freebsd-dev/sys/dev/bhnd/nvram/bhnd_nvram_data_bcm.c
Landon J. Fuller 77cb4d3e50 bhnd(4): Unify NVRAM/SPROM parsing, implement compact SPROM layout encoding.
- Defined an abstract NVRAM I/O API (bhnd_nvram_io), decoupling NVRAM/SPROM
  parsing from the actual underlying NVRAM data provider (e.g. CFE firmware
  devices).
- Defined an abstract NVRAM data API (bhnd_nvram_data), decoupling
  higher-level NVRAM operations (indexed lookup, data conversion, etc) from
  the underlying NVRAM file format parsing/serialization.
- Implemented a new high-level bhnd_nvram_store API, providing indexed
  variable lookup, pending write tracking, etc on top of an arbitrary
  bhnd_nvram_data instance.
- Migrated all bhnd(4) NVRAM device drivers to the common bhnd_nvram_store
  API.
- Implemented a common bhnd_nvram_val API for parsing/encoding NVRAM
  variable values, including applying format-specific behavior when
  converting to/from the NVRAM string representations.
- Dropped the now unnecessary bhnd_nvram driver, and moved the
  broadcom/mips-specific CFE NVRAM driver out into sys/mips/broadcom.
- Implemented a new nvram_map file format:
        - Variable definitions are now defined separately from the SPROM
          layout. This will also allow us to define CIS tuple NVRAM
          mappings referencing the common NVRAM variable definitions.
        - Variables can now be defined within arbitrary named groups.
        - Textual descriptions and help information can be defined inline
          for both variables and variable groups.
        - Implemented a new, compact encoding of SPROM image layout
          offsets.
- Source-level (but not build system) support for building the NVRAM file
  format APIs (bhnd_nvram_io, bhnd_nvram_data, bhnd_nvram_store) as a
  userspace library.

The new compact SPROM image layout encoding is loosely modeled on Apple
dyld compressed LINKEDIT symbol binding opcodes; it provides a compact
state-machine encoding of the mapping between NVRAM variables and the SPROM
image offset, mask, and shift instructions necessary to decode or encode
the SPROM variable data.

The compact encoding reduces the size of the generated SPROM layout data
from roughly 60KB to 3KB. The sequential nature SPROM layout opcode tables
also simplify iteration of the SPROM variables, as it's no longer
neccessary to iterate the full NVRAM variable definition table, but
instead simply scan the SPROM revision's layout opcode table.

Approved by:    adrian (mentor)
Differential Revision:  https://reviews.freebsd.org/D8645
2016-11-26 23:22:32 +00:00

749 lines
19 KiB
C

/*-
* Copyright (c) 2016 Landon Fuller <landonf@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
* redistribution must be conditioned upon including a substantially
* similar Disclaimer requirement for further binary redistribution.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGES.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/endian.h>
#ifdef _KERNEL
#include <sys/bus.h>
#include <sys/ctype.h>
#include <sys/malloc.h>
#include <sys/systm.h>
#else /* !_KERNEL */
#include <ctype.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#endif /* _KERNEL */
#include "bhnd_nvram_private.h"
#include "bhnd_nvram_datavar.h"
#include "bhnd_nvram_data_bcmreg.h"
#include "bhnd_nvram_data_bcmvar.h"
/*
* Broadcom NVRAM data class.
*
* The Broadcom NVRAM NUL-delimited ASCII format is used by most
* Broadcom SoCs.
*
* The NVRAM data is encoded as a standard header, followed by series of
* NUL-terminated 'key=value' strings; the end of the stream is denoted
* by a single extra NUL character.
*/
struct bhnd_nvram_bcm;
static struct bhnd_nvram_bcm_hvar *bhnd_nvram_bcm_gethdrvar(
struct bhnd_nvram_bcm *bcm,
const char *name);
static struct bhnd_nvram_bcm_hvar *bhnd_nvram_bcm_to_hdrvar(
struct bhnd_nvram_bcm *bcm,
void *cookiep);
static size_t bhnd_nvram_bcm_hdrvar_index(
struct bhnd_nvram_bcm *bcm,
struct bhnd_nvram_bcm_hvar *hvar);
/*
* Set of BCM NVRAM header values that are required to be mirrored in the
* NVRAM data itself.
