freebsd-dev/sys/dev/usb/net/if_axe.c
Gleb Smirnoff 76039bc84f The r48589 promised to remove implicit inclusion of if_var.h soon. Prepare
to this event, adding if_var.h to files that do need it. Also, include
all includes that now are included due to implicit pollution via if_var.h

Sponsored by:	Netflix
Sponsored by:	Nginx, Inc.
2013-10-26 17:58:36 +00:00

1504 lines
40 KiB
C

/*-
* Copyright (c) 1997, 1998, 1999, 2000-2003
* Bill Paul <wpaul@windriver.com>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* ASIX Electronics AX88172/AX88178/AX88778 USB 2.0 ethernet driver.
* Used in the LinkSys USB200M and various other adapters.
*
* Manuals available from:
* http://www.asix.com.tw/datasheet/mac/Ax88172.PDF
* Note: you need the manual for the AX88170 chip (USB 1.x ethernet
* controller) to find the definitions for the RX control register.
* http://www.asix.com.tw/datasheet/mac/Ax88170.PDF
*
* Written by Bill Paul <wpaul@windriver.com>
* Senior Engineer
* Wind River Systems
*/
/*
* The AX88172 provides USB ethernet supports at 10 and 100Mbps.
* It uses an external PHY (reference designs use a RealTek chip),
* and has a 64-bit multicast hash filter. There is some information
* missing from the manual which one needs to know in order to make
* the chip function:
*
* - You must set bit 7 in the RX control register, otherwise the
* chip won't receive any packets.
* - You must initialize all 3 IPG registers, or you won't be able
* to send any packets.
*
* Note that this device appears to only support loading the station
* address via autload from the EEPROM (i.e. there's no way to manaully
* set it).
*
* (Adam Weinberger wanted me to name this driver if_gir.c.)
*/
/*
* Ax88178 and Ax88772 support backported from the OpenBSD driver.
* 2007/02/12, J.R. Oldroyd, fbsd@opal.com
*
* Manual here:
* http://www.asix.com.tw/FrootAttach/datasheet/AX88178_datasheet_Rev10.pdf
* http://www.asix.com.tw/FrootAttach/datasheet/AX88772_datasheet_Rev10.pdf
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/condvar.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/sx.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/ethernet.h>
#include <net/if_types.h>
#include <net/if_media.h>
#include <net/if_vlan_var.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include "usbdevs.h"
#define USB_DEBUG_VAR axe_debug
#include <dev/usb/usb_debug.h>
#include <dev/usb/usb_process.h>
#include <dev/usb/net/usb_ethernet.h>
#include <dev/usb/net/if_axereg.h>
/*
* AXE_178_MAX_FRAME_BURST
* max frame burst size for Ax88178 and Ax88772
* 0 2048 bytes
* 1 4096 bytes
* 2 8192 bytes
* 3 16384 bytes
* use the largest your system can handle without USB stalling.
*
* NB: 88772 parts appear to generate lots of input errors with
* a 2K rx buffer and 8K is only slightly faster than 4K on an
* EHCI port on a T42 so change at your own risk.
*/
#define AXE_178_MAX_FRAME_BURST 1
#define AXE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP)
#ifdef USB_DEBUG
static int axe_debug = 0;
static SYSCTL_NODE(_hw_usb, OID_AUTO, axe, CTLFLAG_RW, 0, "USB axe");
SYSCTL_INT(_hw_usb_axe, OID_AUTO, debug, CTLFLAG_RW, &axe_debug, 0,
"Debug level");
#endif
/*
* Various supported device vendors/products.
*/
static const STRUCT_USB_HOST_ID axe_devs[] = {
#define AXE_DEV(v,p,i) { USB_VPI(USB_VENDOR_##v, USB_PRODUCT_##v##_##p, i) }
AXE_DEV(ABOCOM, UF200, 0),
AXE_DEV(ACERCM, EP1427X2, 0),
AXE_DEV(APPLE, ETHERNET, AXE_FLAG_772),
AXE_DEV(ASIX, AX88172, 0),
AXE_DEV(ASIX, AX88178, AXE_FLAG_178),
AXE_DEV(ASIX, AX88772, AXE_FLAG_772),
AXE_DEV(ASIX, AX88772A, AXE_FLAG_772A),
AXE_DEV(ASIX, AX88772B, AXE_FLAG_772B),
AXE_DEV(ASIX, AX88772B_1, AXE_FLAG_772B),
AXE_DEV(ATEN, UC210T, 0),
AXE_DEV(BELKIN, F5D5055, AXE_FLAG_178),
AXE_DEV(BILLIONTON, USB2AR, 0),
AXE_DEV(CISCOLINKSYS, USB200MV2, AXE_FLAG_772A),
AXE_DEV(COREGA, FETHER_USB2_TX, 0),
AXE_DEV(DLINK, DUBE100, 0),
AXE_DEV(DLINK, DUBE100B1, AXE_FLAG_772),
AXE_DEV(DLINK, DUBE100C1, AXE_FLAG_772B),
AXE_DEV(GOODWAY, GWUSB2E, 0),
AXE_DEV(IODATA, ETGUS2, AXE_FLAG_178),
AXE_DEV(JVC, MP_PRX1, 0),
AXE_DEV(LENOVO, ETHERNET, AXE_FLAG_772B),
AXE_DEV(LINKSYS2, USB200M, 0),
AXE_DEV(LINKSYS4, USB1000, AXE_FLAG_178),
AXE_DEV(LOGITEC, LAN_GTJU2A, AXE_FLAG_178),
AXE_DEV(MELCO, LUAU2KTX, 0),
AXE_DEV(MELCO, LUA3U2AGT, AXE_FLAG_178),
AXE_DEV(NETGEAR, FA120, 0),
AXE_DEV(OQO, ETHER01PLUS, AXE_FLAG_772),
AXE_DEV(PLANEX3, GU1000T, AXE_FLAG_178),
AXE_DEV(SITECOM, LN029, 0),
AXE_DEV(SITECOMEU, LN028, AXE_FLAG_178),
