freebsd-dev/sys/dev/ath/ath_hal/ar5212/ar5212_xmit.c
Adrian Chadd 9ea467445d Add a new HAL method to retrieve the completion schedule. It sets
the completion schedule from the hardware and returns AH_TRUE if
the hardware supports multi-rate retries (AR5212 and above); and
returns AH_FALSE if the hardware doesn't support multi-rate retries.

The sample rate module directly reads the TX completion descriptor
and extracts the TX schedule information from that. It will be
updated in a future commit to instead use this method to determine
the completion schedule.
2011-01-20 05:49:15 +00:00

942 lines
27 KiB
C

/*
* Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
* Copyright (c) 2002-2008 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $FreeBSD$
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_internal.h"
#include "ar5212/ar5212.h"
#include "ar5212/ar5212reg.h"
#include "ar5212/ar5212desc.h"
#include "ar5212/ar5212phy.h"
#ifdef AH_SUPPORT_5311
#include "ar5212/ar5311reg.h"
#endif
#ifdef AH_NEED_DESC_SWAP
static void ar5212SwapTxDesc(struct ath_desc *ds);
#endif
/*
* Update Tx FIFO trigger level.
*
* Set bIncTrigLevel to TRUE to increase the trigger level.
* Set bIncTrigLevel to FALSE to decrease the trigger level.
*
* Returns TRUE if the trigger level was updated
*/
HAL_BOOL
ar5212UpdateTxTrigLevel(struct ath_hal *ah, HAL_BOOL bIncTrigLevel)
{
struct ath_hal_5212 *ahp = AH5212(ah);
uint32_t txcfg, curLevel, newLevel;
HAL_INT omask;
if (ahp->ah_txTrigLev >= ahp->ah_maxTxTrigLev)
return AH_FALSE;
/*
* Disable interrupts while futzing with the fifo level.
*/
omask = ath_hal_setInterrupts(ah, ahp->ah_maskReg &~ HAL_INT_GLOBAL);
txcfg = OS_REG_READ(ah, AR_TXCFG);
curLevel = MS(txcfg, AR_FTRIG);
newLevel = curLevel;
if (bIncTrigLevel) { /* increase the trigger level */
if (curLevel < ahp->ah_maxTxTrigLev)
newLevel++;
} else if (curLevel > MIN_TX_FIFO_THRESHOLD)
newLevel--;
if (newLevel != curLevel)
/* Update the trigger level */
OS_REG_WRITE(ah, AR_TXCFG,
(txcfg &~ AR_FTRIG) | SM(newLevel, AR_FTRIG));
ahp->ah_txTrigLev = newLevel;
/* re-enable chip interrupts */
ath_hal_setInterrupts(ah, omask);
return (newLevel != curLevel);
}
/*
* Set the properties of the tx queue with the parameters
* from qInfo.
*/
HAL_BOOL
ar5212SetTxQueueProps(struct ath_hal *ah, int q, const HAL_TXQ_INFO *qInfo)
{
struct ath_hal_5212 *ahp = AH5212(ah);
HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
if (q >= pCap->halTotalQueues) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid queue num %u\n",
__func__, q);
return AH_FALSE;
}
return ath_hal_setTxQProps(ah, &ahp->ah_txq[q], qInfo);
}
/*
* Return the properties for the specified tx queue.
*/
HAL_BOOL
ar5212GetTxQueueProps(struct ath_hal *ah, int q, HAL_TXQ_INFO *qInfo)
{
struct ath_hal_5212 *ahp = AH5212(ah);
HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
if (q >= pCap->halTotalQueues) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid queue num %u\n",
__func__, q);
return AH_FALSE;
}
return ath_hal_getTxQProps(ah, qInfo, &ahp->ah_txq[q]);
}
/*
* Allocate and initialize a tx DCU/QCU combination.
