freebsd-dev/sys/dev/wg/if_wg.c
Kyle Evans b08ee10c06 wg: fix a number of issues with module load failure handling
If MOD_LOAD fails, then MOD_UNLOAD will be called to unwind module
state, but wg_module_init() will have already deinitialized everything
it needs to in a manner that renders it unsafe to call MOD_UNLOAD
after (e.g., freed zone not reset to NULL, wg_osd_jail_slot not reset
to 0).  Let's simply stop trying to handle freeing everything in
wg_module_init() to simplify it; let the subsequent MOD_UNLOAD deal with
it, and let's make that robust against partially-constructed state.

jhb@ notes that MOD_UNLOAD being called if MOD_LOAD fails is kind of an
anomaly that doesn't match other paradigms in the kernel; e.g., if
device_attach() fails, we don't invoke device_detach().  It's likely
that a future commit will revert this and instead stop calling
MOD_UNLOAD if MOD_LOAD fails, expecting modules to clean up after
themselves in MOD_LOAD upon failure.  Some other modules already do this
and may see similar problems to the wg module (see: carp).  The proper
fix is decidedly a bit too invasive to do this close to 14 branching,
and it requires auditing all kmods (base + ports) for potential leaks.

PR:		272089
Reviewed by:	emaste
MFC after:	3 days
Differential Revision:	https://reviews.freebsd.org/D40708
2023-06-23 12:00:09 -05:00

3057 lines
80 KiB
C

/* SPDX-License-Identifier: ISC
*
* Copyright (C) 2015-2021 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
* Copyright (C) 2019-2021 Matt Dunwoodie <ncon@noconroy.net>
* Copyright (c) 2019-2020 Rubicon Communications, LLC (Netgate)
* Copyright (c) 2021 Kyle Evans <kevans@FreeBSD.org>
* Copyright (c) 2022 The FreeBSD Foundation
*/
#include "opt_inet.h"
#include "opt_inet6.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/counter.h>
#include <sys/gtaskqueue.h>
#include <sys/jail.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/mbuf.h>
#include <sys/module.h>
#include <sys/nv.h>
#include <sys/priv.h>
#include <sys/protosw.h>
#include <sys/rmlock.h>
#include <sys/rwlock.h>
#include <sys/smp.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/sx.h>
#include <machine/_inttypes.h>
#include <net/bpf.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_clone.h>
#include <net/if_types.h>
#include <net/if_var.h>
#include <net/netisr.h>
#include <net/radix.h>
#include <netinet/in.h>
#include <netinet6/in6_var.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet/ip_icmp.h>
#include <netinet/icmp6.h>
#include <netinet/udp_var.h>
#include <netinet6/nd6.h>
#include "wg_noise.h"
#include "wg_cookie.h"
#include "version.h"
#include "if_wg.h"
#define DEFAULT_MTU (ETHERMTU - 80)
#define MAX_MTU (IF_MAXMTU - 80)
#define MAX_STAGED_PKT 128
#define MAX_QUEUED_PKT 1024
#define MAX_QUEUED_PKT_MASK (MAX_QUEUED_PKT - 1)
#define MAX_QUEUED_HANDSHAKES 4096
#define REKEY_TIMEOUT_JITTER 334 /* 1/3 sec, round for arc4random_uniform */
#define MAX_TIMER_HANDSHAKES (90 / REKEY_TIMEOUT)
#define NEW_HANDSHAKE_TIMEOUT (REKEY_TIMEOUT + KEEPALIVE_TIMEOUT)
#define UNDERLOAD_TIMEOUT 1
#define DPRINTF(sc, ...) if (if_getflags(sc->sc_ifp) & IFF_DEBUG) if_printf(sc->sc_ifp, ##__VA_ARGS__)
/* First byte indicating packet type on the wire */
#define WG_PKT_INITIATION htole32(1)
#define WG_PKT_RESPONSE htole32(2)
#define WG_PKT_COOKIE htole32(3)
#define WG_PKT_DATA htole32(4)
#define WG_PKT_PADDING 16
#define WG_KEY_SIZE 32
struct wg_pkt_initiation {
uint32_t t;
uint32_t s_idx;
uint8_t ue[NOISE_PUBLIC_KEY_LEN];
uint8_t es[NOISE_PUBLIC_KEY_LEN + NOISE_AUTHTAG_LEN];
uint8_t ets[NOISE_TIMESTAMP_LEN + NOISE_AUTHTAG_LEN];
struct cookie_macs m;
};
struct wg_pkt_response {
uint32_t t;
uint32_t s_idx;
uint32_t r_idx;
uint8_t ue[NOISE_PUBLIC_KEY_LEN];
uint8_t en[0 + NOISE_AUTHTAG_LEN];
struct cookie_macs m;
};
struct wg_pkt_cookie {
uint32_t t;
uint32_t r_idx;
uint8_t nonce[COOKIE_NONCE_SIZE];
uint8_t ec[COOKIE_ENCRYPTED_SIZE];
};
struct wg_pkt_data {
uint32_t t;
uint32_t r_idx;
uint64_t nonce;
uint8_t buf[];
};
struct wg_endpoint {
union {
struct sockaddr r_sa;
struct sockaddr_in r_sin;
#ifdef INET6
struct sockaddr_in6 r_sin6;
#endif
} e_remote;
union {
struct in_addr l_in;
#ifdef INET6
struct in6_pktinfo l_pktinfo6;
#define l_in6 l_pktinfo6.ipi6_addr
#endif
} e_local;
};
struct aip_addr {
uint8_t length;
union {
uint8_t bytes[16];
uint32_t ip;
uint32_t ip6[4];
struct in_addr in;
struct in6_addr in6;
};
};
struct wg_aip {
struct radix_node a_nodes[2];
LIST_ENTRY(wg_aip) a_entry;
struct aip_addr a_addr;
struct aip_addr a_mask;
struct wg_peer *a_peer;
sa_family_t a_af;
};
struct wg_packet {
STAILQ_ENTRY(wg_packet) p_serial;
STAILQ_ENTRY(wg_packet) p_parallel;
struct wg_endpoint p_endpoint;
struct noise_keypair *p_keypair;
uint64_t p_nonce;
struct mbuf *p_mbuf;
int p_mtu;
sa_family_t p_af;
enum wg_ring_state {
WG_PACKET_UNCRYPTED,
WG_PACKET_CRYPTED,
WG_PACKET_DEAD,
} p_state;
};
STAILQ_HEAD(wg_packet_list, wg_packet);
struct wg_queue {
struct mtx q_mtx;
struct wg_packet_list q_queue;
size_t q_len;
};
struct wg_peer {
TAILQ_ENTRY(wg_peer) p_entry;
uint64_t p_id;
struct wg_softc *p_sc;
struct noise_remote *p_remote;
struct cookie_maker p_cookie;
struct rwlock p_endpoint_lock;
struct wg_endpoint p_endpoint;
struct wg_queue p_stage_queue;
struct wg_queue p_encrypt_serial;
struct wg_queue p_decrypt_serial;
bool p_enabled;
bool p_need_another_keepalive;
uint16_t p_persistent_keepalive_interval;
struct callout p_new_handshake;
struct callout p_send_keepalive;
struct callout p_retry_handshake;
struct callout p_zero_key_material;
struct callout p_persistent_keepalive;
struct mtx p_handshake_mtx;
struct timespec p_handshake_complete; /* nanotime */
int p_handshake_retries;
struct grouptask p_send;
struct grouptask p_recv;
counter_u64_t p_tx_bytes;
counter_u64_t p_rx_bytes;
LIST_HEAD(, wg_aip) p_aips;
size_t p_aips_num;
};
struct wg_socket {
struct socket *so_so4;
struct socket *so_so6;
uint32_t so_user_cookie;
int so_fibnum;
in_port_t so_port;
};
struct wg_softc {
LIST_ENTRY(wg_softc) sc_entry;
if_t sc_ifp;
int sc_flags;
struct ucred *sc_ucred;
struct wg_socket sc_socket;
TAILQ_HEAD(,wg_peer) sc_peers;
size_t sc_peers_num;
struct noise_local *sc_local;
struct cookie_checker sc_cookie;
struct radix_node_head *sc_aip4;
struct radix_node_head *sc_aip6;
struct grouptask sc_handshake;
struct wg_queue sc_handshake_queue;
struct grouptask *sc_encrypt;
struct grouptask *sc_decrypt;
struct wg_queue sc_encrypt_parallel;
struct wg_queue sc_decrypt_parallel;
u_int sc_encrypt_last_cpu;
u_int sc_decrypt_last_cpu;
struct sx sc_lock;
};
#define WGF_DYING 0x0001
#define MAX_LOOPS 8
#define MTAG_WGLOOP 0x77676c70 /* wglp */
#ifndef ENOKEY
#define ENOKEY ENOTCAPABLE
#endif
#define GROUPTASK_DRAIN(gtask) \
gtaskqueue_drain((gtask)->gt_taskqueue, &(gtask)->gt_task)
#define BPF_MTAP2_AF(ifp, m, af) do { \
uint32_t __bpf_tap_af = (af); \
BPF_MTAP2(ifp, &__bpf_tap_af, sizeof(__bpf_tap_af), m); \
} while (0)
static int clone_count;
static uma_zone_t wg_packet_zone;
static volatile unsigned long peer_counter = 0;
static const char wgname[] = "wg";
static unsigned wg_osd_jail_slot;
static struct sx wg_sx;
SX_SYSINIT(wg_sx, &wg_sx, "wg_sx");
static LIST_HEAD(, wg_softc) wg_list = LIST_HEAD_INITIALIZER(wg_list);
static TASKQGROUP_DEFINE(wg_tqg, mp_ncpus, 1);
MALLOC_DEFINE(M_WG, "WG", "wireguard");
VNET_DEFINE_STATIC(struct if_clone *, wg_cloner);
#define V_wg_cloner VNET(wg_cloner)
#define WG_CAPS IFCAP_LINKSTATE
struct wg_timespec64 {
uint64_t tv_sec;
uint64_t tv_nsec;
};
static int wg_socket_init(struct wg_softc *, in_port_t);
static int wg_socket_bind(struct socket **, struct socket **, in_port_t *);
static void wg_socket_set(struct wg_softc *, struct socket *, struct socket *);
static void wg_socket_uninit(struct wg_softc *);
static int wg_socket_set_sockopt(struct socket *, struct socket *, int, void *, size_t);
static int wg_socket_set_cookie(struct wg_softc *, uint32_t);
static int wg_socket_set_fibnum(struct wg_softc *, int);
static int wg_send(struct wg_softc *, struct wg_endpoint *, struct mbuf *);
static void wg_timers_enable(struct wg_peer *);
static void wg_timers_disable(struct wg_peer *);
static void wg_timers_set_persistent_keepalive(struct wg_peer *, uint16_t);
static void wg_timers_get_last_handshake(struct wg_peer *, struct wg_timespec64 *);
static void wg_timers_event_data_sent(struct wg_peer *);
static void wg_timers_event_data_received(struct wg_peer *);
static void wg_timers_event_any_authenticated_packet_sent(struct wg_peer *);
static void wg_timers_event_any_authenticated_packet_received(struct wg_peer *);
static void wg_timers_event_any_authenticated_packet_traversal(struct wg_peer *);
static void wg_timers_event_handshake_initiated(struct wg_peer *);
static void wg_timers_event_handshake_complete(struct wg_peer *);
static void wg_timers_event_session_derived(struct wg_peer *);
static void wg_timers_event_want_initiation(struct wg_peer *);
static void wg_timers_run_send_initiation(struct wg_peer *, bool);
static void wg_timers_run_retry_handshake(void *);
static void wg_timers_run_send_keepalive(void *);
static void wg_timers_run_new_handshake(void *);
static void wg_timers_run_zero_key_material(void *);
static void wg_timers_run_persistent_keepalive(void *);
static int wg_aip_add(struct wg_softc *, struct wg_peer *, sa_family_t, const void *, uint8_t);
static struct wg_peer *wg_aip_lookup(struct wg_softc *, sa_family_t, void *);
static void wg_aip_remove_all(struct wg_softc *, struct wg_peer *);
static struct wg_peer *wg_peer_alloc(struct wg_softc *, const uint8_t [WG_KEY_SIZE]);
static void wg_peer_free_deferred(struct noise_remote *);
static void wg_peer_destroy(struct wg_peer *);
static void wg_peer_destroy_all(struct wg_softc *);
static void wg_peer_send_buf(struct wg_peer *, uint8_t *, size_t);
static void wg_send_initiation(struct wg_peer *);
static void wg_send_response(struct wg_peer *);
static void wg_send_cookie(struct wg_softc *, struct cookie_macs *, uint32_t, struct wg_endpoint *);
static void wg_peer_set_endpoint(struct wg_peer *, struct wg_endpoint *);
static void wg_peer_clear_src(struct wg_peer *);
static void wg_peer_get_endpoint(struct wg_peer *, struct wg_endpoint *);
static void wg_send_buf(struct wg_softc *, struct wg_endpoint *, uint8_t *, size_t);
static void wg_send_keepalive(struct wg_peer *);
static void wg_handshake(struct wg_softc *, struct wg_packet *);
