911 lines
21 KiB
C
911 lines
21 KiB
C
/*
|
|
* Copyright (c) 1991 Regents of the University of California.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* The Mach Operating System project at Carnegie-Mellon University.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: @(#)vm_page.c 7.4 (Berkeley) 5/7/91
|
|
* $Id: vm_page.c,v 1.7 1994/09/27 19:34:16 davidg Exp $
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
|
|
* All rights reserved.
|
|
*
|
|
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
|
|
*
|
|
* Permission to use, copy, modify and distribute this software and
|
|
* its documentation is hereby granted, provided that both the copyright
|
|
* notice and this permission notice appear in all copies of the
|
|
* software, derivative works or modified versions, and any portions
|
|
* thereof, and that both notices appear in supporting documentation.
|
|
*
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
|
|
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
|
*
|
|
* Carnegie Mellon requests users of this software to return to
|
|
*
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
* School of Computer Science
|
|
* Carnegie Mellon University
|
|
* Pittsburgh PA 15213-3890
|
|
*
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
* rights to redistribute these changes.
|
|
*/
|
|
|
|
/*
|
|
* Resident memory management module.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_map.h>
|
|
#include <vm/vm_pageout.h>
|
|
|
|
/*
|
|
* Associated with page of user-allocatable memory is a
|
|
* page structure.
|
|
*/
|
|
|
|
struct pglist *vm_page_buckets; /* Array of buckets */
|
|
int vm_page_bucket_count = 0; /* How big is array? */
|
|
int vm_page_hash_mask; /* Mask for hash function */
|
|
simple_lock_data_t bucket_lock; /* lock for all buckets XXX */
|
|
|
|
struct pglist vm_page_queue_free;
|
|
struct pglist vm_page_queue_active;
|
|
struct pglist vm_page_queue_inactive;
|
|
simple_lock_data_t vm_page_queue_lock;
|
|
simple_lock_data_t vm_page_queue_free_lock;
|
|
|
|
/* has physical page allocation been initialized? */
|
|
boolean_t vm_page_startup_initialized;
|
|
|
|
vm_page_t vm_page_array;
|
|
long first_page;
|
|
long last_page;
|
|
vm_offset_t first_phys_addr;
|
|
vm_offset_t last_phys_addr;
|
|
vm_size_t page_mask;
|
|
int page_shift;
|
|
|
|
/*
|
|
* vm_set_page_size:
|
|
*
|
|
* Sets the page size, perhaps based upon the memory
|
|
* size. Must be called before any use of page-size
|
|
* dependent functions.
|
|
*
|
|
* Sets page_shift and page_mask from cnt.v_page_size.
|
|
*/
|
|
void vm_set_page_size()
|
|
{
|
|
|
|
if (cnt.v_page_size == 0)
|
|
cnt.v_page_size = DEFAULT_PAGE_SIZE;
|
|
page_mask = cnt.v_page_size - 1;
|
|
if ((page_mask & cnt.v_page_size) != 0)
|
|
panic("vm_set_page_size: page size not a power of two");
|
|
for (page_shift = 0; ; page_shift++)
|
|
if ((1 << page_shift) == cnt.v_page_size)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* vm_page_startup:
|
|
*
|
|
* Initializes the resident memory module.
|
|
*
|
|
* Allocates memory for the page cells, and
|
|
* for the object/offset-to-page hash table headers.
|
|
* Each page cell is initialized and placed on the free list.