*/
int
ar5212SetupTxQueue(struct ath_hal *ah, HAL_TX_QUEUE type,
const HAL_TXQ_INFO *qInfo)
{
struct ath_hal_5212 *ahp = AH5212(ah);
HAL_TX_QUEUE_INFO *qi;
HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
int q, defqflags;
/* by default enable OK+ERR+DESC+URN interrupts */
defqflags = HAL_TXQ_TXOKINT_ENABLE
| HAL_TXQ_TXERRINT_ENABLE
| HAL_TXQ_TXDESCINT_ENABLE
| HAL_TXQ_TXURNINT_ENABLE;
/* XXX move queue assignment to driver */
switch (type) {
case HAL_TX_QUEUE_BEACON:
q = pCap->halTotalQueues-1; /* highest priority */
defqflags |= HAL_TXQ_DBA_GATED
| HAL_TXQ_CBR_DIS_QEMPTY
| HAL_TXQ_ARB_LOCKOUT_GLOBAL
| HAL_TXQ_BACKOFF_DISABLE;
break;
case HAL_TX_QUEUE_CAB:
q = pCap->halTotalQueues-2; /* next highest priority */
defqflags |= HAL_TXQ_DBA_GATED
| HAL_TXQ_CBR_DIS_QEMPTY
| HAL_TXQ_CBR_DIS_BEMPTY
| HAL_TXQ_ARB_LOCKOUT_GLOBAL
| HAL_TXQ_BACKOFF_DISABLE;
break;
case HAL_TX_QUEUE_UAPSD:
q = pCap->halTotalQueues-3; /* nextest highest priority */
if (ahp->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: no available UAPSD tx queue\n", __func__);
return -1;
}
break;
case HAL_TX_QUEUE_DATA:
for (q = 0; q < pCap->halTotalQueues; q++)
if (ahp->ah_txq[q].tqi_type == HAL_TX_QUEUE_INACTIVE)
break;
if (q == pCap->halTotalQueues) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: no available tx queue\n", __func__);
return -1;
}
break;
default:
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: bad tx queue type %u\n", __func__, type);
return -1;
}
HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: queue %u\n", __func__, q);
qi = &ahp->ah_txq[q];
if (qi->tqi_type != HAL_TX_QUEUE_INACTIVE) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: tx queue %u already active\n",
__func__, q);
return -1;
}
OS_MEMZERO(qi, sizeof(HAL_TX_QUEUE_INFO));
qi->tqi_type = type;
if (qInfo == AH_NULL) {
qi->tqi_qflags = defqflags;
qi->tqi_aifs = INIT_AIFS;
qi->tqi_cwmin = HAL_TXQ_USEDEFAULT; /* NB: do at reset */
qi->tqi_cwmax = INIT_CWMAX;
qi->tqi_shretry = INIT_SH_RETRY;
qi->tqi_lgretry = INIT_LG_RETRY;
qi->tqi_physCompBuf = 0;
} else {
qi->tqi_physCompBuf = qInfo->tqi_compBuf;
(void) ar5212SetTxQueueProps(ah, q, qInfo);
}
/* NB: must be followed by ar5212ResetTxQueue */
return q;
}
/*
* Update the h/w interrupt registers to reflect a tx q's configuration.
*/
static void
setTxQInterrupts(struct ath_hal *ah, HAL_TX_QUEUE_INFO *qi)
{
struct ath_hal_5212 *ahp = AH5212(ah);
HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
"%s: tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n", __func__,
ahp->ah_txOkInterruptMask, ahp->ah_txErrInterruptMask,
ahp->ah_txDescInterruptMask, ahp->ah_txEolInterruptMask,
ahp->ah_txUrnInterruptMask);
OS_REG_WRITE(ah, AR_IMR_S0,
SM(ahp->ah_txOkInterruptMask, AR_IMR_S0_QCU_TXOK)
| SM(ahp->ah_txDescInterruptMask, AR_IMR_S0_QCU_TXDESC)
);
OS_REG_WRITE(ah, AR_IMR_S1,
SM(ahp->ah_txErrInterruptMask, AR_IMR_S1_QCU_TXERR)
| SM(ahp->ah_txEolInterruptMask, AR_IMR_S1_QCU_TXEOL)
);
OS_REG_RMW_FIELD(ah, AR_IMR_S2,
AR_IMR_S2_QCU_TXURN, ahp->ah_txUrnInterruptMask);
}
/*
* Free a tx DCU/QCU combination.
*/
HAL_BOOL
ar5212ReleaseTxQueue(struct ath_hal *ah, u_int q)
{
struct ath_hal_5212 *ahp = AH5212(ah);
HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
HAL_TX_QUEUE_INFO *qi;
if (q >= pCap->halTotalQueues) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid queue num %u\n",
__func__, q);
return AH_FALSE;
}
qi = &ahp->ah_txq[q];
if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: inactive queue %u\n",
__func__, q);
return AH_FALSE;
}
HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: release queue %u\n", __func__, q);
qi->tqi_type = HAL_TX_QUEUE_INACTIVE;
ahp->ah_txOkInterruptMask &= ~(1 << q);
ahp->ah_txErrInterruptMask &= ~(1 << q);
ahp->ah_txDescInterruptMask &= ~(1 << q);
ahp->ah_txEolInterruptMask &= ~(1 << q);
ahp->ah_txUrnInterruptMask &= ~(1 << q);
setTxQInterrupts(ah, qi);
return AH_TRUE;
}
/*
* Set the retry, aifs, cwmin/max, readyTime regs for specified queue
* Assumes:
* phwChannel has been set to point to the current channel
*/
HAL_BOOL
ar5212ResetTxQueue(struct ath_hal *ah, u_int q)
{
struct ath_hal_5212 *ahp = AH5212(ah);
HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
HAL_TX_QUEUE_INFO *qi;
uint32_t cwMin, chanCwMin, value, qmisc, dmisc;
if (q >= pCap->halTotalQueues) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid queue num %u\n",
__func__, q);
return AH_FALSE;
}
qi = &ahp->ah_txq[q];
if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: inactive queue %u\n",
__func__, q);
return AH_TRUE; /* XXX??? */
}
HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: reset queue %u\n", __func__, q);
if (qi->tqi_cwmin == HAL_TXQ_USEDEFAULT) {
/*
* Select cwmin according to channel type.
