hardwares normally takes care of all these chores in
|
|
* hardware. However, TSO performance of Yukon II is very
|
|
* good such that it's worth to implement it.
|
|
*/
|
|
struct ether_header *eh;
|
|
struct ip *ip;
|
|
struct tcphdr *tcp;
|
|
|
|
/* TODO check for M_WRITABLE(m) */
|
|
|
|
offset = sizeof(struct ether_header);
|
|
m = m_pullup(m, offset);
|
|
if (m == NULL) {
|
|
*m_head = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
eh = mtod(m, struct ether_header *);
|
|
/* Check if hardware VLAN insertion is off. */
|
|
if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
|
|
offset = sizeof(struct ether_vlan_header);
|
|
m = m_pullup(m, offset);
|
|
if (m == NULL) {
|
|
*m_head = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
}
|
|
m = m_pullup(m, offset + sizeof(struct ip));
|
|
if (m == NULL) {
|
|
*m_head = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
ip = (struct ip *)(mtod(m, char *) + offset);
|
|
offset += (ip->ip_hl << 2);
|
|
tcp_offset = offset;
|
|
/*
|
|
* It seems that Yukon II has Tx checksum offload bug for
|
|
* small TCP packets that's less than 60 bytes in size
|
|
* (e.g. TCP window probe packet, pure ACK packet).
|
|
* Common work around like padding with zeros to make the
|
|
* frame minimum ethernet frame size didn't work at all.
|
|
* Instead of disabling checksum offload completely we
|
|
* resort to S/W checksum routine when we encounter short
|
|
* TCP frames.
|
|
* Short UDP packets appear to be handled correctly by
|
|
* Yukon II.
|
|
*/
|
|
if (m->m_pkthdr.len < MSK_MIN_FRAMELEN &&
|
|
(m->m_pkthdr.csum_flags & CSUM_TCP) != 0) {
|
|
uint16_t csum;
|
|
|
|
csum = in_cksum_skip(m, ntohs(ip->ip_len) + offset -
|
|
(ip->ip_hl << 2), offset);
|
|
*(uint16_t *)(m->m_data + offset +
|
|
m->m_pkthdr.csum_data) = csum;
|
|
m->m_pkthdr.csum_flags &= ~CSUM_TCP;
|
|
}
|
|
if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
|
|
m = m_pullup(m, offset + sizeof(struct tcphdr));
|
|
if (m == NULL) {
|
|
*m_head = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
tcp = (struct tcphdr *)(mtod(m, char *) + offset);
|
|
offset += (tcp->th_off << 2);
|
|
}
|
|
*m_head = m;
|
|
}
|
|
|
|
prod = sc_if->msk_cdata.msk_tx_prod;
|
|
txd = &sc_if->msk_cdata.msk_txdesc[prod];
|
|
txd_last = txd;
|
|
map = txd->tx_dmamap;
|
|
error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag, map,
|
|
*m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
|
|
if (error == EFBIG) {
|
|
m = msk_defrag(*m_head, M_DONTWAIT, MSK_MAXTXSEGS);
|
|
if (m == NULL) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (ENOBUFS);
|
|
}
|
|
*m_head = m;
|
|
error = bus_dmamap_load_mbuf_sg(sc_if->msk_cdata.msk_tx_tag,
|
|
map, *m_head, txsegs, &nseg, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (error);
|
|
}
|
|
} else if (error != 0)
|
|
return (error);
|
|
if (nseg == 0) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return (EIO);
|
|
}
|
|
|
|
/* Check number of available descriptors. */
|
|
if (sc_if->msk_cdata.msk_tx_cnt + nseg >=
|
|
(MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT)) {
|
|
bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, map);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
control = 0;
|
|
tso = 0;
|
|
tx_le = NULL;
|
|
|
|
/* Check TSO support. */
|
|
if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
|
|
tso_mtu = offset + m->m_pkthdr.tso_segsz;
|
|
if (tso_mtu != sc_if->msk_cdata.msk_tso_mtu) {
|
|
tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
|
|
tx_le->msk_addr = htole32(tso_mtu);
|
|
tx_le->msk_control = htole32(OP_LRGLEN | HW_OWNER);
|
|
sc_if->msk_cdata.msk_tx_cnt++;
|
|
MSK_INC(prod, MSK_TX_RING_CNT);
|
|
sc_if->msk_cdata.msk_tso_mtu = tso_mtu;
|
|
}
|
|
tso++;
|
|
}
|
|
/* Check if we have a VLAN tag to insert. */
|
|
if ((m->m_flags & M_VLANTAG) != 0) {
|
|
if (tso == 0) {
|
|
tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
|
|
tx_le->msk_addr = htole32(0);
|
|
tx_le->msk_control = htole32(OP_VLAN | HW_OWNER |
|
|
htons(m->m_pkthdr.ether_vtag));
|
|
sc_if->msk_cdata.msk_tx_cnt++;
|
|
MSK_INC(prod, MSK_TX_RING_CNT);
|
|
} else {
|
|
tx_le->msk_control |= htole32(OP_VLAN |
|
|
htons(m->m_pkthdr.ether_vtag));
|
|
}
|
|
control |= INS_VLAN;
|
|
}
|
|
/* Check if we have to handle checksum offload. */
|
|
if (tso == 0 && (m->m_pkthdr.csum_flags & MSK_CSUM_FEATURES) != 0) {
|
|
tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
|
|
tx_le->msk_addr = htole32(((tcp_offset + m->m_pkthdr.csum_data)
|
|
& 0xffff) | ((uint32_t)tcp_offset << 16));
|
|
tx_le->msk_control = htole32(1 << 16 | (OP_TCPLISW | HW_OWNER));
|
|
control = CALSUM | WR_SUM | INIT_SUM | LOCK_SUM;
|
|
if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
|
|
control |= UDPTCP;
|
|
sc_if->msk_cdata.msk_tx_cnt++;
|
|
MSK_INC(prod, MSK_TX_RING_CNT);
|
|
}
|
|
|
|
si = prod;
|
|
tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
|
|
tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[0].ds_addr));
|
|
if (tso == 0)
|
|
tx_le->msk_control = htole32(txsegs[0].ds_len | control |
|
|
OP_PACKET);
|
|
else
|
|
tx_le->msk_control = htole32(txsegs[0].ds_len | control |
|
|
OP_LARGESEND);
|
|
sc_if->msk_cdata.msk_tx_cnt++;
|
|
MSK_INC(prod, MSK_TX_RING_CNT);
|
|
|
|
for (i = 1; i < nseg; i++) {
|
|
tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
|
|
tx_le->msk_addr = htole32(MSK_ADDR_LO(txsegs[i].ds_addr));
|
|
tx_le->msk_control = htole32(txsegs[i].ds_len | control |
|
|
OP_BUFFER | HW_OWNER);
|
|
sc_if->msk_cdata.msk_tx_cnt++;
|
|
MSK_INC(prod, MSK_TX_RING_CNT);
|
|
}
|
|
/* Update producer index. */
|
|
sc_if->msk_cdata.msk_tx_prod = prod;
|
|
|
|
/* Set EOP on the last desciptor. */
|
|
prod = (prod + MSK_TX_RING_CNT - 1) % MSK_TX_RING_CNT;
|
|
tx_le = &sc_if->msk_rdata.msk_tx_ring[prod];
|
|
tx_le->msk_control |= htole32(EOP);
|
|
|
|
/* Turn the first descriptor ownership to hardware. */
|
|
tx_le = &sc_if->msk_rdata.msk_tx_ring[si];
|
|
tx_le->msk_control |= htole32(HW_OWNER);
|
|
|
|
txd = &sc_if->msk_cdata.msk_txdesc[prod];
|
|
map = txd_last->tx_dmamap;
|
|
txd_last->tx_dmamap = txd->tx_dmamap;
|
|
txd->tx_dmamap = map;
|
|
txd->tx_m = m;
|
|
|
|
/* Sync descriptors. */
|
|
bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, map, BUS_DMASYNC_PREWRITE);
|
|
bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
|
|
sc_if->msk_cdata.msk_tx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
msk_tx_task(void *arg, int pending)
|
|
{
|
|
struct ifnet *ifp;
|
|
|
|
ifp = arg;
|
|
msk_start(ifp);
|
|
}
|
|
|
|
static void
|
|
msk_start(struct ifnet *ifp)
|
|
{
|
|
struct msk_if_softc *sc_if;
|
|
struct mbuf *m_head;
|
|
int enq;
|
|
|
|
sc_if = ifp->if_softc;
|
|
|
|
MSK_IF_LOCK(sc_if);
|
|
|
|
if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
|
|
IFF_DRV_RUNNING || sc_if->msk_link == 0) {
|
|
MSK_IF_UNLOCK(sc_if);
|
|
return;
|
|
}
|
|
|
|
for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) &&
|
|
sc_if->msk_cdata.msk_tx_cnt <
|
|
(MSK_TX_RING_CNT - MSK_RESERVED_TX_DESC_CNT); ) {
|
|
IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
|
|
if (m_head == NULL)
|
|
break;
|
|
/*
|
|
* Pack the data into the transmit ring. If we
|
|
* don't have room, set the OACTIVE flag and wait
|
|
* for the NIC to drain the ring.
