348d35299c
The existing name confuses support for secure boot with support for reporting a verify result after an NVRAM update. As the capability only reports support for returning a verify result, change the name to be less confusing. Submitted by: Andy Moreton <amoreton at solarflare.com> Sponsored by: Solarflare Communications, Inc. Differential Revision: https://reviews.freebsd.org/D18088
1794 lines
41 KiB
C
1794 lines
41 KiB
C
/*-
|
|
* Copyright (c) 2012-2016 Solarflare Communications Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
|
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
|
|
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
|
|
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
|
|
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* The views and conclusions contained in the software and documentation are
|
|
* those of the authors and should not be interpreted as representing official
|
|
* policies, either expressed or implied, of the FreeBSD Project.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "efx.h"
|
|
#include "efx_impl.h"
|
|
#if EFSYS_OPT_MON_MCDI
|
|
#include "mcdi_mon.h"
|
|
#endif
|
|
|
|
#if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD
|
|
|
|
#include "ef10_tlv_layout.h"
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_mcdi_get_port_assignment(
|
|
__in efx_nic_t *enp,
|
|
__out uint32_t *portp)
|
|
{
|
|
efx_mcdi_req_t req;
|
|
uint8_t payload[MAX(MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN,
|
|
MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN)];
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
|
|
enp->en_family == EFX_FAMILY_MEDFORD);
|
|
|
|
(void) memset(payload, 0, sizeof (payload));
|
|
req.emr_cmd = MC_CMD_GET_PORT_ASSIGNMENT;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_GET_PORT_ASSIGNMENT_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN;
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail1;
|
|
}
|
|
|
|
if (req.emr_out_length_used < MC_CMD_GET_PORT_ASSIGNMENT_OUT_LEN) {
|
|
rc = EMSGSIZE;
|
|
goto fail2;
|
|
}
|
|
|
|
*portp = MCDI_OUT_DWORD(req, GET_PORT_ASSIGNMENT_OUT_PORT);
|
|
|
|
return (0);
|
|
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_mcdi_get_port_modes(
|
|
__in efx_nic_t *enp,
|
|
__out uint32_t *modesp,
|
|
__out_opt uint32_t *current_modep)
|
|
{
|
|
efx_mcdi_req_t req;
|
|
uint8_t payload[MAX(MC_CMD_GET_PORT_MODES_IN_LEN,
|
|
MC_CMD_GET_PORT_MODES_OUT_LEN)];
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
|
|
enp->en_family == EFX_FAMILY_MEDFORD);
|
|
|
|
(void) memset(payload, 0, sizeof (payload));
|
|
req.emr_cmd = MC_CMD_GET_PORT_MODES;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_GET_PORT_MODES_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_GET_PORT_MODES_OUT_LEN;
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail1;
|
|
}
|
|
|
|
/*
|
|
* Require only Modes and DefaultMode fields, unless the current mode
|
|
* was requested (CurrentMode field was added for Medford).
|
|
*/
|
|
if (req.emr_out_length_used <
|
|
MC_CMD_GET_PORT_MODES_OUT_CURRENT_MODE_OFST) {
|
|
rc = EMSGSIZE;
|
|
goto fail2;
|
|
}
|
|
if ((current_modep != NULL) && (req.emr_out_length_used <
|
|
MC_CMD_GET_PORT_MODES_OUT_CURRENT_MODE_OFST + 4)) {
|
|
rc = EMSGSIZE;
|
|
goto fail3;
|
|
}
|
|
|
|
*modesp = MCDI_OUT_DWORD(req, GET_PORT_MODES_OUT_MODES);
|
|
|
|
if (current_modep != NULL) {
|
|
*current_modep = MCDI_OUT_DWORD(req,
|
|
GET_PORT_MODES_OUT_CURRENT_MODE);
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail3:
|
|
EFSYS_PROBE(fail3);
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
ef10_nic_get_port_mode_bandwidth(
|
|
__in uint32_t port_mode,
|
|
__out uint32_t *bandwidth_mbpsp)
|
|
{
|
|
uint32_t bandwidth;
|
|
efx_rc_t rc;
|
|
|
|
switch (port_mode) {
|
|
case TLV_PORT_MODE_10G:
|
|
bandwidth = 10000;
|
|
break;
|
|
case TLV_PORT_MODE_10G_10G:
|
|
bandwidth = 10000 * 2;
|
|
break;
|
|
case TLV_PORT_MODE_10G_10G_10G_10G:
|
|
case TLV_PORT_MODE_10G_10G_10G_10G_Q:
|
|
case TLV_PORT_MODE_10G_10G_10G_10G_Q1_Q2:
|
|
case TLV_PORT_MODE_10G_10G_10G_10G_Q2:
|
|
bandwidth = 10000 * 4;
|
|
break;
|
|
case TLV_PORT_MODE_40G:
|
|
bandwidth = 40000;
|
|
break;
|
|
case TLV_PORT_MODE_40G_40G:
|
|
bandwidth = 40000 * 2;
|
|
break;
|
|
case TLV_PORT_MODE_40G_10G_10G:
|
|
case TLV_PORT_MODE_10G_10G_40G:
|
|
bandwidth = 40000 + (10000 * 2);
|
|
break;
|
|
default:
|
|
rc = EINVAL;
|
|
goto fail1;
|
|
}
|
|
|
|
*bandwidth_mbpsp = bandwidth;
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
static __checkReturn efx_rc_t
|
|
efx_mcdi_vadaptor_alloc(
|
|
__in efx_nic_t *enp,
|
|
__in uint32_t port_id)
|
|
{
|
|
efx_mcdi_req_t req;
|
|
uint8_t payload[MAX(MC_CMD_VADAPTOR_ALLOC_IN_LEN,
|
|
MC_CMD_VADAPTOR_ALLOC_OUT_LEN)];
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT3U(enp->en_vport_id, ==, EVB_PORT_ID_NULL);
|
|
|
|
(void) memset(payload, 0, sizeof (payload));
|
|
req.emr_cmd = MC_CMD_VADAPTOR_ALLOC;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_VADAPTOR_ALLOC_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_VADAPTOR_ALLOC_OUT_LEN;
|
|
|
|
MCDI_IN_SET_DWORD(req, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
|
|
MCDI_IN_POPULATE_DWORD_1(req, VADAPTOR_ALLOC_IN_FLAGS,
|
|
VADAPTOR_ALLOC_IN_FLAG_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED,
|
|
enp->en_nic_cfg.enc_allow_set_mac_with_installed_filters ? 1 : 0);
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail1;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
static __checkReturn efx_rc_t
|
|
efx_mcdi_vadaptor_free(
|
|
__in efx_nic_t *enp,
|
|
__in uint32_t port_id)
|
|
{
|
|
efx_mcdi_req_t req;
|
|