*
* If they're not included in the parsed NVRAM data, we need to vend the
* header-parsed values with their appropriate keys, and add them in any
* updates to the NVRAM data.
*
* If they're modified in NVRAM, we need to sync the changes with the
* the NVRAM header values.
*/
static const struct bhnd_nvram_bcm_hvar bhnd_nvram_bcm_hvars[] = {
{
.name = BCM_NVRAM_CFG0_SDRAM_INIT_VAR,
.type = BHND_NVRAM_TYPE_UINT16,
.len = sizeof(uint16_t),
.nelem = 1,
},
{
.name = BCM_NVRAM_CFG1_SDRAM_CFG_VAR,
.type = BHND_NVRAM_TYPE_UINT16,
.len = sizeof(uint16_t),
.nelem = 1,
},
{
.name = BCM_NVRAM_CFG1_SDRAM_REFRESH_VAR,
.type = BHND_NVRAM_TYPE_UINT16,
.len = sizeof(uint16_t),
.nelem = 1,
},
{
.name = BCM_NVRAM_SDRAM_NCDL_VAR,
.type = BHND_NVRAM_TYPE_UINT32,
.len = sizeof(uint32_t),
.nelem = 1,
},
};
/** BCM NVRAM data class instance */
struct bhnd_nvram_bcm {
struct bhnd_nvram_data nv; /**< common instance state */
struct bhnd_nvram_io *data; /**< backing buffer */
/** BCM header values */
struct bhnd_nvram_bcm_hvar hvars[nitems(bhnd_nvram_bcm_hvars)];
size_t count; /**< total variable count */
};
BHND_NVRAM_DATA_CLASS_DEFN(bcm, "Broadcom", sizeof(struct bhnd_nvram_bcm))
static int
bhnd_nvram_bcm_probe(struct bhnd_nvram_io *io)
{
struct bhnd_nvram_bcmhdr hdr;
int error;
if ((error = bhnd_nvram_io_read(io, 0x0, &hdr, sizeof(hdr))))
return (error);
if (le32toh(hdr.magic) != BCM_NVRAM_MAGIC)
return (ENXIO);
return (BHND_NVRAM_DATA_PROBE_DEFAULT);
}
/**
* Initialize @p bcm with the provided NVRAM data mapped by @p src.
*
* @param bcm A newly allocated data instance.
*/
static int
bhnd_nvram_bcm_init(struct bhnd_nvram_bcm *bcm, struct bhnd_nvram_io *src)
{
struct bhnd_nvram_bcmhdr hdr;
uint8_t *p;
void *ptr;
size_t io_offset, io_size;
uint8_t crc, valid;
int error;
if ((error = bhnd_nvram_io_read(src, 0x0, &hdr, sizeof(hdr))))
return (error);
if (le32toh(hdr.magic) != BCM_NVRAM_MAGIC)
return (ENXIO);
/* Fetch the actual NVRAM image size */
io_size = le32toh(hdr.size);
if (io_size < sizeof(hdr)) {
/* The header size must include the header itself */
BHND_NV_LOG("corrupt header size: %zu\n", io_size);
return (EINVAL);
}
if (io_size > bhnd_nvram_io_getsize(src)) {
BHND_NV_LOG("header size %zu exceeds input size %zu\n",
io_size, bhnd_nvram_io_getsize(src));
return (EINVAL);
}
/* Allocate a buffer large enough to hold the NVRAM image, and
* an extra EOF-signaling NUL (on the chance it's missing from the
* source data) */
if (io_size == SIZE_MAX)
return (ENOMEM);
bcm->data = bhnd_nvram_iobuf_empty(io_size, io_size + 1);
if (bcm->data == NULL)
return (ENOMEM);
/* Fetch a pointer into our backing buffer and copy in the
* NVRAM image. */
error = bhnd_nvram_io_write_ptr(bcm->data, 0x0, &ptr, io_size, NULL);
if (error)
return (error);
p = ptr;
if ((error = bhnd_nvram_io_read(src, 0x0, p, io_size)))
return (error);
/* Verify the CRC */
valid = BCM_NVRAM_GET_BITS(hdr.cfg0, BCM_NVRAM_CFG0_CRC);