|
|
*/
|
|
if (msk_encap(sc_if, &m_head) != 0) {
|
|
if (m_head == NULL)
|
|
break;
|
|
IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
break;
|
|
}
|
|
|
|
enq++;
|
|
/*
|
|
* If there's a BPF listener, bounce a copy of this frame
|
|
* to him.
|
|
*/
|
|
ETHER_BPF_MTAP(ifp, m_head);
|
|
}
|
|
|
|
if (enq > 0) {
|
|
/* Transmit */
|
|
CSR_WRITE_2(sc_if->msk_softc,
|
|
Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_PUT_IDX_REG),
|
|
sc_if->msk_cdata.msk_tx_prod);
|
|
|
|
/* Set a timeout in case the chip goes out to lunch. */
|
|
sc_if->msk_watchdog_timer = MSK_TX_TIMEOUT;
|
|
}
|
|
|
|
MSK_IF_UNLOCK(sc_if);
|
|
}
|
|
|
|
static void
|
|
msk_watchdog(struct msk_if_softc *sc_if)
|
|
{
|
|
struct ifnet *ifp;
|
|
uint32_t ridx;
|
|
int idx;
|
|
|
|
MSK_IF_LOCK_ASSERT(sc_if);
|
|
|
|
if (sc_if->msk_watchdog_timer == 0 || --sc_if->msk_watchdog_timer)
|
|
return;
|
|
ifp = sc_if->msk_ifp;
|
|
if (sc_if->msk_link == 0) {
|
|
if (bootverbose)
|
|
if_printf(sc_if->msk_ifp, "watchdog timeout "
|
|
"(missed link)\n");
|
|
ifp->if_oerrors++;
|
|
msk_init_locked(sc_if);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Reclaim first as there is a possibility of losing Tx completion
|
|
* interrupts.
|
|
*/
|
|
ridx = sc_if->msk_port == MSK_PORT_A ? STAT_TXA1_RIDX : STAT_TXA2_RIDX;
|
|
idx = CSR_READ_2(sc_if->msk_softc, ridx);
|
|
if (sc_if->msk_cdata.msk_tx_cons != idx) {
|
|
msk_txeof(sc_if, idx);
|
|
if (sc_if->msk_cdata.msk_tx_cnt == 0) {
|
|
if_printf(ifp, "watchdog timeout (missed Tx interrupts) "
|
|
"-- recovering\n");
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
taskqueue_enqueue(taskqueue_fast,
|
|
&sc_if->msk_tx_task);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if_printf(ifp, "watchdog timeout\n");
|
|
ifp->if_oerrors++;
|
|
msk_init_locked(sc_if);
|
|
if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
|
|
taskqueue_enqueue(taskqueue_fast, &sc_if->msk_tx_task);
|
|
}
|
|
|
|
static void
|
|
mskc_shutdown(device_t dev)
|
|
{
|
|
struct msk_softc *sc;
|
|
int i;
|
|
|
|
sc = device_get_softc(dev);
|
|
MSK_LOCK(sc);
|
|
for (i = 0; i < sc->msk_num_port; i++) {
|
|
if (sc->msk_if[i] != NULL)
|
|
msk_stop(sc->msk_if[i]);
|
|
}
|
|
|
|
/* Disable all interrupts. */
|
|
CSR_WRITE_4(sc, B0_IMSK, 0);
|
|
CSR_READ_4(sc, B0_IMSK);
|
|
CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
|
|
CSR_READ_4(sc, B0_HWE_IMSK);
|
|
|
|
/* Put hardware reset. */
|
|
CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
|
|
|
|
MSK_UNLOCK(sc);
|
|
}
|
|
|
|
static int
|
|
mskc_suspend(device_t dev)
|
|
{
|
|
struct msk_softc *sc;
|
|
int i;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
MSK_LOCK(sc);
|
|
|
|
for (i = 0; i < sc->msk_num_port; i++) {
|
|
if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
|
|
((sc->msk_if[i]->msk_ifp->if_drv_flags &
|
|
IFF_DRV_RUNNING) != 0))
|
|
msk_stop(sc->msk_if[i]);
|
|
}
|
|
|
|
/* Disable all interrupts. */
|
|
CSR_WRITE_4(sc, B0_IMSK, 0);
|
|
CSR_READ_4(sc, B0_IMSK);
|
|
CSR_WRITE_4(sc, B0_HWE_IMSK, 0);
|
|
CSR_READ_4(sc, B0_HWE_IMSK);
|
|
|
|
msk_phy_power(sc, MSK_PHY_POWERDOWN);
|
|
|
|
/* Put hardware reset. */
|
|
CSR_WRITE_2(sc, B0_CTST, CS_RST_SET);
|
|
sc->msk_suspended = 1;
|
|
|
|
MSK_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
mskc_resume(device_t dev)
|
|
{
|
|
struct msk_softc *sc;
|
|
int i;
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
MSK_LOCK(sc);
|
|
|
|
mskc_reset(sc);
|
|
for (i = 0; i < sc->msk_num_port; i++) {
|
|
if (sc->msk_if[i] != NULL && sc->msk_if[i]->msk_ifp != NULL &&
|
|
((sc->msk_if[i]->msk_ifp->if_flags & IFF_UP) != 0))
|
|
msk_init_locked(sc->msk_if[i]);
|
|
}
|
|
sc->msk_suspended = 0;
|
|
|
|
MSK_UNLOCK(sc);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
msk_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
|
|
{
|
|
struct mbuf *m;
|
|
struct ifnet *ifp;
|
|
struct msk_rxdesc *rxd;
|
|
int cons, rxlen;
|
|
|
|
ifp = sc_if->msk_ifp;
|
|
|
|
MSK_IF_LOCK_ASSERT(sc_if);
|
|
|
|
cons = sc_if->msk_cdata.msk_rx_cons;
|
|
do {
|
|
rxlen = status >> 16;
|
|
if ((status & GMR_FS_VLAN) != 0 &&
|
|
(ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
|
|
rxlen -= ETHER_VLAN_ENCAP_LEN;
|
|
if (len > sc_if->msk_framesize ||
|
|
((status & GMR_FS_ANY_ERR) != 0) ||
|
|
((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
|
|
/* Don't count flow-control packet as errors. */
|
|
if ((status & GMR_FS_GOOD_FC) == 0)
|
|
ifp->if_ierrors++;
|
|
msk_discard_rxbuf(sc_if, cons);
|
|
break;
|
|
}
|
|
rxd = &sc_if->msk_cdata.msk_rxdesc[cons];
|
|
m = rxd->rx_m;
|
|
if (msk_newbuf(sc_if, cons) != 0) {
|
|
ifp->if_iqdrops++;
|
|
/* Reuse old buffer. */
|
|
msk_discard_rxbuf(sc_if, cons);
|
|
break;
|
|
}
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = m->m_len = len;
|
|
ifp->if_ipackets++;
|
|
/* Check for VLAN tagged packets. */
|
|
if ((status & GMR_FS_VLAN) != 0 &&
|
|
(ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
|
|
m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
|
|
m->m_flags |= M_VLANTAG;
|
|
}
|
|
MSK_IF_UNLOCK(sc_if);