|
|
*/
|
|
|
|
vm_offset_t
|
|
vm_page_startup(starta, enda, vaddr)
|
|
register vm_offset_t starta;
|
|
vm_offset_t enda;
|
|
register vm_offset_t vaddr;
|
|
{
|
|
register vm_offset_t mapped;
|
|
register vm_page_t m;
|
|
register struct pglist *bucket;
|
|
vm_size_t npages, page_range;
|
|
register vm_offset_t new_start;
|
|
int i;
|
|
vm_offset_t pa;
|
|
int nblocks;
|
|
vm_offset_t first_managed_page;
|
|
int size;
|
|
|
|
extern vm_offset_t kentry_data;
|
|
extern vm_size_t kentry_data_size;
|
|
extern vm_offset_t phys_avail[];
|
|
/* the biggest memory array is the second group of pages */
|
|
vm_offset_t start;
|
|
vm_offset_t biggestone, biggestsize;
|
|
|
|
vm_offset_t total;
|
|
|
|
total = 0;
|
|
biggestsize = 0;
|
|
biggestone = 0;
|
|
nblocks = 0;
|
|
vaddr = round_page(vaddr);
|
|
|
|
for (i = 0; phys_avail[i + 1]; i += 2) {
|
|
phys_avail[i] = round_page(phys_avail[i]);
|
|
phys_avail[i+1] = trunc_page(phys_avail[i+1]);
|
|
}
|
|
|
|
for (i = 0; phys_avail[i + 1]; i += 2) {
|
|
int size = phys_avail[i+1] - phys_avail[i];
|
|
if (size > biggestsize) {
|
|
biggestone = i;
|
|
biggestsize = size;
|
|
}
|
|
++nblocks;
|
|
total += size;
|
|
}
|
|
|
|
start = phys_avail[biggestone];
|
|
|
|
|
|
/*
|
|
* Initialize the locks
|
|
*/
|
|
|
|
simple_lock_init(&vm_page_queue_free_lock);
|
|
simple_lock_init(&vm_page_queue_lock);
|
|
|
|
/*
|
|
* Initialize the queue headers for the free queue,
|
|
* the active queue and the inactive queue.
|
|
*/
|
|
|
|
TAILQ_INIT(&vm_page_queue_free);
|
|
TAILQ_INIT(&vm_page_queue_active);
|
|
TAILQ_INIT(&vm_page_queue_inactive);
|
|
|
|
/*
|
|
* Allocate (and initialize) the hash table buckets.
|
|
*
|
|
* The number of buckets MUST BE a power of 2, and
|
|
* the actual value is the next power of 2 greater
|
|
* than the number of physical pages in the system.
|
|
*
|
|
* Note:
|
|
* This computation can be tweaked if desired.
|
|
*/
|
|
vm_page_buckets = (struct pglist *)vaddr;
|
|
bucket = vm_page_buckets;
|
|
if (vm_page_bucket_count == 0) {
|
|
vm_page_bucket_count = 1;
|
|
while (vm_page_bucket_count < atop(total))
|
|
vm_page_bucket_count <<= 1;
|
|
}
|
|
|
|
|
|
vm_page_hash_mask = vm_page_bucket_count - 1;
|
|
|
|
/*
|
|
* Validate these addresses.
|
|
*/
|
|
|
|
new_start = start + vm_page_bucket_count * sizeof(struct pglist);
|
|
new_start = round_page(new_start);
|
|
mapped = vaddr;
|
|
vaddr = pmap_map(mapped, start, new_start,
|
|
VM_PROT_READ|VM_PROT_WRITE);
|
|
start = new_start;
|
|
bzero((caddr_t) mapped, vaddr - mapped);
|
|
mapped = vaddr;
|
|
|
|
for (i = 0; i< vm_page_bucket_count; i++) {
|
|
TAILQ_INIT(bucket);
|
|
bucket++;
|
|
}
|
|
|
|
simple_lock_init(&bucket_lock);
|
|
|
|
/*
|
|
* round (or truncate) the addresses to our page size.
|
|
*/
|
|
|
|
/*
|
|
* Pre-allocate maps and map entries that cannot be dynamically
|
|
* allocated via malloc(). The maps include the kernel_map and
|
|
* kmem_map which must be initialized before malloc() will
|
|
* work (obviously). Also could include pager maps which would
|
|
* be allocated before kmeminit.
|
|
*
|
|
* Allow some kernel map entries... this should be plenty
|
|
* since people shouldn't be cluttering up the kernel
|
|
* map (they should use their own maps).