static void wg_encrypt(struct wg_softc *, struct wg_packet *);
static void wg_decrypt(struct wg_softc *, struct wg_packet *);
static void wg_softc_handshake_receive(struct wg_softc *);
static void wg_softc_decrypt(struct wg_softc *);
static void wg_softc_encrypt(struct wg_softc *);
static void wg_encrypt_dispatch(struct wg_softc *);
static void wg_decrypt_dispatch(struct wg_softc *);
static void wg_deliver_out(struct wg_peer *);
static void wg_deliver_in(struct wg_peer *);
static struct wg_packet *wg_packet_alloc(struct mbuf *);
static void wg_packet_free(struct wg_packet *);
static void wg_queue_init(struct wg_queue *, const char *);
static void wg_queue_deinit(struct wg_queue *);
static size_t wg_queue_len(struct wg_queue *);
static int wg_queue_enqueue_handshake(struct wg_queue *, struct wg_packet *);
static struct wg_packet *wg_queue_dequeue_handshake(struct wg_queue *);
static void wg_queue_push_staged(struct wg_queue *, struct wg_packet *);
static void wg_queue_enlist_staged(struct wg_queue *, struct wg_packet_list *);
static void wg_queue_delist_staged(struct wg_queue *, struct wg_packet_list *);
static void wg_queue_purge(struct wg_queue *);
static int wg_queue_both(struct wg_queue *, struct wg_queue *, struct wg_packet *);
static struct wg_packet *wg_queue_dequeue_serial(struct wg_queue *);
static struct wg_packet *wg_queue_dequeue_parallel(struct wg_queue *);
static bool wg_input(struct mbuf *, int, struct inpcb *, const struct sockaddr *, void *);
static void wg_peer_send_staged(struct wg_peer *);
static int wg_clone_create(struct if_clone *ifc, char *name, size_t len,
struct ifc_data *ifd, if_t *ifpp);
static void wg_qflush(if_t);
static inline int determine_af_and_pullup(struct mbuf **m, sa_family_t *af);
static int wg_xmit(if_t, struct mbuf *, sa_family_t, uint32_t);
static int wg_transmit(if_t, struct mbuf *);
static int wg_output(if_t, struct mbuf *, const struct sockaddr *, struct route *);
static int wg_clone_destroy(struct if_clone *ifc, if_t ifp,
uint32_t flags);
static bool wgc_privileged(struct wg_softc *);
static int wgc_get(struct wg_softc *, struct wg_data_io *);
static int wgc_set(struct wg_softc *, struct wg_data_io *);
static int wg_up(struct wg_softc *);
static void wg_down(struct wg_softc *);
static void wg_reassign(if_t, struct vnet *, char *unused);
static void wg_init(void *);
static int wg_ioctl(if_t, u_long, caddr_t);
static void vnet_wg_init(const void *);
static void vnet_wg_uninit(const void *);
static int wg_module_init(void);
static void wg_module_deinit(void);
/* TODO Peer */
static struct wg_peer *
wg_peer_alloc(struct wg_softc *sc, const uint8_t pub_key[WG_KEY_SIZE])
{
struct wg_peer *peer;
sx_assert(&sc->sc_lock, SX_XLOCKED);
peer = malloc(sizeof(*peer), M_WG, M_WAITOK | M_ZERO);
peer->p_remote = noise_remote_alloc(sc->sc_local, peer, pub_key);
peer->p_tx_bytes = counter_u64_alloc(M_WAITOK);
peer->p_rx_bytes = counter_u64_alloc(M_WAITOK);
peer->p_id = peer_counter++;
peer->p_sc = sc;
cookie_maker_init(&peer->p_cookie, pub_key);
rw_init(&peer->p_endpoint_lock, "wg_peer_endpoint");
wg_queue_init(&peer->p_stage_queue, "stageq");
wg_queue_init(&peer->p_encrypt_serial, "txq");
wg_queue_init(&peer->p_decrypt_serial, "rxq");
peer->p_enabled = false;
peer->p_need_another_keepalive = false;
peer->p_persistent_keepalive_interval = 0;
callout_init(&peer->p_new_handshake, true);
callout_init(&peer->p_send_keepalive, true);
callout_init(&peer->p_retry_handshake, true);
callout_init(&peer->p_persistent_keepalive, true);
callout_init(&peer->p_zero_key_material, true);
mtx_init(&peer->p_handshake_mtx, "peer handshake", NULL, MTX_DEF);
bzero(&peer->p_handshake_complete, sizeof(peer->p_handshake_complete));
peer->p_handshake_retries = 0;
GROUPTASK_INIT(&peer->p_send, 0, (gtask_fn_t *)wg_deliver_out, peer);
taskqgroup_attach(qgroup_wg_tqg, &peer->p_send, peer, NULL, NULL, "wg send");
GROUPTASK_INIT(&peer->p_recv, 0, (gtask_fn_t *)wg_deliver_in, peer);
taskqgroup_attach(qgroup_wg_tqg, &peer->p_recv, peer, NULL, NULL, "wg recv");
LIST_INIT(&peer->p_aips);
peer->p_aips_num = 0;
return (peer);
}
static void
wg_peer_free_deferred(struct noise_remote *r)
{
struct wg_peer *peer = noise_remote_arg(r);
/* While there are no references remaining, we may still have
* p_{send,recv} executing (think empty queue, but wg_deliver_{in,out}
* needs to check the queue. We should wait for them and then free. */
GROUPTASK_DRAIN(&peer->p_recv);
GROUPTASK_DRAIN(&peer->p_send);
taskqgroup_detach(qgroup_wg_tqg, &peer->p_recv);
taskqgroup_detach(qgroup_wg_tqg, &peer->p_send);
wg_queue_deinit(&peer->p_decrypt_serial);
wg_queue_deinit(&peer->p_encrypt_serial);
wg_queue_deinit(&peer->p_stage_queue);
counter_u64_free(peer->p_tx_bytes);
counter_u64_free(peer->p_rx_bytes);
rw_destroy(&peer->p_endpoint_lock);
mtx_destroy(&peer->p_handshake_mtx);
cookie_maker_free(&peer->p_cookie);
free(peer, M_WG);
}
static void
wg_peer_destroy(struct wg_peer *peer)
{
struct wg_softc *sc = peer->p_sc;
sx_assert(&sc->sc_lock, SX_XLOCKED);
/* Disable remote and timers. This will prevent any new handshakes
* occuring. */
noise_remote_disable(peer->p_remote);
wg_timers_disable(peer);
/* Now we can remove all allowed IPs so no more packets will be routed
* to the peer. */
wg_aip_remove_all(sc, peer);
/* Remove peer from the interface, then free. Some references may still
* exist to p_remote, so noise_remote_free will wait until they're all
* put to call wg_peer_free_deferred. */
sc->sc_peers_num--;
TAILQ_REMOVE(&sc->sc_peers, peer, p_entry);
DPRINTF(sc, "Peer %" PRIu64 " destroyed\n", peer->p_id);
noise_remote_free(peer->p_remote, wg_peer_free_deferred);
}
static void
wg_peer_destroy_all(struct wg_softc *sc)
{
struct wg_peer *peer, *tpeer;
TAILQ_FOREACH_SAFE(peer, &sc->sc_peers, p_entry, tpeer)
wg_peer_destroy(peer);
}
static void
wg_peer_set_endpoint(struct wg_peer *peer, struct wg_endpoint *e)
{
MPASS(e->e_remote.r_sa.sa_family != 0);
if (memcmp(e, &peer->p_endpoint, sizeof(*e)) == 0)
return;
rw_wlock(&peer->p_endpoint_lock);
peer->p_endpoint = *e;
rw_wunlock(&peer->p_endpoint_lock);
}
static void
wg_peer_clear_src(struct wg_peer *peer)
{
rw_wlock(&peer->p_endpoint_lock);
bzero(&peer->p_endpoint.e_local, sizeof(peer->p_endpoint.e_local));
rw_wunlock(&peer->p_endpoint_lock);
}
static void
wg_peer_get_endpoint(struct wg_peer *peer, struct wg_endpoint *e)
{
rw_rlock(&peer->p_endpoint_lock);
*e = peer->p_endpoint;
rw_runlock(&peer->p_endpoint_lock);
}
/* Allowed IP */
static int
wg_aip_add(struct wg_softc *sc, struct wg_peer *peer, sa_family_t af, const void *addr, uint8_t cidr)
{
struct radix_node_head *root;
struct radix_node *node;
struct wg_aip *aip;
int ret = 0;
aip = malloc(sizeof(*aip), M_WG, M_WAITOK | M_ZERO);
aip->a_peer = peer;
aip->a_af = af;
switch (af) {
#ifdef INET
case AF_INET:
if (cidr > 32) cidr = 32;
root = sc->sc_aip4;
aip->a_addr.in = *(const struct in_addr *)addr;
aip->a_mask.ip = htonl(~((1LL << (32 - cidr)) - 1) & 0xffffffff);
aip->a_addr.ip &= aip->a_mask.ip;
aip->a_addr.length = aip->a_mask.length = offsetof(struct aip_addr, in) + sizeof(struct in_addr);
break;
#endif
#ifdef INET6
case AF_INET6:
if (cidr > 128) cidr = 128;
root = sc->sc_aip6;
aip->a_addr.in6 = *(const struct in6_addr *)addr;
in6_prefixlen2mask(&aip->a_mask.in6, cidr);
for (int i = 0; i < 4; i++)
aip->a_addr.ip6[i] &= aip->a_mask.ip6[i];
aip->a_addr.length = aip->a_mask.length = offsetof(struct aip_addr, in6) + sizeof(struct in6_addr);
break;
#endif
default:
free(aip, M_WG);
return (EAFNOSUPPORT);
}
RADIX_NODE_HEAD_LOCK(root);
node = root->rnh_addaddr(&aip->a_addr, &aip->a_mask, &root->rh, aip->a_nodes);
if (node == aip->a_nodes) {
LIST_INSERT_HEAD(&peer->p_aips, aip, a_entry);
peer->p_aips_num++;
} else if (!node)
node = root->rnh_lookup(&aip->a_addr, &aip->a_mask, &root->rh);
if (!node) {
free(aip, M_WG);
return (ENOMEM);
} else if (node != aip->a_nodes) {
free(aip, M_WG);
aip = (struct wg_aip *)node;
if (aip->a_peer != peer) {
LIST_REMOVE(aip, a_entry);
aip->a_peer->p_aips_num--;
aip->a_peer = peer;
LIST_INSERT_HEAD(&peer->p_aips, aip, a_entry);
aip->a_peer->p_aips_num++;
}
}
RADIX_NODE_HEAD_UNLOCK(root);
return (ret);
}
static struct wg_peer *
wg_aip_lookup(struct wg_softc *sc, sa_family_t af, void *a)
{
struct radix_node_head *root;
struct radix_node *node;
struct wg_peer *peer;
struct aip_addr addr;
RADIX_NODE_HEAD_RLOCK_TRACKER;
switch (af) {
case AF_INET:
root = sc->sc_aip4;
memcpy(&addr.in, a, sizeof(addr.in));
addr.length = offsetof(struct aip_addr, in) + sizeof(struct in_addr);
break;
case AF_INET6:
root = sc->sc_aip6;
memcpy(&addr.in6, a, sizeof(addr.in6));
addr.length = offsetof(struct aip_addr, in6) + sizeof(struct in6_addr);
break;
default:
return NULL;
}
RADIX_NODE_HEAD_RLOCK(root);
node = root->rnh_matchaddr(&addr, &root->rh);
if (node != NULL) {
peer = ((struct wg_aip *)node)->a_peer;
noise_remote_ref(peer->p_remote);
} else {
peer = NULL;
}
RADIX_NODE_HEAD_RUNLOCK(root);
return (peer);
}
static void
wg_aip_remove_all(struct wg_softc *sc, struct wg_peer *peer)
{
struct wg_aip *aip, *taip;
RADIX_NODE_HEAD_LOCK(sc->sc_aip4);
LIST_FOREACH_SAFE(aip, &peer->p_aips, a_entry, taip) {
if (aip->a_af == AF_INET) {
if (sc->sc_aip4->rnh_deladdr(&aip->a_addr, &aip->a_mask, &sc->sc_aip4->rh) == NULL)
panic("failed to delete aip %p", aip);
LIST_REMOVE(aip, a_entry);
peer->p_aips_num--;
free(aip, M_WG);
}
}
RADIX_NODE_HEAD_UNLOCK(sc->sc_aip4);
RADIX_NODE_HEAD_LOCK(sc->sc_aip6);
LIST_FOREACH_SAFE(aip, &peer->p_aips, a_entry, taip) {
if (aip->a_af == AF_INET6) {
if (sc->sc_aip6->rnh_deladdr(&aip->a_addr, &aip->a_mask, &sc->sc_aip6->rh) == NULL)
panic("failed to delete aip %p", aip);
LIST_REMOVE(aip, a_entry);
peer->p_aips_num--;
free(aip, M_WG);
}
}
RADIX_NODE_HEAD_UNLOCK(sc->sc_aip6);
if (!LIST_EMPTY(&peer->p_aips) || peer->p_aips_num != 0)
panic("wg_aip_remove_all could not delete all %p", peer);
}
static int
wg_socket_init(struct wg_softc *sc, in_port_t port)
{
struct ucred *cred = sc->sc_ucred;
struct socket *so4 = NULL, *so6 = NULL;
int rc;
sx_assert(&sc->sc_lock, SX_XLOCKED);
if (!cred)
return (EBUSY);
/*
* For socket creation, we use the creds of the thread that created the
* tunnel rather than the current thread to maintain the semantics that
* WireGuard has on Linux with network namespaces -- that the sockets
* are created in their home vnet so that they can be configured and
* functionally attached to a foreign vnet as the jail's only interface
* to the network.