|
|
(*ifp->if_input)(ifp, m);
|
|
MSK_IF_LOCK(sc_if);
|
|
} while (0);
|
|
|
|
MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_RX_RING_CNT);
|
|
MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_RX_RING_CNT);
|
|
}
|
|
|
|
static void
|
|
msk_jumbo_rxeof(struct msk_if_softc *sc_if, uint32_t status, int len)
|
|
{
|
|
struct mbuf *m;
|
|
struct ifnet *ifp;
|
|
struct msk_rxdesc *jrxd;
|
|
int cons, rxlen;
|
|
|
|
ifp = sc_if->msk_ifp;
|
|
|
|
MSK_IF_LOCK_ASSERT(sc_if);
|
|
|
|
cons = sc_if->msk_cdata.msk_rx_cons;
|
|
do {
|
|
rxlen = status >> 16;
|
|
if ((status & GMR_FS_VLAN) != 0 &&
|
|
(ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
|
|
rxlen -= ETHER_VLAN_ENCAP_LEN;
|
|
if (len > sc_if->msk_framesize ||
|
|
((status & GMR_FS_ANY_ERR) != 0) ||
|
|
((status & GMR_FS_RX_OK) == 0) || (rxlen != len)) {
|
|
/* Don't count flow-control packet as errors. */
|
|
if ((status & GMR_FS_GOOD_FC) == 0)
|
|
ifp->if_ierrors++;
|
|
msk_discard_jumbo_rxbuf(sc_if, cons);
|
|
break;
|
|
}
|
|
jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[cons];
|
|
m = jrxd->rx_m;
|
|
if (msk_jumbo_newbuf(sc_if, cons) != 0) {
|
|
ifp->if_iqdrops++;
|
|
/* Reuse old buffer. */
|
|
msk_discard_jumbo_rxbuf(sc_if, cons);
|
|
break;
|
|
}
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = m->m_len = len;
|
|
ifp->if_ipackets++;
|
|
/* Check for VLAN tagged packets. */
|
|
if ((status & GMR_FS_VLAN) != 0 &&
|
|
(ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0) {
|
|
m->m_pkthdr.ether_vtag = sc_if->msk_vtag;
|
|
m->m_flags |= M_VLANTAG;
|
|
}
|
|
MSK_IF_UNLOCK(sc_if);
|
|
(*ifp->if_input)(ifp, m);
|
|
MSK_IF_LOCK(sc_if);
|
|
} while (0);
|
|
|
|
MSK_INC(sc_if->msk_cdata.msk_rx_cons, MSK_JUMBO_RX_RING_CNT);
|
|
MSK_INC(sc_if->msk_cdata.msk_rx_prod, MSK_JUMBO_RX_RING_CNT);
|
|
}
|
|
|
|
static void
|
|
msk_txeof(struct msk_if_softc *sc_if, int idx)
|
|
{
|
|
struct msk_txdesc *txd;
|
|
struct msk_tx_desc *cur_tx;
|
|
struct ifnet *ifp;
|
|
uint32_t control;
|
|
int cons, prog;
|
|
|
|
MSK_IF_LOCK_ASSERT(sc_if);
|
|
|
|
ifp = sc_if->msk_ifp;
|
|
|
|
bus_dmamap_sync(sc_if->msk_cdata.msk_tx_ring_tag,
|
|
sc_if->msk_cdata.msk_tx_ring_map,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
/*
|
|
* Go through our tx ring and free mbufs for those
|
|
* frames that have been sent.
|
|
*/
|
|
cons = sc_if->msk_cdata.msk_tx_cons;
|
|
prog = 0;
|
|
for (; cons != idx; MSK_INC(cons, MSK_TX_RING_CNT)) {
|
|
if (sc_if->msk_cdata.msk_tx_cnt <= 0)
|
|
break;
|
|
prog++;
|
|
cur_tx = &sc_if->msk_rdata.msk_tx_ring[cons];
|
|
control = le32toh(cur_tx->msk_control);
|
|
sc_if->msk_cdata.msk_tx_cnt--;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
if ((control & EOP) == 0)
|
|
continue;
|
|
txd = &sc_if->msk_cdata.msk_txdesc[cons];
|
|
bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag, txd->tx_dmamap);
|
|
|
|
ifp->if_opackets++;
|
|
KASSERT(txd->tx_m != NULL, ("%s: freeing NULL mbuf!",
|
|
__func__));
|
|
m_freem(txd->tx_m);
|
|
txd->tx_m = NULL;
|
|
}
|
|
|
|
if (prog > 0) {
|
|
sc_if->msk_cdata.msk_tx_cons = cons;
|
|
if (sc_if->msk_cdata.msk_tx_cnt == 0)
|
|
sc_if->msk_watchdog_timer = 0;
|
|
/* No need to sync LEs as we didn't update LEs. */
|
|
}
|
|
}
|
|
|
|
static void
|
|
msk_tick(void *xsc_if)
|
|
{
|
|
struct msk_if_softc *sc_if;
|
|
struct mii_data *mii;
|
|
|
|
sc_if = xsc_if;
|
|
|
|
MSK_IF_LOCK_ASSERT(sc_if);
|
|
|
|
mii = device_get_softc(sc_if->msk_miibus);
|
|
|
|
mii_tick(mii);
|
|
msk_watchdog(sc_if);
|
|
callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
|
|
}
|
|
|
|
static void
|
|
msk_intr_phy(struct msk_if_softc *sc_if)
|
|
{
|
|
uint16_t status;
|
|
|
|
if (sc_if->msk_softc->msk_marvell_phy) {
|
|
msk_phy_readreg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_STAT);
|
|
status = msk_phy_readreg(sc_if, PHY_ADDR_MARV,
|
|
PHY_MARV_INT_STAT);
|
|
/* Handle FIFO Underrun/Overflow? */
|
|
if ((status & PHY_M_IS_FIFO_ERROR))
|
|
device_printf(sc_if->msk_if_dev,
|
|
"PHY FIFO underrun/overflow.\n");
|
|
}
|
|
}
|
|
|
|
static void
|
|
msk_intr_gmac(struct msk_if_softc *sc_if)
|
|
{
|
|
struct msk_softc *sc;
|
|
uint8_t status;
|
|
|
|
sc = sc_if->msk_softc;
|
|
status = CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
|
|
|
|
/* GMAC Rx FIFO overrun. */
|
|
if ((status & GM_IS_RX_FF_OR) != 0) {
|
|
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
|
|
GMF_CLI_RX_FO);
|
|
device_printf(sc_if->msk_if_dev, "Rx FIFO overrun!\n");
|
|
}
|
|
/* GMAC Tx FIFO underrun. */
|
|
if ((status & GM_IS_TX_FF_UR) != 0) {
|
|
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
|
|
GMF_CLI_TX_FU);
|
|
device_printf(sc_if->msk_if_dev, "Tx FIFO underrun!\n");
|
|
/*
|
|
* XXX
|
|
* In case of Tx underrun, we may need to flush/reset
|
|
* Tx MAC but that would also require resynchronization
|
|
* with status LEs. Reintializing status LEs would
|
|
* affect other port in dual MAC configuration so it
|
|
* should be avoided as possible as we can.
|
|
* Due to lack of documentation it's all vague guess but
|
|
* it needs more investigation.