crc = bhnd_nvram_crc8(p + BCM_NVRAM_CRC_SKIP,
io_size - BCM_NVRAM_CRC_SKIP, BHND_NVRAM_CRC8_INITIAL);
if (crc != valid) {
BHND_NV_LOG("warning: NVRAM CRC error (crc=%#hhx, "
"expected=%hhx)\n", crc, valid);
}
/* Populate header variable definitions */
#define BCM_READ_HDR_VAR(_name, _dest, _swap) do { \
struct bhnd_nvram_bcm_hvar *data; \
data = bhnd_nvram_bcm_gethdrvar(bcm, _name ##_VAR); \
BHND_NV_ASSERT(data != NULL, \
("no such header variable: " __STRING(_name))); \
\
\
data->value. _dest = _swap(BCM_NVRAM_GET_BITS( \
hdr. _name ## _FIELD, _name)); \
} while(0)
BCM_READ_HDR_VAR(BCM_NVRAM_CFG0_SDRAM_INIT, u16, le16toh);
BCM_READ_HDR_VAR(BCM_NVRAM_CFG1_SDRAM_CFG, u16, le16toh);
BCM_READ_HDR_VAR(BCM_NVRAM_CFG1_SDRAM_REFRESH, u16, le16toh);
BCM_READ_HDR_VAR(BCM_NVRAM_SDRAM_NCDL, u32, le32toh);
_Static_assert(nitems(bcm->hvars) == 4, "missing initialization for"
"NVRAM header variable(s)");
#undef BCM_READ_HDR_VAR
/* Process the buffer */
bcm->count = 0;
io_offset = sizeof(hdr);
while (io_offset < io_size) {
char *envp;
const char *name, *value;
size_t envp_len;
size_t name_len, value_len;
/* Parse the key=value string */
envp = (char *) (p + io_offset);
envp_len = strnlen(envp, io_size - io_offset);
error = bhnd_nvram_parse_env(envp, envp_len, '=', &name,
&name_len, &value, &value_len);
if (error) {
BHND_NV_LOG("error parsing envp at offset %#zx: %d\n",
io_offset, error);
return (error);
}
/* Insert a '\0' character, replacing the '=' delimiter and
* allowing us to vend references directly to the variable
* name */
*(envp + name_len) = '\0';
/* Record any NVRAM variables that mirror our header variables.
* This is a brute-force search -- for the amount of data we're
* operating on, it shouldn't be an issue. */
for (size_t i = 0; i < nitems(bcm->hvars); i++) {
struct bhnd_nvram_bcm_hvar *hvar;
union bhnd_nvram_bcm_hvar_value hval;
size_t hval_len;
hvar = &bcm->hvars[i];
/* Already matched? */
if (hvar->envp != NULL)
continue;
/* Name matches? */
if ((strcmp(name, hvar->name)) != 0)
continue;
/* Save pointer to mirrored envp */
hvar->envp = envp;
/* Check for stale value */
hval_len = sizeof(hval);
error = bhnd_nvram_value_coerce(value, value_len,
BHND_NVRAM_TYPE_STRING, &hval, &hval_len,
hvar->type);
if (error) {
/* If parsing fails, we can likely only make
* things worse by trying to synchronize the
* variables */
BHND_NV_LOG("error parsing header variable "
"'%s=%s': %d\n", name, value, error);
} else if (hval_len != hvar->len) {
hvar->stale = true;
} else if (memcmp(&hval, &hvar->value, hval_len) != 0) {
hvar->stale = true;
}
}
/* Seek past the value's terminating '\0' */
io_offset += envp_len;
if (io_offset == io_size) {
BHND_NV_LOG("missing terminating NUL at offset %#zx\n",
io_offset);
return (EINVAL);
}
if (*(p + io_offset) != '\0') {
BHND_NV_LOG("invalid terminator '%#hhx' at offset "
"%#zx\n", *(p + io_offset), io_offset);
return (EINVAL);