uint8_t payload[MAX(MC_CMD_VADAPTOR_FREE_IN_LEN,
|
|
MC_CMD_VADAPTOR_FREE_OUT_LEN)];
|
|
efx_rc_t rc;
|
|
|
|
(void) memset(payload, 0, sizeof (payload));
|
|
req.emr_cmd = MC_CMD_VADAPTOR_FREE;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_VADAPTOR_FREE_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_VADAPTOR_FREE_OUT_LEN;
|
|
|
|
MCDI_IN_SET_DWORD(req, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail1;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_mcdi_get_mac_address_pf(
|
|
__in efx_nic_t *enp,
|
|
__out_ecount_opt(6) uint8_t mac_addrp[6])
|
|
{
|
|
efx_mcdi_req_t req;
|
|
uint8_t payload[MAX(MC_CMD_GET_MAC_ADDRESSES_IN_LEN,
|
|
MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)];
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
|
|
enp->en_family == EFX_FAMILY_MEDFORD);
|
|
|
|
(void) memset(payload, 0, sizeof (payload));
|
|
req.emr_cmd = MC_CMD_GET_MAC_ADDRESSES;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_GET_MAC_ADDRESSES_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_GET_MAC_ADDRESSES_OUT_LEN;
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail1;
|
|
}
|
|
|
|
if (req.emr_out_length_used < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN) {
|
|
rc = EMSGSIZE;
|
|
goto fail2;
|
|
}
|
|
|
|
if (MCDI_OUT_DWORD(req, GET_MAC_ADDRESSES_OUT_MAC_COUNT) < 1) {
|
|
rc = ENOENT;
|
|
goto fail3;
|
|
}
|
|
|
|
if (mac_addrp != NULL) {
|
|
uint8_t *addrp;
|
|
|
|
addrp = MCDI_OUT2(req, uint8_t,
|
|
GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE);
|
|
|
|
EFX_MAC_ADDR_COPY(mac_addrp, addrp);
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail3:
|
|
EFSYS_PROBE(fail3);
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_mcdi_get_mac_address_vf(
|
|
__in efx_nic_t *enp,
|
|
__out_ecount_opt(6) uint8_t mac_addrp[6])
|
|
{
|
|
efx_mcdi_req_t req;
|
|
uint8_t payload[MAX(MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN,
|
|
MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX)];
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
|
|
enp->en_family == EFX_FAMILY_MEDFORD);
|
|
|
|
(void) memset(payload, 0, sizeof (payload));
|
|
req.emr_cmd = MC_CMD_VPORT_GET_MAC_ADDRESSES;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX;
|
|
|
|
MCDI_IN_SET_DWORD(req, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
|
|
EVB_PORT_ID_ASSIGNED);
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail1;
|
|
}
|
|
|
|
if (req.emr_out_length_used <
|
|
MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN) {
|
|
rc = EMSGSIZE;
|
|
goto fail2;
|
|
}
|
|
|
|
if (MCDI_OUT_DWORD(req,
|
|
VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT) < 1) {
|
|
rc = ENOENT;
|
|
goto fail3;
|
|
}
|
|
|
|
if (mac_addrp != NULL) {
|
|
uint8_t *addrp;
|
|
|
|
addrp = MCDI_OUT2(req, uint8_t,
|
|
VPORT_GET_MAC_ADDRESSES_OUT_MACADDR);
|
|
|
|
EFX_MAC_ADDR_COPY(mac_addrp, addrp);
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail3:
|
|
EFSYS_PROBE(fail3);
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_mcdi_get_clock(
|
|
__in efx_nic_t *enp,
|
|
__out uint32_t *sys_freqp,
|
|
__out uint32_t *dpcpu_freqp)
|
|
{
|
|
efx_mcdi_req_t req;
|
|
uint8_t payload[MAX(MC_CMD_GET_CLOCK_IN_LEN,
|
|
MC_CMD_GET_CLOCK_OUT_LEN)];
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
|
|
enp->en_family == EFX_FAMILY_MEDFORD);
|
|
|
|
(void) memset(payload, 0, sizeof (payload));
|
|
req.emr_cmd = MC_CMD_GET_CLOCK;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_GET_CLOCK_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_GET_CLOCK_OUT_LEN;
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail1;
|
|
}
|
|
|
|
if (req.emr_out_length_used < MC_CMD_GET_CLOCK_OUT_LEN) {
|
|
rc = EMSGSIZE;
|
|
goto fail2;
|
|
}
|
|
|
|
*sys_freqp = MCDI_OUT_DWORD(req, GET_CLOCK_OUT_SYS_FREQ);
|
|
if (*sys_freqp == 0) {
|
|
rc = EINVAL;
|
|
goto fail3;
|
|
}
|
|
*dpcpu_freqp = MCDI_OUT_DWORD(req, GET_CLOCK_OUT_DPCPU_FREQ);
|
|
if (*dpcpu_freqp == 0) {
|
|
rc = EINVAL;
|
|
goto fail4;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail4:
|
|
EFSYS_PROBE(fail4);
|
|
fail3:
|
|
EFSYS_PROBE(fail3);
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
efx_mcdi_get_vector_cfg(
|
|
__in efx_nic_t *enp,
|
|
__out_opt uint32_t *vec_basep,
|
|
__out_opt uint32_t *pf_nvecp,
|
|
__out_opt uint32_t *vf_nvecp)
|
|
{
|
|
efx_mcdi_req_t req;
|
|
uint8_t payload[MAX(MC_CMD_GET_VECTOR_CFG_IN_LEN,
|
|
MC_CMD_GET_VECTOR_CFG_OUT_LEN)];
|
|
efx_rc_t rc;
|
|
|
|
(void) memset(payload, 0, sizeof (payload));
|
|
req.emr_cmd = MC_CMD_GET_VECTOR_CFG;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_GET_VECTOR_CFG_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_GET_VECTOR_CFG_OUT_LEN;
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail1;
|
|
}
|
|
|
|
if (req.emr_out_length_used < MC_CMD_GET_VECTOR_CFG_OUT_LEN) {
|
|
rc = EMSGSIZE;
|
|
goto fail2;
|
|
}
|
|
|
|
if (vec_basep != NULL)
|
|
*vec_basep = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VEC_BASE);
|
|
if (pf_nvecp != NULL)
|
|
*pf_nvecp = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VECS_PER_PF);
|
|
if (vf_nvecp != NULL)
|
|
*vf_nvecp = MCDI_OUT_DWORD(req, GET_VECTOR_CFG_OUT_VECS_PER_VF);
|
|
|
|
return (0);
|
|
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
static __checkReturn efx_rc_t
|
|
efx_mcdi_alloc_vis(
|
|
__in efx_nic_t *enp,
|
|
__in uint32_t min_vi_count,
|
|
__in uint32_t max_vi_count,
|
|
__out uint32_t *vi_basep,
|
|
__out uint32_t *vi_countp,
|
|
__out uint32_t *vi_shiftp)
|
|
{
|
|
efx_mcdi_req_t req;
|
|
uint8_t payload[MAX(MC_CMD_ALLOC_VIS_IN_LEN,
|
|
MC_CMD_ALLOC_VIS_EXT_OUT_LEN)];
|
|
efx_rc_t rc;
|
|
|
|
if (vi_countp == NULL) {
|
|
rc = EINVAL;
|
|
goto fail1;