|
|
*/
|
|
}
|
|
}
|
|
|
|
static void
|
|
msk_handle_hwerr(struct msk_if_softc *sc_if, uint32_t status)
|
|
{
|
|
struct msk_softc *sc;
|
|
|
|
sc = sc_if->msk_softc;
|
|
if ((status & Y2_IS_PAR_RD1) != 0) {
|
|
device_printf(sc_if->msk_if_dev,
|
|
"RAM buffer read parity error\n");
|
|
/* Clear IRQ. */
|
|
CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
|
|
RI_CLR_RD_PERR);
|
|
}
|
|
if ((status & Y2_IS_PAR_WR1) != 0) {
|
|
device_printf(sc_if->msk_if_dev,
|
|
"RAM buffer write parity error\n");
|
|
/* Clear IRQ. */
|
|
CSR_WRITE_2(sc, SELECT_RAM_BUFFER(sc_if->msk_port, B3_RI_CTRL),
|
|
RI_CLR_WR_PERR);
|
|
}
|
|
if ((status & Y2_IS_PAR_MAC1) != 0) {
|
|
device_printf(sc_if->msk_if_dev, "Tx MAC parity error\n");
|
|
/* Clear IRQ. */
|
|
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
|
|
GMF_CLI_TX_PE);
|
|
}
|
|
if ((status & Y2_IS_PAR_RX1) != 0) {
|
|
device_printf(sc_if->msk_if_dev, "Rx parity error\n");
|
|
/* Clear IRQ. */
|
|
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_IRQ_PAR);
|
|
}
|
|
if ((status & (Y2_IS_TCP_TXS1 | Y2_IS_TCP_TXA1)) != 0) {
|
|
device_printf(sc_if->msk_if_dev, "TCP segmentation error\n");
|
|
/* Clear IRQ. */
|
|
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_IRQ_TCP);
|
|
}
|
|
}
|
|
|
|
static void
|
|
msk_intr_hwerr(struct msk_softc *sc)
|
|
{
|
|
uint32_t status;
|
|
uint32_t tlphead[4];
|
|
|
|
status = CSR_READ_4(sc, B0_HWE_ISRC);
|
|
/* Time Stamp timer overflow. */
|
|
if ((status & Y2_IS_TIST_OV) != 0)
|
|
CSR_WRITE_1(sc, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
|
|
if ((status & Y2_IS_PCI_NEXP) != 0) {
|
|
/*
|
|
* PCI Express Error occured which is not described in PEX
|
|
* spec.
|
|
* This error is also mapped either to Master Abort(
|
|
* Y2_IS_MST_ERR) or Target Abort (Y2_IS_IRQ_STAT) bit and
|
|
* can only be cleared there.
|
|
*/
|
|
device_printf(sc->msk_dev,
|
|
"PCI Express protocol violation error\n");
|
|
}
|
|
|
|
if ((status & (Y2_IS_MST_ERR | Y2_IS_IRQ_STAT)) != 0) {
|
|
uint16_t v16;
|
|
|
|
if ((status & Y2_IS_MST_ERR) != 0)
|
|
device_printf(sc->msk_dev,
|
|
"unexpected IRQ Status error\n");
|
|
else
|
|
device_printf(sc->msk_dev,
|
|
"unexpected IRQ Master error\n");
|
|
/* Reset all bits in the PCI status register. */
|
|
v16 = pci_read_config(sc->msk_dev, PCIR_STATUS, 2);
|
|
CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
|
|
pci_write_config(sc->msk_dev, PCIR_STATUS, v16 |
|
|
PCIM_STATUS_PERR | PCIM_STATUS_SERR | PCIM_STATUS_RMABORT |
|
|
PCIM_STATUS_RTABORT | PCIM_STATUS_PERRREPORT, 2);
|
|
CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
|
|
}
|
|
|
|
/* Check for PCI Express Uncorrectable Error. */
|
|
if ((status & Y2_IS_PCI_EXP) != 0) {
|
|
uint32_t v32;
|
|
|
|
/*
|
|
* On PCI Express bus bridges are called root complexes (RC).
|
|
* PCI Express errors are recognized by the root complex too,
|
|
* which requests the system to handle the problem. After
|
|
* error occurence it may be that no access to the adapter
|
|
* may be performed any longer.
|
|
*/
|
|
|
|
v32 = CSR_PCI_READ_4(sc, PEX_UNC_ERR_STAT);
|
|
if ((v32 & PEX_UNSUP_REQ) != 0) {
|
|
/* Ignore unsupported request error. */
|
|
device_printf(sc->msk_dev,
|
|
"Uncorrectable PCI Express error\n");
|
|
}
|
|
if ((v32 & (PEX_FATAL_ERRORS | PEX_POIS_TLP)) != 0) {
|
|
int i;
|
|
|
|
/* Get TLP header form Log Registers. */
|
|
for (i = 0; i < 4; i++)
|
|
tlphead[i] = CSR_PCI_READ_4(sc,
|
|
PEX_HEADER_LOG + i * 4);
|
|
/* Check for vendor defined broadcast message. */
|
|
if (!(tlphead[0] == 0x73004001 && tlphead[1] == 0x7f)) {
|
|
sc->msk_intrhwemask &= ~Y2_IS_PCI_EXP;
|
|
CSR_WRITE_4(sc, B0_HWE_IMSK,
|
|
sc->msk_intrhwemask);
|
|
CSR_READ_4(sc, B0_HWE_IMSK);
|
|
}
|
|
}
|
|
/* Clear the interrupt. */
|
|
CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_ON);
|
|
CSR_PCI_WRITE_4(sc, PEX_UNC_ERR_STAT, 0xffffffff);
|
|
CSR_WRITE_1(sc, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
|
|
}
|
|
|
|
if ((status & Y2_HWE_L1_MASK) != 0 && sc->msk_if[MSK_PORT_A] != NULL)
|
|
msk_handle_hwerr(sc->msk_if[MSK_PORT_A], status);
|
|
if ((status & Y2_HWE_L2_MASK) != 0 && sc->msk_if[MSK_PORT_B] != NULL)
|
|
msk_handle_hwerr(sc->msk_if[MSK_PORT_B], status >> 8);
|
|
}
|
|
|
|
static __inline void
|
|
msk_rxput(struct msk_if_softc *sc_if)
|
|
{
|
|
struct msk_softc *sc;
|
|
|
|
sc = sc_if->msk_softc;
|
|
if (sc_if->msk_framesize >(MCLBYTES - ETHER_HDR_LEN))
|
|
bus_dmamap_sync(
|
|
sc_if->msk_cdata.msk_jumbo_rx_ring_tag,
|
|
sc_if->msk_cdata.msk_jumbo_rx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
else
|
|
bus_dmamap_sync(
|
|
sc_if->msk_cdata.msk_rx_ring_tag,
|
|
sc_if->msk_cdata.msk_rx_ring_map,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq,
|
|
PREF_UNIT_PUT_IDX_REG), sc_if->msk_cdata.msk_rx_prod);
|
|
}
|
|
|
|
static int
|
|
msk_handle_events(struct msk_softc *sc)
|
|
{
|
|
struct msk_if_softc *sc_if;
|
|
int rxput[2];
|
|
struct msk_stat_desc *sd;
|
|
uint32_t control, status;
|
|
int cons, idx, len, port, rxprog;
|
|
|
|
idx = CSR_READ_2(sc, STAT_PUT_IDX);
|
|
if (idx == sc->msk_stat_cons)
|
|
return (0);
|
|
|
|
/* Sync status LEs. */
|
|
bus_dmamap_sync(sc->msk_stat_tag, sc->msk_stat_map,
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
/* XXX Sync Rx LEs here. */
|
|
|
|
rxput[MSK_PORT_A] = rxput[MSK_PORT_B] = 0;
|
|
|
|
rxprog = 0;
|
|
for (cons = sc->msk_stat_cons; cons != idx;) {
|
|
sd = &sc->msk_stat_ring[cons];
|
|
control = le32toh(sd->msk_control);
|
|
if ((control & HW_OWNER) == 0)
|
|
break;
|
|
/*
|
|
* Marvell's FreeBSD driver updates status LE after clearing
|
|
* HW_OWNER. However we don't have a way to sync single LE
|
|
* with bus_dma(9) API. bus_dma(9) provides a way to sync
|
|
* an entire DMA map. So don't sync LE until we have a better
|
|
* way to sync LEs.