}
/* Update variable count */
bcm->count++;
/* Seek to the next record */
if (++io_offset == io_size) {
char ch;
/* Hit EOF without finding a terminating NUL
* byte; we need to grow our buffer and append
* it */
io_size++;
if ((error = bhnd_nvram_io_setsize(bcm->data, io_size)))
return (error);
/* Write NUL byte */
ch = '\0';
error = bhnd_nvram_io_write(bcm->data, io_size-1, &ch,
sizeof(ch));
if (error)
return (error);
}
/* Check for explicit EOF (encoded as a single empty NUL
* terminated string) */
if (*(p + io_offset) == '\0')
break;
}
/* Add non-mirrored header variables to total count variable */
for (size_t i = 0; i < nitems(bcm->hvars); i++) {
if (bcm->hvars[i].envp == NULL)
bcm->count++;
}
return (0);
}
static int
bhnd_nvram_bcm_new(struct bhnd_nvram_data *nv, struct bhnd_nvram_io *io)
{
struct bhnd_nvram_bcm *bcm;
int error;
bcm = (struct bhnd_nvram_bcm *)nv;
/* Populate default BCM mirrored header variable set */
_Static_assert(sizeof(bcm->hvars) == sizeof(bhnd_nvram_bcm_hvars),
"hvar declarations must match bhnd_nvram_bcm_hvars template");
memcpy(bcm->hvars, bhnd_nvram_bcm_hvars, sizeof(bcm->hvars));
/* Parse the BCM input data and initialize our backing
* data representation */
if ((error = bhnd_nvram_bcm_init(bcm, io))) {
bhnd_nvram_bcm_free(nv);
return (error);
}
return (0);
}
static void
bhnd_nvram_bcm_free(struct bhnd_nvram_data *nv)
{
struct bhnd_nvram_bcm *bcm = (struct bhnd_nvram_bcm *)nv;
if (bcm->data != NULL)
bhnd_nvram_io_free(bcm->data);
}
size_t
bhnd_nvram_bcm_count(struct bhnd_nvram_data *nv)
{
struct bhnd_nvram_bcm *bcm = (struct bhnd_nvram_bcm *)nv;
return (bcm->count);
}
static int
bhnd_nvram_bcm_size(struct bhnd_nvram_data *nv, size_t *size)
{
return (bhnd_nvram_bcm_serialize(nv, NULL, size));
}
static int
bhnd_nvram_bcm_serialize(struct bhnd_nvram_data *nv, void *buf, size_t *len)
{
struct bhnd_nvram_bcm *bcm;
struct bhnd_nvram_bcmhdr hdr;
void *cookiep;
const char *name;
size_t nbytes, limit;
uint8_t crc;
int error;
bcm = (struct bhnd_nvram_bcm *)nv;
nbytes = 0;
/* Save the output buffer limit */
if (buf == NULL)
limit = 0;
else
limit = *len;
/* Reserve space for the NVRAM header */
nbytes += sizeof(struct bhnd_nvram_bcmhdr);
/* Write all variables to the output buffer */
cookiep = NULL;
while ((name = bhnd_nvram_data_next(nv, &cookiep))) {
uint8_t *outp;
size_t olen;
size_t name_len, val_len;
if (limit > nbytes) {
outp = (uint8_t *)buf + nbytes;
olen = limit - nbytes;
} else {
outp = NULL;
olen = 0;
}
/* Determine length of variable name */
name_len = strlen(name) + 1;
/* Write the variable name and '=' delimiter */
if (olen >= name_len) {
/* Copy name */
memcpy(outp, name, name_len - 1);
/* Append '=' */
*(outp + name_len - 1) = '=';
}
/* Adjust byte counts */
if (SIZE_MAX - name_len < nbytes)
return (ERANGE);
nbytes += name_len;
/* Reposition output */
if (limit > nbytes) {
outp = (uint8_t *)buf + nbytes;