AXE_DEV(SYSTEMTALKS, SGCX2UL, 0),
#undef AXE_DEV
};
static device_probe_t axe_probe;
static device_attach_t axe_attach;
static device_detach_t axe_detach;
static usb_callback_t axe_bulk_read_callback;
static usb_callback_t axe_bulk_write_callback;
static miibus_readreg_t axe_miibus_readreg;
static miibus_writereg_t axe_miibus_writereg;
static miibus_statchg_t axe_miibus_statchg;
static uether_fn_t axe_attach_post;
static uether_fn_t axe_init;
static uether_fn_t axe_stop;
static uether_fn_t axe_start;
static uether_fn_t axe_tick;
static uether_fn_t axe_setmulti;
static uether_fn_t axe_setpromisc;
static int axe_attach_post_sub(struct usb_ether *);
static int axe_ifmedia_upd(struct ifnet *);
static void axe_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static int axe_cmd(struct axe_softc *, int, int, int, void *);
static void axe_ax88178_init(struct axe_softc *);
static void axe_ax88772_init(struct axe_softc *);
static void axe_ax88772_phywake(struct axe_softc *);
static void axe_ax88772a_init(struct axe_softc *);
static void axe_ax88772b_init(struct axe_softc *);
static int axe_get_phyno(struct axe_softc *, int);
static int axe_ioctl(struct ifnet *, u_long, caddr_t);
static int axe_rx_frame(struct usb_ether *, struct usb_page_cache *, int);
static int axe_rxeof(struct usb_ether *, struct usb_page_cache *,
unsigned int offset, unsigned int, struct axe_csum_hdr *);
static void axe_csum_cfg(struct usb_ether *);
static const struct usb_config axe_config[AXE_N_TRANSFER] = {
[AXE_BULK_DT_WR] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_OUT,
.frames = 16,
.bufsize = 16 * MCLBYTES,
.flags = {.pipe_bof = 1,.force_short_xfer = 1,},
.callback = axe_bulk_write_callback,
.timeout = 10000, /* 10 seconds */
},
[AXE_BULK_DT_RD] = {
.type = UE_BULK,
.endpoint = UE_ADDR_ANY,
.direction = UE_DIR_IN,
.bufsize = 16384, /* bytes */
.flags = {.pipe_bof = 1,.short_xfer_ok = 1,},
.callback = axe_bulk_read_callback,
.timeout = 0, /* no timeout */
},
};
static const struct ax88772b_mfb ax88772b_mfb_table[] = {
{ 0x8000, 0x8001, 2048 },
{ 0x8100, 0x8147, 4096},
{ 0x8200, 0x81EB, 6144},
{ 0x8300, 0x83D7, 8192},
{ 0x8400, 0x851E, 16384},
{ 0x8500, 0x8666, 20480},
{ 0x8600, 0x87AE, 24576},
{ 0x8700, 0x8A3D, 32768}
};
static device_method_t axe_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, axe_probe),
DEVMETHOD(device_attach, axe_attach),
DEVMETHOD(device_detach, axe_detach),
/* MII interface */
DEVMETHOD(miibus_readreg, axe_miibus_readreg),
DEVMETHOD(miibus_writereg, axe_miibus_writereg),
DEVMETHOD(miibus_statchg, axe_miibus_statchg),
DEVMETHOD_END
};
static driver_t axe_driver = {
.name = "axe",
.methods = axe_methods,
.size = sizeof(struct axe_softc),
};
static devclass_t axe_devclass;
DRIVER_MODULE(axe, uhub, axe_driver, axe_devclass, NULL, 0);
DRIVER_MODULE(miibus, axe, miibus_driver, miibus_devclass, 0, 0);
MODULE_DEPEND(axe, uether, 1, 1, 1);
MODULE_DEPEND(axe, usb, 1, 1, 1);
MODULE_DEPEND(axe, ether, 1, 1, 1);
MODULE_DEPEND(axe, miibus, 1, 1, 1);
MODULE_VERSION(axe, 1);
static const struct usb_ether_methods axe_ue_methods = {
.ue_attach_post = axe_attach_post,
.ue_attach_post_sub = axe_attach_post_sub,
.ue_start = axe_start,
.ue_init = axe_init,
.ue_stop = axe_stop,
.ue_tick = axe_tick,
.ue_setmulti = axe_setmulti,
.ue_setpromisc = axe_setpromisc,
.ue_mii_upd = axe_ifmedia_upd,
.ue_mii_sts = axe_ifmedia_sts,
};
static int
axe_cmd(struct axe_softc *sc, int cmd, int index, int val, void *buf)
{
struct usb_device_request req;
usb_error_t err;
AXE_LOCK_ASSERT(sc, MA_OWNED);
req.bmRequestType = (AXE_CMD_IS_WRITE(cmd) ?
UT_WRITE_VENDOR_DEVICE :
UT_READ_VENDOR_DEVICE);
req.bRequest = AXE_CMD_CMD(cmd);
USETW(req.wValue, val);
USETW(req.wIndex, index);
USETW(req.wLength, AXE_CMD_LEN(cmd));
err = uether_do_request(&sc->sc_ue, &req, buf, 1000);
return (err);
}
static int
axe_miibus_readreg(device_t dev, int phy, int reg)
{
struct axe_softc *sc = device_get_softc(dev);
uint16_t val;
int locked;
locked = mtx_owned(&sc->sc_mtx);
if (!locked)
AXE_LOCK(sc);
axe_cmd(sc, AXE_CMD_MII_OPMODE_SW, 0, 0, NULL);
axe_cmd(sc, AXE_CMD_MII_READ_REG, reg, phy, &val);
axe_cmd(sc, AXE_CMD_MII_OPMODE_HW, 0, 0, NULL);
val = le16toh(val);
if (AXE_IS_772(sc) && reg == MII_BMSR) {
/*
* BMSR of AX88772 indicates that it supports extended
* capability but the extended status register is
* revered for embedded ethernet PHY. So clear the
* extended capability bit of BMSR.