|
|
*/
|
|
control &= ~HW_OWNER;
|
|
sd->msk_control = htole32(control);
|
|
status = le32toh(sd->msk_status);
|
|
len = control & STLE_LEN_MASK;
|
|
port = (control >> 16) & 0x01;
|
|
sc_if = sc->msk_if[port];
|
|
if (sc_if == NULL) {
|
|
device_printf(sc->msk_dev, "invalid port opcode "
|
|
"0x%08x\n", control & STLE_OP_MASK);
|
|
continue;
|
|
}
|
|
|
|
switch (control & STLE_OP_MASK) {
|
|
case OP_RXVLAN:
|
|
sc_if->msk_vtag = ntohs(len);
|
|
break;
|
|
case OP_RXCHKSVLAN:
|
|
sc_if->msk_vtag = ntohs(len);
|
|
break;
|
|
case OP_RXSTAT:
|
|
if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN))
|
|
msk_jumbo_rxeof(sc_if, status, len);
|
|
else
|
|
msk_rxeof(sc_if, status, len);
|
|
rxprog++;
|
|
/*
|
|
* Because there is no way to sync single Rx LE
|
|
* put the DMA sync operation off until the end of
|
|
* event processing.
|
|
*/
|
|
rxput[port]++;
|
|
/* Update prefetch unit if we've passed water mark. */
|
|
if (rxput[port] >= sc_if->msk_cdata.msk_rx_putwm) {
|
|
msk_rxput(sc_if);
|
|
rxput[port] = 0;
|
|
}
|
|
break;
|
|
case OP_TXINDEXLE:
|
|
if (sc->msk_if[MSK_PORT_A] != NULL)
|
|
msk_txeof(sc->msk_if[MSK_PORT_A],
|
|
status & STLE_TXA1_MSKL);
|
|
if (sc->msk_if[MSK_PORT_B] != NULL)
|
|
msk_txeof(sc->msk_if[MSK_PORT_B],
|
|
((status & STLE_TXA2_MSKL) >>
|
|
STLE_TXA2_SHIFTL) |
|
|
((len & STLE_TXA2_MSKH) <<
|
|
STLE_TXA2_SHIFTH));
|
|
break;
|
|
default:
|
|
device_printf(sc->msk_dev, "unhandled opcode 0x%08x\n",
|
|
control & STLE_OP_MASK);
|
|
break;
|
|
}
|
|
MSK_INC(cons, MSK_STAT_RING_CNT);
|
|
if (rxprog > sc->msk_process_limit)
|
|
break;
|
|
}
|
|
|
|
sc->msk_stat_cons = cons;
|
|
/* XXX We should sync status LEs here. See above notes. */
|
|
|
|
if (rxput[MSK_PORT_A] > 0)
|
|
msk_rxput(sc->msk_if[MSK_PORT_A]);
|
|
if (rxput[MSK_PORT_B] > 0)
|
|
msk_rxput(sc->msk_if[MSK_PORT_B]);
|
|
|
|
return (sc->msk_stat_cons != CSR_READ_2(sc, STAT_PUT_IDX));
|
|
}
|
|
|
|
/* Legacy interrupt handler for shared interrupt. */
|
|
static void
|
|
msk_legacy_intr(void *xsc)
|
|
{
|
|
struct msk_softc *sc;
|
|
struct msk_if_softc *sc_if0, *sc_if1;
|
|
struct ifnet *ifp0, *ifp1;
|
|
uint32_t status;
|
|
|
|
sc = xsc;
|
|
MSK_LOCK(sc);
|
|
|
|
/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
|
|
status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
|
|
if (status == 0 || status == 0xffffffff || sc->msk_suspended != 0 ||
|
|
(status & sc->msk_intrmask) == 0) {
|
|
CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
|
|
return;
|
|
}
|
|
|
|
sc_if0 = sc->msk_if[MSK_PORT_A];
|
|
sc_if1 = sc->msk_if[MSK_PORT_B];
|
|
ifp0 = ifp1 = NULL;
|
|
if (sc_if0 != NULL)
|
|
ifp0 = sc_if0->msk_ifp;
|
|
if (sc_if1 != NULL)
|
|
ifp1 = sc_if1->msk_ifp;
|
|
|
|
if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
|
|
msk_intr_phy(sc_if0);
|
|
if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
|
|
msk_intr_phy(sc_if1);
|
|
if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
|
|
msk_intr_gmac(sc_if0);
|
|
if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
|
|
msk_intr_gmac(sc_if1);
|
|
if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
|
|
device_printf(sc->msk_dev, "Rx descriptor error\n");
|
|
sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
|
|
CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
|
|
CSR_READ_4(sc, B0_IMSK);
|
|
}
|
|
if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
|
|
device_printf(sc->msk_dev, "Tx descriptor error\n");
|
|
sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
|
|
CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
|
|
CSR_READ_4(sc, B0_IMSK);
|
|
}
|
|
if ((status & Y2_IS_HW_ERR) != 0)
|
|
msk_intr_hwerr(sc);
|
|
|
|
while (msk_handle_events(sc) != 0)
|
|
;
|
|
if ((status & Y2_IS_STAT_BMU) != 0)
|
|
CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
|
|
|
|
/* Reenable interrupts. */
|
|
CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
|
|
|
|
if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
|
|
!IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
|
|
taskqueue_enqueue(taskqueue_fast, &sc_if0->msk_tx_task);
|
|
if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
|
|
!IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
|
|
taskqueue_enqueue(taskqueue_fast, &sc_if1->msk_tx_task);
|
|
|
|
MSK_UNLOCK(sc);
|
|
}
|
|
|
|
static int
|
|
msk_intr(void *xsc)
|
|
{
|
|
struct msk_softc *sc;
|
|
uint32_t status;
|
|
|
|
sc = xsc;
|
|
status = CSR_READ_4(sc, B0_Y2_SP_ISRC2);
|
|
/* Reading B0_Y2_SP_ISRC2 masks further interrupts. */
|
|
if (status == 0 || status == 0xffffffff) {
|
|
CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
|
|
return (FILTER_STRAY);
|
|
}
|
|
|
|
taskqueue_enqueue(sc->msk_tq, &sc->msk_int_task);
|
|
return (FILTER_HANDLED);
|
|
}
|
|
|
|
static void
|
|
msk_int_task(void *arg, int pending)
|
|
{
|
|
struct msk_softc *sc;
|
|
struct msk_if_softc *sc_if0, *sc_if1;
|
|
struct ifnet *ifp0, *ifp1;
|
|
uint32_t status;
|
|
int domore;
|
|
|
|
sc = arg;
|
|
MSK_LOCK(sc);
|
|
|
|
/* Get interrupt source. */
|
|
status = CSR_READ_4(sc, B0_ISRC);
|
|
if (status == 0 || status == 0xffffffff || sc->msk_suspended != 0 ||
|
|
(status & sc->msk_intrmask) == 0)
|
|
goto done;
|
|
|
|
sc_if0 = sc->msk_if[MSK_PORT_A];
|
|
sc_if1 = sc->msk_if[MSK_PORT_B];
|
|
ifp0 = ifp1 = NULL;
|
|
if (sc_if0 != NULL)
|
|
ifp0 = sc_if0->msk_ifp;
|
|
if (sc_if1 != NULL)
|
|
ifp1 = sc_if1->msk_ifp;
|
|
|
|
if ((status & Y2_IS_IRQ_PHY1) != 0 && sc_if0 != NULL)
|
|
msk_intr_phy(sc_if0);
|
|
if ((status & Y2_IS_IRQ_PHY2) != 0 && sc_if1 != NULL)
|
|
msk_intr_phy(sc_if1);
|
|
if ((status & Y2_IS_IRQ_MAC1) != 0 && sc_if0 != NULL)
|
|
msk_intr_gmac(sc_if0);
|
|
if ((status & Y2_IS_IRQ_MAC2) != 0 && sc_if1 != NULL)
|
|
msk_intr_gmac(sc_if1);
|
|
if ((status & (Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2)) != 0) {
|
|
device_printf(sc->msk_dev, "Rx descriptor error\n");
|
|
sc->msk_intrmask &= ~(Y2_IS_CHK_RX1 | Y2_IS_CHK_RX2);
|
|
CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
|
|
CSR_READ_4(sc, B0_IMSK);
|
|
}
|
|