olen = limit - nbytes;
} else {
outp = NULL;
olen = 0;
}
/* Coerce to NUL-terminated C string, writing to the output
* buffer (or just calculating the length if outp is NULL) */
val_len = olen;
error = bhnd_nvram_data_getvar(nv, cookiep, outp, &val_len,
BHND_NVRAM_TYPE_STRING);
if (error && error != ENOMEM)
return (error);
/* Adjust byte counts */
if (SIZE_MAX - val_len < nbytes)
return (ERANGE);
nbytes += val_len;
}
/* Write terminating NUL */
if (nbytes < limit)
*((uint8_t *)buf + nbytes) = '\0';
nbytes++;
/* Provide actual size */
*len = nbytes;
if (buf == NULL || nbytes > limit) {
if (buf != NULL)
return (ENOMEM);
return (0);
}
/* Fetch current NVRAM header */
if ((error = bhnd_nvram_io_read(bcm->data, 0x0, &hdr, sizeof(hdr))))
return (error);
/* Update values covered by CRC and write to output buffer */
hdr.size = htole32(*len);
memcpy(buf, &hdr, sizeof(hdr));
/* Calculate new CRC */
crc = bhnd_nvram_crc8((uint8_t *)buf + BCM_NVRAM_CRC_SKIP,
*len - BCM_NVRAM_CRC_SKIP, BHND_NVRAM_CRC8_INITIAL);
/* Update header with valid CRC */
hdr.cfg0 &= ~BCM_NVRAM_CFG0_CRC_MASK;
hdr.cfg0 |= (crc << BCM_NVRAM_CFG0_CRC_SHIFT);
memcpy(buf, &hdr, sizeof(hdr));
return (0);
}
static uint32_t
bhnd_nvram_bcm_caps(struct bhnd_nvram_data *nv)
{
return (BHND_NVRAM_DATA_CAP_READ_PTR|BHND_NVRAM_DATA_CAP_DEVPATHS);
}
static const char *
bhnd_nvram_bcm_next(struct bhnd_nvram_data *nv, void **cookiep)
{
struct bhnd_nvram_bcm *bcm;
struct bhnd_nvram_bcm_hvar *hvar, *hvar_next;
const void *ptr;
const char *envp, *basep;
size_t io_size, io_offset;
int error;
bcm = (struct bhnd_nvram_bcm *)nv;
io_offset = sizeof(struct bhnd_nvram_bcmhdr);
io_size = bhnd_nvram_io_getsize(bcm->data) - io_offset;
/* Map backing buffer */
error = bhnd_nvram_io_read_ptr(bcm->data, io_offset, &ptr, io_size,
NULL);
if (error) {
BHND_NV_LOG("error mapping backing buffer: %d\n", error);
return (NULL);
}
basep = ptr;
/* If cookiep pointers into our header variable array, handle as header
* variable iteration. */
hvar = bhnd_nvram_bcm_to_hdrvar(bcm, *cookiep);
if (hvar != NULL) {
size_t idx;
/* Advance to next entry, if any */
idx = bhnd_nvram_bcm_hdrvar_index(bcm, hvar) + 1;
/* Find the next header-defined variable that isn't defined in
* the NVRAM data, start iteration there */
for (size_t i = idx; i < nitems(bcm->hvars); i++) {
hvar_next = &bcm->hvars[i];
if (hvar_next->envp != NULL && !hvar_next->stale)
continue;
*cookiep = hvar_next;
return (hvar_next->name);
}
/* No further header-defined variables; iteration
* complete */
return (NULL);
}
/* Handle standard NVRAM data iteration */
if (*cookiep == NULL) {
/* Start at the first NVRAM data record */
envp = basep;
} else {
/* Seek to next record */
envp = *cookiep;
envp += strlen(envp) + 1; /* key + '\0' */
envp += strlen(envp) + 1; /* value + '\0' */
}
/*
* Skip entries that have an existing header variable entry that takes
* precedence over the NVRAM data value.