*/
val &= ~BMSR_EXTCAP;
}
if (!locked)
AXE_UNLOCK(sc);
return (val);
}
static int
axe_miibus_writereg(device_t dev, int phy, int reg, int val)
{
struct axe_softc *sc = device_get_softc(dev);
int locked;
val = htole32(val);
locked = mtx_owned(&sc->sc_mtx);
if (!locked)
AXE_LOCK(sc);
axe_cmd(sc, AXE_CMD_MII_OPMODE_SW, 0, 0, NULL);
axe_cmd(sc, AXE_CMD_MII_WRITE_REG, reg, phy, &val);
axe_cmd(sc, AXE_CMD_MII_OPMODE_HW, 0, 0, NULL);
if (!locked)
AXE_UNLOCK(sc);
return (0);
}
static void
axe_miibus_statchg(device_t dev)
{
struct axe_softc *sc = device_get_softc(dev);
struct mii_data *mii = GET_MII(sc);
struct ifnet *ifp;
uint16_t val;
int err, locked;
locked = mtx_owned(&sc->sc_mtx);
if (!locked)
AXE_LOCK(sc);
ifp = uether_getifp(&sc->sc_ue);
if (mii == NULL || ifp == NULL ||
(ifp->if_drv_flags & IFF_DRV_RUNNING) == 0)
goto done;
sc->sc_flags &= ~AXE_FLAG_LINK;
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
(IFM_ACTIVE | IFM_AVALID)) {
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_10_T:
case IFM_100_TX:
sc->sc_flags |= AXE_FLAG_LINK;
break;
case IFM_1000_T:
if ((sc->sc_flags & AXE_FLAG_178) == 0)
break;
sc->sc_flags |= AXE_FLAG_LINK;
break;
default:
break;
}
}
/* Lost link, do nothing. */
if ((sc->sc_flags & AXE_FLAG_LINK) == 0)
goto done;
val = 0;
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
val |= AXE_MEDIA_FULL_DUPLEX;
if (AXE_IS_178_FAMILY(sc)) {
if ((IFM_OPTIONS(mii->mii_media_active) &
IFM_ETH_TXPAUSE) != 0)
val |= AXE_178_MEDIA_TXFLOW_CONTROL_EN;
if ((IFM_OPTIONS(mii->mii_media_active) &
IFM_ETH_RXPAUSE) != 0)
val |= AXE_178_MEDIA_RXFLOW_CONTROL_EN;
}
}
if (AXE_IS_178_FAMILY(sc)) {
val |= AXE_178_MEDIA_RX_EN | AXE_178_MEDIA_MAGIC;
if ((sc->sc_flags & AXE_FLAG_178) != 0)
val |= AXE_178_MEDIA_ENCK;
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_1000_T:
val |= AXE_178_MEDIA_GMII | AXE_178_MEDIA_ENCK;
break;
case IFM_100_TX:
val |= AXE_178_MEDIA_100TX;
break;
case IFM_10_T:
/* doesn't need to be handled */
break;
}
}
err = axe_cmd(sc, AXE_CMD_WRITE_MEDIA, 0, val, NULL);
if (err)
device_printf(dev, "media change failed, error %d\n", err);
done:
if (!locked)
AXE_UNLOCK(sc);
}
/*
* Set media options.
*/
static int
axe_ifmedia_upd(struct ifnet *ifp)
{
struct axe_softc *sc = ifp->if_softc;
struct mii_data *mii = GET_MII(sc);
struct mii_softc *miisc;
int error;
AXE_LOCK_ASSERT(sc, MA_OWNED);
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
PHY_RESET(miisc);
error = mii_mediachg(mii);
return (error);
}
/*
* Report current media status.
*/
static void
axe_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct axe_softc *sc = ifp->if_softc;
struct mii_data *mii = GET_MII(sc);
AXE_LOCK(sc);
mii_pollstat(mii);
ifmr->ifm_active = mii->mii_media_active;
ifmr->ifm_status = mii->mii_media_status;
AXE_UNLOCK(sc);
}
static void
axe_setmulti(struct usb_ether *ue)
{
struct axe_softc *sc = uether_getsc(ue);
struct ifnet *ifp = uether_getifp(ue);
struct ifmultiaddr *ifma;
uint32_t h = 0;
uint16_t rxmode;
uint8_t hashtbl[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
AXE_LOCK_ASSERT(sc, MA_OWNED);
axe_cmd(sc, AXE_CMD_RXCTL_READ, 0, 0, &rxmode);
rxmode = le16toh(rxmode);
if (ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) {
rxmode |= AXE_RXCMD_ALLMULTI;
axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL);
return;
}
rxmode &= ~AXE_RXCMD_ALLMULTI;
if_maddr_rlock(ifp);
TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link)
{
if (ifma->ifma_addr->sa_family != AF_LINK)
continue;
h = ether_crc32_be(LLADDR((struct sockaddr_dl *)
ifma->ifma_addr), ETHER_ADDR_LEN) >> 26;
hashtbl[h / 8] |= 1 << (h % 8);
}
if_maddr_runlock(ifp);
axe_cmd(sc, AXE_CMD_WRITE_MCAST, 0, 0, (void *)&hashtbl);
axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL);
}
static int
axe_get_phyno(struct axe_softc *sc, int sel)
{
int phyno;
switch (AXE_PHY_TYPE(sc->sc_phyaddrs[sel])) {
case PHY_TYPE_100_HOME:
case PHY_TYPE_GIG:
phyno = AXE_PHY_NO(sc->sc_phyaddrs[sel]);
break;
case PHY_TYPE_SPECIAL:
/* FALLTHROUGH */
case PHY_TYPE_RSVD:
/* FALLTHROUGH */
case PHY_TYPE_NON_SUP:
/* FALLTHROUGH */
default:
phyno = -1;
break;
}
return (phyno);
}
#define AXE_GPIO_WRITE(x, y) do { \
axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, (x), NULL); \
uether_pause(ue, (y)); \
} while (0)
static void
axe_ax88178_init(struct axe_softc *sc)
{
struct usb_ether *ue;
int gpio0, ledmode, phymode;
uint16_t eeprom, val;
ue = &sc->sc_ue;
axe_cmd(sc, AXE_CMD_SROM_WR_ENABLE, 0, 0, NULL);
/* XXX magic */
axe_cmd(sc, AXE_CMD_SROM_READ, 0, 0x0017, &eeprom);
eeprom = le16toh(eeprom);
axe_cmd(sc, AXE_CMD_SROM_WR_DISABLE, 0, 0, NULL);
/* if EEPROM is invalid we have to use to GPIO0 */
if (eeprom == 0xffff) {
phymode = AXE_PHY_MODE_MARVELL;
gpio0 = 1;
ledmode = 0;
} else {
phymode = eeprom & 0x7f;
gpio0 = (eeprom & 0x80) ? 0 : 1;
ledmode = eeprom >> 8;
}
if (bootverbose)
device_printf(sc->sc_ue.ue_dev,
"EEPROM data : 0x%04x, phymode : 0x%02x\n", eeprom,
phymode);
/* Program GPIOs depending on PHY hardware. */
switch (phymode) {
case AXE_PHY_MODE_MARVELL:
if (gpio0 == 1) {
AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO0_EN,
hz / 32);
AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2 | AXE_GPIO2_EN,
hz / 32);
AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2_EN, hz / 4);
AXE_GPIO_WRITE(AXE_GPIO0_EN | AXE_GPIO2 | AXE_GPIO2_EN,