if ((status & (Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2)) != 0) {
|
|
device_printf(sc->msk_dev, "Tx descriptor error\n");
|
|
sc->msk_intrmask &= ~(Y2_IS_CHK_TXA1 | Y2_IS_CHK_TXA2);
|
|
CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
|
|
CSR_READ_4(sc, B0_IMSK);
|
|
}
|
|
if ((status & Y2_IS_HW_ERR) != 0)
|
|
msk_intr_hwerr(sc);
|
|
|
|
domore = msk_handle_events(sc);
|
|
if ((status & Y2_IS_STAT_BMU) != 0)
|
|
CSR_WRITE_4(sc, STAT_CTRL, SC_STAT_CLR_IRQ);
|
|
|
|
if (ifp0 != NULL && (ifp0->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
|
|
!IFQ_DRV_IS_EMPTY(&ifp0->if_snd))
|
|
taskqueue_enqueue(taskqueue_fast, &sc_if0->msk_tx_task);
|
|
if (ifp1 != NULL && (ifp1->if_drv_flags & IFF_DRV_RUNNING) != 0 &&
|
|
!IFQ_DRV_IS_EMPTY(&ifp1->if_snd))
|
|
taskqueue_enqueue(taskqueue_fast, &sc_if1->msk_tx_task);
|
|
|
|
if (domore > 0) {
|
|
taskqueue_enqueue(sc->msk_tq, &sc->msk_int_task);
|
|
MSK_UNLOCK(sc);
|
|
return;
|
|
}
|
|
done:
|
|
MSK_UNLOCK(sc);
|
|
|
|
/* Reenable interrupts. */
|
|
CSR_WRITE_4(sc, B0_Y2_SP_ICR, 2);
|
|
}
|
|
|
|
static void
|
|
msk_init(void *xsc)
|
|
{
|
|
struct msk_if_softc *sc_if = xsc;
|
|
|
|
MSK_IF_LOCK(sc_if);
|
|
msk_init_locked(sc_if);
|
|
MSK_IF_UNLOCK(sc_if);
|
|
}
|
|
|
|
static void
|
|
msk_init_locked(struct msk_if_softc *sc_if)
|
|
{
|
|
struct msk_softc *sc;
|
|
struct ifnet *ifp;
|
|
struct mii_data *mii;
|
|
uint16_t eaddr[ETHER_ADDR_LEN / 2];
|
|
uint16_t gmac;
|
|
int error, i;
|
|
|
|
MSK_IF_LOCK_ASSERT(sc_if);
|
|
|
|
ifp = sc_if->msk_ifp;
|
|
sc = sc_if->msk_softc;
|
|
mii = device_get_softc(sc_if->msk_miibus);
|
|
|
|
error = 0;
|
|
/* Cancel pending I/O and free all Rx/Tx buffers. */
|
|
msk_stop(sc_if);
|
|
|
|
sc_if->msk_framesize = ifp->if_mtu + ETHER_HDR_LEN +
|
|
ETHER_VLAN_ENCAP_LEN;
|
|
|
|
/*
|
|
* Initialize GMAC first.
|
|
* Without this initialization, Rx MAC did not work as expected
|
|
* and Rx MAC garbled status LEs and it resulted in out-of-order
|
|
* or duplicated frame delivery which in turn showed very poor
|
|
* Rx performance.(I had to write a packet analysis code that
|
|
* could be embeded in driver to diagnose this issue.)
|
|
* I've spent almost 2 months to fix this issue. If I have had
|
|
* datasheet for Yukon II I wouldn't have encountered this. :-(
|
|
*/
|
|
gmac = GM_GPCR_SPEED_100 | GM_GPCR_SPEED_1000 | GM_GPCR_DUP_FULL;
|
|
GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, gmac);
|
|
|
|
/* Dummy read the Interrupt Source Register. */
|
|
CSR_READ_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_SRC));
|
|
|
|
/* Set MIB Clear Counter Mode. */
|
|
gmac = GMAC_READ_2(sc, sc_if->msk_port, GM_PHY_ADDR);
|
|
GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac | GM_PAR_MIB_CLR);
|
|
/* Read all MIB Counters with Clear Mode set. */
|
|
for (i = 0; i < GM_MIB_CNT_SIZE; i++)
|
|
GMAC_READ_2(sc, sc_if->msk_port, GM_MIB_CNT_BASE + 8 * i);
|
|
/* Clear MIB Clear Counter Mode. */
|
|
gmac &= ~GM_PAR_MIB_CLR;
|
|
GMAC_WRITE_2(sc, sc_if->msk_port, GM_PHY_ADDR, gmac);
|
|
|
|
/* Disable FCS. */
|
|
GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_CTRL, GM_RXCR_CRC_DIS);
|
|
|
|
/* Setup Transmit Control Register. */
|
|
GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
|
|
|
|
/* Setup Transmit Flow Control Register. */
|
|
GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_FLOW_CTRL, 0xffff);
|
|
|
|
/* Setup Transmit Parameter Register. */
|
|
GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_PARAM,
|
|
TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) | TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
|
|
TX_IPG_JAM_DATA(TX_IPG_JAM_DEF) | TX_BACK_OFF_LIM(TX_BOF_LIM_DEF));
|
|
|
|
gmac = DATA_BLIND_VAL(DATA_BLIND_DEF) |
|
|
GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
|
|
|
|
if (sc_if->msk_framesize > MSK_MAX_FRAMELEN)
|
|
gmac |= GM_SMOD_JUMBO_ENA;
|
|
GMAC_WRITE_2(sc, sc_if->msk_port, GM_SERIAL_MODE, gmac);
|
|
|
|
/* Set station address. */
|
|
bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
|
|
for (i = 0; i < ETHER_ADDR_LEN /2; i++)
|
|
GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_1L + i * 4,
|
|
eaddr[i]);
|
|
for (i = 0; i < ETHER_ADDR_LEN /2; i++)
|
|
GMAC_WRITE_2(sc, sc_if->msk_port, GM_SRC_ADDR_2L + i * 4,
|
|
eaddr[i]);
|
|
|
|
/* Disable interrupts for counter overflows. */
|
|
GMAC_WRITE_2(sc, sc_if->msk_port, GM_TX_IRQ_MSK, 0);
|
|
GMAC_WRITE_2(sc, sc_if->msk_port, GM_RX_IRQ_MSK, 0);
|
|
GMAC_WRITE_2(sc, sc_if->msk_port, GM_TR_IRQ_MSK, 0);
|
|
|
|
/* Configure Rx MAC FIFO. */
|
|
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
|
|
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_CLR);
|
|
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T),
|
|
GMF_OPER_ON | GMF_RX_F_FL_ON);
|
|
|
|
/* Set promiscuous mode. */
|
|
msk_setpromisc(sc_if);
|
|
|
|
/* Set multicast filter. */
|
|
msk_setmulti(sc_if);
|
|
|
|
/* Flush Rx MAC FIFO on any flow control or error. */
|
|
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_MSK),
|
|
GMR_FS_ANY_ERR);
|
|
|
|
/* Set Rx FIFO flush threshold to 64 bytes. */
|
|
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_FL_THR),
|
|
RX_GMF_FL_THR_DEF);
|
|
|
|
/* Configure Tx MAC FIFO. */
|
|
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
|
|
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_CLR);
|
|
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_OPER_ON);
|
|
|
|
/* Configure hardware VLAN tag insertion/stripping. */
|
|
msk_setvlan(sc_if, ifp);
|
|
|
|
/* XXX It seems STFW is requried for all cases. */
|
|
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), TX_STFW_ENA);
|
|
|
|
if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U) {
|
|
/* Set Rx Pause threshould. */
|
|
CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_LP_THR),
|
|
MSK_ECU_LLPP);
|
|
CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, RX_GMF_UP_THR),
|
|
MSK_ECU_ULPP);
|
|
if (sc_if->msk_framesize > MSK_MAX_FRAMELEN) {
|
|
/*
|
|
* Can't sure the following code is needed as Yukon
|
|
* Yukon EC Ultra may not support jumbo frames.