*
* The header's value will be provided when performing header variable
* iteration
*/
while ((size_t)(envp - basep) < io_size && *envp != '\0') {
/* Locate corresponding header variable */
hvar = NULL;
for (size_t i = 0; i < nitems(bcm->hvars); i++) {
if (bcm->hvars[i].envp != envp)
continue;
hvar = &bcm->hvars[i];
break;
}
/* If no corresponding hvar entry, or the entry does not take
* precedence over this NVRAM value, we can safely return this
* value as-is. */
if (hvar == NULL || !hvar->stale)
break;
/* Seek to next record */
envp += strlen(envp) + 1; /* key + '\0' */
envp += strlen(envp) + 1; /* value + '\0' */
}
/* On NVRAM data EOF, try switching to header variables */
if ((size_t)(envp - basep) == io_size || *envp == '\0') {
/* Find first valid header variable */
for (size_t i = 0; i < nitems(bcm->hvars); i++) {
if (bcm->hvars[i].envp != NULL)
continue;
*cookiep = &bcm->hvars[i];
return (bcm->hvars[i].name);
}
/* No header variables */
return (NULL);
}
*cookiep = (void *)(uintptr_t)envp;
return (envp);
}
static void *
bhnd_nvram_bcm_find(struct bhnd_nvram_data *nv, const char *name)
{
return (bhnd_nvram_data_generic_find(nv, name));
}
static int
bhnd_nvram_bcm_getvar(struct bhnd_nvram_data *nv, void *cookiep, void *buf,
size_t *len, bhnd_nvram_type type)
{
return (bhnd_nvram_data_generic_rp_getvar(nv, cookiep, buf, len, type));
}
static const void *
bhnd_nvram_bcm_getvar_ptr(struct bhnd_nvram_data *nv, void *cookiep,
size_t *len, bhnd_nvram_type *type)
{
struct bhnd_nvram_bcm *bcm;
struct bhnd_nvram_bcm_hvar *hvar;
const char *envp;
bcm = (struct bhnd_nvram_bcm *)nv;
/* Handle header variables */
if ((hvar = bhnd_nvram_bcm_to_hdrvar(bcm, cookiep)) != NULL) {
BHND_NV_ASSERT(
hvar->len % bhnd_nvram_value_size(hvar->type, NULL, 0,
hvar->nelem) == 0,
("length is not aligned to type width"));
*type = hvar->type;
*len = hvar->len;
return (&hvar->value);
}
/* Cookie points to key\0value\0 -- get the value address */
BHND_NV_ASSERT(cookiep != NULL, ("NULL cookiep"));
envp = cookiep;
envp += strlen(envp) + 1; /* key + '\0' */
*len = strlen(envp) + 1; /* value + '\0' */
*type = BHND_NVRAM_TYPE_STRING;
return (envp);
}
static const char *
bhnd_nvram_bcm_getvar_name(struct bhnd_nvram_data *nv, void *cookiep)
{
struct bhnd_nvram_bcm *bcm;
struct bhnd_nvram_bcm_hvar *hvar;
bcm = (struct bhnd_nvram_bcm *)nv;
/* Handle header variables */
if ((hvar = bhnd_nvram_bcm_to_hdrvar(bcm, cookiep)) != NULL) {
return (hvar->name);
}
/* Cookie points to key\0value\0 */
return (cookiep);
}
/**
* Return the internal BCM data reference for a header-defined variable
* with @p name, or NULL if none exists.
*/
static struct bhnd_nvram_bcm_hvar *
bhnd_nvram_bcm_gethdrvar(struct bhnd_nvram_bcm *bcm, const char *name)
{
for (size_t i = 0; i < nitems(bcm->hvars); i++) {
if (strcmp(bcm->hvars[i].name, name) == 0)
return (&bcm->hvars[i]);
}
/* Not found */
return (NULL);
}
/**
* If @p cookiep references a header-defined variable, return the
* internal BCM data reference. Otherwise, returns NULL.
*/
static struct bhnd_nvram_bcm_hvar *
bhnd_nvram_bcm_to_hdrvar(struct bhnd_nvram_bcm *bcm, void *cookiep)
{
#ifdef BHND_NVRAM_INVARIANTS
uintptr_t base, ptr;
#endif
/* If the cookie falls within the hvar array, it's a
* header variable cookie */
if (nitems(bcm->hvars) == 0)
return (NULL);
if (cookiep < (void *)&bcm->hvars[0])
return (NULL);
if (cookiep > (void *)&bcm->hvars[nitems(bcm->hvars)-1])
return (NULL);
#ifdef BHND_NVRAM_INVARIANTS
base = (uintptr_t)bcm->hvars;
ptr = (uintptr_t)cookiep;
BHND_NV_ASSERT((ptr - base) % sizeof(bcm->hvars[0]) == 0,
("misaligned hvar pointer %p/%p", cookiep, bcm->hvars));
#endif /* INVARIANTS */
return ((struct bhnd_nvram_bcm_hvar *)cookiep);
}
/**
* Return the index of @p hdrvar within @p bcm's backing hvars array.
*/
static size_t
bhnd_nvram_bcm_hdrvar_index(struct bhnd_nvram_bcm *bcm,
struct bhnd_nvram_bcm_hvar *hdrvar)
{
BHND_NV_ASSERT(bhnd_nvram_bcm_to_hdrvar(bcm, (void *)hdrvar) != NULL,
("%p is not a valid hdrvar reference", hdrvar));
return (hdrvar - &bcm->hvars[0]);
}