* NB: chan can be NULL during attach
*/
if (chan && IEEE80211_IS_CHAN_B(chan))
chanCwMin = INIT_CWMIN_11B;
else
chanCwMin = INIT_CWMIN;
/* make sure that the CWmin is of the form (2^n - 1) */
for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1)
;
} else
cwMin = qi->tqi_cwmin;
/* set cwMin/Max and AIFS values */
OS_REG_WRITE(ah, AR_DLCL_IFS(q),
SM(cwMin, AR_D_LCL_IFS_CWMIN)
| SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX)
| SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
/* Set retry limit values */
OS_REG_WRITE(ah, AR_DRETRY_LIMIT(q),
SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH)
| SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG)
| SM(qi->tqi_lgretry, AR_D_RETRY_LIMIT_FR_LG)
| SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH)
);
/* NB: always enable early termination on the QCU */
qmisc = AR_Q_MISC_DCU_EARLY_TERM_REQ
| SM(AR_Q_MISC_FSP_ASAP, AR_Q_MISC_FSP);
/* NB: always enable DCU to wait for next fragment from QCU */
dmisc = AR_D_MISC_FRAG_WAIT_EN;
#ifdef AH_SUPPORT_5311
if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) {
/* Configure DCU to use the global sequence count */
dmisc |= AR5311_D_MISC_SEQ_NUM_CONTROL;
}
#endif
/* multiqueue support */
if (qi->tqi_cbrPeriod) {
OS_REG_WRITE(ah, AR_QCBRCFG(q),
SM(qi->tqi_cbrPeriod,AR_Q_CBRCFG_CBR_INTERVAL)
| SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_CBR_OVF_THRESH));
qmisc = (qmisc &~ AR_Q_MISC_FSP) | AR_Q_MISC_FSP_CBR;
if (qi->tqi_cbrOverflowLimit)
qmisc |= AR_Q_MISC_CBR_EXP_CNTR_LIMIT;
}
if (qi->tqi_readyTime) {
OS_REG_WRITE(ah, AR_QRDYTIMECFG(q),
SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_INT)
| AR_Q_RDYTIMECFG_ENA);
}
OS_REG_WRITE(ah, AR_DCHNTIME(q),
SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR)
| (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0));
if (qi->tqi_readyTime &&
(qi->tqi_qflags & HAL_TXQ_RDYTIME_EXP_POLICY_ENABLE))
qmisc |= AR_Q_MISC_RDYTIME_EXP_POLICY;
if (qi->tqi_qflags & HAL_TXQ_DBA_GATED)
qmisc = (qmisc &~ AR_Q_MISC_FSP) | AR_Q_MISC_FSP_DBA_GATED;
if (MS(qmisc, AR_Q_MISC_FSP) != AR_Q_MISC_FSP_ASAP) {
/*
* These are meangingful only when not scheduled asap.