*/
#ifdef INET
rc = socreate(AF_INET, &so4, SOCK_DGRAM, IPPROTO_UDP, cred, curthread);
if (rc)
goto out;
rc = udp_set_kernel_tunneling(so4, wg_input, NULL, sc);
/*
* udp_set_kernel_tunneling can only fail if there is already a tunneling function set.
* This should never happen with a new socket.
*/
MPASS(rc == 0);
#endif
#ifdef INET6
rc = socreate(AF_INET6, &so6, SOCK_DGRAM, IPPROTO_UDP, cred, curthread);
if (rc)
goto out;
rc = udp_set_kernel_tunneling(so6, wg_input, NULL, sc);
MPASS(rc == 0);
#endif
if (sc->sc_socket.so_user_cookie) {
rc = wg_socket_set_sockopt(so4, so6, SO_USER_COOKIE, &sc->sc_socket.so_user_cookie, sizeof(sc->sc_socket.so_user_cookie));
if (rc)
goto out;
}
rc = wg_socket_set_sockopt(so4, so6, SO_SETFIB, &sc->sc_socket.so_fibnum, sizeof(sc->sc_socket.so_fibnum));
if (rc)
goto out;
rc = wg_socket_bind(&so4, &so6, &port);
if (!rc) {
sc->sc_socket.so_port = port;
wg_socket_set(sc, so4, so6);
}
out:
if (rc) {
if (so4 != NULL)
soclose(so4);
if (so6 != NULL)
soclose(so6);
}
return (rc);
}
static int wg_socket_set_sockopt(struct socket *so4, struct socket *so6, int name, void *val, size_t len)
{
int ret4 = 0, ret6 = 0;
struct sockopt sopt = {
.sopt_dir = SOPT_SET,
.sopt_level = SOL_SOCKET,
.sopt_name = name,
.sopt_val = val,
.sopt_valsize = len
};
if (so4)
ret4 = sosetopt(so4, &sopt);
if (so6)
ret6 = sosetopt(so6, &sopt);
return (ret4 ?: ret6);
}
static int wg_socket_set_cookie(struct wg_softc *sc, uint32_t user_cookie)
{
struct wg_socket *so = &sc->sc_socket;
int ret;
sx_assert(&sc->sc_lock, SX_XLOCKED);
ret = wg_socket_set_sockopt(so->so_so4, so->so_so6, SO_USER_COOKIE, &user_cookie, sizeof(user_cookie));
if (!ret)
so->so_user_cookie = user_cookie;
return (ret);
}
static int wg_socket_set_fibnum(struct wg_softc *sc, int fibnum)
{
struct wg_socket *so = &sc->sc_socket;
int ret;
sx_assert(&sc->sc_lock, SX_XLOCKED);
ret = wg_socket_set_sockopt(so->so_so4, so->so_so6, SO_SETFIB, &fibnum, sizeof(fibnum));
if (!ret)
so->so_fibnum = fibnum;
return (ret);
}
static void
wg_socket_uninit(struct wg_softc *sc)
{
wg_socket_set(sc, NULL, NULL);
}
static void
wg_socket_set(struct wg_softc *sc, struct socket *new_so4, struct socket *new_so6)
{
struct wg_socket *so = &sc->sc_socket;
struct socket *so4, *so6;
sx_assert(&sc->sc_lock, SX_XLOCKED);
so4 = atomic_load_ptr(&so->so_so4);
so6 = atomic_load_ptr(&so->so_so6);
atomic_store_ptr(&so->so_so4, new_so4);
atomic_store_ptr(&so->so_so6, new_so6);
if (!so4 && !so6)
return;
NET_EPOCH_WAIT();
if (so4)
soclose(so4);
if (so6)
soclose(so6);
}
static int
wg_socket_bind(struct socket **in_so4, struct socket **in_so6, in_port_t *requested_port)
{
struct socket *so4 = *in_so4, *so6 = *in_so6;
int ret4 = 0, ret6 = 0;
in_port_t port = *requested_port;
struct sockaddr_in sin = {
.sin_len = sizeof(struct sockaddr_in),
.sin_family = AF_INET,
.sin_port = htons(port)
};
struct sockaddr_in6 sin6 = {
.sin6_len = sizeof(struct sockaddr_in6),
.sin6_family = AF_INET6,
.sin6_port = htons(port)
};
if (so4) {
ret4 = sobind(so4, (struct sockaddr *)&sin, curthread);
if (ret4 && ret4 != EADDRNOTAVAIL)
return (ret4);
if (!ret4 && !sin.sin_port) {
struct sockaddr_in *bound_sin;
int ret = so4->so_proto->pr_sockaddr(so4,
(struct sockaddr **)&bound_sin);
if (ret)
return (ret);
port = ntohs(bound_sin->sin_port);
sin6.sin6_port = bound_sin->sin_port;
free(bound_sin, M_SONAME);
}
}
if (so6) {
ret6 = sobind(so6, (struct sockaddr *)&sin6, curthread);
if (ret6 && ret6 != EADDRNOTAVAIL)
return (ret6);
if (!ret6 && !sin6.sin6_port) {
struct sockaddr_in6 *bound_sin6;
int ret = so6->so_proto->pr_sockaddr(so6,
(struct sockaddr **)&bound_sin6);
if (ret)
return (ret);
port = ntohs(bound_sin6->sin6_port);
free(bound_sin6, M_SONAME);
}
}
if (ret4 && ret6)
return (ret4);
*requested_port = port;
if (ret4 && !ret6 && so4) {
soclose(so4);
*in_so4 = NULL;
} else if (ret6 && !ret4 && so6) {
soclose(so6);
*in_so6 = NULL;
}
return (0);
}
static int
wg_send(struct wg_softc *sc, struct wg_endpoint *e, struct mbuf *m)
{
struct epoch_tracker et;
struct sockaddr *sa;
struct wg_socket *so = &sc->sc_socket;
struct socket *so4, *so6;
struct mbuf *control = NULL;
int ret = 0;
size_t len = m->m_pkthdr.len;
/* Get local control address before locking */
if (e->e_remote.r_sa.sa_family == AF_INET) {
if (e->e_local.l_in.s_addr != INADDR_ANY)
control = sbcreatecontrol((caddr_t)&e->e_local.l_in,
sizeof(struct in_addr), IP_SENDSRCADDR,
IPPROTO_IP, M_NOWAIT);
#ifdef INET6
} else if (e->e_remote.r_sa.sa_family == AF_INET6) {
if (!IN6_IS_ADDR_UNSPECIFIED(&e->e_local.l_in6))
control = sbcreatecontrol((caddr_t)&e->e_local.l_pktinfo6,
sizeof(struct in6_pktinfo), IPV6_PKTINFO,
IPPROTO_IPV6, M_NOWAIT);
#endif
} else {
m_freem(m);
return (EAFNOSUPPORT);
}
/* Get remote address */
sa = &e->e_remote.r_sa;
NET_EPOCH_ENTER(et);
so4 = atomic_load_ptr(&so->so_so4);
so6 = atomic_load_ptr(&so->so_so6);
if (e->e_remote.r_sa.sa_family == AF_INET && so4 != NULL)
ret = sosend(so4, sa, NULL, m, control, 0, curthread);
else if (e->e_remote.r_sa.sa_family == AF_INET6 && so6 != NULL)
ret = sosend(so6, sa, NULL, m, control, 0, curthread);
else {
ret = ENOTCONN;
m_freem(control);
m_freem(m);
}
NET_EPOCH_EXIT(et);
if (ret == 0) {
if_inc_counter(sc->sc_ifp, IFCOUNTER_OPACKETS, 1);
if_inc_counter(sc->sc_ifp, IFCOUNTER_OBYTES, len);
}
return (ret);
}
static void
wg_send_buf(struct wg_softc *sc, struct wg_endpoint *e, uint8_t *buf, size_t len)
{
struct mbuf *m;
int ret = 0;
bool retried = false;
retry:
m = m_get2(len, M_NOWAIT, MT_DATA, M_PKTHDR);
if (!m) {
ret = ENOMEM;
goto out;
}
m_copyback(m, 0, len, buf);
if (ret == 0) {
ret = wg_send(sc, e, m);
/* Retry if we couldn't bind to e->e_local */
if (ret == EADDRNOTAVAIL && !retried) {
bzero(&e->e_local, sizeof(e->e_local));
retried = true;
goto retry;
}
} else {
ret = wg_send(sc, e, m);
}
out:
if (ret)
DPRINTF(sc, "Unable to send packet: %d\n", ret);
}
/* Timers */
static void
wg_timers_enable(struct wg_peer *peer)
{
atomic_store_bool(&peer->p_enabled, true);
wg_timers_run_persistent_keepalive(peer);
}
static void
wg_timers_disable(struct wg_peer *peer)
{
/* By setting p_enabled = false, then calling NET_EPOCH_WAIT, we can be
* sure no new handshakes are created after the wait. This is because
* all callout_resets (scheduling the callout) are guarded by
* p_enabled. We can be sure all sections that read p_enabled and then
* optionally call callout_reset are finished as they are surrounded by
* NET_EPOCH_{ENTER,EXIT}.
*
* However, as new callouts may be scheduled during NET_EPOCH_WAIT (but
* not after), we stop all callouts leaving no callouts active.
*
* We should also pull NET_EPOCH_WAIT out of the FOREACH(peer) loops, but the
* performance impact is acceptable for the time being. */
atomic_store_bool(&peer->p_enabled, false);
NET_EPOCH_WAIT();
atomic_store_bool(&peer->p_need_another_keepalive, false);
callout_stop(&peer->p_new_handshake);
callout_stop(&peer->p_send_keepalive);
callout_stop(&peer->p_retry_handshake);
callout_stop(&peer->p_persistent_keepalive);
callout_stop(&peer->p_zero_key_material);
}
static void
wg_timers_set_persistent_keepalive(struct wg_peer *peer, uint16_t interval)
{
struct epoch_tracker et;
if (interval != peer->p_persistent_keepalive_interval) {
atomic_store_16(&peer->p_persistent_keepalive_interval, interval);
NET_EPOCH_ENTER(et);
if (atomic_load_bool(&peer->p_enabled))
wg_timers_run_persistent_keepalive(peer);
NET_EPOCH_EXIT(et);
}
}
static void
wg_timers_get_last_handshake(struct wg_peer *peer, struct wg_timespec64 *time)
{
mtx_lock(&peer->p_handshake_mtx);
time->tv_sec = peer->p_handshake_complete.tv_sec;
time->tv_nsec = peer->p_handshake_complete.tv_nsec;
mtx_unlock(&peer->p_handshake_mtx);
}
static void
wg_timers_event_data_sent(struct wg_peer *peer)
{
struct epoch_tracker et;
NET_EPOCH_ENTER(et);
if (atomic_load_bool(&peer->p_enabled) &&
!callout_pending(&peer->p_new_handshake))
callout_reset(&peer->p_new_handshake, MSEC_2_TICKS(
NEW_HANDSHAKE_TIMEOUT * 1000 +
arc4random_uniform(REKEY_TIMEOUT_JITTER)),
wg_timers_run_new_handshake, peer);
NET_EPOCH_EXIT(et);
}
static void
wg_timers_event_data_received(struct wg_peer *peer)
{
struct epoch_tracker et;
NET_EPOCH_ENTER(et);
if (atomic_load_bool(&peer->p_enabled)) {
if (!callout_pending(&peer->p_send_keepalive))
callout_reset(&peer->p_send_keepalive,
MSEC_2_TICKS(KEEPALIVE_TIMEOUT * 1000),
wg_timers_run_send_keepalive, peer);
else
atomic_store_bool(&peer->p_need_another_keepalive,
true);
}
NET_EPOCH_EXIT(et);
}
static void
wg_timers_event_any_authenticated_packet_sent(struct wg_peer *peer)
{
callout_stop(&peer->p_send_keepalive);
}
static void
wg_timers_event_any_authenticated_packet_received(struct wg_peer *peer)
{
callout_stop(&peer->p_new_handshake);
}
static void
wg_timers_event_any_authenticated_packet_traversal(struct wg_peer *peer)
{
struct epoch_tracker et;
uint16_t interval;
NET_EPOCH_ENTER(et);
interval = atomic_load_16(&peer->p_persistent_keepalive_interval);
if (atomic_load_bool(&peer->p_enabled) && interval > 0)
callout_reset(&peer->p_persistent_keepalive,
MSEC_2_TICKS(interval * 1000),
wg_timers_run_persistent_keepalive, peer);
NET_EPOCH_EXIT(et);
}
static void
wg_timers_event_handshake_initiated(struct wg_peer *peer)
{
struct epoch_tracker et;
NET_EPOCH_ENTER(et);
if (atomic_load_bool(&peer->p_enabled))
callout_reset(&peer->p_retry_handshake, MSEC_2_TICKS(
REKEY_TIMEOUT * 1000 +
arc4random_uniform(REKEY_TIMEOUT_JITTER)),
wg_timers_run_retry_handshake, peer);
NET_EPOCH_EXIT(et);
}
static void
wg_timers_event_handshake_complete(struct wg_peer *peer)
{
struct epoch_tracker et;
NET_EPOCH_ENTER(et);
if (atomic_load_bool(&peer->p_enabled)) {