|
|
*/
|
|
|
|
kentry_data_size = MAX_KMAP * sizeof(struct vm_map) +
|
|
MAX_KMAPENT * sizeof(struct vm_map_entry);
|
|
kentry_data_size = round_page(kentry_data_size);
|
|
kentry_data = (vm_offset_t) vaddr;
|
|
vaddr += kentry_data_size;
|
|
|
|
/*
|
|
* Validate these zone addresses.
|
|
*/
|
|
|
|
new_start = start + (vaddr - mapped);
|
|
pmap_map(mapped, start, new_start, VM_PROT_READ|VM_PROT_WRITE);
|
|
bzero((caddr_t) mapped, (vaddr - mapped));
|
|
start = round_page(new_start);
|
|
|
|
/*
|
|
* Compute the number of pages of memory that will be
|
|
* available for use (taking into account the overhead
|
|
* of a page structure per page).
|
|
*/
|
|
|
|
npages = (total - (start - phys_avail[biggestone])) / (PAGE_SIZE + sizeof(struct vm_page));
|
|
first_page = phys_avail[0] / PAGE_SIZE;
|
|
|
|
page_range = (phys_avail[(nblocks-1)*2 + 1] - phys_avail[0]) / PAGE_SIZE;
|
|
/*
|
|
* Initialize the mem entry structures now, and
|
|
* put them in the free queue.
|
|
*/
|
|
|
|
vm_page_array = (vm_page_t) vaddr;
|
|
mapped = vaddr;
|
|
|
|
|
|
/*
|
|
* Validate these addresses.
|
|
*/
|
|
|
|
new_start = round_page(start + page_range * sizeof (struct vm_page));
|
|
mapped = pmap_map(mapped, start, new_start,
|
|
VM_PROT_READ|VM_PROT_WRITE);
|
|
start = new_start;
|
|
|
|
first_managed_page = start / PAGE_SIZE;
|
|
|
|
/*
|
|
* Clear all of the page structures
|
|
*/
|
|
bzero((caddr_t)vm_page_array, page_range * sizeof(struct vm_page));
|
|
|
|
cnt.v_page_count = 0;
|
|
cnt.v_free_count= 0;
|
|
for (i = 0; phys_avail[i + 1] && npages > 0; i += 2) {
|
|
if (i == biggestone)
|
|
pa = ptoa(first_managed_page);
|
|
else
|
|
pa = phys_avail[i];
|
|
while (pa < phys_avail[i + 1] && npages-- > 0) {
|
|
++cnt.v_page_count;
|
|
++cnt.v_free_count;
|
|
m = PHYS_TO_VM_PAGE(pa);
|
|
m->flags = PG_CLEAN | PG_FREE;
|
|
m->object = 0;
|
|
m->phys_addr = pa;
|
|
m->hold_count = 0;
|
|
TAILQ_INSERT_TAIL(&vm_page_queue_free, m, pageq);
|
|
pa += PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize vm_pages_needed lock here - don't wait for pageout
|
|
* daemon XXX
|
|
*/
|
|
simple_lock_init(&vm_pages_needed_lock);
|
|
|
|
return(mapped);
|
|
}
|
|
|
|
/*
|
|
* vm_page_hash:
|
|
*
|
|
* Distributes the object/offset key pair among hash buckets.
|
|
*
|
|
* NOTE: This macro depends on vm_page_bucket_count being a power of 2.
|
|
*/
|
|
inline const int
|
|
vm_page_hash(object, offset)
|
|
vm_object_t object;
|
|
vm_offset_t offset;
|
|
{
|
|
return ((unsigned)object + offset/NBPG) & vm_page_hash_mask;
|
|
}
|
|
|
|
/*
|
|
* vm_page_insert: [ internal use only ]
|
|
*
|
|
* Inserts the given mem entry into the object/object-page
|
|
* table and object list.