*/
if (qi->tqi_qflags & HAL_TXQ_CBR_DIS_BEMPTY)
qmisc |= AR_Q_MISC_CBR_INCR_DIS0;
else
qmisc &= ~AR_Q_MISC_CBR_INCR_DIS0;
if (qi->tqi_qflags & HAL_TXQ_CBR_DIS_QEMPTY)
qmisc |= AR_Q_MISC_CBR_INCR_DIS1;
else
qmisc &= ~AR_Q_MISC_CBR_INCR_DIS1;
}
if (qi->tqi_qflags & HAL_TXQ_BACKOFF_DISABLE)
dmisc |= AR_D_MISC_POST_FR_BKOFF_DIS;
if (qi->tqi_qflags & HAL_TXQ_FRAG_BURST_BACKOFF_ENABLE)
dmisc |= AR_D_MISC_FRAG_BKOFF_EN;
if (qi->tqi_qflags & HAL_TXQ_ARB_LOCKOUT_GLOBAL)
dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
AR_D_MISC_ARB_LOCKOUT_CNTRL);
else if (qi->tqi_qflags & HAL_TXQ_ARB_LOCKOUT_INTRA)
dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_INTRA_FR,
AR_D_MISC_ARB_LOCKOUT_CNTRL);
if (qi->tqi_qflags & HAL_TXQ_IGNORE_VIRTCOL)
dmisc |= SM(AR_D_MISC_VIR_COL_HANDLING_IGNORE,
AR_D_MISC_VIR_COL_HANDLING);
if (qi->tqi_qflags & HAL_TXQ_SEQNUM_INC_DIS)
dmisc |= AR_D_MISC_SEQ_NUM_INCR_DIS;
/*
* Fillin type-dependent bits. Most of this can be
* removed by specifying the queue parameters in the
* driver; it's here for backwards compatibility.
*/
switch (qi->tqi_type) {
case HAL_TX_QUEUE_BEACON: /* beacon frames */
qmisc |= AR_Q_MISC_FSP_DBA_GATED
| AR_Q_MISC_BEACON_USE
| AR_Q_MISC_CBR_INCR_DIS1;
dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
AR_D_MISC_ARB_LOCKOUT_CNTRL)
| AR_D_MISC_BEACON_USE
| AR_D_MISC_POST_FR_BKOFF_DIS;
break;
case HAL_TX_QUEUE_CAB: /* CAB frames */
/*
* No longer Enable AR_Q_MISC_RDYTIME_EXP_POLICY,
* There is an issue with the CAB Queue
* not properly refreshing the Tx descriptor if
* the TXE clear setting is used.
*/
qmisc |= AR_Q_MISC_FSP_DBA_GATED
| AR_Q_MISC_CBR_INCR_DIS1
| AR_Q_MISC_CBR_INCR_DIS0;
if (!qi->tqi_readyTime) {
/*
* NB: don't set default ready time if driver
* has explicitly specified something. This is
* here solely for backwards compatibility.
*/
value = (ahp->ah_beaconInterval
- (ath_hal_sw_beacon_response_time -
ath_hal_dma_beacon_response_time)
- ath_hal_additional_swba_backoff) * 1024;
OS_REG_WRITE(ah, AR_QRDYTIMECFG(q), value | AR_Q_RDYTIMECFG_ENA);
}
dmisc |= SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
AR_D_MISC_ARB_LOCKOUT_CNTRL);
break;
default: /* NB: silence compiler */
break;
}
OS_REG_WRITE(ah, AR_QMISC(q), qmisc);
OS_REG_WRITE(ah, AR_DMISC(q), dmisc);
/* Setup compression scratchpad buffer */
/*
* XXX: calling this asynchronously to queue operation can
* cause unexpected behavior!!!
*/
if (qi->tqi_physCompBuf) {
HALASSERT(qi->tqi_type == HAL_TX_QUEUE_DATA ||
qi->tqi_type == HAL_TX_QUEUE_UAPSD);
OS_REG_WRITE(ah, AR_Q_CBBS, (80 + 2*q));
OS_REG_WRITE(ah, AR_Q_CBBA, qi->tqi_physCompBuf);
OS_REG_WRITE(ah, AR_Q_CBC, HAL_COMP_BUF_MAX_SIZE/1024);
OS_REG_WRITE(ah, AR_Q0_MISC + 4*q,
OS_REG_READ(ah, AR_Q0_MISC + 4*q)
| AR_Q_MISC_QCU_COMP_EN);
}
/*
* Always update the secondary interrupt mask registers - this
* could be a new queue getting enabled in a running system or
* hw getting re-initialized during a reset!