|
|
}
|
|
|
|
(void) memset(payload, 0, sizeof (payload));
|
|
req.emr_cmd = MC_CMD_ALLOC_VIS;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_ALLOC_VIS_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_ALLOC_VIS_EXT_OUT_LEN;
|
|
|
|
MCDI_IN_SET_DWORD(req, ALLOC_VIS_IN_MIN_VI_COUNT, min_vi_count);
|
|
MCDI_IN_SET_DWORD(req, ALLOC_VIS_IN_MAX_VI_COUNT, max_vi_count);
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail2;
|
|
}
|
|
|
|
if (req.emr_out_length_used < MC_CMD_ALLOC_VIS_OUT_LEN) {
|
|
rc = EMSGSIZE;
|
|
goto fail3;
|
|
}
|
|
|
|
*vi_basep = MCDI_OUT_DWORD(req, ALLOC_VIS_OUT_VI_BASE);
|
|
*vi_countp = MCDI_OUT_DWORD(req, ALLOC_VIS_OUT_VI_COUNT);
|
|
|
|
/* Report VI_SHIFT if available (always zero for Huntington) */
|
|
if (req.emr_out_length_used < MC_CMD_ALLOC_VIS_EXT_OUT_LEN)
|
|
*vi_shiftp = 0;
|
|
else
|
|
*vi_shiftp = MCDI_OUT_DWORD(req, ALLOC_VIS_EXT_OUT_VI_SHIFT);
|
|
|
|
return (0);
|
|
|
|
fail3:
|
|
EFSYS_PROBE(fail3);
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
|
|
static __checkReturn efx_rc_t
|
|
efx_mcdi_free_vis(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
efx_mcdi_req_t req;
|
|
efx_rc_t rc;
|
|
|
|
EFX_STATIC_ASSERT(MC_CMD_FREE_VIS_IN_LEN == 0);
|
|
EFX_STATIC_ASSERT(MC_CMD_FREE_VIS_OUT_LEN == 0);
|
|
|
|
req.emr_cmd = MC_CMD_FREE_VIS;
|
|
req.emr_in_buf = NULL;
|
|
req.emr_in_length = 0;
|
|
req.emr_out_buf = NULL;
|
|
req.emr_out_length = 0;
|
|
|
|
efx_mcdi_execute_quiet(enp, &req);
|
|
|
|
/* Ignore ELREADY (no allocated VIs, so nothing to free) */
|
|
if ((req.emr_rc != 0) && (req.emr_rc != EALREADY)) {
|
|
rc = req.emr_rc;
|
|
goto fail1;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
|
|
static __checkReturn efx_rc_t
|
|
efx_mcdi_alloc_piobuf(
|
|
__in efx_nic_t *enp,
|
|
__out efx_piobuf_handle_t *handlep)
|
|
{
|
|
efx_mcdi_req_t req;
|
|
uint8_t payload[MAX(MC_CMD_ALLOC_PIOBUF_IN_LEN,
|
|
MC_CMD_ALLOC_PIOBUF_OUT_LEN)];
|
|
efx_rc_t rc;
|
|
|
|
if (handlep == NULL) {
|
|
rc = EINVAL;
|
|
goto fail1;
|
|
}
|
|
|
|
(void) memset(payload, 0, sizeof (payload));
|
|
req.emr_cmd = MC_CMD_ALLOC_PIOBUF;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_ALLOC_PIOBUF_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_ALLOC_PIOBUF_OUT_LEN;
|
|
|
|
efx_mcdi_execute_quiet(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail2;
|
|
}
|
|
|
|
if (req.emr_out_length_used < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
|
|
rc = EMSGSIZE;
|
|
goto fail3;
|
|
}
|
|
|
|
*handlep = MCDI_OUT_DWORD(req, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
|
|
|
|
return (0);
|
|
|
|
fail3:
|
|
EFSYS_PROBE(fail3);
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
static __checkReturn efx_rc_t
|
|
efx_mcdi_free_piobuf(
|
|
__in efx_nic_t *enp,
|
|
__in efx_piobuf_handle_t handle)
|
|
{
|
|
efx_mcdi_req_t req;
|
|
uint8_t payload[MAX(MC_CMD_FREE_PIOBUF_IN_LEN,
|
|
MC_CMD_FREE_PIOBUF_OUT_LEN)];
|
|
efx_rc_t rc;
|
|
|
|
(void) memset(payload, 0, sizeof (payload));
|
|
req.emr_cmd = MC_CMD_FREE_PIOBUF;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_FREE_PIOBUF_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_FREE_PIOBUF_OUT_LEN;
|
|
|
|
MCDI_IN_SET_DWORD(req, FREE_PIOBUF_IN_PIOBUF_HANDLE, handle);
|
|
|
|
efx_mcdi_execute_quiet(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail1;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
static __checkReturn efx_rc_t
|
|
efx_mcdi_link_piobuf(
|
|
__in efx_nic_t *enp,
|
|
__in uint32_t vi_index,
|
|
__in efx_piobuf_handle_t handle)
|
|
{
|
|
efx_mcdi_req_t req;
|
|
uint8_t payload[MAX(MC_CMD_LINK_PIOBUF_IN_LEN,
|
|
MC_CMD_LINK_PIOBUF_OUT_LEN)];
|
|
efx_rc_t rc;
|
|
|
|
(void) memset(payload, 0, sizeof (payload));
|
|
req.emr_cmd = MC_CMD_LINK_PIOBUF;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_LINK_PIOBUF_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_LINK_PIOBUF_OUT_LEN;
|
|
|
|
MCDI_IN_SET_DWORD(req, LINK_PIOBUF_IN_PIOBUF_HANDLE, handle);
|
|
MCDI_IN_SET_DWORD(req, LINK_PIOBUF_IN_TXQ_INSTANCE, vi_index);
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail1;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
static __checkReturn efx_rc_t
|
|
efx_mcdi_unlink_piobuf(
|
|
__in efx_nic_t *enp,
|
|
__in uint32_t vi_index)
|
|
{
|
|
efx_mcdi_req_t req;
|
|
uint8_t payload[MAX(MC_CMD_UNLINK_PIOBUF_IN_LEN,
|
|
MC_CMD_UNLINK_PIOBUF_OUT_LEN)];
|
|
efx_rc_t rc;
|
|
|
|
(void) memset(payload, 0, sizeof (payload));
|
|
req.emr_cmd = MC_CMD_UNLINK_PIOBUF;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_UNLINK_PIOBUF_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_UNLINK_PIOBUF_OUT_LEN;
|
|
|
|
MCDI_IN_SET_DWORD(req, UNLINK_PIOBUF_IN_TXQ_INSTANCE, vi_index);
|
|
|
|
efx_mcdi_execute_quiet(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail1;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
static void
|
|
ef10_nic_alloc_piobufs(
|
|
__in efx_nic_t *enp,
|
|
__in uint32_t max_piobuf_count)
|
|
{
|
|
efx_piobuf_handle_t *handlep;
|
|
unsigned int i;
|
|
|
|
EFSYS_ASSERT3U(max_piobuf_count, <=,
|
|
EFX_ARRAY_SIZE(enp->en_arch.ef10.ena_piobuf_handle));
|
|
|
|
enp->en_arch.ef10.ena_piobuf_count = 0;
|
|
|
|
for (i = 0; i < max_piobuf_count; i++) {
|
|
handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
|
|
|
|
if (efx_mcdi_alloc_piobuf(enp, handlep) != 0)
|
|
goto fail1;
|
|
|
|
enp->en_arch.ef10.ena_pio_alloc_map[i] = 0;
|
|
enp->en_arch.ef10.ena_piobuf_count++;
|
|
}
|
|
|
|
return;
|
|
|
|
fail1:
|
|
for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
|
|
handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
|
|
|
|
efx_mcdi_free_piobuf(enp, *handlep);
|
|
*handlep = EFX_PIOBUF_HANDLE_INVALID;
|
|