|
|
*
|
|
* The object and page must be locked.
|
|
*/
|
|
|
|
void vm_page_insert(mem, object, offset)
|
|
register vm_page_t mem;
|
|
register vm_object_t object;
|
|
register vm_offset_t offset;
|
|
{
|
|
register struct pglist *bucket;
|
|
int s;
|
|
|
|
VM_PAGE_CHECK(mem);
|
|
|
|
if (mem->flags & PG_TABLED)
|
|
panic("vm_page_insert: already inserted");
|
|
|
|
/*
|
|
* Record the object/offset pair in this page
|
|
*/
|
|
|
|
mem->object = object;
|
|
mem->offset = offset;
|
|
|
|
/*
|
|
* Insert it into the object_object/offset hash table
|
|
*/
|
|
|
|
bucket = &vm_page_buckets[vm_page_hash(object, offset)];
|
|
s = splhigh();
|
|
simple_lock(&bucket_lock);
|
|
TAILQ_INSERT_TAIL(bucket, mem, hashq);
|
|
simple_unlock(&bucket_lock);
|
|
(void) splx(s);
|
|
|
|
/*
|
|
* Now link into the object's list of backed pages.
|
|
*/
|
|
|
|
TAILQ_INSERT_TAIL(&object->memq, mem, listq);
|
|
mem->flags |= PG_TABLED;
|
|
|
|
/*
|
|
* And show that the object has one more resident
|
|
* page.
|
|
*/
|
|
|
|
object->resident_page_count++;
|
|
}
|
|
|
|
/*
|
|
* vm_page_remove: [ internal use only ]
|
|
* NOTE: used by device pager as well -wfj
|
|
*
|
|
* Removes the given mem entry from the object/offset-page
|
|
* table and the object page list.
|
|
*
|
|
* The object and page must be locked.
|
|
*/
|
|
|
|
void vm_page_remove(mem)
|
|
register vm_page_t mem;
|
|
{
|
|
register struct pglist *bucket;
|
|
int s;
|
|
|
|
VM_PAGE_CHECK(mem);
|
|
|
|
if (!(mem->flags & PG_TABLED))
|
|
return;
|
|
|
|
/*
|
|
* Remove from the object_object/offset hash table
|
|
*/
|
|
|
|
bucket = &vm_page_buckets[vm_page_hash(mem->object, mem->offset)];
|
|
s = splhigh();
|
|
simple_lock(&bucket_lock);
|
|
TAILQ_REMOVE(bucket, mem, hashq);
|
|
simple_unlock(&bucket_lock);
|
|
(void) splx(s);
|
|
|
|
/*
|
|
* Now remove from the object's list of backed pages.
|
|
*/
|
|
|
|
TAILQ_REMOVE(&mem->object->memq, mem, listq);
|
|
|
|
/*
|
|
* And show that the object has one fewer resident
|
|
* page.
|
|
*/
|
|
|
|
mem->object->resident_page_count--;
|
|
|
|
mem->flags &= ~PG_TABLED;
|
|
}
|
|
|
|
/*
|
|
* vm_page_lookup:
|
|
*
|
|
* Returns the page associated with the object/offset
|
|
* pair specified; if none is found, NULL is returned.
|
|
*
|
|
* The object must be locked. No side effects.
|
|
*/
|
|
|
|
vm_page_t vm_page_lookup(object, offset)
|
|
register vm_object_t object;
|
|
register vm_offset_t offset;
|
|
{
|
|
register vm_page_t mem;
|
|
register struct pglist *bucket;
|
|
int s;
|
|
|
|
/*
|
|
* Search the hash table for this object/offset pair
|
|
*/
|
|
|
|
bucket = &vm_page_buckets[vm_page_hash(object, offset)];
|
|
|
|
s = splhigh();
|
|
simple_lock(&bucket_lock);
|
|
for (mem = bucket->tqh_first; mem != NULL; mem = mem->hashq.tqe_next) {
|
|
VM_PAGE_CHECK(mem);
|
|
if ((mem->object == object) && (mem->offset == offset)) {
|
|
simple_unlock(&bucket_lock);
|
|
splx(s);
|
|
return(mem);
|
|
}
|
|
}
|
|
|
|
simple_unlock(&bucket_lock);
|
|
splx(s);
|
|
return(NULL);
|
|
}
|
|
|
|
/*
|
|
* vm_page_rename:
|
|
*
|
|
* Move the given memory entry from its
|
|
* current object to the specified target object/offset.