*
* Since we don't differentiate between tx interrupts corresponding
* to individual queues - secondary tx mask regs are always unmasked;
* tx interrupts are enabled/disabled for all queues collectively
* using the primary mask reg
*/
if (qi->tqi_qflags & HAL_TXQ_TXOKINT_ENABLE)
ahp->ah_txOkInterruptMask |= 1 << q;
else
ahp->ah_txOkInterruptMask &= ~(1 << q);
if (qi->tqi_qflags & HAL_TXQ_TXERRINT_ENABLE)
ahp->ah_txErrInterruptMask |= 1 << q;
else
ahp->ah_txErrInterruptMask &= ~(1 << q);
if (qi->tqi_qflags & HAL_TXQ_TXDESCINT_ENABLE)
ahp->ah_txDescInterruptMask |= 1 << q;
else
ahp->ah_txDescInterruptMask &= ~(1 << q);
if (qi->tqi_qflags & HAL_TXQ_TXEOLINT_ENABLE)
ahp->ah_txEolInterruptMask |= 1 << q;
else
ahp->ah_txEolInterruptMask &= ~(1 << q);
if (qi->tqi_qflags & HAL_TXQ_TXURNINT_ENABLE)
ahp->ah_txUrnInterruptMask |= 1 << q;
else
ahp->ah_txUrnInterruptMask &= ~(1 << q);
setTxQInterrupts(ah, qi);
return AH_TRUE;
}
/*
* Get the TXDP for the specified queue
*/
uint32_t
ar5212GetTxDP(struct ath_hal *ah, u_int q)
{
HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues);
return OS_REG_READ(ah, AR_QTXDP(q));
}
/*
* Set the TxDP for the specified queue
*/
HAL_BOOL
ar5212SetTxDP(struct ath_hal *ah, u_int q, uint32_t txdp)
{
HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues);
HALASSERT(AH5212(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE);
/*
* Make sure that TXE is deasserted before setting the TXDP. If TXE
* is still asserted, setting TXDP will have no effect.
*/
HALASSERT((OS_REG_READ(ah, AR_Q_TXE) & (1 << q)) == 0);
OS_REG_WRITE(ah, AR_QTXDP(q), txdp);
return AH_TRUE;
}
/*
* Set Transmit Enable bits for the specified queue
*/
HAL_BOOL
ar5212StartTxDma(struct ath_hal *ah, u_int q)
{
HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues);
HALASSERT(AH5212(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE);
HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: queue %u\n", __func__, q);
/* Check to be sure we're not enabling a q that has its TXD bit set. */
HALASSERT((OS_REG_READ(ah, AR_Q_TXD) & (1 << q)) == 0);
OS_REG_WRITE(ah, AR_Q_TXE, 1 << q);
return AH_TRUE;
}
/*
* Return the number of pending frames or 0 if the specified
* queue is stopped.
*/
uint32_t
ar5212NumTxPending(struct ath_hal *ah, u_int q)
{
uint32_t npend;
HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues);
HALASSERT(AH5212(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE);
npend = OS_REG_READ(ah, AR_QSTS(q)) & AR_Q_STS_PEND_FR_CNT;
if (npend == 0) {
/*
* Pending frame count (PFC) can momentarily go to zero
* while TXE remains asserted. In other words a PFC of
* zero is not sufficient to say that the queue has stopped.
*/
if (OS_REG_READ(ah, AR_Q_TXE) & (1 << q))
npend = 1; /* arbitrarily return 1 */
}
return npend;
}
/*
* Stop transmit on the specified queue
*/
HAL_BOOL
ar5212StopTxDma(struct ath_hal *ah, u_int q)
{
u_int i;
u_int wait;
HALASSERT(q < AH_PRIVATE(ah)->ah_caps.halTotalQueues);
HALASSERT(AH5212(ah)->ah_txq[q].tqi_type != HAL_TX_QUEUE_INACTIVE);
OS_REG_WRITE(ah, AR_Q_TXD, 1 << q);
for (i = 1000; i != 0; i--) {
if (ar5212NumTxPending(ah, q) == 0)
break;
OS_DELAY(100); /* XXX get actual value */
}
#ifdef AH_DEBUG
if (i == 0) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: queue %u DMA did not stop in 100 msec\n", __func__, q);
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: QSTS 0x%x Q_TXE 0x%x Q_TXD 0x%x Q_CBR 0x%x\n", __func__,