mtx_lock(&peer->p_handshake_mtx);
callout_stop(&peer->p_retry_handshake);
peer->p_handshake_retries = 0;
getnanotime(&peer->p_handshake_complete);
mtx_unlock(&peer->p_handshake_mtx);
wg_timers_run_send_keepalive(peer);
}
NET_EPOCH_EXIT(et);
}
static void
wg_timers_event_session_derived(struct wg_peer *peer)
{
struct epoch_tracker et;
NET_EPOCH_ENTER(et);
if (atomic_load_bool(&peer->p_enabled))
callout_reset(&peer->p_zero_key_material,
MSEC_2_TICKS(REJECT_AFTER_TIME * 3 * 1000),
wg_timers_run_zero_key_material, peer);
NET_EPOCH_EXIT(et);
}
static void
wg_timers_event_want_initiation(struct wg_peer *peer)
{
struct epoch_tracker et;
NET_EPOCH_ENTER(et);
if (atomic_load_bool(&peer->p_enabled))
wg_timers_run_send_initiation(peer, false);
NET_EPOCH_EXIT(et);
}
static void
wg_timers_run_send_initiation(struct wg_peer *peer, bool is_retry)
{
if (!is_retry)
peer->p_handshake_retries = 0;
if (noise_remote_initiation_expired(peer->p_remote) == ETIMEDOUT)
wg_send_initiation(peer);
}
static void
wg_timers_run_retry_handshake(void *_peer)
{
struct epoch_tracker et;
struct wg_peer *peer = _peer;
mtx_lock(&peer->p_handshake_mtx);
if (peer->p_handshake_retries <= MAX_TIMER_HANDSHAKES) {
peer->p_handshake_retries++;
mtx_unlock(&peer->p_handshake_mtx);
DPRINTF(peer->p_sc, "Handshake for peer %" PRIu64 " did not complete "
"after %d seconds, retrying (try %d)\n", peer->p_id,
REKEY_TIMEOUT, peer->p_handshake_retries + 1);
wg_peer_clear_src(peer);
wg_timers_run_send_initiation(peer, true);
} else {
mtx_unlock(&peer->p_handshake_mtx);
DPRINTF(peer->p_sc, "Handshake for peer %" PRIu64 " did not complete "
"after %d retries, giving up\n", peer->p_id,
MAX_TIMER_HANDSHAKES + 2);
callout_stop(&peer->p_send_keepalive);
wg_queue_purge(&peer->p_stage_queue);
NET_EPOCH_ENTER(et);
if (atomic_load_bool(&peer->p_enabled) &&
!callout_pending(&peer->p_zero_key_material))
callout_reset(&peer->p_zero_key_material,
MSEC_2_TICKS(REJECT_AFTER_TIME * 3 * 1000),
wg_timers_run_zero_key_material, peer);
NET_EPOCH_EXIT(et);
}
}
static void
wg_timers_run_send_keepalive(void *_peer)
{
struct epoch_tracker et;
struct wg_peer *peer = _peer;
wg_send_keepalive(peer);
NET_EPOCH_ENTER(et);
if (atomic_load_bool(&peer->p_enabled) &&
atomic_load_bool(&peer->p_need_another_keepalive)) {
atomic_store_bool(&peer->p_need_another_keepalive, false);
callout_reset(&peer->p_send_keepalive,
MSEC_2_TICKS(KEEPALIVE_TIMEOUT * 1000),
wg_timers_run_send_keepalive, peer);
}
NET_EPOCH_EXIT(et);
}
static void
wg_timers_run_new_handshake(void *_peer)
{
struct wg_peer *peer = _peer;
DPRINTF(peer->p_sc, "Retrying handshake with peer %" PRIu64 " because we "
"stopped hearing back after %d seconds\n",
peer->p_id, NEW_HANDSHAKE_TIMEOUT);
wg_peer_clear_src(peer);
wg_timers_run_send_initiation(peer, false);
}
static void
wg_timers_run_zero_key_material(void *_peer)
{
struct wg_peer *peer = _peer;
DPRINTF(peer->p_sc, "Zeroing out keys for peer %" PRIu64 ", since we "
"haven't received a new one in %d seconds\n",
peer->p_id, REJECT_AFTER_TIME * 3);
noise_remote_keypairs_clear(peer->p_remote);
}
static void
wg_timers_run_persistent_keepalive(void *_peer)
{
struct wg_peer *peer = _peer;
if (atomic_load_16(&peer->p_persistent_keepalive_interval) > 0)
wg_send_keepalive(peer);
}
/* TODO Handshake */
static void
wg_peer_send_buf(struct wg_peer *peer, uint8_t *buf, size_t len)
{
struct wg_endpoint endpoint;
counter_u64_add(peer->p_tx_bytes, len);
wg_timers_event_any_authenticated_packet_traversal(peer);
wg_timers_event_any_authenticated_packet_sent(peer);
wg_peer_get_endpoint(peer, &endpoint);
wg_send_buf(peer->p_sc, &endpoint, buf, len);
}
static void
wg_send_initiation(struct wg_peer *peer)
{
struct wg_pkt_initiation pkt;
if (noise_create_initiation(peer->p_remote, &pkt.s_idx, pkt.ue,
pkt.es, pkt.ets) != 0)
return;
DPRINTF(peer->p_sc, "Sending handshake initiation to peer %" PRIu64 "\n", peer->p_id);
pkt.t = WG_PKT_INITIATION;
cookie_maker_mac(&peer->p_cookie, &pkt.m, &pkt,
sizeof(pkt) - sizeof(pkt.m));
wg_peer_send_buf(peer, (uint8_t *)&pkt, sizeof(pkt));
wg_timers_event_handshake_initiated(peer);
}
static void
wg_send_response(struct wg_peer *peer)
{
struct wg_pkt_response pkt;
if (noise_create_response(peer->p_remote, &pkt.s_idx, &pkt.r_idx,
pkt.ue, pkt.en) != 0)
return;
DPRINTF(peer->p_sc, "Sending handshake response to peer %" PRIu64 "\n", peer->p_id);
wg_timers_event_session_derived(peer);
pkt.t = WG_PKT_RESPONSE;
cookie_maker_mac(&peer->p_cookie, &pkt.m, &pkt,
sizeof(pkt)-sizeof(pkt.m));
wg_peer_send_buf(peer, (uint8_t*)&pkt, sizeof(pkt));
}
static void
wg_send_cookie(struct wg_softc *sc, struct cookie_macs *cm, uint32_t idx,
struct wg_endpoint *e)
{
struct wg_pkt_cookie pkt;
DPRINTF(sc, "Sending cookie response for denied handshake message\n");
pkt.t = WG_PKT_COOKIE;
pkt.r_idx = idx;
cookie_checker_create_payload(&sc->sc_cookie, cm, pkt.nonce,
pkt.ec, &e->e_remote.r_sa);
wg_send_buf(sc, e, (uint8_t *)&pkt, sizeof(pkt));
}
static void
wg_send_keepalive(struct wg_peer *peer)
{
struct wg_packet *pkt;
struct mbuf *m;
if (wg_queue_len(&peer->p_stage_queue) > 0)
goto send;
if ((m = m_gethdr(M_NOWAIT, MT_DATA)) == NULL)
return;
if ((pkt = wg_packet_alloc(m)) == NULL) {
m_freem(m);
return;
}
wg_queue_push_staged(&peer->p_stage_queue, pkt);
DPRINTF(peer->p_sc, "Sending keepalive packet to peer %" PRIu64 "\n", peer->p_id);
send:
wg_peer_send_staged(peer);
}
static void
wg_handshake(struct wg_softc *sc, struct wg_packet *pkt)
{
struct wg_pkt_initiation *init;
struct wg_pkt_response *resp;
struct wg_pkt_cookie *cook;
struct wg_endpoint *e;
struct wg_peer *peer;
struct mbuf *m;
struct noise_remote *remote = NULL;
int res;
bool underload = false;
static sbintime_t wg_last_underload; /* sbinuptime */
underload = wg_queue_len(&sc->sc_handshake_queue) >= MAX_QUEUED_HANDSHAKES / 8;
if (underload) {
wg_last_underload = getsbinuptime();
} else if (wg_last_underload) {
underload = wg_last_underload + UNDERLOAD_TIMEOUT * SBT_1S > getsbinuptime();
if (!underload)
wg_last_underload = 0;
}
m = pkt->p_mbuf;
e = &pkt->p_endpoint;
if ((pkt->p_mbuf = m = m_pullup(m, m->m_pkthdr.len)) == NULL)
goto error;
switch (*mtod(m, uint32_t *)) {
case WG_PKT_INITIATION:
init = mtod(m, struct wg_pkt_initiation *);
res = cookie_checker_validate_macs(&sc->sc_cookie, &init->m,
init, sizeof(*init) - sizeof(init->m),
underload, &e->e_remote.r_sa,
if_getvnet(sc->sc_ifp));
if (res == EINVAL) {
DPRINTF(sc, "Invalid initiation MAC\n");
goto error;
} else if (res == ECONNREFUSED) {
DPRINTF(sc, "Handshake ratelimited\n");
goto error;
} else if (res == EAGAIN) {
wg_send_cookie(sc, &init->m, init->s_idx, e);
goto error;
} else if (res != 0) {
panic("unexpected response: %d\n", res);
}
if (noise_consume_initiation(sc->sc_local, &remote,
init->s_idx, init->ue, init->es, init->ets) != 0) {
DPRINTF(sc, "Invalid handshake initiation\n");
goto error;
}
peer = noise_remote_arg(remote);
DPRINTF(sc, "Receiving handshake initiation from peer %" PRIu64 "\n", peer->p_id);
wg_peer_set_endpoint(peer, e);
wg_send_response(peer);
break;
case WG_PKT_RESPONSE:
resp = mtod(m, struct wg_pkt_response *);
res = cookie_checker_validate_macs(&sc->sc_cookie, &resp->m,
resp, sizeof(*resp) - sizeof(resp->m),
underload, &e->e_remote.r_sa,
if_getvnet(sc->sc_ifp));
if (res == EINVAL) {
DPRINTF(sc, "Invalid response MAC\n");
goto error;
} else if (res == ECONNREFUSED) {
DPRINTF(sc, "Handshake ratelimited\n");
goto error;
} else if (res == EAGAIN) {
wg_send_cookie(sc, &resp->m, resp->s_idx, e);
goto error;
} else if (res != 0) {
panic("unexpected response: %d\n", res);
}
if (noise_consume_response(sc->sc_local, &remote,
resp->s_idx, resp->r_idx, resp->ue, resp->en) != 0) {
DPRINTF(sc, "Invalid handshake response\n");
goto error;
}
peer = noise_remote_arg(remote);
DPRINTF(sc, "Receiving handshake response from peer %" PRIu64 "\n", peer->p_id);
wg_peer_set_endpoint(peer, e);
wg_timers_event_session_derived(peer);
wg_timers_event_handshake_complete(peer);
break;
case WG_PKT_COOKIE:
cook = mtod(m, struct wg_pkt_cookie *);
if ((remote = noise_remote_index(sc->sc_local, cook->r_idx)) == NULL) {
DPRINTF(sc, "Unknown cookie index\n");
goto error;
}
peer = noise_remote_arg(remote);
if (cookie_maker_consume_payload(&peer->p_cookie,
cook->nonce, cook->ec) == 0) {
DPRINTF(sc, "Receiving cookie response\n");
} else {
DPRINTF(sc, "Could not decrypt cookie response\n");
goto error;
}
goto not_authenticated;
default:
panic("invalid packet in handshake queue");
}
wg_timers_event_any_authenticated_packet_received(peer);
wg_timers_event_any_authenticated_packet_traversal(peer);
not_authenticated:
counter_u64_add(peer->p_rx_bytes, m->m_pkthdr.len);
if_inc_counter(sc->sc_ifp, IFCOUNTER_IPACKETS, 1);
if_inc_counter(sc->sc_ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len);
error:
if (remote != NULL)
noise_remote_put(remote);
wg_packet_free(pkt);
}
static void
wg_softc_handshake_receive(struct wg_softc *sc)
{
struct wg_packet *pkt;
while ((pkt = wg_queue_dequeue_handshake(&sc->sc_handshake_queue)) != NULL)
wg_handshake(sc, pkt);
}
static void
wg_mbuf_reset(struct mbuf *m)
{
struct m_tag *t, *tmp;
/*
* We want to reset the mbuf to a newly allocated state, containing
* just the packet contents. Unfortunately FreeBSD doesn't seem to
* offer this anywhere, so we have to make it up as we go. If we can
* get this in kern/kern_mbuf.c, that would be best.
*
* Notice: this may break things unexpectedly but it is better to fail
* closed in the extreme case than leak informtion in every
* case.
*
* With that said, all this attempts to do is remove any extraneous
* information that could be present.
