c418410393
Prevent users from setting the zfs_vdev_aggregation_limit tuning larger than SPA_MAXBLOCKSIZE. Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov> Closes #520
463 lines
12 KiB
C
463 lines
12 KiB
C
/*
|
|
* CDDL HEADER START
|
|
*
|
|
* The contents of this file are subject to the terms of the
|
|
* Common Development and Distribution License (the "License").
|
|
* You may not use this file except in compliance with the License.
|
|
*
|
|
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
|
|
* or http://www.opensolaris.org/os/licensing.
|
|
* See the License for the specific language governing permissions
|
|
* and limitations under the License.
|
|
*
|
|
* When distributing Covered Code, include this CDDL HEADER in each
|
|
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
|
|
* If applicable, add the following below this CDDL HEADER, with the
|
|
* fields enclosed by brackets "[]" replaced with your own identifying
|
|
* information: Portions Copyright [yyyy] [name of copyright owner]
|
|
*
|
|
* CDDL HEADER END
|
|
*/
|
|
/*
|
|
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
|
|
* Use is subject to license terms.
|
|
*/
|
|
|
|
#include <sys/zfs_context.h>
|
|
#include <sys/vdev_impl.h>
|
|
#include <sys/zio.h>
|
|
#include <sys/avl.h>
|
|
|
|
/*
|
|
* These tunables are for performance analysis.
|
|
*/
|
|
/*
|
|
* zfs_vdev_max_pending is the maximum number of i/os concurrently
|
|
* pending to each device. zfs_vdev_min_pending is the initial number
|
|
* of i/os pending to each device (before it starts ramping up to
|
|
* max_pending).
|
|
*/
|
|
int zfs_vdev_max_pending = 10;
|
|
int zfs_vdev_min_pending = 4;
|
|
|
|
/* deadline = pri + ddi_get_lbolt64() >> time_shift) */
|
|
int zfs_vdev_time_shift = 6;
|
|
|
|
/* exponential I/O issue ramp-up rate */
|
|
int zfs_vdev_ramp_rate = 2;
|
|
|
|
/*
|
|
* To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
|
|
* For read I/Os, we also aggregate across small adjacency gaps; for writes
|
|
* we include spans of optional I/Os to aid aggregation at the disk even when
|
|
* they aren't able to help us aggregate at this level.
|
|
*/
|
|
int zfs_vdev_aggregation_limit = SPA_MAXBLOCKSIZE;
|
|
int zfs_vdev_read_gap_limit = 32 << 10;
|
|
int zfs_vdev_write_gap_limit = 4 << 10;
|
|
|
|
/*
|
|
* Virtual device vector for disk I/O scheduling.
|
|
*/
|
|
int
|
|
vdev_queue_deadline_compare(const void *x1, const void *x2)
|
|
{
|
|
const zio_t *z1 = x1;
|
|
const zio_t *z2 = x2;
|
|
|
|
if (z1->io_deadline < z2->io_deadline)
|
|
return (-1);
|
|
if (z1->io_deadline > z2->io_deadline)
|
|
return (1);
|
|
|
|
if (z1->io_offset < z2->io_offset)
|
|
return (-1);
|
|
if (z1->io_offset > z2->io_offset)
|
|
return (1);
|
|
|
|
if (z1 < z2)
|
|
return (-1);
|
|
if (z1 > z2)
|
|
return (1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
vdev_queue_offset_compare(const void *x1, const void *x2)
|
|
{
|
|
const zio_t *z1 = x1;
|
|
const zio_t *z2 = x2;
|
|
|
|
if (z1->io_offset < z2->io_offset)
|
|
return (-1);
|
|
if (z1->io_offset > z2->io_offset)
|
|
return (1);
|
|
|
|
if (z1 < z2)
|
|
return (-1);
|
|
if (z1 > z2)
|
|
return (1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
vdev_queue_init(vdev_t *vd)
|
|
{
|
|
vdev_queue_t *vq = &vd->vdev_queue;
|
|
int i;
|
|
|
|
mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
|
|
|
|
avl_create(&vq->vq_deadline_tree, vdev_queue_deadline_compare,
|
|
sizeof (zio_t), offsetof(struct zio, io_deadline_node));
|
|
|
|
avl_create(&vq->vq_read_tree, vdev_queue_offset_compare,
|
|
sizeof (zio_t), offsetof(struct zio, io_offset_node));
|
|
|
|
avl_create(&vq->vq_write_tree, vdev_queue_offset_compare,
|
|
sizeof (zio_t), offsetof(struct zio, io_offset_node));
|
|
|
|
avl_create(&vq->vq_pending_tree, vdev_queue_offset_compare,
|
|
sizeof (zio_t), offsetof(struct zio, io_offset_node));
|
|
|
|
/*
|
|
* A list of buffers which can be used for aggregate I/O, this
|
|
* avoids the need to allocate them on demand when memory is low.