|
|
*
|
|
* The object must be locked.
|
|
*/
|
|
void vm_page_rename(mem, new_object, new_offset)
|
|
register vm_page_t mem;
|
|
register vm_object_t new_object;
|
|
vm_offset_t new_offset;
|
|
{
|
|
if (mem->object == new_object)
|
|
return;
|
|
|
|
vm_page_lock_queues(); /* keep page from moving out from
|
|
under pageout daemon */
|
|
vm_page_remove(mem);
|
|
vm_page_insert(mem, new_object, new_offset);
|
|
vm_page_unlock_queues();
|
|
}
|
|
|
|
/*
|
|
* vm_page_alloc:
|
|
*
|
|
* Allocate and return a memory cell associated
|
|
* with this VM object/offset pair.
|
|
*
|
|
* Object must be locked.
|
|
*/
|
|
vm_page_t
|
|
vm_page_alloc(object, offset)
|
|
vm_object_t object;
|
|
vm_offset_t offset;
|
|
{
|
|
register vm_page_t mem;
|
|
int s;
|
|
|
|
s = splhigh();
|
|
simple_lock(&vm_page_queue_free_lock);
|
|
if ( object != kernel_object &&
|
|
object != kmem_object &&
|
|
curproc != pageproc && curproc != &proc0 &&
|
|
cnt.v_free_count < cnt.v_free_reserved) {
|
|
|
|
simple_unlock(&vm_page_queue_free_lock);
|
|
splx(s);
|
|
/*
|
|
* this wakeup seems unnecessary, but there is code that
|
|
* might just check to see if there are free pages, and
|
|
* punt if there aren't. VM_WAIT does this too, but
|
|
* redundant wakeups aren't that bad...
|
|
*/
|
|
if (curproc != pageproc)
|
|
wakeup((caddr_t) &vm_pages_needed);
|
|
return(NULL);
|
|
}
|
|
if (( mem = vm_page_queue_free.tqh_first) == 0) {
|
|
simple_unlock(&vm_page_queue_free_lock);
|
|
printf("No pages???\n");
|
|
splx(s);
|
|
/*
|
|
* comment above re: wakeups applies here too...
|
|
*/
|
|
if (curproc != pageproc)
|
|
wakeup((caddr_t) &vm_pages_needed);
|
|
return(NULL);
|
|
}
|
|
|
|
TAILQ_REMOVE(&vm_page_queue_free, mem, pageq);
|
|
|
|
cnt.v_free_count--;
|
|
simple_unlock(&vm_page_queue_free_lock);
|
|
|
|
VM_PAGE_INIT(mem, object, offset);
|
|
splx(s);
|
|
|
|
/*
|
|
* don't wakeup too often, so we wakeup the pageout daemon when
|
|
* we would be nearly out of memory.
|
|
*/
|
|
if (curproc != pageproc &&
|
|
(cnt.v_free_count < cnt.v_free_reserved))
|
|
wakeup((caddr_t) &vm_pages_needed);
|
|
|
|
return(mem);
|
|
}
|
|
|
|
vm_offset_t
|
|
vm_page_alloc_contig(size, low, high, alignment)
|
|
vm_offset_t size;
|
|
vm_offset_t low;
|
|
vm_offset_t high;
|
|
vm_offset_t alignment;
|
|
{
|
|
int i, s, start = 0;
|
|
vm_offset_t addr, phys, tmp_addr;
|
|
vm_page_t pga = vm_page_array;
|
|
extern vm_map_t kernel_map;
|
|
|
|
if ((alignment & (alignment - 1)) != 0)
|
|
panic("vm_page_alloc_contig: alignment must be a power of 2");
|
|
|
|
s = splhigh();
|
|
again:
|
|
/*
|
|
* Find first page in array that is free, within range, and aligned.