*/
M_ASSERTPKTHDR(m);
m->m_flags &= ~(M_BCAST|M_MCAST|M_VLANTAG|M_PROMISC|M_PROTOFLAGS);
M_HASHTYPE_CLEAR(m);
#ifdef NUMA
m->m_pkthdr.numa_domain = M_NODOM;
#endif
SLIST_FOREACH_SAFE(t, &m->m_pkthdr.tags, m_tag_link, tmp) {
if ((t->m_tag_id != 0 || t->m_tag_cookie != MTAG_WGLOOP) &&
t->m_tag_id != PACKET_TAG_MACLABEL)
m_tag_delete(m, t);
}
KASSERT((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0,
("%s: mbuf %p has a send tag", __func__, m));
m->m_pkthdr.csum_flags = 0;
m->m_pkthdr.PH_per.sixtyfour[0] = 0;
m->m_pkthdr.PH_loc.sixtyfour[0] = 0;
}
static inline unsigned int
calculate_padding(struct wg_packet *pkt)
{
unsigned int padded_size, last_unit = pkt->p_mbuf->m_pkthdr.len;
if (__predict_false(!pkt->p_mtu))
return (last_unit + (WG_PKT_PADDING - 1)) & ~(WG_PKT_PADDING - 1);
if (__predict_false(last_unit > pkt->p_mtu))
last_unit %= pkt->p_mtu;
padded_size = (last_unit + (WG_PKT_PADDING - 1)) & ~(WG_PKT_PADDING - 1);
if (pkt->p_mtu < padded_size)
padded_size = pkt->p_mtu;
return padded_size - last_unit;
}
static void
wg_encrypt(struct wg_softc *sc, struct wg_packet *pkt)
{
static const uint8_t padding[WG_PKT_PADDING] = { 0 };
struct wg_pkt_data *data;
struct wg_peer *peer;
struct noise_remote *remote;
struct mbuf *m;
uint32_t idx;
unsigned int padlen;
enum wg_ring_state state = WG_PACKET_DEAD;
remote = noise_keypair_remote(pkt->p_keypair);
peer = noise_remote_arg(remote);
m = pkt->p_mbuf;
/* Pad the packet */
padlen = calculate_padding(pkt);
if (padlen != 0 && !m_append(m, padlen, padding))
goto out;
/* Do encryption */
if (noise_keypair_encrypt(pkt->p_keypair, &idx, pkt->p_nonce, m) != 0)
goto out;
/* Put header into packet */
M_PREPEND(m, sizeof(struct wg_pkt_data), M_NOWAIT);
if (m == NULL)
goto out;
data = mtod(m, struct wg_pkt_data *);
data->t = WG_PKT_DATA;
data->r_idx = idx;
data->nonce = htole64(pkt->p_nonce);
wg_mbuf_reset(m);
state = WG_PACKET_CRYPTED;
out:
pkt->p_mbuf = m;
wmb();
pkt->p_state = state;
GROUPTASK_ENQUEUE(&peer->p_send);
noise_remote_put(remote);
}
static void
wg_decrypt(struct wg_softc *sc, struct wg_packet *pkt)
{
struct wg_peer *peer, *allowed_peer;
struct noise_remote *remote;
struct mbuf *m;
int len;
enum wg_ring_state state = WG_PACKET_DEAD;
remote = noise_keypair_remote(pkt->p_keypair);
peer = noise_remote_arg(remote);
m = pkt->p_mbuf;
/* Read nonce and then adjust to remove the header. */
pkt->p_nonce = le64toh(mtod(m, struct wg_pkt_data *)->nonce);
m_adj(m, sizeof(struct wg_pkt_data));
if (noise_keypair_decrypt(pkt->p_keypair, pkt->p_nonce, m) != 0)
goto out;
/* A packet with length 0 is a keepalive packet */
if (__predict_false(m->m_pkthdr.len == 0)) {
DPRINTF(sc, "Receiving keepalive packet from peer "
"%" PRIu64 "\n", peer->p_id);
state = WG_PACKET_CRYPTED;
goto out;
}
/*
* We can let the network stack handle the intricate validation of the
* IP header, we just worry about the sizeof and the version, so we can
* read the source address in wg_aip_lookup.
*/
if (determine_af_and_pullup(&m, &pkt->p_af) == 0) {
if (pkt->p_af == AF_INET) {
struct ip *ip = mtod(m, struct ip *);
allowed_peer = wg_aip_lookup(sc, AF_INET, &ip->ip_src);
len = ntohs(ip->ip_len);
if (len >= sizeof(struct ip) && len < m->m_pkthdr.len)
m_adj(m, len - m->m_pkthdr.len);
} else if (pkt->p_af == AF_INET6) {
struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
allowed_peer = wg_aip_lookup(sc, AF_INET6, &ip6->ip6_src);
len = ntohs(ip6->ip6_plen) + sizeof(struct ip6_hdr);
if (len < m->m_pkthdr.len)
m_adj(m, len - m->m_pkthdr.len);
} else
panic("determine_af_and_pullup returned unexpected value");
} else {
DPRINTF(sc, "Packet is neither ipv4 nor ipv6 from peer %" PRIu64 "\n", peer->p_id);
goto out;
}
/* We only want to compare the address, not dereference, so drop the ref. */
if (allowed_peer != NULL)
noise_remote_put(allowed_peer->p_remote);
if (__predict_false(peer != allowed_peer)) {
DPRINTF(sc, "Packet has unallowed src IP from peer %" PRIu64 "\n", peer->p_id);
goto out;
}
wg_mbuf_reset(m);
state = WG_PACKET_CRYPTED;
out:
pkt->p_mbuf = m;
wmb();
pkt->p_state = state;
GROUPTASK_ENQUEUE(&peer->p_recv);
noise_remote_put(remote);
}
static void
wg_softc_decrypt(struct wg_softc *sc)
{
struct wg_packet *pkt;
while ((pkt = wg_queue_dequeue_parallel(&sc->sc_decrypt_parallel)) != NULL)
wg_decrypt(sc, pkt);
}
static void
wg_softc_encrypt(struct wg_softc *sc)
{
struct wg_packet *pkt;
while ((pkt = wg_queue_dequeue_parallel(&sc->sc_encrypt_parallel)) != NULL)
wg_encrypt(sc, pkt);
}
static void
wg_encrypt_dispatch(struct wg_softc *sc)
{
/*
* The update to encrypt_last_cpu is racey such that we may
* reschedule the task for the same CPU multiple times, but
* the race doesn't really matter.
*/
u_int cpu = (sc->sc_encrypt_last_cpu + 1) % mp_ncpus;
sc->sc_encrypt_last_cpu = cpu;
GROUPTASK_ENQUEUE(&sc->sc_encrypt[cpu]);
}
static void
wg_decrypt_dispatch(struct wg_softc *sc)
{
u_int cpu = (sc->sc_decrypt_last_cpu + 1) % mp_ncpus;
sc->sc_decrypt_last_cpu = cpu;
GROUPTASK_ENQUEUE(&sc->sc_decrypt[cpu]);
}
static void
wg_deliver_out(struct wg_peer *peer)
{
struct wg_endpoint endpoint;
struct wg_softc *sc = peer->p_sc;
struct wg_packet *pkt;
struct mbuf *m;
int rc, len;
wg_peer_get_endpoint(peer, &endpoint);
while ((pkt = wg_queue_dequeue_serial(&peer->p_encrypt_serial)) != NULL) {
if (pkt->p_state != WG_PACKET_CRYPTED)
goto error;
m = pkt->p_mbuf;
pkt->p_mbuf = NULL;
len = m->m_pkthdr.len;
wg_timers_event_any_authenticated_packet_traversal(peer);
wg_timers_event_any_authenticated_packet_sent(peer);
rc = wg_send(sc, &endpoint, m);
if (rc == 0) {
if (len > (sizeof(struct wg_pkt_data) + NOISE_AUTHTAG_LEN))
wg_timers_event_data_sent(peer);
counter_u64_add(peer->p_tx_bytes, len);
} else if (rc == EADDRNOTAVAIL) {
wg_peer_clear_src(peer);
wg_peer_get_endpoint(peer, &endpoint);
goto error;
} else {
goto error;
}
wg_packet_free(pkt);
if (noise_keep_key_fresh_send(peer->p_remote))
wg_timers_event_want_initiation(peer);
continue;
error:
if_inc_counter(sc->sc_ifp, IFCOUNTER_OERRORS, 1);
wg_packet_free(pkt);
}
}
static void
wg_deliver_in(struct wg_peer *peer)
{
struct wg_softc *sc = peer->p_sc;
if_t ifp = sc->sc_ifp;
struct wg_packet *pkt;
struct mbuf *m;
struct epoch_tracker et;
while ((pkt = wg_queue_dequeue_serial(&peer->p_decrypt_serial)) != NULL) {
if (pkt->p_state != WG_PACKET_CRYPTED)
goto error;
m = pkt->p_mbuf;
if (noise_keypair_nonce_check(pkt->p_keypair, pkt->p_nonce) != 0)
goto error;
if (noise_keypair_received_with(pkt->p_keypair) == ECONNRESET)
wg_timers_event_handshake_complete(peer);
wg_timers_event_any_authenticated_packet_received(peer);
wg_timers_event_any_authenticated_packet_traversal(peer);
wg_peer_set_endpoint(peer, &pkt->p_endpoint);
counter_u64_add(peer->p_rx_bytes, m->m_pkthdr.len +
sizeof(struct wg_pkt_data) + NOISE_AUTHTAG_LEN);
if_inc_counter(sc->sc_ifp, IFCOUNTER_IPACKETS, 1);
if_inc_counter(sc->sc_ifp, IFCOUNTER_IBYTES, m->m_pkthdr.len +
sizeof(struct wg_pkt_data) + NOISE_AUTHTAG_LEN);
if (m->m_pkthdr.len == 0)
goto done;
MPASS(pkt->p_af == AF_INET || pkt->p_af == AF_INET6);
pkt->p_mbuf = NULL;
m->m_pkthdr.rcvif = ifp;
NET_EPOCH_ENTER(et);
BPF_MTAP2_AF(ifp, m, pkt->p_af);
CURVNET_SET(if_getvnet(ifp));
M_SETFIB(m, if_getfib(ifp));
if (pkt->p_af == AF_INET)
netisr_dispatch(NETISR_IP, m);
if (pkt->p_af == AF_INET6)
netisr_dispatch(NETISR_IPV6, m);
CURVNET_RESTORE();
NET_EPOCH_EXIT(et);
wg_timers_event_data_received(peer);
done:
if (noise_keep_key_fresh_recv(peer->p_remote))
wg_timers_event_want_initiation(peer);
wg_packet_free(pkt);
continue;
error:
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
wg_packet_free(pkt);
}
}
static struct wg_packet *
wg_packet_alloc(struct mbuf *m)
{
struct wg_packet *pkt;
if ((pkt = uma_zalloc(wg_packet_zone, M_NOWAIT | M_ZERO)) == NULL)
return (NULL);
pkt->p_mbuf = m;
return (pkt);
}
static void
wg_packet_free(struct wg_packet *pkt)
{
if (pkt->p_keypair != NULL)
noise_keypair_put(pkt->p_keypair);
if (pkt->p_mbuf != NULL)
m_freem(pkt->p_mbuf);
uma_zfree(wg_packet_zone, pkt);
}
static void
wg_queue_init(struct wg_queue *queue, const char *name)
{
mtx_init(&queue->q_mtx, name, NULL, MTX_DEF);
STAILQ_INIT(&queue->q_queue);
queue->q_len = 0;
}
static void
wg_queue_deinit(struct wg_queue *queue)
{
wg_queue_purge(queue);
mtx_destroy(&queue->q_mtx);
}
static size_t
wg_queue_len(struct wg_queue *queue)
{
return (queue->q_len);
}
static int
wg_queue_enqueue_handshake(struct wg_queue *hs, struct wg_packet *pkt)
{
int ret = 0;
mtx_lock(&hs->q_mtx);
if (hs->q_len < MAX_QUEUED_HANDSHAKES) {
STAILQ_INSERT_TAIL(&hs->q_queue, pkt, p_parallel);
hs->q_len++;
} else {
ret = ENOBUFS;
}
mtx_unlock(&hs->q_mtx);
if (ret != 0)
wg_packet_free(pkt);
return (ret);
}
static struct wg_packet *
wg_queue_dequeue_handshake(struct wg_queue *hs)
{
struct wg_packet *pkt;
mtx_lock(&hs->q_mtx);
if ((pkt = STAILQ_FIRST(&hs->q_queue)) != NULL) {
STAILQ_REMOVE_HEAD(&hs->q_queue, p_parallel);
hs->q_len--;
}
mtx_unlock(&hs->q_mtx);
return (pkt);
}
static void
wg_queue_push_staged(struct wg_queue *staged, struct wg_packet *pkt)
{
struct wg_packet *old = NULL;
mtx_lock(&staged->q_mtx);
if (staged->q_len >= MAX_STAGED_PKT) {
old = STAILQ_FIRST(&staged->q_queue);
STAILQ_REMOVE_HEAD(&staged->q_queue, p_parallel);
staged->q_len--;
}
STAILQ_INSERT_TAIL(&staged->q_queue, pkt, p_parallel);
staged->q_len++;
mtx_unlock(&staged->q_mtx);
if (old != NULL)
wg_packet_free(old);
}
static void
wg_queue_enlist_staged(struct wg_queue *staged, struct wg_packet_list *list)
{
struct wg_packet *pkt, *tpkt;
STAILQ_FOREACH_SAFE(pkt, list, p_parallel, tpkt)
wg_queue_push_staged(staged, pkt);
}
static void
