ade8bcee50
J. Sorenson and J. Webster, Strong pseudoprimes to twelve prime bases, Math. Comp. 86(304):985-1003, 2017. teach primes(6) to enumerate primes up to 2^64 - 1. Until Sorenson and Webster's paper, we did not know how many strong speudoprime tests were required when testing alleged primes between 3825123056546413051 and 2^64 - 1. Reported by: Luiz Henrique de Figueiredo Relnotes: primes(6) now enumerates primes beyond 3825123056546413050, up to a new limit of 2^64 - 1. MFC After: 1 week
202 lines
4.6 KiB
C
202 lines
4.6 KiB
C
/*-
|
|
* Copyright (c) 2014 Colin Percival
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <assert.h>
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
|
|
#include "primes.h"
|
|
|
|
/* Return a * b % n, where 0 < n. */
|
|
static uint64_t
|
|
mulmod(uint64_t a, uint64_t b, uint64_t n)
|
|
{
|
|
uint64_t x = 0;
|
|
uint64_t an = a % n;
|
|
|
|
while (b != 0) {
|
|
if (b & 1) {
|
|
x += an;
|
|
if ((x < an) || (x >= n))
|
|
x -= n;
|
|
}
|
|
if (an + an < an)
|
|
an = an + an - n;
|
|
else if (an + an >= n)
|
|
an = an + an - n;
|
|
else
|
|
an = an + an;
|
|
b >>= 1;
|
|
}
|
|
|
|
return (x);
|
|
}
|
|
|
|
/* Return a^r % n, where 0 < n. */
|
|
static uint64_t
|
|
powmod(uint64_t a, uint64_t r, uint64_t n)
|
|
{
|
|
uint64_t x = 1;
|
|
|
|
while (r != 0) {
|
|
if (r & 1)
|
|
x = mulmod(a, x, n);
|
|
a = mulmod(a, a, n);
|
|
r >>= 1;
|
|
}
|
|
|
|
return (x);
|
|
}
|
|
|
|
/* Return non-zero if n is a strong pseudoprime to base p. */
|
|
static int
|
|
spsp(uint64_t n, uint64_t p)
|
|
{
|
|
uint64_t x;
|
|
uint64_t r = n - 1;
|
|
int k = 0;
|
|
|
|
/* Compute n - 1 = 2^k * r. */
|
|
while ((r & 1) == 0) {
|
|
k++;
|
|
r >>= 1;
|
|
}
|
|
|
|
/* Compute x = p^r mod n. If x = 1, n is a p-spsp. */
|
|
x = powmod(p, r, n);
|
|
if (x == 1)
|
|
return (1);
|
|
|
|
/* Compute x^(2^i) for 0 <= i < n. If any are -1, n is a p-spsp. */
|
|
while (k > 0) {
|
|
if (x == n - 1)
|
|
return (1);
|
|
x = powmod(x, 2, n);
|
|
k--;
|
|
}
|
|
|
|
/* Not a p-spsp. */
|
|
return (0);
|
|
}
|
|
|
|
/* Test for primality using strong pseudoprime tests. */
|
|
int
|
|
isprime(ubig _n)
|
|
{
|
|
uint64_t n = _n;
|
|
|
|
/*
|
|
* Values from:
|
|
* C. Pomerance, J.L. Selfridge, and S.S. Wagstaff, Jr.,
|
|
* The pseudoprimes to 25 * 10^9, Math. Comp. 35(151):1003-1026, 1980.
|
|
*/
|
|
|
|
/* No SPSPs to base 2 less than 2047. */
|
|
if (!spsp(n, 2))
|
|
return (0);
|
|
if (n < 2047ULL)
|
|
return (1);
|
|
|
|
/* No SPSPs to bases 2,3 less than 1373653. */
|
|
if (!spsp(n, 3))
|
|
return (0);
|
|
if (n < 1373653ULL)
|
|
return (1);
|
|
|
|
/* No SPSPs to bases 2,3,5 less than 25326001. */
|
|
if (!spsp(n, 5))
|
|
return (0);
|
|
if (n < 25326001ULL)
|
|
return (1);
|
|
|
|
/* No SPSPs to bases 2,3,5,7 less than 3215031751. */
|
|
if (!spsp(n, 7))
|
|
return (0);
|
|
if (n < 3215031751ULL)
|
|
return (1);
|
|
|
|
/*
|
|
* Values from:
|
|
* G. Jaeschke, On strong pseudoprimes to several bases,
|
|
* Math. Comp. 61(204):915-926, 1993.
|
|
*/
|
|
|
|
/* No SPSPs to bases 2,3,5,7,11 less than 2152302898747. */
|
|
if (!spsp(n, 11))
|
|
return (0);
|
|
if (n < 2152302898747ULL)
|
|
return (1);
|
|
|
|
/* No SPSPs to bases 2,3,5,7,11,13 less than 3474749660383. */
|
|
if (!spsp(n, 13))
|
|
return (0);
|
|
if (n < 3474749660383ULL)
|
|
return (1);
|
|
|
|
/* No SPSPs to bases 2,3,5,7,11,13,17 less than 341550071728321. */
|
|
if (!spsp(n, 17))
|
|
return (0);
|
|
if (n < 341550071728321ULL)
|
|
return (1);
|
|
|
|
/* No SPSPs to bases 2,3,5,7,11,13,17,19 less than 341550071728321. */
|
|
if (!spsp(n, 19))
|
|
return (0);
|
|
if (n < 341550071728321ULL)
|
|
return (1);
|
|
|
|
/*
|
|
* Value from:
|
|
* Y. Jiang and Y. Deng, Strong pseudoprimes to the first eight prime
|
|
* bases, Math. Comp. 83(290):2915-2924, 2014.
|
|
*/
|
|
|
|
/* No SPSPs to bases 2..23 less than 3825123056546413051. */
|
|
if (!spsp(n, 23))
|
|
return (0);
|
|
if (n < 3825123056546413051)
|
|
return (1);
|
|
|
|
/*
|
|
* Value from:
|
|
* J. Sorenson and J. Webster, Strong pseudoprimes to twelve prime
|
|
* bases, Math. Comp. 86(304):985-1003, 2017.
|
|
*/
|
|
|
|
/* No SPSPs to bases 2..37 less than 318665857834031151167461. */
|
|
if (!spsp(n, 29))
|
|
return (0);
|
|
if (!spsp(n, 31))
|
|
return (0);
|
|
if (!spsp(n, 37))
|
|
return (0);
|
|
|
|
/* All 64-bit values are less than 318665857834031151167461. */
|
|
return (1);
|
|
}
|