hz / 32);
} else {
AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 |
AXE_GPIO1_EN, hz / 3);
if (ledmode == 1) {
AXE_GPIO_WRITE(AXE_GPIO1_EN, hz / 3);
AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN,
hz / 3);
} else {
AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN |
AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN |
AXE_GPIO2_EN, hz / 4);
AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN |
AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
}
}
break;
case AXE_PHY_MODE_CICADA:
case AXE_PHY_MODE_CICADA_V2:
case AXE_PHY_MODE_CICADA_V2_ASIX:
if (gpio0 == 1)
AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO0 |
AXE_GPIO0_EN, hz / 32);
else
AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 |
AXE_GPIO1_EN, hz / 32);
break;
case AXE_PHY_MODE_AGERE:
AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM | AXE_GPIO1 |
AXE_GPIO1_EN, hz / 32);
AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2 |
AXE_GPIO2_EN, hz / 32);
AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2_EN, hz / 4);
AXE_GPIO_WRITE(AXE_GPIO1 | AXE_GPIO1_EN | AXE_GPIO2 |
AXE_GPIO2_EN, hz / 32);
break;
case AXE_PHY_MODE_REALTEK_8211CL:
case AXE_PHY_MODE_REALTEK_8211BN:
case AXE_PHY_MODE_REALTEK_8251CL:
val = gpio0 == 1 ? AXE_GPIO0 | AXE_GPIO0_EN :
AXE_GPIO1 | AXE_GPIO1_EN;
AXE_GPIO_WRITE(val, hz / 32);
AXE_GPIO_WRITE(val | AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
AXE_GPIO_WRITE(val | AXE_GPIO2_EN, hz / 4);
AXE_GPIO_WRITE(val | AXE_GPIO2 | AXE_GPIO2_EN, hz / 32);
if (phymode == AXE_PHY_MODE_REALTEK_8211CL) {
axe_miibus_writereg(ue->ue_dev, sc->sc_phyno,
0x1F, 0x0005);
axe_miibus_writereg(ue->ue_dev, sc->sc_phyno,
0x0C, 0x0000);
val = axe_miibus_readreg(ue->ue_dev, sc->sc_phyno,
0x0001);
axe_miibus_writereg(ue->ue_dev, sc->sc_phyno,
0x01, val | 0x0080);
axe_miibus_writereg(ue->ue_dev, sc->sc_phyno,
0x1F, 0x0000);
}
break;
default:
/* Unknown PHY model or no need to program GPIOs. */
break;
}
/* soft reset */
axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL);
uether_pause(ue, hz / 4);
axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
AXE_SW_RESET_PRL | AXE_178_RESET_MAGIC, NULL);
uether_pause(ue, hz / 4);
/* Enable MII/GMII/RGMII interface to work with external PHY. */
axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, 0, NULL);
uether_pause(ue, hz / 4);
axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
}
static void
axe_ax88772_init(struct axe_softc *sc)
{
axe_cmd(sc, AXE_CMD_WRITE_GPIO, 0, 0x00b0, NULL);
uether_pause(&sc->sc_ue, hz / 16);
if (sc->sc_phyno == AXE_772_PHY_NO_EPHY) {
/* ask for the embedded PHY */
axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, 0x01, NULL);
uether_pause(&sc->sc_ue, hz / 64);
/* power down and reset state, pin reset state */
axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
AXE_SW_RESET_CLEAR, NULL);
uether_pause(&sc->sc_ue, hz / 16);
/* power down/reset state, pin operating state */
axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
AXE_SW_RESET_IPPD | AXE_SW_RESET_PRL, NULL);
uether_pause(&sc->sc_ue, hz / 4);
/* power up, reset */
axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_PRL, NULL);
/* power up, operating */
axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
AXE_SW_RESET_IPRL | AXE_SW_RESET_PRL, NULL);
} else {
/* ask for external PHY */
axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, 0x00, NULL);
uether_pause(&sc->sc_ue, hz / 64);
/* power down internal PHY */
axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0,
AXE_SW_RESET_IPPD | AXE_SW_RESET_PRL, NULL);
}
uether_pause(&sc->sc_ue, hz / 4);
axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
}
static void
axe_ax88772_phywake(struct axe_softc *sc)
{
struct usb_ether *ue;
ue = &sc->sc_ue;
if (sc->sc_phyno == AXE_772_PHY_NO_EPHY) {
/* Manually select internal(embedded) PHY - MAC mode. */
axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, AXE_SW_PHY_SELECT_SS_ENB |
AXE_SW_PHY_SELECT_EMBEDDED | AXE_SW_PHY_SELECT_SS_MII,
NULL);
uether_pause(&sc->sc_ue, hz / 32);
} else {
/*
* Manually select external PHY - MAC mode.
* Reverse MII/RMII is for AX88772A PHY mode.
*/
axe_cmd(sc, AXE_CMD_SW_PHY_SELECT, 0, AXE_SW_PHY_SELECT_SS_ENB |
AXE_SW_PHY_SELECT_EXT | AXE_SW_PHY_SELECT_SS_MII, NULL);
uether_pause(&sc->sc_ue, hz / 32);
}
/* Take PHY out of power down. */
axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPPD |
AXE_SW_RESET_IPRL, NULL);
uether_pause(&sc->sc_ue, hz / 4);
axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPRL, NULL);
uether_pause(&sc->sc_ue, hz);
axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_CLEAR, NULL);
uether_pause(&sc->sc_ue, hz / 32);
axe_cmd(sc, AXE_CMD_SW_RESET_REG, 0, AXE_SW_RESET_IPRL, NULL);
uether_pause(&sc->sc_ue, hz / 32);
}
static void
axe_ax88772a_init(struct axe_softc *sc)
{
struct usb_ether *ue;
ue = &sc->sc_ue;
/* Reload EEPROM. */
AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM, hz / 32);
axe_ax88772_phywake(sc);
/* Stop MAC. */
axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
}
static void
axe_ax88772b_init(struct axe_softc *sc)
{
struct usb_ether *ue;
uint16_t eeprom;
uint8_t *eaddr;
int i;
ue = &sc->sc_ue;
/* Reload EEPROM. */
AXE_GPIO_WRITE(AXE_GPIO_RELOAD_EEPROM, hz / 32);
/*
* Save PHY power saving configuration(high byte) and
* clear EEPROM checksum value(low byte).