wg_queue_delist_staged(struct wg_queue *staged, struct wg_packet_list *list)
{
STAILQ_INIT(list);
mtx_lock(&staged->q_mtx);
STAILQ_CONCAT(list, &staged->q_queue);
staged->q_len = 0;
mtx_unlock(&staged->q_mtx);
}
static void
wg_queue_purge(struct wg_queue *staged)
{
struct wg_packet_list list;
struct wg_packet *pkt, *tpkt;
wg_queue_delist_staged(staged, &list);
STAILQ_FOREACH_SAFE(pkt, &list, p_parallel, tpkt)
wg_packet_free(pkt);
}
static int
wg_queue_both(struct wg_queue *parallel, struct wg_queue *serial, struct wg_packet *pkt)
{
pkt->p_state = WG_PACKET_UNCRYPTED;
mtx_lock(&serial->q_mtx);
if (serial->q_len < MAX_QUEUED_PKT) {
serial->q_len++;
STAILQ_INSERT_TAIL(&serial->q_queue, pkt, p_serial);
} else {
mtx_unlock(&serial->q_mtx);
wg_packet_free(pkt);
return (ENOBUFS);
}
mtx_unlock(&serial->q_mtx);
mtx_lock(&parallel->q_mtx);
if (parallel->q_len < MAX_QUEUED_PKT) {
parallel->q_len++;
STAILQ_INSERT_TAIL(&parallel->q_queue, pkt, p_parallel);
} else {
mtx_unlock(&parallel->q_mtx);
pkt->p_state = WG_PACKET_DEAD;
return (ENOBUFS);
}
mtx_unlock(&parallel->q_mtx);
return (0);
}
static struct wg_packet *
wg_queue_dequeue_serial(struct wg_queue *serial)
{
struct wg_packet *pkt = NULL;
mtx_lock(&serial->q_mtx);
if (serial->q_len > 0 && STAILQ_FIRST(&serial->q_queue)->p_state != WG_PACKET_UNCRYPTED) {
serial->q_len--;
pkt = STAILQ_FIRST(&serial->q_queue);
STAILQ_REMOVE_HEAD(&serial->q_queue, p_serial);
}
mtx_unlock(&serial->q_mtx);
return (pkt);
}
static struct wg_packet *
wg_queue_dequeue_parallel(struct wg_queue *parallel)
{
struct wg_packet *pkt = NULL;
mtx_lock(&parallel->q_mtx);
if (parallel->q_len > 0) {
parallel->q_len--;
pkt = STAILQ_FIRST(&parallel->q_queue);
STAILQ_REMOVE_HEAD(&parallel->q_queue, p_parallel);
}
mtx_unlock(&parallel->q_mtx);
return (pkt);
}
static bool
wg_input(struct mbuf *m, int offset, struct inpcb *inpcb,
const struct sockaddr *sa, void *_sc)
{
#ifdef INET
const struct sockaddr_in *sin;
#endif
#ifdef INET6
const struct sockaddr_in6 *sin6;
#endif
struct noise_remote *remote;
struct wg_pkt_data *data;
struct wg_packet *pkt;
struct wg_peer *peer;
struct wg_softc *sc = _sc;
struct mbuf *defragged;
defragged = m_defrag(m, M_NOWAIT);
if (defragged)
m = defragged;
m = m_unshare(m, M_NOWAIT);
if (!m) {
if_inc_counter(sc->sc_ifp, IFCOUNTER_IQDROPS, 1);
return true;
}
/* Caller provided us with `sa`, no need for this header. */
m_adj(m, offset + sizeof(struct udphdr));
/* Pullup enough to read packet type */
if ((m = m_pullup(m, sizeof(uint32_t))) == NULL) {
if_inc_counter(sc->sc_ifp, IFCOUNTER_IQDROPS, 1);
return true;
}
if ((pkt = wg_packet_alloc(m)) == NULL) {
if_inc_counter(sc->sc_ifp, IFCOUNTER_IQDROPS, 1);
m_freem(m);
return true;
}
/* Save send/recv address and port for later. */
switch (sa->sa_family) {
#ifdef INET
case AF_INET:
sin = (const struct sockaddr_in *)sa;
pkt->p_endpoint.e_remote.r_sin = sin[0];
pkt->p_endpoint.e_local.l_in = sin[1].sin_addr;
break;
#endif
#ifdef INET6
case AF_INET6:
sin6 = (const struct sockaddr_in6 *)sa;
pkt->p_endpoint.e_remote.r_sin6 = sin6[0];
pkt->p_endpoint.e_local.l_in6 = sin6[1].sin6_addr;
break;
#endif
default:
goto error;
}
if ((m->m_pkthdr.len == sizeof(struct wg_pkt_initiation) &&
*mtod(m, uint32_t *) == WG_PKT_INITIATION) ||
(m->m_pkthdr.len == sizeof(struct wg_pkt_response) &&
*mtod(m, uint32_t *) == WG_PKT_RESPONSE) ||
(m->m_pkthdr.len == sizeof(struct wg_pkt_cookie) &&
*mtod(m, uint32_t *) == WG_PKT_COOKIE)) {
if (wg_queue_enqueue_handshake(&sc->sc_handshake_queue, pkt) != 0) {
if_inc_counter(sc->sc_ifp, IFCOUNTER_IQDROPS, 1);
DPRINTF(sc, "Dropping handshake packet\n");
}
GROUPTASK_ENQUEUE(&sc->sc_handshake);
} else if (m->m_pkthdr.len >= sizeof(struct wg_pkt_data) +
NOISE_AUTHTAG_LEN && *mtod(m, uint32_t *) == WG_PKT_DATA) {
/* Pullup whole header to read r_idx below. */
if ((pkt->p_mbuf = m_pullup(m, sizeof(struct wg_pkt_data))) == NULL)
goto error;
data = mtod(pkt->p_mbuf, struct wg_pkt_data *);
if ((pkt->p_keypair = noise_keypair_lookup(sc->sc_local, data->r_idx)) == NULL)
goto error;
remote = noise_keypair_remote(pkt->p_keypair);
peer = noise_remote_arg(remote);
if (wg_queue_both(&sc->sc_decrypt_parallel, &peer->p_decrypt_serial, pkt) != 0)
if_inc_counter(sc->sc_ifp, IFCOUNTER_IQDROPS, 1);
wg_decrypt_dispatch(sc);
noise_remote_put(remote);
} else {
goto error;
}
return true;
error:
if_inc_counter(sc->sc_ifp, IFCOUNTER_IERRORS, 1);
wg_packet_free(pkt);
return true;
}
static void
wg_peer_send_staged(struct wg_peer *peer)
{
struct wg_packet_list list;
struct noise_keypair *keypair;
struct wg_packet *pkt, *tpkt;
struct wg_softc *sc = peer->p_sc;
wg_queue_delist_staged(&peer->p_stage_queue, &list);
if (STAILQ_EMPTY(&list))
return;
if ((keypair = noise_keypair_current(peer->p_remote)) == NULL)
goto error;
STAILQ_FOREACH(pkt, &list, p_parallel) {
if (noise_keypair_nonce_next(keypair, &pkt->p_nonce) != 0)
goto error_keypair;
}
STAILQ_FOREACH_SAFE(pkt, &list, p_parallel, tpkt) {
pkt->p_keypair = noise_keypair_ref(keypair);
if (wg_queue_both(&sc->sc_encrypt_parallel, &peer->p_encrypt_serial, pkt) != 0)
if_inc_counter(sc->sc_ifp, IFCOUNTER_OQDROPS, 1);
}
wg_encrypt_dispatch(sc);
noise_keypair_put(keypair);
return;
error_keypair:
noise_keypair_put(keypair);
error:
wg_queue_enlist_staged(&peer->p_stage_queue, &list);
wg_timers_event_want_initiation(peer);
}
static inline void
xmit_err(if_t ifp, struct mbuf *m, struct wg_packet *pkt, sa_family_t af)
{
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
switch (af) {
#ifdef INET
case AF_INET:
icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, 0, 0);
if (pkt)
pkt->p_mbuf = NULL;
m = NULL;
break;
#endif
#ifdef INET6
case AF_INET6:
icmp6_error(m, ICMP6_DST_UNREACH, 0, 0);
if (pkt)
pkt->p_mbuf = NULL;
m = NULL;
break;
#endif
}
if (pkt)
wg_packet_free(pkt);
else if (m)
m_freem(m);
}
static int
wg_xmit(if_t ifp, struct mbuf *m, sa_family_t af, uint32_t mtu)
{
struct wg_packet *pkt = NULL;
struct wg_softc *sc = if_getsoftc(ifp);
struct wg_peer *peer;
int rc = 0;
sa_family_t peer_af;
/* Work around lifetime issue in the ipv6 mld code. */
if (__predict_false((if_getflags(ifp) & IFF_DYING) || !sc)) {
rc = ENXIO;
goto err_xmit;
}
if ((pkt = wg_packet_alloc(m)) == NULL) {
rc = ENOBUFS;
goto err_xmit;
}
pkt->p_mtu = mtu;
pkt->p_af = af;
if (af == AF_INET) {
peer = wg_aip_lookup(sc, AF_INET, &mtod(m, struct ip *)->ip_dst);
} else if (af == AF_INET6) {
peer = wg_aip_lookup(sc, AF_INET6, &mtod(m, struct ip6_hdr *)->ip6_dst);
} else {
rc = EAFNOSUPPORT;
goto err_xmit;
}
BPF_MTAP2_AF(ifp, m, pkt->p_af);
if (__predict_false(peer == NULL)) {
rc = ENOKEY;
goto err_xmit;
}
if (__predict_false(if_tunnel_check_nesting(ifp, m, MTAG_WGLOOP, MAX_LOOPS))) {
DPRINTF(sc, "Packet looped");
rc = ELOOP;
goto err_peer;
}
peer_af = peer->p_endpoint.e_remote.r_sa.sa_family;
if (__predict_false(peer_af != AF_INET && peer_af != AF_INET6)) {
DPRINTF(sc, "No valid endpoint has been configured or "
"discovered for peer %" PRIu64 "\n", peer->p_id);
rc = EHOSTUNREACH;
goto err_peer;
}
wg_queue_push_staged(&peer->p_stage_queue, pkt);
wg_peer_send_staged(peer);
noise_remote_put(peer->p_remote);
return (0);
err_peer:
noise_remote_put(peer->p_remote);
err_xmit:
xmit_err(ifp, m, pkt, af);
return (rc);
}
static inline int
determine_af_and_pullup(struct mbuf **m, sa_family_t *af)
{
u_char ipv;
if ((*m)->m_pkthdr.len >= sizeof(struct ip6_hdr))
*m = m_pullup(*m, sizeof(struct ip6_hdr));
else if ((*m)->m_pkthdr.len >= sizeof(struct ip))
*m = m_pullup(*m, sizeof(struct ip));
else
return (EAFNOSUPPORT);
if (*m == NULL)
return (ENOBUFS);
ipv = mtod(*m, struct ip *)->ip_v;
if (ipv == 4)
*af = AF_INET;
else if (ipv == 6 && (*m)->m_pkthdr.len >= sizeof(struct ip6_hdr))
*af = AF_INET6;
else
return (EAFNOSUPPORT);
return (0);
}
static int
wg_transmit(if_t ifp, struct mbuf *m)
{
sa_family_t af;
int ret;
struct mbuf *defragged;
defragged = m_defrag(m, M_NOWAIT);
if (defragged)
m = defragged;
m = m_unshare(m, M_NOWAIT);
if (!m) {
xmit_err(ifp, m, NULL, AF_UNSPEC);
return (ENOBUFS);
}
ret = determine_af_and_pullup(&m, &af);
if (ret) {
xmit_err(ifp, m, NULL, AF_UNSPEC);
return (ret);
}
return (wg_xmit(ifp, m, af, if_getmtu(ifp)));
}
static int
wg_output(if_t ifp, struct mbuf *m, const struct sockaddr *dst, struct route *ro)
{
sa_family_t parsed_af;
uint32_t af, mtu;
int ret;
struct mbuf *defragged;
if (dst->sa_family == AF_UNSPEC)
memcpy(&af, dst->sa_data, sizeof(af));
else
af = dst->sa_family;
if (af == AF_UNSPEC) {
xmit_err(ifp, m, NULL, af);
return (EAFNOSUPPORT);
}
defragged = m_defrag(m, M_NOWAIT);
if (defragged)
m = defragged;
m = m_unshare(m, M_NOWAIT);
if (!m) {
xmit_err(ifp, m, NULL, AF_UNSPEC);
return (ENOBUFS);
}
ret = determine_af_and_pullup(&m, &parsed_af);
if (ret) {
xmit_err(ifp, m, NULL, AF_UNSPEC);
return (ret);
}
if (parsed_af != af) {
xmit_err(ifp, m, NULL, AF_UNSPEC);
return (EAFNOSUPPORT);
}
mtu = (ro != NULL && ro->ro_mtu > 0) ? ro->ro_mtu : if_getmtu(ifp);
return (wg_xmit(ifp, m, parsed_af, mtu));
}
static int
wg_peer_add(struct wg_softc *sc, const nvlist_t *nvl)
{
uint8_t public[WG_KEY_SIZE];
const void *pub_key, *preshared_key = NULL;
const struct sockaddr *endpoint;
int err;
size_t size;
struct noise_remote *remote;
struct wg_peer *peer = NULL;
bool need_insert = false;
sx_assert(&sc->sc_lock, SX_XLOCKED);
if (!nvlist_exists_binary(nvl, "public-key")) {
return (EINVAL);
}
pub_key = nvlist_get_binary(nvl, "public-key", &size);
if (size != WG_KEY_SIZE) {
return (EINVAL);
}
if (noise_local_keys(sc->sc_local, public, NULL) == 0 &&
bcmp(public, pub_key, WG_KEY_SIZE) == 0) {
return (0); // Silently ignored; not actually a failure.