}
|
|
enp->en_arch.ef10.ena_piobuf_count = 0;
|
|
}
|
|
|
|
|
|
static void
|
|
ef10_nic_free_piobufs(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
efx_piobuf_handle_t *handlep;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
|
|
handlep = &enp->en_arch.ef10.ena_piobuf_handle[i];
|
|
|
|
efx_mcdi_free_piobuf(enp, *handlep);
|
|
*handlep = EFX_PIOBUF_HANDLE_INVALID;
|
|
}
|
|
enp->en_arch.ef10.ena_piobuf_count = 0;
|
|
}
|
|
|
|
/* Sub-allocate a block from a piobuf */
|
|
__checkReturn efx_rc_t
|
|
ef10_nic_pio_alloc(
|
|
__inout efx_nic_t *enp,
|
|
__out uint32_t *bufnump,
|
|
__out efx_piobuf_handle_t *handlep,
|
|
__out uint32_t *blknump,
|
|
__out uint32_t *offsetp,
|
|
__out size_t *sizep)
|
|
{
|
|
efx_nic_cfg_t *encp = &enp->en_nic_cfg;
|
|
efx_drv_cfg_t *edcp = &enp->en_drv_cfg;
|
|
uint32_t blk_per_buf;
|
|
uint32_t buf, blk;
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
|
|
enp->en_family == EFX_FAMILY_MEDFORD);
|
|
EFSYS_ASSERT(bufnump);
|
|
EFSYS_ASSERT(handlep);
|
|
EFSYS_ASSERT(blknump);
|
|
EFSYS_ASSERT(offsetp);
|
|
EFSYS_ASSERT(sizep);
|
|
|
|
if ((edcp->edc_pio_alloc_size == 0) ||
|
|
(enp->en_arch.ef10.ena_piobuf_count == 0)) {
|
|
rc = ENOMEM;
|
|
goto fail1;
|
|
}
|
|
blk_per_buf = encp->enc_piobuf_size / edcp->edc_pio_alloc_size;
|
|
|
|
for (buf = 0; buf < enp->en_arch.ef10.ena_piobuf_count; buf++) {
|
|
uint32_t *map = &enp->en_arch.ef10.ena_pio_alloc_map[buf];
|
|
|
|
if (~(*map) == 0)
|
|
continue;
|
|
|
|
EFSYS_ASSERT3U(blk_per_buf, <=, (8 * sizeof (*map)));
|
|
for (blk = 0; blk < blk_per_buf; blk++) {
|
|
if ((*map & (1u << blk)) == 0) {
|
|
*map |= (1u << blk);
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
rc = ENOMEM;
|
|
goto fail2;
|
|
|
|
done:
|
|
*handlep = enp->en_arch.ef10.ena_piobuf_handle[buf];
|
|
*bufnump = buf;
|
|
*blknump = blk;
|
|
*sizep = edcp->edc_pio_alloc_size;
|
|
*offsetp = blk * (*sizep);
|
|
|
|
return (0);
|
|
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
/* Free a piobuf sub-allocated block */
|
|
__checkReturn efx_rc_t
|
|
ef10_nic_pio_free(
|
|
__inout efx_nic_t *enp,
|
|
__in uint32_t bufnum,
|
|
__in uint32_t blknum)
|
|
{
|
|
uint32_t *map;
|
|
efx_rc_t rc;
|
|
|
|
if ((bufnum >= enp->en_arch.ef10.ena_piobuf_count) ||
|
|
(blknum >= (8 * sizeof (*map)))) {
|
|
rc = EINVAL;
|
|
goto fail1;
|
|
}
|
|
|
|
map = &enp->en_arch.ef10.ena_pio_alloc_map[bufnum];
|
|
if ((*map & (1u << blknum)) == 0) {
|
|
rc = ENOENT;
|
|
goto fail2;
|
|
}
|
|
*map &= ~(1u << blknum);
|
|
|
|
return (0);
|
|
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
ef10_nic_pio_link(
|
|
__inout efx_nic_t *enp,
|
|
__in uint32_t vi_index,
|
|
__in efx_piobuf_handle_t handle)
|
|
{
|
|
return (efx_mcdi_link_piobuf(enp, vi_index, handle));
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
ef10_nic_pio_unlink(
|
|
__inout efx_nic_t *enp,
|
|
__in uint32_t vi_index)
|
|
{
|
|
return (efx_mcdi_unlink_piobuf(enp, vi_index));
|
|
}
|
|
|
|
static __checkReturn efx_rc_t
|
|
ef10_mcdi_get_pf_count(
|
|
__in efx_nic_t *enp,
|
|
__out uint32_t *pf_countp)
|
|
{
|
|
efx_mcdi_req_t req;
|
|
uint8_t payload[MAX(MC_CMD_GET_PF_COUNT_IN_LEN,
|
|
MC_CMD_GET_PF_COUNT_OUT_LEN)];
|
|
efx_rc_t rc;
|
|
|
|
(void) memset(payload, 0, sizeof (payload));
|
|
req.emr_cmd = MC_CMD_GET_PF_COUNT;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_GET_PF_COUNT_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_GET_PF_COUNT_OUT_LEN;
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail1;
|
|
}
|
|
|
|
if (req.emr_out_length_used < MC_CMD_GET_PF_COUNT_OUT_LEN) {
|
|
rc = EMSGSIZE;
|
|
goto fail2;
|
|
}
|
|
|
|
*pf_countp = *MCDI_OUT(req, uint8_t,
|
|
MC_CMD_GET_PF_COUNT_OUT_PF_COUNT_OFST);
|
|
|
|
EFSYS_ASSERT(*pf_countp != 0);
|
|
|
|
return (0);
|
|
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
ef10_get_datapath_caps(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
|
|
uint32_t flags;
|
|
uint32_t flags2;
|
|
uint32_t tso2nc;
|
|
efx_rc_t rc;
|
|
|
|
if ((rc = efx_mcdi_get_capabilities(enp, &flags, NULL, NULL,
|
|
&flags2, &tso2nc)) != 0)
|
|
goto fail1;
|
|
|
|
if ((rc = ef10_mcdi_get_pf_count(enp, &encp->enc_hw_pf_count)) != 0)
|
|
goto fail1;
|
|
|
|
#define CAP_FLAG(flags1, field) \
|
|
((flags1) & (1 << (MC_CMD_GET_CAPABILITIES_V2_OUT_ ## field ## _LBN)))
|
|
|
|
#define CAP_FLAG2(flags2, field) \
|
|
((flags2) & (1 << (MC_CMD_GET_CAPABILITIES_V2_OUT_ ## field ## _LBN)))
|
|
|
|
/*
|
|
* Huntington RXDP firmware inserts a 0 or 14 byte prefix.
|
|
* We only support the 14 byte prefix here.
|
|
*/
|
|
if (CAP_FLAG(flags, RX_PREFIX_LEN_14) == 0) {
|
|
rc = ENOTSUP;
|
|
goto fail2;
|
|
}
|
|
encp->enc_rx_prefix_size = 14;
|
|
|
|
/* Check if the firmware supports TSO */
|
|
encp->enc_fw_assisted_tso_enabled =
|
|
CAP_FLAG(flags, TX_TSO) ? B_TRUE : B_FALSE;
|
|
|
|
/* Check if the firmware supports FATSOv2 */
|
|
encp->enc_fw_assisted_tso_v2_enabled =
|
|
CAP_FLAG2(flags2, TX_TSO_V2) ? B_TRUE : B_FALSE;
|
|
|
|
/* Get the number of TSO contexts (FATSOv2) */
|
|
encp->enc_fw_assisted_tso_v2_n_contexts =
|
|
CAP_FLAG2(flags2, TX_TSO_V2) ? tso2nc : 0;
|
|
|
|
/* Check if the firmware has vadapter/vport/vswitch support */
|
|
encp->enc_datapath_cap_evb =
|
|
CAP_FLAG(flags, EVB) ? B_TRUE : B_FALSE;
|
|
|
|
/* Check if the firmware supports VLAN insertion */
|
|
encp->enc_hw_tx_insert_vlan_enabled =
|
|
CAP_FLAG(flags, TX_VLAN_INSERTION) ? B_TRUE : B_FALSE;
|
|
|
|
/* Check if the firmware supports RX event batching */
|
|
encp->enc_rx_batching_enabled =
|
|
CAP_FLAG(flags, RX_BATCHING) ? B_TRUE : B_FALSE;
|
|
|
|
/*
|
|
* Even if batching isn't reported as supported, we may still get
|
|
* batched events.