*/
axe_cmd(sc, AXE_CMD_SROM_READ, 0, AXE_EEPROM_772B_PHY_PWRCFG, &eeprom);
sc->sc_pwrcfg = le16toh(eeprom) & 0xFF00;
/*
* Auto-loaded default station address from internal ROM is
* 00:00:00:00:00:00 such that an explicit access to EEPROM
* is required to get real station address.
*/
eaddr = ue->ue_eaddr;
for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
axe_cmd(sc, AXE_CMD_SROM_READ, 0, AXE_EEPROM_772B_NODE_ID + i,
&eeprom);
eeprom = le16toh(eeprom);
*eaddr++ = (uint8_t)(eeprom & 0xFF);
*eaddr++ = (uint8_t)((eeprom >> 8) & 0xFF);
}
/* Wakeup PHY. */
axe_ax88772_phywake(sc);
/* Stop MAC. */
axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, 0, NULL);
}
#undef AXE_GPIO_WRITE
static void
axe_reset(struct axe_softc *sc)
{
struct usb_config_descriptor *cd;
usb_error_t err;
cd = usbd_get_config_descriptor(sc->sc_ue.ue_udev);
err = usbd_req_set_config(sc->sc_ue.ue_udev, &sc->sc_mtx,
cd->bConfigurationValue);
if (err)
DPRINTF("reset failed (ignored)\n");
/* Wait a little while for the chip to get its brains in order. */
uether_pause(&sc->sc_ue, hz / 100);
/* Reinitialize controller to achieve full reset. */
if (sc->sc_flags & AXE_FLAG_178)
axe_ax88178_init(sc);
else if (sc->sc_flags & AXE_FLAG_772)
axe_ax88772_init(sc);
else if (sc->sc_flags & AXE_FLAG_772A)
axe_ax88772a_init(sc);
else if (sc->sc_flags & AXE_FLAG_772B)
axe_ax88772b_init(sc);
}
static void
axe_attach_post(struct usb_ether *ue)
{
struct axe_softc *sc = uether_getsc(ue);
/*
* Load PHY indexes first. Needed by axe_xxx_init().
*/
axe_cmd(sc, AXE_CMD_READ_PHYID, 0, 0, sc->sc_phyaddrs);
if (bootverbose)
device_printf(sc->sc_ue.ue_dev, "PHYADDR 0x%02x:0x%02x\n",
sc->sc_phyaddrs[0], sc->sc_phyaddrs[1]);
sc->sc_phyno = axe_get_phyno(sc, AXE_PHY_SEL_PRI);
if (sc->sc_phyno == -1)
sc->sc_phyno = axe_get_phyno(sc, AXE_PHY_SEL_SEC);
if (sc->sc_phyno == -1) {
device_printf(sc->sc_ue.ue_dev,
"no valid PHY address found, assuming PHY address 0\n");
sc->sc_phyno = 0;
}
/* Initialize controller and get station address. */
if (sc->sc_flags & AXE_FLAG_178) {
axe_ax88178_init(sc);
axe_cmd(sc, AXE_178_CMD_READ_NODEID, 0, 0, ue->ue_eaddr);
} else if (sc->sc_flags & AXE_FLAG_772) {
axe_ax88772_init(sc);
axe_cmd(sc, AXE_178_CMD_READ_NODEID, 0, 0, ue->ue_eaddr);
} else if (sc->sc_flags & AXE_FLAG_772A) {
axe_ax88772a_init(sc);
axe_cmd(sc, AXE_178_CMD_READ_NODEID, 0, 0, ue->ue_eaddr);
} else if (sc->sc_flags & AXE_FLAG_772B) {
axe_ax88772b_init(sc);
} else
axe_cmd(sc, AXE_172_CMD_READ_NODEID, 0, 0, ue->ue_eaddr);
/*
* Fetch IPG values.
*/
if (sc->sc_flags & (AXE_FLAG_772A | AXE_FLAG_772B)) {
/* Set IPG values. */
sc->sc_ipgs[0] = 0x15;
sc->sc_ipgs[1] = 0x16;
sc->sc_ipgs[2] = 0x1A;
} else
axe_cmd(sc, AXE_CMD_READ_IPG012, 0, 0, sc->sc_ipgs);
}
static int
axe_attach_post_sub(struct usb_ether *ue)
{
struct axe_softc *sc;
struct ifnet *ifp;
u_int adv_pause;
int error;
sc = uether_getsc(ue);
ifp = ue->ue_ifp;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_start = uether_start;
ifp->if_ioctl = axe_ioctl;
ifp->if_init = uether_init;
IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
IFQ_SET_READY(&ifp->if_snd);
if (AXE_IS_178_FAMILY(sc))
ifp->if_capabilities |= IFCAP_VLAN_MTU;
if (sc->sc_flags & AXE_FLAG_772B) {
ifp->if_capabilities |= IFCAP_TXCSUM | IFCAP_RXCSUM;
ifp->if_hwassist = AXE_CSUM_FEATURES;
/*
* Checksum offloading of AX88772B also works with VLAN
* tagged frames but there is no way to take advantage
* of the feature because vlan(4) assumes
* IFCAP_VLAN_HWTAGGING is prerequisite condition to
* support checksum offloading with VLAN. VLAN hardware
* tagging support of AX88772B is very limited so it's
* not possible to announce IFCAP_VLAN_HWTAGGING.
*/
}
ifp->if_capenable = ifp->if_capabilities;
if (sc->sc_flags & (AXE_FLAG_772A | AXE_FLAG_772B | AXE_FLAG_178))
adv_pause = MIIF_DOPAUSE;
else
adv_pause = 0;
mtx_lock(&Giant);
error = mii_attach(ue->ue_dev, &ue->ue_miibus, ifp,
uether_ifmedia_upd, ue->ue_methods->ue_mii_sts,
BMSR_DEFCAPMASK, sc->sc_phyno, MII_OFFSET_ANY, adv_pause);
mtx_unlock(&Giant);
return (error);
}
/*
* Probe for a AX88172 chip.