OS_REG_READ(ah, AR_QSTS(q)), OS_REG_READ(ah, AR_Q_TXE),
OS_REG_READ(ah, AR_Q_TXD), OS_REG_READ(ah, AR_QCBRCFG(q)));
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: Q_MISC 0x%x Q_RDYTIMECFG 0x%x Q_RDYTIMESHDN 0x%x\n",
__func__, OS_REG_READ(ah, AR_QMISC(q)),
OS_REG_READ(ah, AR_QRDYTIMECFG(q)),
OS_REG_READ(ah, AR_Q_RDYTIMESHDN));
}
#endif /* AH_DEBUG */
/* 2413+ and up can kill packets at the PCU level */
if (ar5212NumTxPending(ah, q) &&
(IS_2413(ah) || IS_5413(ah) || IS_2425(ah) || IS_2417(ah))) {
uint32_t tsfLow, j;
HALDEBUG(ah, HAL_DEBUG_TXQUEUE,
"%s: Num of pending TX Frames %d on Q %d\n",
__func__, ar5212NumTxPending(ah, q), q);
/* Kill last PCU Tx Frame */
/* TODO - save off and restore current values of Q1/Q2? */
for (j = 0; j < 2; j++) {
tsfLow = OS_REG_READ(ah, AR_TSF_L32);
OS_REG_WRITE(ah, AR_QUIET2, SM(100, AR_QUIET2_QUIET_PER) |
SM(10, AR_QUIET2_QUIET_DUR));
OS_REG_WRITE(ah, AR_QUIET1, AR_QUIET1_QUIET_ENABLE |
SM(tsfLow >> 10, AR_QUIET1_NEXT_QUIET));
if ((OS_REG_READ(ah, AR_TSF_L32) >> 10) == (tsfLow >> 10)) {
break;
}
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: TSF moved while trying to set quiet time "
"TSF: 0x%08x\n", __func__, tsfLow);
HALASSERT(j < 1); /* TSF shouldn't count twice or reg access is taking forever */
}
OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_CHAN_IDLE);
/* Allow the quiet mechanism to do its work */
OS_DELAY(200);
OS_REG_CLR_BIT(ah, AR_QUIET1, AR_QUIET1_QUIET_ENABLE);
/* Give at least 1 millisec more to wait */
wait = 100;
/* Verify all transmit is dead */
while (ar5212NumTxPending(ah, q)) {
if ((--wait) == 0) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: Failed to stop Tx DMA in %d msec after killing last frame\n",
__func__, wait);
break;
}
OS_DELAY(10);
}
OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_CHAN_IDLE);
}
OS_REG_WRITE(ah, AR_Q_TXD, 0);
return (i != 0);
}
/*
* Descriptor Access Functions
*/
#define VALID_PKT_TYPES \
((1<<HAL_PKT_TYPE_NORMAL)|(1<<HAL_PKT_TYPE_ATIM)|\
(1<<HAL_PKT_TYPE_PSPOLL)|(1<<HAL_PKT_TYPE_PROBE_RESP)|\
(1<<HAL_PKT_TYPE_BEACON))
#define isValidPktType(_t) ((1<<(_t)) & VALID_PKT_TYPES)
#define VALID_TX_RATES \
((1<<0x0b)|(1<<0x0f)|(1<<0x0a)|(1<<0x0e)|(1<<0x09)|(1<<0x0d)|\
(1<<0x08)|(1<<0x0c)|(1<<0x1b)|(1<<0x1a)|(1<<0x1e)|(1<<0x19)|\
(1<<0x1d)|(1<<0x18)|(1<<0x1c))
#define isValidTxRate(_r) ((1<<(_r)) & VALID_TX_RATES)
HAL_BOOL
ar5212SetupTxDesc(struct ath_hal *ah, struct ath_desc *ds,
u_int pktLen,
u_int hdrLen,
HAL_PKT_TYPE type,
u_int txPower,
u_int txRate0, u_int txTries0,
u_int keyIx,
u_int antMode,
u_int flags,
u_int rtsctsRate,
u_int rtsctsDuration,
u_int compicvLen,
u_int compivLen,
u_int comp)
{
#define RTSCTS (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)
struct ar5212_desc *ads = AR5212DESC(ds);
struct ath_hal_5212 *ahp = AH5212(ah);
(void) hdrLen;
HALASSERT(txTries0 != 0);
HALASSERT(isValidPktType(type));
HALASSERT(isValidTxRate(txRate0));
HALASSERT((flags & RTSCTS) != RTSCTS);
/* XXX validate antMode */
txPower = (txPower + ahp->ah_txPowerIndexOffset );
if(txPower > 63) txPower=63;
ads->ds_ctl0 = (pktLen & AR_FrameLen)
| (txPower << AR_XmitPower_S)
| (flags & HAL_TXDESC_VEOL ? AR_VEOL : 0)
| (flags & HAL_TXDESC_CLRDMASK ? AR_ClearDestMask : 0)
| SM(antMode, AR_AntModeXmit)
| (flags & HAL_TXDESC_INTREQ ? AR_TxInterReq : 0)
;
ads->ds_ctl1 = (type << AR_FrmType_S)