|
|
*/
|
|
encp->enc_rx_batch_max = 16;
|
|
|
|
/* Check if the firmware supports disabling scatter on RXQs */
|
|
encp->enc_rx_disable_scatter_supported =
|
|
CAP_FLAG(flags, RX_DISABLE_SCATTER) ? B_TRUE : B_FALSE;
|
|
|
|
/* Check if the firmware supports packed stream mode */
|
|
encp->enc_rx_packed_stream_supported =
|
|
CAP_FLAG(flags, RX_PACKED_STREAM) ? B_TRUE : B_FALSE;
|
|
|
|
/*
|
|
* Check if the firmware supports configurable buffer sizes
|
|
* for packed stream mode (otherwise buffer size is 1Mbyte)
|
|
*/
|
|
encp->enc_rx_var_packed_stream_supported =
|
|
CAP_FLAG(flags, RX_PACKED_STREAM_VAR_BUFFERS) ? B_TRUE : B_FALSE;
|
|
|
|
/* Check if the firmware supports set mac with running filters */
|
|
encp->enc_allow_set_mac_with_installed_filters =
|
|
CAP_FLAG(flags, VADAPTOR_PERMIT_SET_MAC_WHEN_FILTERS_INSTALLED) ?
|
|
B_TRUE : B_FALSE;
|
|
|
|
/*
|
|
* Check if firmware supports the extended MC_CMD_SET_MAC, which allows
|
|
* specifying which parameters to configure.
|
|
*/
|
|
encp->enc_enhanced_set_mac_supported =
|
|
CAP_FLAG(flags, SET_MAC_ENHANCED) ? B_TRUE : B_FALSE;
|
|
|
|
/*
|
|
* Check if firmware supports version 2 of MC_CMD_INIT_EVQ, which allows
|
|
* us to let the firmware choose the settings to use on an EVQ.
|
|
*/
|
|
encp->enc_init_evq_v2_supported =
|
|
CAP_FLAG2(flags2, INIT_EVQ_V2) ? B_TRUE : B_FALSE;
|
|
|
|
/*
|
|
* Check if firmware-verified NVRAM updates must be used.
|
|
*
|
|
* The firmware trusted installer requires all NVRAM updates to use
|
|
* version 2 of MC_CMD_NVRAM_UPDATE_START (to enable verified update)
|
|
* and version 2 of MC_CMD_NVRAM_UPDATE_FINISH (to verify the updated
|
|
* partition and report the result).
|
|
*/
|
|
encp->enc_nvram_update_verify_result_supported =
|
|
CAP_FLAG2(flags2, NVRAM_UPDATE_REPORT_VERIFY_RESULT) ?
|
|
B_TRUE : B_FALSE;
|
|
|
|
/*
|
|
* Check if firmware provides packet memory and Rx datapath
|
|
* counters.
|
|
*/
|
|
encp->enc_pm_and_rxdp_counters =
|
|
CAP_FLAG(flags, PM_AND_RXDP_COUNTERS) ? B_TRUE : B_FALSE;
|
|
|
|
/*
|
|
* Check if the 40G MAC hardware is capable of reporting
|
|
* statistics for Tx size bins.
|
|
*/
|
|
encp->enc_mac_stats_40g_tx_size_bins =
|
|
CAP_FLAG2(flags2, MAC_STATS_40G_TX_SIZE_BINS) ? B_TRUE : B_FALSE;
|
|
|
|
/*
|
|
* Check if firmware supports VXLAN and NVGRE tunnels.
|
|
* The capability indicates Geneve protocol support as well.
|
|
*/
|
|
if (CAP_FLAG(flags, VXLAN_NVGRE))
|
|
encp->enc_tunnel_encapsulations_supported =
|
|
(1u << EFX_TUNNEL_PROTOCOL_VXLAN) |
|
|
(1u << EFX_TUNNEL_PROTOCOL_GENEVE) |
|
|
(1u << EFX_TUNNEL_PROTOCOL_NVGRE);
|
|
|
|
#undef CAP_FLAG
|
|
#undef CAP_FLAG2
|
|
|
|
return (0);
|
|
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
|
|
#define EF10_LEGACY_PF_PRIVILEGE_MASK \
|
|
(MC_CMD_PRIVILEGE_MASK_IN_GRP_ADMIN | \
|
|
MC_CMD_PRIVILEGE_MASK_IN_GRP_LINK | \
|
|
MC_CMD_PRIVILEGE_MASK_IN_GRP_ONLOAD | \
|
|
MC_CMD_PRIVILEGE_MASK_IN_GRP_PTP | \
|
|
MC_CMD_PRIVILEGE_MASK_IN_GRP_INSECURE_FILTERS | \
|
|
MC_CMD_PRIVILEGE_MASK_IN_GRP_MAC_SPOOFING | \
|
|
MC_CMD_PRIVILEGE_MASK_IN_GRP_UNICAST | \
|
|
MC_CMD_PRIVILEGE_MASK_IN_GRP_MULTICAST | \
|
|
MC_CMD_PRIVILEGE_MASK_IN_GRP_BROADCAST | \
|
|
MC_CMD_PRIVILEGE_MASK_IN_GRP_ALL_MULTICAST | \
|
|
MC_CMD_PRIVILEGE_MASK_IN_GRP_PROMISCUOUS)
|
|
|
|
#define EF10_LEGACY_VF_PRIVILEGE_MASK 0
|
|
|
|
|
|
__checkReturn efx_rc_t
|
|
ef10_get_privilege_mask(
|
|
__in efx_nic_t *enp,
|
|
__out uint32_t *maskp)
|
|
{
|
|
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
|
|
uint32_t mask;
|
|
efx_rc_t rc;
|
|
|
|
if ((rc = efx_mcdi_privilege_mask(enp, encp->enc_pf, encp->enc_vf,
|
|
&mask)) != 0) {
|
|
if (rc != ENOTSUP)
|
|
goto fail1;
|
|
|
|
/* Fallback for old firmware without privilege mask support */
|
|
if (EFX_PCI_FUNCTION_IS_PF(encp)) {
|
|
/* Assume PF has admin privilege */
|
|
mask = EF10_LEGACY_PF_PRIVILEGE_MASK;
|
|
} else {
|
|
/* VF is always unprivileged by default */
|
|
mask = EF10_LEGACY_VF_PRIVILEGE_MASK;
|
|
}
|
|
}
|
|
|
|
*maskp = mask;
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
|
|
/*
|
|
* Table of mapping schemes from port number to the number of the external
|
|
* connector on the board. The external numbering does not distinguish
|
|
* off-board separated outputs such as from multi-headed cables.