|
|
*
|
|
* Set Tx GMAC FIFO Almost Empty Threshold.
|
|
*/
|
|
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_AE_THR),
|
|
MSK_ECU_AE_THR);
|
|
/* Disable Store & Forward mode for Tx. */
|
|
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T),
|
|
TX_STFW_DIS);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Disable Force Sync bit and Alloc bit in Tx RAM interface
|
|
* arbiter as we don't use Sync Tx queue.
|
|
*/
|
|
CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL),
|
|
TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
|
|
/* Enable the RAM Interface Arbiter. */
|
|
CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_ENA_ARB);
|
|
|
|
/* Setup RAM buffer. */
|
|
msk_set_rambuffer(sc_if);
|
|
|
|
/* Disable Tx sync Queue. */
|
|
CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txsq, RB_CTRL), RB_RST_SET);
|
|
|
|
/* Setup Tx Queue Bus Memory Interface. */
|
|
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_CLR_RESET);
|
|
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_OPER_INIT);
|
|
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_FIFO_OP_ON);
|
|
CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_WM), MSK_BMU_TX_WM);
|
|
if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
|
|
sc->msk_hw_rev == CHIP_REV_YU_EC_U_A0) {
|
|
/* Fix for Yukon-EC Ultra: set BMU FIFO level */
|
|
CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_txq, Q_AL), MSK_ECU_TXFF_LEV);
|
|
}
|
|
|
|
/* Setup Rx Queue Bus Memory Interface. */
|
|
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_CLR_RESET);
|
|
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_OPER_INIT);
|
|
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR), BMU_FIFO_OP_ON);
|
|
CSR_WRITE_2(sc, Q_ADDR(sc_if->msk_rxq, Q_WM), MSK_BMU_RX_WM);
|
|
if (sc->msk_hw_id == CHIP_ID_YUKON_EC_U &&
|
|
sc->msk_hw_rev >= CHIP_REV_YU_EC_U_A1) {
|
|
/* MAC Rx RAM Read is controlled by hardware. */
|
|
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_F), F_M_RX_RAM_DIS);
|
|
}
|
|
|
|
msk_set_prefetch(sc, sc_if->msk_txq,
|
|
sc_if->msk_rdata.msk_tx_ring_paddr, MSK_TX_RING_CNT - 1);
|
|
msk_init_tx_ring(sc_if);
|
|
|
|
/* Disable Rx checksum offload and RSS hash. */
|
|
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
|
|
BMU_DIS_RX_CHKSUM | BMU_DIS_RX_RSS_HASH);
|
|
if (sc_if->msk_framesize > (MCLBYTES - ETHER_HDR_LEN)) {
|
|
msk_set_prefetch(sc, sc_if->msk_rxq,
|
|
sc_if->msk_rdata.msk_jumbo_rx_ring_paddr,
|
|
MSK_JUMBO_RX_RING_CNT - 1);
|
|
error = msk_init_jumbo_rx_ring(sc_if);
|
|
} else {
|
|
msk_set_prefetch(sc, sc_if->msk_rxq,
|
|
sc_if->msk_rdata.msk_rx_ring_paddr,
|
|
MSK_RX_RING_CNT - 1);
|
|
error = msk_init_rx_ring(sc_if);
|
|
}
|
|
if (error != 0) {
|
|
device_printf(sc_if->msk_if_dev,
|
|
"initialization failed: no memory for Rx buffers\n");
|
|
msk_stop(sc_if);
|
|
return;
|
|
}
|
|
|
|
/* Configure interrupt handling. */
|
|
if (sc_if->msk_port == MSK_PORT_A) {
|
|
sc->msk_intrmask |= Y2_IS_PORT_A;
|
|
sc->msk_intrhwemask |= Y2_HWE_L1_MASK;
|
|
} else {
|
|
sc->msk_intrmask |= Y2_IS_PORT_B;
|
|
sc->msk_intrhwemask |= Y2_HWE_L2_MASK;
|
|
}
|
|
CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
|
|
CSR_READ_4(sc, B0_HWE_IMSK);
|
|
CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
|
|
CSR_READ_4(sc, B0_IMSK);
|
|
|
|
sc_if->msk_link = 0;
|
|
mii_mediachg(mii);
|
|
|
|
ifp->if_drv_flags |= IFF_DRV_RUNNING;
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
|
|
callout_reset(&sc_if->msk_tick_ch, hz, msk_tick, sc_if);
|
|
}
|
|
|
|
static void
|
|
msk_set_rambuffer(struct msk_if_softc *sc_if)
|
|
{
|
|
struct msk_softc *sc;
|
|
int ltpp, utpp;
|
|
|
|
sc = sc_if->msk_softc;
|
|
|
|
/* Setup Rx Queue. */
|
|
CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_CLR);
|
|
CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_START),
|
|
sc->msk_rxqstart[sc_if->msk_port] / 8);
|
|
CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_END),
|
|
sc->msk_rxqend[sc_if->msk_port] / 8);
|
|
CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_WP),
|
|
sc->msk_rxqstart[sc_if->msk_port] / 8);
|
|
CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RP),
|
|
sc->msk_rxqstart[sc_if->msk_port] / 8);
|
|
|
|
utpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
|
|
sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_ULPP) / 8;
|
|
ltpp = (sc->msk_rxqend[sc_if->msk_port] + 1 -
|
|
sc->msk_rxqstart[sc_if->msk_port] - MSK_RB_LLPP_B) / 8;
|
|
if (sc->msk_rxqsize < MSK_MIN_RXQ_SIZE)
|
|
ltpp += (MSK_RB_LLPP_B - MSK_RB_LLPP_S) / 8;
|
|
CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_UTPP), utpp);
|
|
CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_rxq, RB_RX_LTPP), ltpp);
|
|
/* Set Rx priority(RB_RX_UTHP/RB_RX_LTHP) thresholds? */
|
|
|
|
CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_ENA_OP_MD);
|
|
CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL));
|
|
|
|
/* Setup Tx Queue. */
|
|
CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_CLR);
|
|
CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_START),
|
|
sc->msk_txqstart[sc_if->msk_port] / 8);
|
|
CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_END),
|
|
sc->msk_txqend[sc_if->msk_port] / 8);
|
|
CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_WP),
|
|
sc->msk_txqstart[sc_if->msk_port] / 8);
|
|
CSR_WRITE_4(sc, RB_ADDR(sc_if->msk_txq, RB_RP),
|
|
sc->msk_txqstart[sc_if->msk_port] / 8);
|
|
/* Enable Store & Forward for Tx side. */
|
|
CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_STFWD);
|
|
CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_ENA_OP_MD);
|
|
CSR_READ_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL));
|
|
}
|
|
|
|
static void
|
|
msk_set_prefetch(struct msk_softc *sc, int qaddr, bus_addr_t addr,
|
|
uint32_t count)
|
|
{
|
|
|
|
/* Reset the prefetch unit. */
|
|
CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
|
|
PREF_UNIT_RST_SET);
|
|
CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
|
|
PREF_UNIT_RST_CLR);
|
|
/* Set LE base address. */
|
|
CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_LOW_REG),
|
|
MSK_ADDR_LO(addr));
|
|
CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_ADDR_HI_REG),
|
|
MSK_ADDR_HI(addr));
|
|
/* Set the list last index. */
|
|