}
if ((remote = noise_remote_lookup(sc->sc_local, pub_key)) != NULL)
peer = noise_remote_arg(remote);
if (nvlist_exists_bool(nvl, "remove") &&
nvlist_get_bool(nvl, "remove")) {
if (remote != NULL) {
wg_peer_destroy(peer);
noise_remote_put(remote);
}
return (0);
}
if (nvlist_exists_bool(nvl, "replace-allowedips") &&
nvlist_get_bool(nvl, "replace-allowedips") &&
peer != NULL) {
wg_aip_remove_all(sc, peer);
}
if (peer == NULL) {
peer = wg_peer_alloc(sc, pub_key);
need_insert = true;
}
if (nvlist_exists_binary(nvl, "endpoint")) {
endpoint = nvlist_get_binary(nvl, "endpoint", &size);
if (size > sizeof(peer->p_endpoint.e_remote)) {
err = EINVAL;
goto out;
}
memcpy(&peer->p_endpoint.e_remote, endpoint, size);
}
if (nvlist_exists_binary(nvl, "preshared-key")) {
preshared_key = nvlist_get_binary(nvl, "preshared-key", &size);
if (size != WG_KEY_SIZE) {
err = EINVAL;
goto out;
}
noise_remote_set_psk(peer->p_remote, preshared_key);
}
if (nvlist_exists_number(nvl, "persistent-keepalive-interval")) {
uint64_t pki = nvlist_get_number(nvl, "persistent-keepalive-interval");
if (pki > UINT16_MAX) {
err = EINVAL;
goto out;
}
wg_timers_set_persistent_keepalive(peer, pki);
}
if (nvlist_exists_nvlist_array(nvl, "allowed-ips")) {
const void *addr;
uint64_t cidr;
const nvlist_t * const * aipl;
size_t allowedip_count;
aipl = nvlist_get_nvlist_array(nvl, "allowed-ips", &allowedip_count);
for (size_t idx = 0; idx < allowedip_count; idx++) {
if (!nvlist_exists_number(aipl[idx], "cidr"))
continue;
cidr = nvlist_get_number(aipl[idx], "cidr");
if (nvlist_exists_binary(aipl[idx], "ipv4")) {
addr = nvlist_get_binary(aipl[idx], "ipv4", &size);
if (addr == NULL || cidr > 32 || size != sizeof(struct in_addr)) {
err = EINVAL;
goto out;
}
if ((err = wg_aip_add(sc, peer, AF_INET, addr, cidr)) != 0)
goto out;
} else if (nvlist_exists_binary(aipl[idx], "ipv6")) {
addr = nvlist_get_binary(aipl[idx], "ipv6", &size);
if (addr == NULL || cidr > 128 || size != sizeof(struct in6_addr)) {
err = EINVAL;
goto out;
}
if ((err = wg_aip_add(sc, peer, AF_INET6, addr, cidr)) != 0)
goto out;
} else {
continue;
}
}
}
if (need_insert) {
if ((err = noise_remote_enable(peer->p_remote)) != 0)
goto out;
TAILQ_INSERT_TAIL(&sc->sc_peers, peer, p_entry);
sc->sc_peers_num++;
if (if_getlinkstate(sc->sc_ifp) == LINK_STATE_UP)
wg_timers_enable(peer);
}
if (remote != NULL)
noise_remote_put(remote);
return (0);
out:
if (need_insert) /* If we fail, only destroy if it was new. */
wg_peer_destroy(peer);
if (remote != NULL)
noise_remote_put(remote);
return (err);
}
static int
wgc_set(struct wg_softc *sc, struct wg_data_io *wgd)
{
uint8_t public[WG_KEY_SIZE], private[WG_KEY_SIZE];
if_t ifp;
void *nvlpacked;
nvlist_t *nvl;
ssize_t size;
int err;
ifp = sc->sc_ifp;
if (wgd->wgd_size == 0 || wgd->wgd_data == NULL)
return (EFAULT);
/* Can nvlists be streamed in? It's not nice to impose arbitrary limits like that but
* there needs to be _some_ limitation. */
if (wgd->wgd_size >= UINT32_MAX / 2)
return (E2BIG);
nvlpacked = malloc(wgd->wgd_size, M_TEMP, M_WAITOK | M_ZERO);
err = copyin(wgd->wgd_data, nvlpacked, wgd->wgd_size);
if (err)
goto out;
nvl = nvlist_unpack(nvlpacked, wgd->wgd_size, 0);
if (nvl == NULL) {
err = EBADMSG;
goto out;
}
sx_xlock(&sc->sc_lock);
if (nvlist_exists_bool(nvl, "replace-peers") &&
nvlist_get_bool(nvl, "replace-peers"))
wg_peer_destroy_all(sc);
if (nvlist_exists_number(nvl, "listen-port")) {
uint64_t new_port = nvlist_get_number(nvl, "listen-port");
if (new_port > UINT16_MAX) {
err = EINVAL;
goto out_locked;
}
if (new_port != sc->sc_socket.so_port) {
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0) {
if ((err = wg_socket_init(sc, new_port)) != 0)
goto out_locked;
} else
sc->sc_socket.so_port = new_port;
}
}
if (nvlist_exists_binary(nvl, "private-key")) {
const void *key = nvlist_get_binary(nvl, "private-key", &size);
if (size != WG_KEY_SIZE) {
err = EINVAL;
goto out_locked;
}
if (noise_local_keys(sc->sc_local, NULL, private) != 0 ||
timingsafe_bcmp(private, key, WG_KEY_SIZE) != 0) {
struct wg_peer *peer;
if (curve25519_generate_public(public, key)) {
/* Peer conflict: remove conflicting peer. */
struct noise_remote *remote;
if ((remote = noise_remote_lookup(sc->sc_local,
public)) != NULL) {
peer = noise_remote_arg(remote);
wg_peer_destroy(peer);
noise_remote_put(remote);
}
}
/*
* Set the private key and invalidate all existing
* handshakes.
*/
/* Note: we might be removing the private key. */
noise_local_private(sc->sc_local, key);
if (noise_local_keys(sc->sc_local, NULL, NULL) == 0)
cookie_checker_update(&sc->sc_cookie, public);
else
cookie_checker_update(&sc->sc_cookie, NULL);
}
}
if (nvlist_exists_number(nvl, "user-cookie")) {
uint64_t user_cookie = nvlist_get_number(nvl, "user-cookie");
if (user_cookie > UINT32_MAX) {
err = EINVAL;
goto out_locked;
}
err = wg_socket_set_cookie(sc, user_cookie);
if (err)
goto out_locked;
}
if (nvlist_exists_nvlist_array(nvl, "peers")) {
size_t peercount;
const nvlist_t * const*nvl_peers;
nvl_peers = nvlist_get_nvlist_array(nvl, "peers", &peercount);
for (int i = 0; i < peercount; i++) {
err = wg_peer_add(sc, nvl_peers[i]);
if (err != 0)
goto out_locked;
}
}
out_locked:
sx_xunlock(&sc->sc_lock);
nvlist_destroy(nvl);
out:
zfree(nvlpacked, M_TEMP);
return (err);
}
static int
wgc_get(struct wg_softc *sc, struct wg_data_io *wgd)
{
uint8_t public_key[WG_KEY_SIZE] = { 0 };
uint8_t private_key[WG_KEY_SIZE] = { 0 };
uint8_t preshared_key[NOISE_SYMMETRIC_KEY_LEN] = { 0 };
nvlist_t *nvl, *nvl_peer, *nvl_aip, **nvl_peers, **nvl_aips;
size_t size, peer_count, aip_count, i, j;
struct wg_timespec64 ts64;
struct wg_peer *peer;
struct wg_aip *aip;
void *packed;
int err = 0;
nvl = nvlist_create(0);
if (!nvl)
return (ENOMEM);
sx_slock(&sc->sc_lock);
if (sc->sc_socket.so_port != 0)
nvlist_add_number(nvl, "listen-port", sc->sc_socket.so_port);
if (sc->sc_socket.so_user_cookie != 0)
nvlist_add_number(nvl, "user-cookie", sc->sc_socket.so_user_cookie);
if (noise_local_keys(sc->sc_local, public_key, private_key) == 0) {
nvlist_add_binary(nvl, "public-key", public_key, WG_KEY_SIZE);
if (wgc_privileged(sc))
nvlist_add_binary(nvl, "private-key", private_key, WG_KEY_SIZE);
explicit_bzero(private_key, sizeof(private_key));
}
peer_count = sc->sc_peers_num;
if (peer_count) {
nvl_peers = mallocarray(peer_count, sizeof(void *), M_NVLIST, M_WAITOK | M_ZERO);
i = 0;
TAILQ_FOREACH(peer, &sc->sc_peers, p_entry) {
if (i >= peer_count)
panic("peers changed from under us");
nvl_peers[i++] = nvl_peer = nvlist_create(0);
if (!nvl_peer) {
err = ENOMEM;
goto err_peer;
}
(void)noise_remote_keys(peer->p_remote, public_key, preshared_key);
nvlist_add_binary(nvl_peer, "public-key", public_key, sizeof(public_key));
if (wgc_privileged(sc))
nvlist_add_binary(nvl_peer, "preshared-key", preshared_key, sizeof(preshared_key));
explicit_bzero(preshared_key, sizeof(preshared_key));
if (peer->p_endpoint.e_remote.r_sa.sa_family == AF_INET)
nvlist_add_binary(nvl_peer, "endpoint", &peer->p_endpoint.e_remote, sizeof(struct sockaddr_in));
else if (peer->p_endpoint.e_remote.r_sa.sa_family == AF_INET6)
nvlist_add_binary(nvl_peer, "endpoint", &peer->p_endpoint.e_remote, sizeof(struct sockaddr_in6));
wg_timers_get_last_handshake(peer, &ts64);
nvlist_add_binary(nvl_peer, "last-handshake-time", &ts64, sizeof(ts64));
nvlist_add_number(nvl_peer, "persistent-keepalive-interval", peer->p_persistent_keepalive_interval);
nvlist_add_number(nvl_peer, "rx-bytes", counter_u64_fetch(peer->p_rx_bytes));
nvlist_add_number(nvl_peer, "tx-bytes", counter_u64_fetch(peer->p_tx_bytes));
aip_count = peer->p_aips_num;
if (aip_count) {
nvl_aips = mallocarray(aip_count, sizeof(void *), M_NVLIST, M_WAITOK | M_ZERO);
j = 0;
LIST_FOREACH(aip, &peer->p_aips, a_entry) {
if (j >= aip_count)
panic("aips changed from under us");
nvl_aips[j++] = nvl_aip = nvlist_create(0);
if (!nvl_aip) {
err = ENOMEM;
goto err_aip;
}
if (aip->a_af == AF_INET) {
nvlist_add_binary(nvl_aip, "ipv4", &aip->a_addr.in, sizeof(aip->a_addr.in));
nvlist_add_number(nvl_aip, "cidr", bitcount32(aip->a_mask.ip));
}
#ifdef INET6
else if (aip->a_af == AF_INET6) {
nvlist_add_binary(nvl_aip, "ipv6", &aip->a_addr.in6, sizeof(aip->a_addr.in6));
nvlist_add_number(nvl_aip, "cidr", in6_mask2len(&aip->a_mask.in6, NULL));
}
#endif
}
nvlist_add_nvlist_array(nvl_peer, "allowed-ips", (const nvlist_t *const *)nvl_aips, aip_count);
err_aip:
for (j = 0; j < aip_count; ++j)
nvlist_destroy(nvl_aips[j]);
free(nvl_aips, M_NVLIST);
if (err)
goto err_peer;
}
}
nvlist_add_nvlist_array(nvl, "peers", (const nvlist_t * const *)nvl_peers, peer_count);
err_peer:
for (i = 0; i < peer_count; ++i)
nvlist_destroy(nvl_peers[i]);
free(nvl_peers, M_NVLIST);
if (err) {
sx_sunlock(&sc->sc_lock);
goto err;
}
}
sx_sunlock(&sc->sc_lock);
packed = nvlist_pack(nvl, &size);
if (!packed) {
err = ENOMEM;
goto err;
}
if (!wgd->wgd_size) {
wgd->wgd_size = size;
goto out;
}
if (wgd->wgd_size < size) {
err = ENOSPC;
goto out;
}
err = copyout(packed, wgd->wgd_data, size);
wgd->wgd_size = size;
out:
zfree(packed, M_NVLIST);
err:
nvlist_destroy(nvl);
return (err);
}
static int
wg_ioctl(if_t ifp, u_long cmd, caddr_t data)
{
struct wg_data_io *wgd = (struct wg_data_io *)data;
struct ifreq *ifr = (struct ifreq *)data;
struct wg_softc *sc;
int ret = 0;
sx_slock(&wg_sx);
sc = if_getsoftc(ifp);
if (!sc) {
ret = ENXIO;
goto out;
}
switch (cmd) {
case SIOCSWG:
ret = priv_check(curthread, PRIV_NET_WG);
if (ret == 0)
ret = wgc_set(sc, wgd);
break;
case SIOCGWG:
ret = wgc_get(sc, wgd);
break;
/* Interface IOCTLs */
case SIOCSIFADDR:
/*
* This differs from *BSD norms, but is more uniform with how
* WireGuard behaves elsewhere.