|
|
*
|
|
* The count of adjacent port numbers that map to each external port
|
|
* and the offset in the numbering, is determined by the chip family and
|
|
* current port mode.
|
|
*
|
|
* For the Huntington family, the current port mode cannot be discovered,
|
|
* so the mapping used is instead the last match in the table to the full
|
|
* set of port modes to which the NIC can be configured. Therefore the
|
|
* ordering of entries in the the mapping table is significant.
|
|
*/
|
|
static struct {
|
|
efx_family_t family;
|
|
uint32_t modes_mask;
|
|
int32_t count;
|
|
int32_t offset;
|
|
} __ef10_external_port_mappings[] = {
|
|
/* Supported modes with 1 output per external port */
|
|
{
|
|
EFX_FAMILY_HUNTINGTON,
|
|
(1 << TLV_PORT_MODE_10G) |
|
|
(1 << TLV_PORT_MODE_10G_10G) |
|
|
(1 << TLV_PORT_MODE_10G_10G_10G_10G),
|
|
1,
|
|
1
|
|
},
|
|
{
|
|
EFX_FAMILY_MEDFORD,
|
|
(1 << TLV_PORT_MODE_10G) |
|
|
(1 << TLV_PORT_MODE_10G_10G),
|
|
1,
|
|
1
|
|
},
|
|
/* Supported modes with 2 outputs per external port */
|
|
{
|
|
EFX_FAMILY_HUNTINGTON,
|
|
(1 << TLV_PORT_MODE_40G) |
|
|
(1 << TLV_PORT_MODE_40G_40G) |
|
|
(1 << TLV_PORT_MODE_40G_10G_10G) |
|
|
(1 << TLV_PORT_MODE_10G_10G_40G),
|
|
2,
|
|
1
|
|
},
|
|
{
|
|
EFX_FAMILY_MEDFORD,
|
|
(1 << TLV_PORT_MODE_40G) |
|
|
(1 << TLV_PORT_MODE_40G_40G) |
|
|
(1 << TLV_PORT_MODE_40G_10G_10G) |
|
|
(1 << TLV_PORT_MODE_10G_10G_40G) |
|
|
(1 << TLV_PORT_MODE_10G_10G_10G_10G_Q1_Q2),
|
|
2,
|
|
1
|
|
},
|
|
/* Supported modes with 4 outputs per external port */
|
|
{
|
|
EFX_FAMILY_MEDFORD,
|
|
(1 << TLV_PORT_MODE_10G_10G_10G_10G_Q) |
|
|
(1 << TLV_PORT_MODE_10G_10G_10G_10G_Q1),
|
|
4,
|
|
1,
|
|
},
|
|
{
|
|
EFX_FAMILY_MEDFORD,
|
|
(1 << TLV_PORT_MODE_10G_10G_10G_10G_Q2),
|
|
4,
|
|
2
|
|
},
|
|
};
|
|
|
|
__checkReturn efx_rc_t
|
|
ef10_external_port_mapping(
|
|
__in efx_nic_t *enp,
|
|
__in uint32_t port,
|
|
__out uint8_t *external_portp)
|
|
{
|
|
efx_rc_t rc;
|
|
int i;
|
|
uint32_t port_modes;
|
|
uint32_t matches;
|
|
uint32_t current;
|
|
int32_t count = 1; /* Default 1-1 mapping */
|
|
int32_t offset = 1; /* Default starting external port number */
|
|
|
|
if ((rc = efx_mcdi_get_port_modes(enp, &port_modes, ¤t)) != 0) {
|
|
/*
|
|
* No current port mode information
|
|
* - infer mapping from available modes
|
|
*/
|
|
if ((rc = efx_mcdi_get_port_modes(enp,
|
|
&port_modes, NULL)) != 0) {
|
|
/*
|
|
* No port mode information available
|
|
* - use default mapping
|
|
*/
|
|
goto out;
|
|
}
|
|
} else {
|
|
/* Only need to scan the current mode */
|
|
port_modes = 1 << current;
|
|
}
|
|
|
|
/*
|
|
* Infer the internal port -> external port mapping from
|
|
* the possible port modes for this NIC.
|
|
*/
|
|
for (i = 0; i < EFX_ARRAY_SIZE(__ef10_external_port_mappings); ++i) {
|
|
if (__ef10_external_port_mappings[i].family !=
|
|
enp->en_family)
|
|
continue;
|
|
matches = (__ef10_external_port_mappings[i].modes_mask &
|
|
port_modes);
|
|
if (matches != 0) {
|
|
count = __ef10_external_port_mappings[i].count;
|
|
offset = __ef10_external_port_mappings[i].offset;
|
|
port_modes &= ~matches;
|
|
}
|
|
}
|
|
|
|
if (port_modes != 0) {
|
|
/* Some advertised modes are not supported */
|
|
rc = ENOTSUP;
|
|
goto fail1;
|
|
}
|
|
|
|
out:
|
|
/*
|
|
* Scale as required by last matched mode and then convert to
|
|
* correctly offset numbering
|
|
*/
|
|
*external_portp = (uint8_t)((port / count) + offset);
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
|
|
__checkReturn efx_rc_t
|
|
ef10_nic_probe(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
const efx_nic_ops_t *enop = enp->en_enop;
|
|
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
|
|
efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
|
|
enp->en_family == EFX_FAMILY_MEDFORD);
|
|
|
|
/* Read and clear any assertion state */
|
|
if ((rc = efx_mcdi_read_assertion(enp)) != 0)
|
|
goto fail1;
|
|
|
|
/* Exit the assertion handler */
|
|
if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0)
|
|
if (rc != EACCES)
|
|
goto fail2;
|
|
|
|
if ((rc = efx_mcdi_drv_attach(enp, B_TRUE)) != 0)
|
|
goto fail3;
|
|
|
|
if ((rc = enop->eno_board_cfg(enp)) != 0)
|
|
if (rc != EACCES)
|
|
goto fail4;
|
|
|
|
/*
|
|
* Set default driver config limits (based on board config).
|
|
*
|
|
* FIXME: For now allocate a fixed number of VIs which is likely to be
|
|
* sufficient and small enough to allow multiple functions on the same
|
|
* port.