*/
static int
axe_probe(device_t dev)
{
struct usb_attach_arg *uaa = device_get_ivars(dev);
if (uaa->usb_mode != USB_MODE_HOST)
return (ENXIO);
if (uaa->info.bConfigIndex != AXE_CONFIG_IDX)
return (ENXIO);
if (uaa->info.bIfaceIndex != AXE_IFACE_IDX)
return (ENXIO);
return (usbd_lookup_id_by_uaa(axe_devs, sizeof(axe_devs), uaa));
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static int
axe_attach(device_t dev)
{
struct usb_attach_arg *uaa = device_get_ivars(dev);
struct axe_softc *sc = device_get_softc(dev);
struct usb_ether *ue = &sc->sc_ue;
uint8_t iface_index;
int error;
sc->sc_flags = USB_GET_DRIVER_INFO(uaa);
device_set_usb_desc(dev);
mtx_init(&sc->sc_mtx, device_get_nameunit(dev), NULL, MTX_DEF);
iface_index = AXE_IFACE_IDX;
error = usbd_transfer_setup(uaa->device, &iface_index, sc->sc_xfer,
axe_config, AXE_N_TRANSFER, sc, &sc->sc_mtx);
if (error) {
device_printf(dev, "allocating USB transfers failed\n");
goto detach;
}
ue->ue_sc = sc;
ue->ue_dev = dev;
ue->ue_udev = uaa->device;
ue->ue_mtx = &sc->sc_mtx;
ue->ue_methods = &axe_ue_methods;
error = uether_ifattach(ue);
if (error) {
device_printf(dev, "could not attach interface\n");
goto detach;
}
return (0); /* success */
detach:
axe_detach(dev);
return (ENXIO); /* failure */
}
static int
axe_detach(device_t dev)
{
struct axe_softc *sc = device_get_softc(dev);
struct usb_ether *ue = &sc->sc_ue;
usbd_transfer_unsetup(sc->sc_xfer, AXE_N_TRANSFER);
uether_ifdetach(ue);
mtx_destroy(&sc->sc_mtx);
return (0);
}
#if (AXE_BULK_BUF_SIZE >= 0x10000)
#error "Please update axe_bulk_read_callback()!"
#endif
static void
axe_bulk_read_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct axe_softc *sc = usbd_xfer_softc(xfer);
struct usb_ether *ue = &sc->sc_ue;
struct usb_page_cache *pc;
int actlen;
usbd_xfer_status(xfer, &actlen, NULL, NULL, NULL);
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
pc = usbd_xfer_get_frame(xfer, 0);
axe_rx_frame(ue, pc, actlen);
/* FALLTHROUGH */
case USB_ST_SETUP:
tr_setup:
usbd_xfer_set_frame_len(xfer, 0, usbd_xfer_max_len(xfer));
usbd_transfer_submit(xfer);
uether_rxflush(ue);
return;
default: /* Error */
DPRINTF("bulk read error, %s\n", usbd_errstr(error));
if (error != USB_ERR_CANCELLED) {
/* try to clear stall first */
usbd_xfer_set_stall(xfer);
goto tr_setup;
}
return;
}
}
static int
axe_rx_frame(struct usb_ether *ue, struct usb_page_cache *pc, int actlen)
{
struct axe_softc *sc;
struct axe_sframe_hdr hdr;
struct axe_csum_hdr csum_hdr;
int error, len, pos;
sc = uether_getsc(ue);
pos = 0;
len = 0;
error = 0;
if ((sc->sc_flags & AXE_FLAG_STD_FRAME) != 0) {
while (pos < actlen) {
if ((int)(pos + sizeof(hdr)) > actlen) {
/* too little data */
error = EINVAL;
break;
}
usbd_copy_out(pc, pos, &hdr, sizeof(hdr));
if ((hdr.len ^ hdr.ilen) != sc->sc_lenmask) {
/* we lost sync */
error = EINVAL;
break;
}
pos += sizeof(hdr);
len = le16toh(hdr.len);
if (pos + len > actlen) {
/* invalid length */
error = EINVAL;
break;
}
axe_rxeof(ue, pc, pos, len, NULL);
pos += len + (len % 2);
}
} else if ((sc->sc_flags & AXE_FLAG_CSUM_FRAME) != 0) {
while (pos < actlen) {
if ((int)(pos + sizeof(csum_hdr)) > actlen) {
/* too little data */
error = EINVAL;
break;
}
usbd_copy_out(pc, pos, &csum_hdr, sizeof(csum_hdr));
csum_hdr.len = le16toh(csum_hdr.len);
csum_hdr.ilen = le16toh(csum_hdr.ilen);
csum_hdr.cstatus = le16toh(csum_hdr.cstatus);
if ((AXE_CSUM_RXBYTES(csum_hdr.len) ^
AXE_CSUM_RXBYTES(csum_hdr.ilen)) !=
sc->sc_lenmask) {
/* we lost sync */
error = EINVAL;
break;
}
/*
* Get total transferred frame length including
* checksum header. The length should be multiple
* of 4.
*/
len = sizeof(csum_hdr) + AXE_CSUM_RXBYTES(csum_hdr.len);
len = (len + 3) & ~3;
if (pos + len > actlen) {
/* invalid length */
error = EINVAL;
break;
}
axe_rxeof(ue, pc, pos + sizeof(csum_hdr),
AXE_CSUM_RXBYTES(csum_hdr.len), &csum_hdr);
pos += len;
}
} else
axe_rxeof(ue, pc, 0, actlen, NULL);
if (error != 0)
ue->ue_ifp->if_ierrors++;
return (error);
}
static int
axe_rxeof(struct usb_ether *ue, struct usb_page_cache *pc, unsigned int offset,
unsigned int len, struct axe_csum_hdr *csum_hdr)
{
struct ifnet *ifp = ue->ue_ifp;
struct mbuf *m;
if (len < ETHER_HDR_LEN || len > MCLBYTES - ETHER_ALIGN) {
ifp->if_ierrors++;
return (EINVAL);
}
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m == NULL) {
ifp->if_iqdrops++;
return (ENOMEM);
}
m->m_len = m->m_pkthdr.len = MCLBYTES;
m_adj(m, ETHER_ALIGN);
usbd_copy_out(pc, offset, mtod(m, uint8_t *), len);
ifp->if_ipackets++;
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = len;
if (csum_hdr != NULL && csum_hdr->cstatus & AXE_CSUM_HDR_L3_TYPE_IPV4) {
if ((csum_hdr->cstatus & (AXE_CSUM_HDR_L4_CSUM_ERR |
AXE_CSUM_HDR_L3_CSUM_ERR)) == 0) {
m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED |
CSUM_IP_VALID;
if ((csum_hdr->cstatus & AXE_CSUM_HDR_L4_TYPE_MASK) ==
AXE_CSUM_HDR_L4_TYPE_TCP ||
(csum_hdr->cstatus & AXE_CSUM_HDR_L4_TYPE_MASK) ==
AXE_CSUM_HDR_L4_TYPE_UDP) {
m->m_pkthdr.csum_flags |=
CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
m->m_pkthdr.csum_data = 0xffff;
}
}
}
_IF_ENQUEUE(&ue->ue_rxq, m);
return (0);
}
#if ((AXE_BULK_BUF_SIZE >= 0x10000) || (AXE_BULK_BUF_SIZE < (MCLBYTES+4)))
#error "Please update axe_bulk_write_callback()!"