|
|
*/
|
|
for (i = start; i < cnt.v_page_count; i++) {
|
|
phys = VM_PAGE_TO_PHYS(&pga[i]);
|
|
if (((pga[i].flags & PG_FREE) == PG_FREE) &&
|
|
(phys >= low) && (phys < high) &&
|
|
((phys & (alignment - 1)) == 0))
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If the above failed or we will exceed the upper bound, fail.
|
|
*/
|
|
if ((i == cnt.v_page_count) || ((VM_PAGE_TO_PHYS(&pga[i]) + size) > high)) {
|
|
splx(s);
|
|
return (NULL);
|
|
}
|
|
|
|
start = i;
|
|
|
|
/*
|
|
* Check successive pages for contiguous and free.
|
|
*/
|
|
for (i = start + 1; i < (start + size / PAGE_SIZE); i++) {
|
|
if ((VM_PAGE_TO_PHYS(&pga[i]) !=
|
|
(VM_PAGE_TO_PHYS(&pga[i - 1]) + PAGE_SIZE)) ||
|
|
((pga[i].flags & PG_FREE) != PG_FREE)) {
|
|
start++;
|
|
goto again;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We've found a contiguous chunk that meets are requirements.
|
|
* Allocate kernel VM, unfree and assign the physical pages to it
|
|
* and return kernel VM pointer.
|
|
*/
|
|
tmp_addr = addr = kmem_alloc_pageable(kernel_map, size);
|
|
|
|
for (i = start; i < (start + size / PAGE_SIZE); i++) {
|
|
TAILQ_REMOVE(&vm_page_queue_free, &pga[i], pageq);
|
|
cnt.v_free_count--;
|
|
vm_page_wire(&pga[i]);
|
|
pga[i].flags = PG_CLEAN; /* shut off PG_FREE and any other flags */
|
|
pmap_kenter(tmp_addr, VM_PAGE_TO_PHYS(&pga[i]));
|
|
tmp_addr += PAGE_SIZE;
|
|
}
|
|
|
|
splx(s);
|
|
return (addr);
|
|
}
|
|
|
|
/*
|
|
* vm_page_free:
|
|
*
|
|
* Returns the given page to the free list,
|
|
* disassociating it with any VM object.
|
|
*
|
|
* Object and page must be locked prior to entry.
|
|
*/
|
|
void vm_page_free(mem)
|
|
register vm_page_t mem;
|
|
{
|
|
int s;
|
|
s = splhigh();
|
|
vm_page_remove(mem);
|
|
if (mem->flags & PG_ACTIVE) {
|
|
TAILQ_REMOVE(&vm_page_queue_active, mem, pageq);
|
|
mem->flags &= ~PG_ACTIVE;
|
|
cnt.v_active_count--;
|
|
}
|
|
|
|
if (mem->flags & PG_INACTIVE) {
|
|
TAILQ_REMOVE(&vm_page_queue_inactive, mem, pageq);
|
|
mem->flags &= ~PG_INACTIVE;
|
|
cnt.v_inactive_count--;
|
|
}
|
|
if (mem->flags & PG_FREE)
|
|
panic("vm_page_free: freeing free page");
|
|
|
|
if (!(mem->flags & PG_FICTITIOUS)) {
|
|
|
|
simple_lock(&vm_page_queue_free_lock);
|
|
if (mem->wire_count) {
|
|
if (mem->wire_count > 1) {
|
|
printf("vm_page_free: wire count > 1 (%d)", mem->wire_count);
|
|
panic("vm_page_free: invalid wire count");
|
|
}
|
|
cnt.v_wire_count--;
|
|
mem->wire_count = 0;
|
|
}
|
|
|
|
mem->flags |= PG_FREE;
|
|
TAILQ_INSERT_TAIL(&vm_page_queue_free, mem, pageq);
|
|
|
|
cnt.v_free_count++;
|
|
simple_unlock(&vm_page_queue_free_lock);
|
|
splx(s);
|
|
/*
|
|
* if pageout daemon needs pages, then tell it that there
|
|
* are some free.