|
|
*/
|
|
edcp->edc_min_vi_count = edcp->edc_max_vi_count =
|
|
MIN(128, MAX(encp->enc_rxq_limit, encp->enc_txq_limit));
|
|
|
|
/* The client driver must configure and enable PIO buffer support */
|
|
edcp->edc_max_piobuf_count = 0;
|
|
edcp->edc_pio_alloc_size = 0;
|
|
|
|
#if EFSYS_OPT_MAC_STATS
|
|
/* Wipe the MAC statistics */
|
|
if ((rc = efx_mcdi_mac_stats_clear(enp)) != 0)
|
|
goto fail5;
|
|
#endif
|
|
|
|
#if EFSYS_OPT_LOOPBACK
|
|
if ((rc = efx_mcdi_get_loopback_modes(enp)) != 0)
|
|
goto fail6;
|
|
#endif
|
|
|
|
#if EFSYS_OPT_MON_STATS
|
|
if ((rc = mcdi_mon_cfg_build(enp)) != 0) {
|
|
/* Unprivileged functions do not have access to sensors */
|
|
if (rc != EACCES)
|
|
goto fail7;
|
|
}
|
|
#endif
|
|
|
|
encp->enc_features = enp->en_features;
|
|
|
|
return (0);
|
|
|
|
#if EFSYS_OPT_MON_STATS
|
|
fail7:
|
|
EFSYS_PROBE(fail7);
|
|
#endif
|
|
#if EFSYS_OPT_LOOPBACK
|
|
fail6:
|
|
EFSYS_PROBE(fail6);
|
|
#endif
|
|
#if EFSYS_OPT_MAC_STATS
|
|
fail5:
|
|
EFSYS_PROBE(fail5);
|
|
#endif
|
|
fail4:
|
|
EFSYS_PROBE(fail4);
|
|
fail3:
|
|
EFSYS_PROBE(fail3);
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
ef10_nic_set_drv_limits(
|
|
__inout efx_nic_t *enp,
|
|
__in efx_drv_limits_t *edlp)
|
|
{
|
|
efx_nic_cfg_t *encp = &(enp->en_nic_cfg);
|
|
efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
|
|
uint32_t min_evq_count, max_evq_count;
|
|
uint32_t min_rxq_count, max_rxq_count;
|
|
uint32_t min_txq_count, max_txq_count;
|
|
efx_rc_t rc;
|
|
|
|
if (edlp == NULL) {
|
|
rc = EINVAL;
|
|
goto fail1;
|
|
}
|
|
|
|
/* Get minimum required and maximum usable VI limits */
|
|
min_evq_count = MIN(edlp->edl_min_evq_count, encp->enc_evq_limit);
|
|
min_rxq_count = MIN(edlp->edl_min_rxq_count, encp->enc_rxq_limit);
|
|
min_txq_count = MIN(edlp->edl_min_txq_count, encp->enc_txq_limit);
|
|
|
|
edcp->edc_min_vi_count =
|
|
MAX(min_evq_count, MAX(min_rxq_count, min_txq_count));
|
|
|
|
max_evq_count = MIN(edlp->edl_max_evq_count, encp->enc_evq_limit);
|
|
max_rxq_count = MIN(edlp->edl_max_rxq_count, encp->enc_rxq_limit);
|
|
max_txq_count = MIN(edlp->edl_max_txq_count, encp->enc_txq_limit);
|
|
|
|
edcp->edc_max_vi_count =
|
|
MAX(max_evq_count, MAX(max_rxq_count, max_txq_count));
|
|
|
|
/*
|
|
* Check limits for sub-allocated piobuf blocks.
|
|
* PIO is optional, so don't fail if the limits are incorrect.
|
|
*/
|
|
if ((encp->enc_piobuf_size == 0) ||
|
|
(encp->enc_piobuf_limit == 0) ||
|
|
(edlp->edl_min_pio_alloc_size == 0) ||
|
|
(edlp->edl_min_pio_alloc_size > encp->enc_piobuf_size)) {
|
|
/* Disable PIO */
|
|
edcp->edc_max_piobuf_count = 0;
|
|
edcp->edc_pio_alloc_size = 0;
|
|
} else {
|
|
uint32_t blk_size, blk_count, blks_per_piobuf;
|
|
|
|
blk_size =
|
|
MAX(edlp->edl_min_pio_alloc_size,
|
|
encp->enc_piobuf_min_alloc_size);
|
|
|
|
blks_per_piobuf = encp->enc_piobuf_size / blk_size;
|
|
EFSYS_ASSERT3U(blks_per_piobuf, <=, 32);
|
|
|
|
blk_count = (encp->enc_piobuf_limit * blks_per_piobuf);
|
|
|
|
/* A zero max pio alloc count means unlimited */
|
|
if ((edlp->edl_max_pio_alloc_count > 0) &&
|
|
(edlp->edl_max_pio_alloc_count < blk_count)) {
|
|
blk_count = edlp->edl_max_pio_alloc_count;
|
|
}
|
|
|
|
edcp->edc_pio_alloc_size = blk_size;
|
|
edcp->edc_max_piobuf_count =
|
|
(blk_count + (blks_per_piobuf - 1)) / blks_per_piobuf;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
|
|
__checkReturn efx_rc_t
|
|
ef10_nic_reset(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
efx_mcdi_req_t req;
|
|
uint8_t payload[MAX(MC_CMD_ENTITY_RESET_IN_LEN,
|
|
MC_CMD_ENTITY_RESET_OUT_LEN)];
|
|
efx_rc_t rc;
|
|
|
|
/* ef10_nic_reset() is called to recover from BADASSERT failures. */
|
|
if ((rc = efx_mcdi_read_assertion(enp)) != 0)
|
|
goto fail1;
|
|
if ((rc = efx_mcdi_exit_assertion_handler(enp)) != 0)
|
|
goto fail2;
|
|
|
|
(void) memset(payload, 0, sizeof (payload));
|
|
req.emr_cmd = MC_CMD_ENTITY_RESET;
|
|
req.emr_in_buf = payload;
|
|
req.emr_in_length = MC_CMD_ENTITY_RESET_IN_LEN;
|
|
req.emr_out_buf = payload;
|
|
req.emr_out_length = MC_CMD_ENTITY_RESET_OUT_LEN;
|
|
|
|
MCDI_IN_POPULATE_DWORD_1(req, ENTITY_RESET_IN_FLAG,
|
|
ENTITY_RESET_IN_FUNCTION_RESOURCE_RESET, 1);
|
|
|
|
efx_mcdi_execute(enp, &req);
|
|
|
|
if (req.emr_rc != 0) {
|
|
rc = req.emr_rc;
|
|
goto fail3;
|
|
}
|
|
|
|
/* Clear RX/TX DMA queue errors */
|
|
enp->en_reset_flags &= ~(EFX_RESET_RXQ_ERR | EFX_RESET_TXQ_ERR);
|
|
|
|
return (0);
|
|
|
|
fail3:
|
|
EFSYS_PROBE(fail3);
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
ef10_nic_init(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
efx_drv_cfg_t *edcp = &(enp->en_drv_cfg);
|
|
uint32_t min_vi_count, max_vi_count;
|
|
uint32_t vi_count, vi_base, vi_shift;
|
|
uint32_t i;
|
|
uint32_t retry;
|
|
uint32_t delay_us;
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
|
|
enp->en_family == EFX_FAMILY_MEDFORD);
|
|
|
|
/* Enable reporting of some events (e.g. link change) */
|
|
if ((rc = efx_mcdi_log_ctrl(enp)) != 0)
|
|
goto fail1;
|
|
|
|
/* Allocate (optional) on-chip PIO buffers */
|
|
ef10_nic_alloc_piobufs(enp, edcp->edc_max_piobuf_count);
|
|
|
|
/*
|
|
* For best performance, PIO writes should use a write-combined
|
|
* (WC) memory mapping. Using a separate WC mapping for the PIO
|
|
* aperture of each VI would be a burden to drivers (and not
|
|
* possible if the host page size is >4Kbyte).
|
|
*
|
|
* To avoid this we use a single uncached (UC) mapping for VI
|
|
* register access, and a single WC mapping for extra VIs used
|
|
* for PIO writes.
|
|
*
|
|
* Each piobuf must be linked to a VI in the WC mapping, and to
|
|
* each VI that is using a sub-allocated block from the piobuf.
|
|
*/
|
|
min_vi_count = edcp->edc_min_vi_count;
|
|
max_vi_count =
|
|
edcp->edc_max_vi_count + enp->en_arch.ef10.ena_piobuf_count;
|
|
|
|
/* Ensure that the previously attached driver's VIs are freed */
|
|
if ((rc = efx_mcdi_free_vis(enp)) != 0)
|
|
goto fail2;
|
|
|
|
/*
|
|
* Reserve VI resources (EVQ+RXQ+TXQ) for this PCIe function. If this
|
|
* fails then retrying the request for fewer VI resources may succeed.