#endif
static void
axe_bulk_write_callback(struct usb_xfer *xfer, usb_error_t error)
{
struct axe_softc *sc = usbd_xfer_softc(xfer);
struct axe_sframe_hdr hdr;
struct ifnet *ifp = uether_getifp(&sc->sc_ue);
struct usb_page_cache *pc;
struct mbuf *m;
int nframes, pos;
switch (USB_GET_STATE(xfer)) {
case USB_ST_TRANSFERRED:
DPRINTFN(11, "transfer complete\n");
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
/* FALLTHROUGH */
case USB_ST_SETUP:
tr_setup:
if ((sc->sc_flags & AXE_FLAG_LINK) == 0 ||
(ifp->if_drv_flags & IFF_DRV_OACTIVE) != 0) {
/*
* Don't send anything if there is no link or
* controller is busy.
*/
return;
}
for (nframes = 0; nframes < 16 &&
!IFQ_DRV_IS_EMPTY(&ifp->if_snd); nframes++) {
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
usbd_xfer_set_frame_offset(xfer, nframes * MCLBYTES,
nframes);
pos = 0;
pc = usbd_xfer_get_frame(xfer, nframes);
if (AXE_IS_178_FAMILY(sc)) {
hdr.len = htole16(m->m_pkthdr.len);
hdr.ilen = ~hdr.len;
/*
* If upper stack computed checksum, driver
* should tell controller not to insert
* computed checksum for checksum offloading
* enabled controller.
*/
if (ifp->if_capabilities & IFCAP_TXCSUM) {
if ((m->m_pkthdr.csum_flags &
AXE_CSUM_FEATURES) != 0)
hdr.len |= htole16(
AXE_TX_CSUM_PSEUDO_HDR);
else
hdr.len |= htole16(
AXE_TX_CSUM_DIS);
}
usbd_copy_in(pc, pos, &hdr, sizeof(hdr));
pos += sizeof(hdr);
usbd_m_copy_in(pc, pos, m, 0, m->m_pkthdr.len);
pos += m->m_pkthdr.len;
if ((pos % 512) == 0) {
hdr.len = 0;
hdr.ilen = 0xffff;
usbd_copy_in(pc, pos, &hdr,
sizeof(hdr));
pos += sizeof(hdr);
}
} else {
usbd_m_copy_in(pc, pos, m, 0, m->m_pkthdr.len);
pos += m->m_pkthdr.len;
}
/*
* XXX
* Update TX packet counter here. This is not
* correct way but it seems that there is no way
* to know how many packets are sent at the end
* of transfer because controller combines
* multiple writes into single one if there is
* room in TX buffer of controller.
*/
ifp->if_opackets++;
/*
* if there's a BPF listener, bounce a copy
* of this frame to him:
*/
BPF_MTAP(ifp, m);
m_freem(m);
/* Set frame length. */
usbd_xfer_set_frame_len(xfer, nframes, pos);
}
if (nframes != 0) {
usbd_xfer_set_frames(xfer, nframes);
usbd_transfer_submit(xfer);
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
}
return;
/* NOTREACHED */
default: /* Error */
DPRINTFN(11, "transfer error, %s\n",
usbd_errstr(error));
ifp->if_oerrors++;
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
if (error != USB_ERR_CANCELLED) {
/* try to clear stall first */
usbd_xfer_set_stall(xfer);
goto tr_setup;
}
return;
}
}
static void
axe_tick(struct usb_ether *ue)
{
struct axe_softc *sc = uether_getsc(ue);
struct mii_data *mii = GET_MII(sc);
AXE_LOCK_ASSERT(sc, MA_OWNED);
mii_tick(mii);
if ((sc->sc_flags & AXE_FLAG_LINK) == 0) {
axe_miibus_statchg(ue->ue_dev);
if ((sc->sc_flags & AXE_FLAG_LINK) != 0)
axe_start(ue);
}
}
static void
axe_start(struct usb_ether *ue)
{
struct axe_softc *sc = uether_getsc(ue);
/*
* start the USB transfers, if not already started:
*/
usbd_transfer_start(sc->sc_xfer[AXE_BULK_DT_RD]);
usbd_transfer_start(sc->sc_xfer[AXE_BULK_DT_WR]);
}
static void
axe_csum_cfg(struct usb_ether *ue)
{
struct axe_softc *sc;
struct ifnet *ifp;
uint16_t csum1, csum2;
sc = uether_getsc(ue);
AXE_LOCK_ASSERT(sc, MA_OWNED);
if ((sc->sc_flags & AXE_FLAG_772B) != 0) {
ifp = uether_getifp(ue);
csum1 = 0;
csum2 = 0;
if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
csum1 |= AXE_TXCSUM_IP | AXE_TXCSUM_TCP |
AXE_TXCSUM_UDP;
axe_cmd(sc, AXE_772B_CMD_WRITE_TXCSUM, csum2, csum1, NULL);
csum1 = 0;
csum2 = 0;
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
csum1 |= AXE_RXCSUM_IP | AXE_RXCSUM_IPVE |
AXE_RXCSUM_TCP | AXE_RXCSUM_UDP | AXE_RXCSUM_ICMP |
AXE_RXCSUM_IGMP;
axe_cmd(sc, AXE_772B_CMD_WRITE_RXCSUM, csum2, csum1, NULL);
}
}
static void
axe_init(struct usb_ether *ue)
{
struct axe_softc *sc = uether_getsc(ue);
struct ifnet *ifp = uether_getifp(ue);
uint16_t rxmode;
AXE_LOCK_ASSERT(sc, MA_OWNED);
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
return;
/* Cancel pending I/O */
axe_stop(ue);
axe_reset(sc);