| (flags & HAL_TXDESC_NOACK ? AR_NoAck : 0)
| (comp << AR_CompProc_S)
| (compicvLen << AR_CompICVLen_S)
| (compivLen << AR_CompIVLen_S)
;
ads->ds_ctl2 = SM(txTries0, AR_XmitDataTries0)
| (flags & HAL_TXDESC_DURENA ? AR_DurUpdateEna : 0)
;
ads->ds_ctl3 = (txRate0 << AR_XmitRate0_S)
;
if (keyIx != HAL_TXKEYIX_INVALID) {
/* XXX validate key index */
ads->ds_ctl1 |= SM(keyIx, AR_DestIdx);
ads->ds_ctl0 |= AR_DestIdxValid;
}
if (flags & RTSCTS) {
if (!isValidTxRate(rtsctsRate)) {
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: invalid rts/cts rate 0x%x\n",
__func__, rtsctsRate);
return AH_FALSE;
}
/* XXX validate rtsctsDuration */
ads->ds_ctl0 |= (flags & HAL_TXDESC_CTSENA ? AR_CTSEnable : 0)
| (flags & HAL_TXDESC_RTSENA ? AR_RTSCTSEnable : 0)
;
ads->ds_ctl2 |= SM(rtsctsDuration, AR_RTSCTSDuration);
ads->ds_ctl3 |= (rtsctsRate << AR_RTSCTSRate_S);
}
return AH_TRUE;
#undef RTSCTS
}
HAL_BOOL
ar5212SetupXTxDesc(struct ath_hal *ah, struct ath_desc *ds,
u_int txRate1, u_int txTries1,
u_int txRate2, u_int txTries2,
u_int txRate3, u_int txTries3)
{
struct ar5212_desc *ads = AR5212DESC(ds);
if (txTries1) {
HALASSERT(isValidTxRate(txRate1));
ads->ds_ctl2 |= SM(txTries1, AR_XmitDataTries1)
| AR_DurUpdateEna
;
ads->ds_ctl3 |= (txRate1 << AR_XmitRate1_S);
}
if (txTries2) {
HALASSERT(isValidTxRate(txRate2));
ads->ds_ctl2 |= SM(txTries2, AR_XmitDataTries2)
| AR_DurUpdateEna
;
ads->ds_ctl3 |= (txRate2 << AR_XmitRate2_S);
}
if (txTries3) {
HALASSERT(isValidTxRate(txRate3));
ads->ds_ctl2 |= SM(txTries3, AR_XmitDataTries3)
| AR_DurUpdateEna
;
ads->ds_ctl3 |= (txRate3 << AR_XmitRate3_S);
}
return AH_TRUE;
}
void
ar5212IntrReqTxDesc(struct ath_hal *ah, struct ath_desc *ds)
{
struct ar5212_desc *ads = AR5212DESC(ds);
#ifdef AH_NEED_DESC_SWAP
ads->ds_ctl0 |= __bswap32(AR_TxInterReq);
#else
ads->ds_ctl0 |= AR_TxInterReq;
#endif
}
HAL_BOOL
ar5212FillTxDesc(struct ath_hal *ah, struct ath_desc *ds,
u_int segLen, HAL_BOOL firstSeg, HAL_BOOL lastSeg,
const struct ath_desc *ds0)
{
struct ar5212_desc *ads = AR5212DESC(ds);
HALASSERT((segLen &~ AR_BufLen) == 0);
if (firstSeg) {
/*
* First descriptor, don't clobber xmit control data
* setup by ar5212SetupTxDesc.
*/
ads->ds_ctl1 |= segLen | (lastSeg ? 0 : AR_More);
} else if (lastSeg) { /* !firstSeg && lastSeg */
/*
* Last descriptor in a multi-descriptor frame,
* copy the multi-rate transmit parameters from
* the first frame for processing on completion.
*/
ads->ds_ctl0 = 0;
ads->ds_ctl1 = segLen;
#ifdef AH_NEED_DESC_SWAP
ads->ds_ctl2 = __bswap32(AR5212DESC_CONST(ds0)->ds_ctl2);
ads->ds_ctl3 = __bswap32(AR5212DESC_CONST(ds0)->ds_ctl3);
#else
ads->ds_ctl2 = AR5212DESC_CONST(ds0)->ds_ctl2;
ads->ds_ctl3 = AR5212DESC_CONST(ds0)->ds_ctl3;
#endif
} else { /* !firstSeg && !lastSeg */
/*
* Intermediate descriptor in a multi-descriptor frame.
*/
ads->ds_ctl0 = 0;
ads->ds_ctl1 = segLen | AR_More;
ads->ds_ctl2 = 0;
ads->ds_ctl3 = 0;
}
ads->ds_txstatus0 = ads->ds_txstatus1 = 0;
return AH_TRUE;
}
#ifdef AH_NEED_DESC_SWAP
/* Swap transmit descriptor */
static __inline void
ar5212SwapTxDesc(struct ath_desc *ds)
{
ds->ds_data = __bswap32(ds->ds_data);
ds->ds_ctl0 = __bswap32(ds->ds_ctl0);
ds->ds_ctl1 = __bswap32(ds->ds_ctl1);
ds->ds_hw[0] = __bswap32(ds->ds_hw[0]);
ds->ds_hw[1] = __bswap32(ds->ds_hw[1]);
ds->ds_hw[2] = __bswap32(ds->ds_hw[2]);
ds->ds_hw[3] = __bswap32(ds->ds_hw[3]);
}
#endif
/*
* Processing of HW TX descriptor.