|
|
*/
|
|
if (vm_pageout_pages_needed)
|
|
wakeup((caddr_t)&vm_pageout_pages_needed);
|
|
|
|
/*
|
|
* wakeup processes that are waiting on memory if we
|
|
* hit a high water mark.
|
|
*/
|
|
if (cnt.v_free_count == cnt.v_free_min) {
|
|
wakeup((caddr_t)&cnt.v_free_count);
|
|
}
|
|
|
|
/*
|
|
* wakeup scheduler process if we have lots of memory.
|
|
* this process will swapin processes.
|
|
*/
|
|
if (cnt.v_free_count == cnt.v_free_target) {
|
|
wakeup((caddr_t)&proc0);
|
|
}
|
|
} else {
|
|
splx(s);
|
|
}
|
|
wakeup((caddr_t) mem);
|
|
}
|
|
|
|
|
|
/*
|
|
* vm_page_wire:
|
|
*
|
|
* Mark this page as wired down by yet
|
|
* another map, removing it from paging queues
|
|
* as necessary.
|
|
*
|
|
* The page queues must be locked.
|
|
*/
|
|
void vm_page_wire(mem)
|
|
register vm_page_t mem;
|
|
{
|
|
int s;
|
|
VM_PAGE_CHECK(mem);
|
|
|
|
if (mem->wire_count == 0) {
|
|
s = splhigh();
|
|
if (mem->flags & PG_ACTIVE) {
|
|
TAILQ_REMOVE(&vm_page_queue_active, mem, pageq);
|
|
cnt.v_active_count--;
|
|
mem->flags &= ~PG_ACTIVE;
|
|
}
|
|
if (mem->flags & PG_INACTIVE) {
|
|
TAILQ_REMOVE(&vm_page_queue_inactive, mem, pageq);
|
|
cnt.v_inactive_count--;
|
|
mem->flags &= ~PG_INACTIVE;
|
|
}
|
|
splx(s);
|
|
cnt.v_wire_count++;
|
|
}
|
|
mem->wire_count++;
|
|
}
|
|
|
|
/*
|
|
* vm_page_unwire:
|
|
*
|
|
* Release one wiring of this page, potentially
|
|
* enabling it to be paged again.
|
|
*
|
|
* The page queues must be locked.
|
|
*/
|
|
void vm_page_unwire(mem)
|
|
register vm_page_t mem;
|
|
{
|
|
int s;
|
|
VM_PAGE_CHECK(mem);
|
|
|
|
s = splhigh();
|
|
|
|
if( mem->wire_count)
|
|
mem->wire_count--;
|
|
if (mem->wire_count == 0) {
|
|
TAILQ_INSERT_TAIL(&vm_page_queue_active, mem, pageq);
|
|
cnt.v_active_count++;
|
|
mem->flags |= PG_ACTIVE;
|
|
cnt.v_wire_count--;
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* vm_page_deactivate:
|
|
*
|
|
* Returns the given page to the inactive list,
|
|
* indicating that no physical maps have access
|
|
* to this page. [Used by the physical mapping system.]
|
|
*
|
|
* The page queues must be locked.
|
|
*/
|
|
void
|
|
vm_page_deactivate(m)
|
|
register vm_page_t m;
|
|
{
|
|
int spl;
|
|
VM_PAGE_CHECK(m);
|
|
|
|
/*
|
|
* Only move active pages -- ignore locked or already
|
|
* inactive ones.