|
|
*/
|
|
list_create(&vq->vq_io_list, sizeof (vdev_io_t),
|
|
offsetof(vdev_io_t, vi_node));
|
|
|
|
for (i = 0; i < zfs_vdev_max_pending; i++)
|
|
list_insert_tail(&vq->vq_io_list, zio_vdev_alloc());
|
|
}
|
|
|
|
void
|
|
vdev_queue_fini(vdev_t *vd)
|
|
{
|
|
vdev_queue_t *vq = &vd->vdev_queue;
|
|
vdev_io_t *vi;
|
|
|
|
avl_destroy(&vq->vq_deadline_tree);
|
|
avl_destroy(&vq->vq_read_tree);
|
|
avl_destroy(&vq->vq_write_tree);
|
|
avl_destroy(&vq->vq_pending_tree);
|
|
|
|
while ((vi = list_head(&vq->vq_io_list)) != NULL) {
|
|
list_remove(&vq->vq_io_list, vi);
|
|
zio_vdev_free(vi);
|
|
}
|
|
|
|
list_destroy(&vq->vq_io_list);
|
|
|
|
mutex_destroy(&vq->vq_lock);
|
|
}
|
|
|
|
static void
|
|
vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
|
|
{
|
|
avl_add(&vq->vq_deadline_tree, zio);
|
|
avl_add(zio->io_vdev_tree, zio);
|
|
}
|
|
|
|
static void
|
|
vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
|
|
{
|
|
avl_remove(&vq->vq_deadline_tree, zio);
|
|
avl_remove(zio->io_vdev_tree, zio);
|
|
}
|
|
|
|
static void
|
|
vdev_queue_agg_io_done(zio_t *aio)
|
|
{
|
|
vdev_queue_t *vq = &aio->io_vd->vdev_queue;
|
|
vdev_io_t *vi = aio->io_data;
|
|
zio_t *pio;
|
|
|
|
while ((pio = zio_walk_parents(aio)) != NULL)
|
|
if (aio->io_type == ZIO_TYPE_READ)
|
|
bcopy((char *)aio->io_data + (pio->io_offset -
|
|
aio->io_offset), pio->io_data, pio->io_size);
|
|
|
|
mutex_enter(&vq->vq_lock);
|
|
list_insert_tail(&vq->vq_io_list, vi);
|
|
mutex_exit(&vq->vq_lock);
|
|
}
|
|
|
|
/*
|
|
* Compute the range spanned by two i/os, which is the endpoint of the last
|
|
* (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
|
|
* Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
|
|
* thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
|
|
*/
|
|
#define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
|
|
#define IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
|
|
|
|
static zio_t *
|
|
vdev_queue_io_to_issue(vdev_queue_t *vq, uint64_t pending_limit)
|
|
{
|
|
zio_t *fio, *lio, *aio, *dio, *nio, *mio;
|
|
avl_tree_t *t;
|
|
vdev_io_t *vi;
|
|
int flags;
|
|
uint64_t maxspan = MIN(zfs_vdev_aggregation_limit, SPA_MAXBLOCKSIZE);
|
|
uint64_t maxgap;
|
|
int stretch;
|
|
|
|
again:
|
|
ASSERT(MUTEX_HELD(&vq->vq_lock));
|
|
|
|
if (avl_numnodes(&vq->vq_pending_tree) >= pending_limit ||
|
|
avl_numnodes(&vq->vq_deadline_tree) == 0)
|
|
return (NULL);
|
|
|
|
fio = lio = avl_first(&vq->vq_deadline_tree);
|
|
|
|
t = fio->io_vdev_tree;
|
|
flags = fio->io_flags & ZIO_FLAG_AGG_INHERIT;
|
|
maxgap = (t == &vq->vq_read_tree) ? zfs_vdev_read_gap_limit : 0;
|
|
|
|
vi = list_head(&vq->vq_io_list);
|
|
if (vi == NULL) {
|
|
vi = zio_vdev_alloc();
|
|
list_insert_head(&vq->vq_io_list, vi);
|
|
}
|
|
|
|
if (!(flags & ZIO_FLAG_DONT_AGGREGATE)) {
|
|
/*
|
|
* We can aggregate I/Os that are sufficiently adjacent and of
|
|
* the same flavor, as expressed by the AGG_INHERIT flags.