CSR_WRITE_2(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_LAST_IDX_REG),
|
|
count);
|
|
/* Turn on prefetch unit. */
|
|
CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG),
|
|
PREF_UNIT_OP_ON);
|
|
/* Dummy read to ensure write. */
|
|
CSR_READ_4(sc, Y2_PREF_Q_ADDR(qaddr, PREF_UNIT_CTRL_REG));
|
|
}
|
|
|
|
static void
|
|
msk_stop(struct msk_if_softc *sc_if)
|
|
{
|
|
struct msk_softc *sc;
|
|
struct msk_txdesc *txd;
|
|
struct msk_rxdesc *rxd;
|
|
struct msk_rxdesc *jrxd;
|
|
struct ifnet *ifp;
|
|
uint32_t val;
|
|
int i;
|
|
|
|
MSK_IF_LOCK_ASSERT(sc_if);
|
|
sc = sc_if->msk_softc;
|
|
ifp = sc_if->msk_ifp;
|
|
|
|
callout_stop(&sc_if->msk_tick_ch);
|
|
sc_if->msk_watchdog_timer = 0;
|
|
|
|
/* Disable interrupts. */
|
|
if (sc_if->msk_port == MSK_PORT_A) {
|
|
sc->msk_intrmask &= ~Y2_IS_PORT_A;
|
|
sc->msk_intrhwemask &= ~Y2_HWE_L1_MASK;
|
|
} else {
|
|
sc->msk_intrmask &= ~Y2_IS_PORT_B;
|
|
sc->msk_intrhwemask &= ~Y2_HWE_L2_MASK;
|
|
}
|
|
CSR_WRITE_4(sc, B0_HWE_IMSK, sc->msk_intrhwemask);
|
|
CSR_READ_4(sc, B0_HWE_IMSK);
|
|
CSR_WRITE_4(sc, B0_IMSK, sc->msk_intrmask);
|
|
CSR_READ_4(sc, B0_IMSK);
|
|
|
|
/* Disable Tx/Rx MAC. */
|
|
val = GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
|
|
val &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
|
|
GMAC_WRITE_2(sc, sc_if->msk_port, GM_GP_CTRL, val);
|
|
/* Read again to ensure writing. */
|
|
GMAC_READ_2(sc, sc_if->msk_port, GM_GP_CTRL);
|
|
|
|
/* Stop Tx BMU. */
|
|
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR), BMU_STOP);
|
|
val = CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
|
|
for (i = 0; i < MSK_TIMEOUT; i++) {
|
|
if ((val & (BMU_STOP | BMU_IDLE)) == 0) {
|
|
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
|
|
BMU_STOP);
|
|
CSR_READ_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR));
|
|
} else
|
|
break;
|
|
DELAY(1);
|
|
}
|
|
if (i == MSK_TIMEOUT)
|
|
device_printf(sc_if->msk_if_dev, "Tx BMU stop failed\n");
|
|
CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL),
|
|
RB_RST_SET | RB_DIS_OP_MD);
|
|
|
|
/* Disable all GMAC interrupt. */
|
|
CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, GMAC_IRQ_MSK), 0);
|
|
/* Disable PHY interrupt. */
|
|
if (sc->msk_marvell_phy)
|
|
msk_phy_writereg(sc_if, PHY_ADDR_MARV, PHY_MARV_INT_MASK, 0);
|
|
|
|
/* Disable the RAM Interface Arbiter. */
|
|
CSR_WRITE_1(sc, MR_ADDR(sc_if->msk_port, TXA_CTRL), TXA_DIS_ARB);
|
|
|
|
/* Reset the PCI FIFO of the async Tx queue */
|
|
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_txq, Q_CSR),
|
|
BMU_RST_SET | BMU_FIFO_RST);
|
|
|
|
/* Reset the Tx prefetch units. */
|
|
CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_txq, PREF_UNIT_CTRL_REG),
|
|
PREF_UNIT_RST_SET);
|
|
|
|
/* Reset the RAM Buffer async Tx queue. */
|
|
CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_txq, RB_CTRL), RB_RST_SET);
|
|
|
|
/* Reset Tx MAC FIFO. */
|
|
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, TX_GMF_CTRL_T), GMF_RST_SET);
|
|
/* Set Pause Off. */
|
|
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, GMAC_CTRL), GMC_PAUSE_OFF);
|
|
|
|
/*
|
|
* The Rx Stop command will not work for Yukon-2 if the BMU does not
|
|
* reach the end of packet and since we can't make sure that we have
|
|
* incoming data, we must reset the BMU while it is not during a DMA
|
|
* transfer. Since it is possible that the Rx path is still active,
|
|
* the Rx RAM buffer will be stopped first, so any possible incoming
|
|
* data will not trigger a DMA. After the RAM buffer is stopped, the
|
|
* BMU is polled until any DMA in progress is ended and only then it
|
|
* will be reset.
|
|
*/
|
|
|
|
/* Disable the RAM Buffer receive queue. */
|
|
CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_DIS_OP_MD);
|
|
for (i = 0; i < MSK_TIMEOUT; i++) {
|
|
if (CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RSL)) ==
|
|
CSR_READ_1(sc, RB_ADDR(sc_if->msk_rxq, Q_RL)))
|
|
break;
|
|
DELAY(1);
|
|
}
|
|
if (i == MSK_TIMEOUT)
|
|
device_printf(sc_if->msk_if_dev, "Rx BMU stop failed\n");
|
|
CSR_WRITE_4(sc, Q_ADDR(sc_if->msk_rxq, Q_CSR),
|
|
BMU_RST_SET | BMU_FIFO_RST);
|
|
/* Reset the Rx prefetch unit. */
|
|
CSR_WRITE_4(sc, Y2_PREF_Q_ADDR(sc_if->msk_rxq, PREF_UNIT_CTRL_REG),
|
|
PREF_UNIT_RST_SET);
|
|
/* Reset the RAM Buffer receive queue. */
|
|
CSR_WRITE_1(sc, RB_ADDR(sc_if->msk_rxq, RB_CTRL), RB_RST_SET);
|
|
/* Reset Rx MAC FIFO. */
|
|
CSR_WRITE_4(sc, MR_ADDR(sc_if->msk_port, RX_GMF_CTRL_T), GMF_RST_SET);
|
|
|
|
/* Free Rx and Tx mbufs still in the queues. */
|
|
for (i = 0; i < MSK_RX_RING_CNT; i++) {
|
|
rxd = &sc_if->msk_cdata.msk_rxdesc[i];
|
|
if (rxd->rx_m != NULL) {
|
|
bus_dmamap_sync(sc_if->msk_cdata.msk_rx_tag,
|
|
rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc_if->msk_cdata.msk_rx_tag,
|
|
rxd->rx_dmamap);
|
|
m_freem(rxd->rx_m);
|
|
rxd->rx_m = NULL;
|
|
}
|
|
}
|
|
for (i = 0; i < MSK_JUMBO_RX_RING_CNT; i++) {
|
|
jrxd = &sc_if->msk_cdata.msk_jumbo_rxdesc[i];
|
|
if (jrxd->rx_m != NULL) {
|
|
bus_dmamap_sync(sc_if->msk_cdata.msk_jumbo_rx_tag,
|
|
jrxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc_if->msk_cdata.msk_jumbo_rx_tag,
|
|
jrxd->rx_dmamap);
|
|
m_freem(jrxd->rx_m);
|
|
jrxd->rx_m = NULL;
|
|
}
|
|
}
|
|
for (i = 0; i < MSK_TX_RING_CNT; i++) {
|
|
txd = &sc_if->msk_cdata.msk_txdesc[i];
|
|
if (txd->tx_m != NULL) {
|
|
bus_dmamap_sync(sc_if->msk_cdata.msk_tx_tag,
|
|
txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc_if->msk_cdata.msk_tx_tag,
|
|
txd->tx_dmamap);
|
|
m_freem(txd->tx_m);
|
|
txd->tx_m = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Mark the interface down.
|
|
*/
|
|
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
|
|
sc_if->msk_link = 0;
|
|
}
|
|
|
|
static int
|
|
sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
|
|
{
|
|
int error, value;
|
|
|
|
if (!arg1)
|
|
return (EINVAL);
|
|
value = *(int *)arg1;
|
|
error = sysctl_handle_int(oidp, &value, 0, req);
|
|
if (error || !req->newptr)
|
|
return (error);
|
|
if (value < low || value > high)
|
|
return (EINVAL);
|
|
*(int *)arg1 = value;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int
|
|
sysctl_hw_msk_proc_limit(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
|
|
return (sysctl_int_range(oidp, arg1, arg2, req, MSK_PROC_MIN,
|
|
MSK_PROC_MAX));
|
|
}
|