|
|
*
|
|
* XXX: sometimes we get pages which aren't wired down
|
|
* or on any queue - we need to put them on the inactive
|
|
* queue also, otherwise we lose track of them.
|
|
* Paul Mackerras (paulus@cs.anu.edu.au) 9-Jan-93.
|
|
*/
|
|
|
|
spl = splhigh();
|
|
if (!(m->flags & PG_INACTIVE) && m->wire_count == 0 &&
|
|
m->hold_count == 0) {
|
|
|
|
pmap_clear_reference(VM_PAGE_TO_PHYS(m));
|
|
if (m->flags & PG_ACTIVE) {
|
|
TAILQ_REMOVE(&vm_page_queue_active, m, pageq);
|
|
m->flags &= ~PG_ACTIVE;
|
|
cnt.v_active_count--;
|
|
}
|
|
TAILQ_INSERT_TAIL(&vm_page_queue_inactive, m, pageq);
|
|
m->flags |= PG_INACTIVE;
|
|
cnt.v_inactive_count++;
|
|
#define NOT_DEACTIVATE_PROTECTS
|
|
#ifndef NOT_DEACTIVATE_PROTECTS
|
|
pmap_page_protect(VM_PAGE_TO_PHYS(m), VM_PROT_NONE);
|
|
#else
|
|
if ((m->flags & PG_CLEAN) &&
|
|
pmap_is_modified(VM_PAGE_TO_PHYS(m)))
|
|
m->flags &= ~PG_CLEAN;
|
|
#endif
|
|
if ((m->flags & PG_CLEAN) == 0)
|
|
m->flags |= PG_LAUNDRY;
|
|
}
|
|
splx(spl);
|
|
}
|
|
/*
|
|
* vm_page_activate:
|
|
*
|
|
* Put the specified page on the active list (if appropriate).
|
|
*
|
|
* The page queues must be locked.
|
|
*/
|
|
|
|
void vm_page_activate(m)
|
|
register vm_page_t m;
|
|
{
|
|
int s;
|
|
VM_PAGE_CHECK(m);
|
|
|
|
s = splhigh();
|
|
if (m->flags & PG_INACTIVE) {
|
|
TAILQ_REMOVE(&vm_page_queue_inactive, m, pageq);
|
|
cnt.v_inactive_count--;
|
|
m->flags &= ~PG_INACTIVE;
|
|
}
|
|
if (m->wire_count == 0) {
|
|
if (m->flags & PG_ACTIVE)
|
|
panic("vm_page_activate: already active");
|
|
|
|
TAILQ_INSERT_TAIL(&vm_page_queue_active, m, pageq);
|
|
m->flags |= PG_ACTIVE;
|
|
TAILQ_REMOVE(&m->object->memq, m, listq);
|
|
TAILQ_INSERT_TAIL(&m->object->memq, m, listq);
|
|
m->act_count = 1;
|
|
cnt.v_active_count++;
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* vm_page_zero_fill:
|
|
*
|
|
* Zero-fill the specified page.
|
|
* Written as a standard pagein routine, to
|
|
* be used by the zero-fill object.
|
|
*/
|
|
|
|
boolean_t
|
|
vm_page_zero_fill(m)
|
|
vm_page_t m;
|
|
{
|
|
VM_PAGE_CHECK(m);
|
|
|
|
pmap_zero_page(VM_PAGE_TO_PHYS(m));
|
|
return(TRUE);
|
|
}
|
|
|
|
/*
|
|
* vm_page_copy:
|
|
*
|
|
* Copy one page to another
|
|
*/
|
|
void
|
|
vm_page_copy(src_m, dest_m)
|
|
vm_page_t src_m;
|
|
vm_page_t dest_m;
|
|
{
|
|
VM_PAGE_CHECK(src_m);
|
|
VM_PAGE_CHECK(dest_m);
|
|
|
|
pmap_copy_page(VM_PAGE_TO_PHYS(src_m), VM_PAGE_TO_PHYS(dest_m));
|
|
}
|