/* Set MAC address and transmitter IPG values. */
if (AXE_IS_178_FAMILY(sc)) {
axe_cmd(sc, AXE_178_CMD_WRITE_NODEID, 0, 0, IF_LLADDR(ifp));
axe_cmd(sc, AXE_178_CMD_WRITE_IPG012, sc->sc_ipgs[2],
(sc->sc_ipgs[1] << 8) | (sc->sc_ipgs[0]), NULL);
} else {
axe_cmd(sc, AXE_172_CMD_WRITE_NODEID, 0, 0, IF_LLADDR(ifp));
axe_cmd(sc, AXE_172_CMD_WRITE_IPG0, 0, sc->sc_ipgs[0], NULL);
axe_cmd(sc, AXE_172_CMD_WRITE_IPG1, 0, sc->sc_ipgs[1], NULL);
axe_cmd(sc, AXE_172_CMD_WRITE_IPG2, 0, sc->sc_ipgs[2], NULL);
}
if (AXE_IS_178_FAMILY(sc)) {
sc->sc_flags &= ~(AXE_FLAG_STD_FRAME | AXE_FLAG_CSUM_FRAME);
if ((sc->sc_flags & AXE_FLAG_772B) != 0 &&
(ifp->if_capenable & IFCAP_RXCSUM) != 0) {
sc->sc_lenmask = AXE_CSUM_HDR_LEN_MASK;
sc->sc_flags |= AXE_FLAG_CSUM_FRAME;
} else {
sc->sc_lenmask = AXE_HDR_LEN_MASK;
sc->sc_flags |= AXE_FLAG_STD_FRAME;
}
}
/* Configure TX/RX checksum offloading. */
axe_csum_cfg(ue);
if (sc->sc_flags & AXE_FLAG_772B) {
/* AX88772B uses different maximum frame burst configuration. */
axe_cmd(sc, AXE_772B_CMD_RXCTL_WRITE_CFG,
ax88772b_mfb_table[AX88772B_MFB_16K].threshold,
ax88772b_mfb_table[AX88772B_MFB_16K].byte_cnt, NULL);
}
/* Enable receiver, set RX mode. */
rxmode = (AXE_RXCMD_MULTICAST | AXE_RXCMD_ENABLE);
if (AXE_IS_178_FAMILY(sc)) {
if (sc->sc_flags & AXE_FLAG_772B) {
/*
* Select RX header format type 1. Aligning IP
* header on 4 byte boundary is not needed when
* checksum offloading feature is not used
* because we always copy the received frame in
* RX handler. When RX checksum offloading is
* active, aligning IP header is required to
* reflect actual frame length including RX
* header size.
*/
rxmode |= AXE_772B_RXCMD_HDR_TYPE_1;
if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
rxmode |= AXE_772B_RXCMD_IPHDR_ALIGN;
} else {
/*
* Default Rx buffer size is too small to get
* maximum performance.
*/
rxmode |= AXE_178_RXCMD_MFB_16384;
}
} else {
rxmode |= AXE_172_RXCMD_UNICAST;
}
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC)
rxmode |= AXE_RXCMD_PROMISC;
if (ifp->if_flags & IFF_BROADCAST)
rxmode |= AXE_RXCMD_BROADCAST;
axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL);
/* Load the multicast filter. */
axe_setmulti(ue);
usbd_xfer_set_stall(sc->sc_xfer[AXE_BULK_DT_WR]);
ifp->if_drv_flags |= IFF_DRV_RUNNING;
/* Switch to selected media. */
axe_ifmedia_upd(ifp);
}
static void
axe_setpromisc(struct usb_ether *ue)
{
struct axe_softc *sc = uether_getsc(ue);
struct ifnet *ifp = uether_getifp(ue);
uint16_t rxmode;
axe_cmd(sc, AXE_CMD_RXCTL_READ, 0, 0, &rxmode);
rxmode = le16toh(rxmode);
if (ifp->if_flags & IFF_PROMISC) {
rxmode |= AXE_RXCMD_PROMISC;
} else {
rxmode &= ~AXE_RXCMD_PROMISC;
}
axe_cmd(sc, AXE_CMD_RXCTL_WRITE, 0, rxmode, NULL);
axe_setmulti(ue);
}
static void
axe_stop(struct usb_ether *ue)
{
struct axe_softc *sc = uether_getsc(ue);
struct ifnet *ifp = uether_getifp(ue);
AXE_LOCK_ASSERT(sc, MA_OWNED);
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
sc->sc_flags &= ~AXE_FLAG_LINK;
/*
* stop all the transfers, if not already stopped:
*/
usbd_transfer_stop(sc->sc_xfer[AXE_BULK_DT_WR]);
usbd_transfer_stop(sc->sc_xfer[AXE_BULK_DT_RD]);
}
static int
axe_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct usb_ether *ue = ifp->if_softc;
struct axe_softc *sc;
struct ifreq *ifr;
int error, mask, reinit;
sc = uether_getsc(ue);
ifr = (struct ifreq *)data;
error = 0;
reinit = 0;
if (cmd == SIOCSIFCAP) {
AXE_LOCK(sc);
mask = ifr->ifr_reqcap ^ ifp->if_capenable;
if ((mask & IFCAP_TXCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
ifp->if_capenable ^= IFCAP_TXCSUM;
if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
ifp->if_hwassist |= AXE_CSUM_FEATURES;
else
ifp->if_hwassist &= ~AXE_CSUM_FEATURES;
reinit++;
}
if ((mask & IFCAP_RXCSUM) != 0 &&
(ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
ifp->if_capenable ^= IFCAP_RXCSUM;
reinit++;
}
if (reinit > 0 && ifp->if_drv_flags & IFF_DRV_RUNNING)
ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
else
reinit = 0;
AXE_UNLOCK(sc);
if (reinit > 0)
uether_init(ue);
} else
error = uether_ioctl(ifp, cmd, data);
return (error);
}