*/
HAL_STATUS
ar5212ProcTxDesc(struct ath_hal *ah,
struct ath_desc *ds, struct ath_tx_status *ts)
{
struct ar5212_desc *ads = AR5212DESC(ds);
#ifdef AH_NEED_DESC_SWAP
if ((ads->ds_txstatus1 & __bswap32(AR_Done)) == 0)
return HAL_EINPROGRESS;
ar5212SwapTxDesc(ds);
#else
if ((ads->ds_txstatus1 & AR_Done) == 0)
return HAL_EINPROGRESS;
#endif
/* Update software copies of the HW status */
ts->ts_seqnum = MS(ads->ds_txstatus1, AR_SeqNum);
ts->ts_tstamp = MS(ads->ds_txstatus0, AR_SendTimestamp);
ts->ts_status = 0;
if ((ads->ds_txstatus0 & AR_FrmXmitOK) == 0) {
if (ads->ds_txstatus0 & AR_ExcessiveRetries)
ts->ts_status |= HAL_TXERR_XRETRY;
if (ads->ds_txstatus0 & AR_Filtered)
ts->ts_status |= HAL_TXERR_FILT;
if (ads->ds_txstatus0 & AR_FIFOUnderrun)
ts->ts_status |= HAL_TXERR_FIFO;
}
/*
* Extract the transmit rate used and mark the rate as
* ``alternate'' if it wasn't the series 0 rate.
*/
ts->ts_finaltsi = MS(ads->ds_txstatus1, AR_FinalTSIndex);
switch (ts->ts_finaltsi) {
case 0:
ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate0);
break;
case 1:
ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate1);
break;
case 2:
ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate2);
break;
case 3:
ts->ts_rate = MS(ads->ds_ctl3, AR_XmitRate3);
break;
}
ts->ts_rssi = MS(ads->ds_txstatus1, AR_AckSigStrength);
ts->ts_shortretry = MS(ads->ds_txstatus0, AR_RTSFailCnt);
ts->ts_longretry = MS(ads->ds_txstatus0, AR_DataFailCnt);
/*
* The retry count has the number of un-acked tries for the
* final series used. When doing multi-rate retry we must
* fixup the retry count by adding in the try counts for
* each series that was fully-processed. Beware that this
* takes values from the try counts in the final descriptor.
* These are not required by the hardware. We assume they
* are placed there by the driver as otherwise we have no
* access and the driver can't do the calculation because it
* doesn't know the descriptor format.
*/
switch (ts->ts_finaltsi) {
case 3: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries2);
case 2: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries1);
case 1: ts->ts_longretry += MS(ads->ds_ctl2, AR_XmitDataTries0);
}
ts->ts_virtcol = MS(ads->ds_txstatus0, AR_VirtCollCnt);
ts->ts_antenna = (ads->ds_txstatus1 & AR_XmitAtenna ? 2 : 1);
return HAL_OK;
}
/*
* Determine which tx queues need interrupt servicing.
*/
void
ar5212GetTxIntrQueue(struct ath_hal *ah, uint32_t *txqs)
{
struct ath_hal_5212 *ahp = AH5212(ah);
*txqs &= ahp->ah_intrTxqs;
ahp->ah_intrTxqs &= ~(*txqs);
}
/*
* Retrieve the rate table from the given TX completion descriptor
*/
HAL_BOOL
ar5212GetTxCompletionRates(struct ath_hal *ah, const struct ath_desc *ds0, int *rates, int *tries)
{
const struct ar5212_desc *ads = AR5212DESC_CONST(ds0);
rates[0] = MS(ads->ds_ctl3, AR_XmitRate0);
rates[1] = MS(ads->ds_ctl3, AR_XmitRate1);
rates[2] = MS(ads->ds_ctl3, AR_XmitRate2);
rates[3] = MS(ads->ds_ctl3, AR_XmitRate3);
tries[0] = MS(ads->ds_ctl2, AR_XmitDataTries0);
tries[1] = MS(ads->ds_ctl2, AR_XmitDataTries1);
tries[2] = MS(ads->ds_ctl2, AR_XmitDataTries2);
tries[3] = MS(ads->ds_ctl2, AR_XmitDataTries3);
return AH_TRUE;
}