|
|
* The latter requirement is necessary so that certain
|
|
* attributes of the I/O, such as whether it's a normal I/O
|
|
* or a scrub/resilver, can be preserved in the aggregate.
|
|
* We can include optional I/Os, but don't allow them
|
|
* to begin a range as they add no benefit in that situation.
|
|
*/
|
|
|
|
/*
|
|
* We keep track of the last non-optional I/O.
|
|
*/
|
|
mio = (fio->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : fio;
|
|
|
|
/*
|
|
* Walk backwards through sufficiently contiguous I/Os
|
|
* recording the last non-option I/O.
|
|
*/
|
|
while ((dio = AVL_PREV(t, fio)) != NULL &&
|
|
(dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
|
|
IO_SPAN(dio, lio) <= maxspan &&
|
|
IO_GAP(dio, fio) <= maxgap) {
|
|
fio = dio;
|
|
if (mio == NULL && !(fio->io_flags & ZIO_FLAG_OPTIONAL))
|
|
mio = fio;
|
|
}
|
|
|
|
/*
|
|
* Skip any initial optional I/Os.
|
|
*/
|
|
while ((fio->io_flags & ZIO_FLAG_OPTIONAL) && fio != lio) {
|
|
fio = AVL_NEXT(t, fio);
|
|
ASSERT(fio != NULL);
|
|
}
|
|
|
|
/*
|
|
* Walk forward through sufficiently contiguous I/Os.
|
|
*/
|
|
while ((dio = AVL_NEXT(t, lio)) != NULL &&
|
|
(dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
|
|
IO_SPAN(fio, dio) <= maxspan &&
|
|
IO_GAP(lio, dio) <= maxgap) {
|
|
lio = dio;
|
|
if (!(lio->io_flags & ZIO_FLAG_OPTIONAL))
|
|
mio = lio;
|
|
}
|
|
|
|
/*
|
|
* Now that we've established the range of the I/O aggregation
|
|
* we must decide what to do with trailing optional I/Os.
|
|
* For reads, there's nothing to do. While we are unable to
|
|
* aggregate further, it's possible that a trailing optional
|
|
* I/O would allow the underlying device to aggregate with
|
|
* subsequent I/Os. We must therefore determine if the next
|
|
* non-optional I/O is close enough to make aggregation
|
|
* worthwhile.
|
|
*/
|
|
stretch = B_FALSE;
|
|
if (t != &vq->vq_read_tree && mio != NULL) {
|
|
nio = lio;
|
|
while ((dio = AVL_NEXT(t, nio)) != NULL &&
|
|
IO_GAP(nio, dio) == 0 &&
|
|
IO_GAP(mio, dio) <= zfs_vdev_write_gap_limit) {
|
|
nio = dio;
|
|
if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
|
|
stretch = B_TRUE;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (stretch) {
|
|
/* This may be a no-op. */
|
|
VERIFY((dio = AVL_NEXT(t, lio)) != NULL);
|
|
dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
|
|
} else {
|
|
while (lio != mio && lio != fio) {
|
|
ASSERT(lio->io_flags & ZIO_FLAG_OPTIONAL);
|
|
lio = AVL_PREV(t, lio);
|
|
ASSERT(lio != NULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (fio != lio) {
|
|
uint64_t size = IO_SPAN(fio, lio);
|
|
ASSERT(size <= maxspan);
|
|
ASSERT(vi != NULL);
|
|
|
|
aio = zio_vdev_delegated_io(fio->io_vd, fio->io_offset,
|
|
vi, size, fio->io_type, ZIO_PRIORITY_AGG,
|
|
flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
|
|
vdev_queue_agg_io_done, NULL);
|
|
|
|
nio = fio;
|
|
do {
|
|
dio = nio;
|
|
nio = AVL_NEXT(t, dio);
|
|
ASSERT(dio->io_type == aio->io_type);
|
|
ASSERT(dio->io_vdev_tree == t);
|
|
|
|
if (dio->io_flags & ZIO_FLAG_NODATA) {
|
|
ASSERT(dio->io_type == ZIO_TYPE_WRITE);
|
|
bzero((char *)aio->io_data + (dio->io_offset -
|
|
aio->io_offset), dio->io_size);
|
|
} else if (dio->io_type == ZIO_TYPE_WRITE) {
|
|
bcopy(dio->io_data, (char *)aio->io_data +
|
|
(dio->io_offset - aio->io_offset),
|
|
dio->io_size);
|
|
}
|
|
|
|
zio_add_child(dio, aio);
|
|
vdev_queue_io_remove(vq, dio);
|
|
zio_vdev_io_bypass(dio);
|
|
zio_execute(dio);
|
|
} while (dio != lio);
|
|
|
|
avl_add(&vq->vq_pending_tree, aio);
|
|
list_remove(&vq->vq_io_list, vi);
|
|
|
|
return (aio);
|
|
}
|
|
|
|
ASSERT(fio->io_vdev_tree == t);
|
|
vdev_queue_io_remove(vq, fio);
|
|
|
|
/*
|
|
* If the I/O is or was optional and therefore has no data, we need to
|
|
* simply discard it. We need to drop the vdev queue's lock to avoid a
|
|
* deadlock that we could encounter since this I/O will complete
|
|
* immediately.