*/
break;
case SIOCSIFFLAGS:
if (if_getflags(ifp) & IFF_UP)
ret = wg_up(sc);
else
wg_down(sc);
break;
case SIOCSIFMTU:
if (ifr->ifr_mtu <= 0 || ifr->ifr_mtu > MAX_MTU)
ret = EINVAL;
else
if_setmtu(ifp, ifr->ifr_mtu);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
break;
case SIOCGTUNFIB:
ifr->ifr_fib = sc->sc_socket.so_fibnum;
break;
case SIOCSTUNFIB:
ret = priv_check(curthread, PRIV_NET_WG);
if (ret)
break;
ret = priv_check(curthread, PRIV_NET_SETIFFIB);
if (ret)
break;
sx_xlock(&sc->sc_lock);
ret = wg_socket_set_fibnum(sc, ifr->ifr_fib);
sx_xunlock(&sc->sc_lock);
break;
default:
ret = ENOTTY;
}
out:
sx_sunlock(&wg_sx);
return (ret);
}
static int
wg_up(struct wg_softc *sc)
{
if_t ifp = sc->sc_ifp;
struct wg_peer *peer;
int rc = EBUSY;
sx_xlock(&sc->sc_lock);
/* Jail's being removed, no more wg_up(). */
if ((sc->sc_flags & WGF_DYING) != 0)
goto out;
/* Silent success if we're already running. */
rc = 0;
if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
goto out;
if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
rc = wg_socket_init(sc, sc->sc_socket.so_port);
if (rc == 0) {
TAILQ_FOREACH(peer, &sc->sc_peers, p_entry)
wg_timers_enable(peer);
if_link_state_change(sc->sc_ifp, LINK_STATE_UP);
} else {
if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
DPRINTF(sc, "Unable to initialize sockets: %d\n", rc);
}
out:
sx_xunlock(&sc->sc_lock);
return (rc);
}
static void
wg_down(struct wg_softc *sc)
{
if_t ifp = sc->sc_ifp;
struct wg_peer *peer;
sx_xlock(&sc->sc_lock);
if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
sx_xunlock(&sc->sc_lock);
return;
}
if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
TAILQ_FOREACH(peer, &sc->sc_peers, p_entry) {
wg_queue_purge(&peer->p_stage_queue);
wg_timers_disable(peer);
}
wg_queue_purge(&sc->sc_handshake_queue);
TAILQ_FOREACH(peer, &sc->sc_peers, p_entry) {
noise_remote_handshake_clear(peer->p_remote);
noise_remote_keypairs_clear(peer->p_remote);
}
if_link_state_change(sc->sc_ifp, LINK_STATE_DOWN);
wg_socket_uninit(sc);
sx_xunlock(&sc->sc_lock);
}
static int
wg_clone_create(struct if_clone *ifc, char *name, size_t len,
struct ifc_data *ifd, struct ifnet **ifpp)
{
struct wg_softc *sc;
if_t ifp;
sc = malloc(sizeof(*sc), M_WG, M_WAITOK | M_ZERO);
sc->sc_local = noise_local_alloc(sc);
sc->sc_encrypt = mallocarray(sizeof(struct grouptask), mp_ncpus, M_WG, M_WAITOK | M_ZERO);
sc->sc_decrypt = mallocarray(sizeof(struct grouptask), mp_ncpus, M_WG, M_WAITOK | M_ZERO);
if (!rn_inithead((void **)&sc->sc_aip4, offsetof(struct aip_addr, in) * NBBY))
goto free_decrypt;
if (!rn_inithead((void **)&sc->sc_aip6, offsetof(struct aip_addr, in6) * NBBY))
goto free_aip4;
atomic_add_int(&clone_count, 1);
ifp = sc->sc_ifp = if_alloc(IFT_WIREGUARD);
sc->sc_ucred = crhold(curthread->td_ucred);
sc->sc_socket.so_fibnum = curthread->td_proc->p_fibnum;
sc->sc_socket.so_port = 0;
TAILQ_INIT(&sc->sc_peers);
sc->sc_peers_num = 0;
cookie_checker_init(&sc->sc_cookie);
RADIX_NODE_HEAD_LOCK_INIT(sc->sc_aip4);
RADIX_NODE_HEAD_LOCK_INIT(sc->sc_aip6);
GROUPTASK_INIT(&sc->sc_handshake, 0, (gtask_fn_t *)wg_softc_handshake_receive, sc);
taskqgroup_attach(qgroup_wg_tqg, &sc->sc_handshake, sc, NULL, NULL, "wg tx initiation");
wg_queue_init(&sc->sc_handshake_queue, "hsq");
for (int i = 0; i < mp_ncpus; i++) {
GROUPTASK_INIT(&sc->sc_encrypt[i], 0,
(gtask_fn_t *)wg_softc_encrypt, sc);
taskqgroup_attach_cpu(qgroup_wg_tqg, &sc->sc_encrypt[i], sc, i, NULL, NULL, "wg encrypt");
GROUPTASK_INIT(&sc->sc_decrypt[i], 0,
(gtask_fn_t *)wg_softc_decrypt, sc);
taskqgroup_attach_cpu(qgroup_wg_tqg, &sc->sc_decrypt[i], sc, i, NULL, NULL, "wg decrypt");
}
wg_queue_init(&sc->sc_encrypt_parallel, "encp");
wg_queue_init(&sc->sc_decrypt_parallel, "decp");
sx_init(&sc->sc_lock, "wg softc lock");
if_setsoftc(ifp, sc);
if_setcapabilities(ifp, WG_CAPS);
if_setcapenable(ifp, WG_CAPS);
if_initname(ifp, wgname, ifd->unit);
if_setmtu(ifp, DEFAULT_MTU);
if_setflags(ifp, IFF_NOARP | IFF_MULTICAST);
if_setinitfn(ifp, wg_init);
if_setreassignfn(ifp, wg_reassign);
if_setqflushfn(ifp, wg_qflush);
if_settransmitfn(ifp, wg_transmit);
if_setoutputfn(ifp, wg_output);
if_setioctlfn(ifp, wg_ioctl);
if_attach(ifp);
bpfattach(ifp, DLT_NULL, sizeof(uint32_t));
#ifdef INET6
ND_IFINFO(ifp)->flags &= ~ND6_IFF_AUTO_LINKLOCAL;
ND_IFINFO(ifp)->flags |= ND6_IFF_NO_DAD;
#endif
sx_xlock(&wg_sx);
LIST_INSERT_HEAD(&wg_list, sc, sc_entry);
sx_xunlock(&wg_sx);
*ifpp = ifp;
return (0);
free_aip4:
RADIX_NODE_HEAD_DESTROY(sc->sc_aip4);
free(sc->sc_aip4, M_RTABLE);
free_decrypt:
free(sc->sc_decrypt, M_WG);
free(sc->sc_encrypt, M_WG);
noise_local_free(sc->sc_local, NULL);
free(sc, M_WG);
return (ENOMEM);
}
static void
wg_clone_deferred_free(struct noise_local *l)
{
struct wg_softc *sc = noise_local_arg(l);
free(sc, M_WG);
atomic_add_int(&clone_count, -1);
}
static int
wg_clone_destroy(struct if_clone *ifc, if_t ifp, uint32_t flags)
{
struct wg_softc *sc = if_getsoftc(ifp);
struct ucred *cred;
sx_xlock(&wg_sx);
if_setsoftc(ifp, NULL);
sx_xlock(&sc->sc_lock);
sc->sc_flags |= WGF_DYING;
cred = sc->sc_ucred;
sc->sc_ucred = NULL;
sx_xunlock(&sc->sc_lock);
LIST_REMOVE(sc, sc_entry);
sx_xunlock(&wg_sx);
if_link_state_change(sc->sc_ifp, LINK_STATE_DOWN);
CURVNET_SET(if_getvnet(sc->sc_ifp));
if_purgeaddrs(sc->sc_ifp);
CURVNET_RESTORE();
sx_xlock(&sc->sc_lock);
wg_socket_uninit(sc);
sx_xunlock(&sc->sc_lock);
/*
* No guarantees that all traffic have passed until the epoch has
* elapsed with the socket closed.
*/
NET_EPOCH_WAIT();
taskqgroup_drain_all(qgroup_wg_tqg);
sx_xlock(&sc->sc_lock);
wg_peer_destroy_all(sc);
NET_EPOCH_DRAIN_CALLBACKS();
sx_xunlock(&sc->sc_lock);
sx_destroy(&sc->sc_lock);
taskqgroup_detach(qgroup_wg_tqg, &sc->sc_handshake);
for (int i = 0; i < mp_ncpus; i++) {
taskqgroup_detach(qgroup_wg_tqg, &sc->sc_encrypt[i]);
taskqgroup_detach(qgroup_wg_tqg, &sc->sc_decrypt[i]);
}
free(sc->sc_encrypt, M_WG);
free(sc->sc_decrypt, M_WG);
wg_queue_deinit(&sc->sc_handshake_queue);
wg_queue_deinit(&sc->sc_encrypt_parallel);
wg_queue_deinit(&sc->sc_decrypt_parallel);
RADIX_NODE_HEAD_DESTROY(sc->sc_aip4);
RADIX_NODE_HEAD_DESTROY(sc->sc_aip6);
rn_detachhead((void **)&sc->sc_aip4);
rn_detachhead((void **)&sc->sc_aip6);
cookie_checker_free(&sc->sc_cookie);
if (cred != NULL)
crfree(cred);
if_detach(sc->sc_ifp);
if_free(sc->sc_ifp);
noise_local_free(sc->sc_local, wg_clone_deferred_free);
return (0);
}
static void
wg_qflush(if_t ifp __unused)
{
}
/*
* Privileged information (private-key, preshared-key) are only exported for
* root and jailed root by default.
*/
static bool
wgc_privileged(struct wg_softc *sc)
{
struct thread *td;
td = curthread;
return (priv_check(td, PRIV_NET_WG) == 0);
}
static void
wg_reassign(if_t ifp, struct vnet *new_vnet __unused,
char *unused __unused)
{
struct wg_softc *sc;
sc = if_getsoftc(ifp);
wg_down(sc);
}
static void
wg_init(void *xsc)
{
struct wg_softc *sc;
sc = xsc;
wg_up(sc);
}
static void
vnet_wg_init(const void *unused __unused)
{
struct if_clone_addreq req = {
.create_f = wg_clone_create,
.destroy_f = wg_clone_destroy,
.flags = IFC_F_AUTOUNIT,
};
V_wg_cloner = ifc_attach_cloner(wgname, &req);
}
VNET_SYSINIT(vnet_wg_init, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
vnet_wg_init, NULL);
static void
vnet_wg_uninit(const void *unused __unused)
{
if (V_wg_cloner)
ifc_detach_cloner(V_wg_cloner);
}
VNET_SYSUNINIT(vnet_wg_uninit, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY,
vnet_wg_uninit, NULL);
static int
wg_prison_remove(void *obj, void *data __unused)
{
const struct prison *pr = obj;
struct wg_softc *sc;
/*
* Do a pass through all if_wg interfaces and release creds on any from
* the jail that are supposed to be going away. This will, in turn, let
* the jail die so that we don't end up with Schrödinger's jail.
*/
sx_slock(&wg_sx);
LIST_FOREACH(sc, &wg_list, sc_entry) {
sx_xlock(&sc->sc_lock);
if (!(sc->sc_flags & WGF_DYING) && sc->sc_ucred && sc->sc_ucred->cr_prison == pr) {
struct ucred *cred = sc->sc_ucred;
DPRINTF(sc, "Creating jail exiting\n");
if_link_state_change(sc->sc_ifp, LINK_STATE_DOWN);
wg_socket_uninit(sc);
sc->sc_ucred = NULL;
crfree(cred);
sc->sc_flags |= WGF_DYING;
}
sx_xunlock(&sc->sc_lock);
}
sx_sunlock(&wg_sx);
return (0);
}
#ifdef SELFTESTS
#include "selftest/allowedips.c"
static bool wg_run_selftests(void)
{
bool ret = true;
ret &= wg_allowedips_selftest();
ret &= noise_counter_selftest();
ret &= cookie_selftest();
return ret;
}
#else
static inline bool wg_run_selftests(void) { return true; }
#endif
static int
wg_module_init(void)
{
int ret;
osd_method_t methods[PR_MAXMETHOD] = {
[PR_METHOD_REMOVE] = wg_prison_remove,
};
if ((wg_packet_zone = uma_zcreate("wg packet", sizeof(struct wg_packet),
NULL, NULL, NULL, NULL, 0, 0)) == NULL)
return (ENOMEM);
ret = crypto_init();
if (ret != 0)
return (ret);
ret = cookie_init();
if (ret != 0)
return (ret);
wg_osd_jail_slot = osd_jail_register(NULL, methods);
if (!wg_run_selftests())
return (ENOTRECOVERABLE);
return (0);
}
static void
wg_module_deinit(void)
{
VNET_ITERATOR_DECL(vnet_iter);
VNET_LIST_RLOCK();
VNET_FOREACH(vnet_iter) {
struct if_clone *clone = VNET_VNET(vnet_iter, wg_cloner);
if (clone) {
ifc_detach_cloner(clone);
VNET_VNET(vnet_iter, wg_cloner) = NULL;
}
}
VNET_LIST_RUNLOCK();
NET_EPOCH_WAIT();
MPASS(LIST_EMPTY(&wg_list));
if (wg_osd_jail_slot != 0)
osd_jail_deregister(wg_osd_jail_slot);
cookie_deinit();
crypto_deinit();
if (wg_packet_zone != NULL)
uma_zdestroy(wg_packet_zone);
}
static int
wg_module_event_handler(module_t mod, int what, void *arg)
{
switch (what) {
case MOD_LOAD:
return wg_module_init();
case MOD_UNLOAD:
wg_module_deinit();
break;
default:
return (EOPNOTSUPP);
}
return (0);
}
static moduledata_t wg_moduledata = {
"if_wg",
wg_module_event_handler,
NULL
};
DECLARE_MODULE(if_wg, wg_moduledata, SI_SUB_PSEUDO, SI_ORDER_ANY);
MODULE_VERSION(if_wg, WIREGUARD_VERSION);
MODULE_DEPEND(if_wg, crypto, 1, 1, 1);