|
|
*/
|
|
if (fio->io_flags & ZIO_FLAG_NODATA) {
|
|
mutex_exit(&vq->vq_lock);
|
|
zio_vdev_io_bypass(fio);
|
|
zio_execute(fio);
|
|
mutex_enter(&vq->vq_lock);
|
|
goto again;
|
|
}
|
|
|
|
avl_add(&vq->vq_pending_tree, fio);
|
|
|
|
return (fio);
|
|
}
|
|
|
|
zio_t *
|
|
vdev_queue_io(zio_t *zio)
|
|
{
|
|
vdev_queue_t *vq = &zio->io_vd->vdev_queue;
|
|
zio_t *nio;
|
|
|
|
ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
|
|
|
|
if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
|
|
return (zio);
|
|
|
|
zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
|
|
|
|
if (zio->io_type == ZIO_TYPE_READ)
|
|
zio->io_vdev_tree = &vq->vq_read_tree;
|
|
else
|
|
zio->io_vdev_tree = &vq->vq_write_tree;
|
|
|
|
mutex_enter(&vq->vq_lock);
|
|
|
|
zio->io_deadline = (ddi_get_lbolt64() >> zfs_vdev_time_shift) +
|
|
zio->io_priority;
|
|
|
|
vdev_queue_io_add(vq, zio);
|
|
|
|
nio = vdev_queue_io_to_issue(vq, zfs_vdev_min_pending);
|
|
|
|
mutex_exit(&vq->vq_lock);
|
|
|
|
if (nio == NULL)
|
|
return (NULL);
|
|
|
|
if (nio->io_done == vdev_queue_agg_io_done) {
|
|
zio_nowait(nio);
|
|
return (NULL);
|
|
}
|
|
|
|
return (nio);
|
|
}
|
|
|
|
void
|
|
vdev_queue_io_done(zio_t *zio)
|
|
{
|
|
vdev_queue_t *vq = &zio->io_vd->vdev_queue;
|
|
int i;
|
|
|
|
mutex_enter(&vq->vq_lock);
|
|
|
|
avl_remove(&vq->vq_pending_tree, zio);
|
|
|
|
for (i = 0; i < zfs_vdev_ramp_rate; i++) {
|
|
zio_t *nio = vdev_queue_io_to_issue(vq, zfs_vdev_max_pending);
|
|
if (nio == NULL)
|
|
break;
|
|
mutex_exit(&vq->vq_lock);
|
|
if (nio->io_done == vdev_queue_agg_io_done) {
|
|
zio_nowait(nio);
|
|
} else {
|
|
zio_vdev_io_reissue(nio);
|
|
zio_execute(nio);
|
|
}
|
|
mutex_enter(&vq->vq_lock);
|
|
}
|
|
|
|
mutex_exit(&vq->vq_lock);
|
|
}
|
|
|
|
#if defined(_KERNEL) && defined(HAVE_SPL)
|
|
module_param(zfs_vdev_max_pending, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_max_pending, "Max pending per-vdev I/Os");
|
|
|
|
module_param(zfs_vdev_min_pending, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_min_pending, "Min pending per-vdev I/Os");
|
|
|
|
module_param(zfs_vdev_aggregation_limit, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_aggregation_limit, "Max vdev I/O aggregation size");
|
|
|
|
module_param(zfs_vdev_time_shift, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_time_shift, "Deadline time shift for vdev I/O");
|
|
|
|
module_param(zfs_vdev_ramp_rate, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_ramp_rate, "Exponential I/O issue ramp-up rate");
|
|
|
|
module_param(zfs_vdev_read_gap_limit, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_read_gap_limit, "Aggregate read I/O over gap");
|
|
|
|
module_param(zfs_vdev_write_gap_limit, int, 0644);
|
|
MODULE_PARM_DESC(zfs_vdev_write_gap_limit, "Aggregate write I/O over gap");
|
|
#endif
|