|
|
*/
|
|
vi_count = 0;
|
|
if ((rc = efx_mcdi_alloc_vis(enp, min_vi_count, max_vi_count,
|
|
&vi_base, &vi_count, &vi_shift)) != 0)
|
|
goto fail3;
|
|
|
|
EFSYS_PROBE2(vi_alloc, uint32_t, vi_base, uint32_t, vi_count);
|
|
|
|
if (vi_count < min_vi_count) {
|
|
rc = ENOMEM;
|
|
goto fail4;
|
|
}
|
|
|
|
enp->en_arch.ef10.ena_vi_base = vi_base;
|
|
enp->en_arch.ef10.ena_vi_count = vi_count;
|
|
enp->en_arch.ef10.ena_vi_shift = vi_shift;
|
|
|
|
if (vi_count < min_vi_count + enp->en_arch.ef10.ena_piobuf_count) {
|
|
/* Not enough extra VIs to map piobufs */
|
|
ef10_nic_free_piobufs(enp);
|
|
}
|
|
|
|
enp->en_arch.ef10.ena_pio_write_vi_base =
|
|
vi_count - enp->en_arch.ef10.ena_piobuf_count;
|
|
|
|
/* Save UC memory mapping details */
|
|
enp->en_arch.ef10.ena_uc_mem_map_offset = 0;
|
|
if (enp->en_arch.ef10.ena_piobuf_count > 0) {
|
|
enp->en_arch.ef10.ena_uc_mem_map_size =
|
|
(ER_DZ_TX_PIOBUF_STEP *
|
|
enp->en_arch.ef10.ena_pio_write_vi_base);
|
|
} else {
|
|
enp->en_arch.ef10.ena_uc_mem_map_size =
|
|
(ER_DZ_TX_PIOBUF_STEP *
|
|
enp->en_arch.ef10.ena_vi_count);
|
|
}
|
|
|
|
/* Save WC memory mapping details */
|
|
enp->en_arch.ef10.ena_wc_mem_map_offset =
|
|
enp->en_arch.ef10.ena_uc_mem_map_offset +
|
|
enp->en_arch.ef10.ena_uc_mem_map_size;
|
|
|
|
enp->en_arch.ef10.ena_wc_mem_map_size =
|
|
(ER_DZ_TX_PIOBUF_STEP *
|
|
enp->en_arch.ef10.ena_piobuf_count);
|
|
|
|
/* Link piobufs to extra VIs in WC mapping */
|
|
if (enp->en_arch.ef10.ena_piobuf_count > 0) {
|
|
for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
|
|
rc = efx_mcdi_link_piobuf(enp,
|
|
enp->en_arch.ef10.ena_pio_write_vi_base + i,
|
|
enp->en_arch.ef10.ena_piobuf_handle[i]);
|
|
if (rc != 0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate a vAdaptor attached to our upstream vPort/pPort.
|
|
*
|
|
* On a VF, this may fail with MC_CMD_ERR_NO_EVB_PORT (ENOENT) if the PF
|
|
* driver has yet to bring up the EVB port. See bug 56147. In this case,
|
|
* retry the request several times after waiting a while. The wait time
|
|
* between retries starts small (10ms) and exponentially increases.
|
|
* Total wait time is a little over two seconds. Retry logic in the
|
|
* client driver may mean this whole loop is repeated if it continues to
|
|
* fail.
|
|
*/
|
|
retry = 0;
|
|
delay_us = 10000;
|
|
while ((rc = efx_mcdi_vadaptor_alloc(enp, EVB_PORT_ID_ASSIGNED)) != 0) {
|
|
if (EFX_PCI_FUNCTION_IS_PF(&enp->en_nic_cfg) ||
|
|
(rc != ENOENT)) {
|
|
/*
|
|
* Do not retry alloc for PF, or for other errors on
|
|
* a VF.
|
|
*/
|
|
goto fail5;
|
|
}
|
|
|
|
/* VF startup before PF is ready. Retry allocation. */
|
|
if (retry > 5) {
|
|
/* Too many attempts */
|
|
rc = EINVAL;
|
|
goto fail6;
|
|
}
|
|
EFSYS_PROBE1(mcdi_no_evb_port_retry, int, retry);
|
|
EFSYS_SLEEP(delay_us);
|
|
retry++;
|
|
if (delay_us < 500000)
|
|
delay_us <<= 2;
|
|
}
|
|
|
|
enp->en_vport_id = EVB_PORT_ID_ASSIGNED;
|
|
enp->en_nic_cfg.enc_mcdi_max_payload_length = MCDI_CTL_SDU_LEN_MAX_V2;
|
|
|
|
return (0);
|
|
|
|
fail6:
|
|
EFSYS_PROBE(fail6);
|
|
fail5:
|
|
EFSYS_PROBE(fail5);
|
|
fail4:
|
|
EFSYS_PROBE(fail4);
|
|
fail3:
|
|
EFSYS_PROBE(fail3);
|
|
fail2:
|
|
EFSYS_PROBE(fail2);
|
|
|
|
ef10_nic_free_piobufs(enp);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
ef10_nic_get_vi_pool(
|
|
__in efx_nic_t *enp,
|
|
__out uint32_t *vi_countp)
|
|
{
|
|
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
|
|
enp->en_family == EFX_FAMILY_MEDFORD);
|
|
|
|
/*
|
|
* Report VIs that the client driver can use.
|
|
* Do not include VIs used for PIO buffer writes.
|
|
*/
|
|
*vi_countp = enp->en_arch.ef10.ena_pio_write_vi_base;
|
|
|
|
return (0);
|
|
}
|
|
|
|
__checkReturn efx_rc_t
|
|
ef10_nic_get_bar_region(
|
|
__in efx_nic_t *enp,
|
|
__in efx_nic_region_t region,
|
|
__out uint32_t *offsetp,
|
|
__out size_t *sizep)
|
|
{
|
|
efx_rc_t rc;
|
|
|
|
EFSYS_ASSERT(enp->en_family == EFX_FAMILY_HUNTINGTON ||
|
|
enp->en_family == EFX_FAMILY_MEDFORD);
|
|
|
|
/*
|
|
* TODO: Specify host memory mapping alignment and granularity
|
|
* in efx_drv_limits_t so that they can be taken into account
|
|
* when allocating extra VIs for PIO writes.
|
|
*/
|
|
switch (region) {
|
|
case EFX_REGION_VI:
|
|
/* UC mapped memory BAR region for VI registers */
|
|
*offsetp = enp->en_arch.ef10.ena_uc_mem_map_offset;
|
|
*sizep = enp->en_arch.ef10.ena_uc_mem_map_size;
|
|
break;
|
|
|
|
case EFX_REGION_PIO_WRITE_VI:
|
|
/* WC mapped memory BAR region for piobuf writes */
|
|
*offsetp = enp->en_arch.ef10.ena_wc_mem_map_offset;
|
|
*sizep = enp->en_arch.ef10.ena_wc_mem_map_size;
|
|
break;
|
|
|
|
default:
|
|
rc = EINVAL;
|
|
goto fail1;
|
|
}
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
void
|
|
ef10_nic_fini(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
uint32_t i;
|
|
efx_rc_t rc;
|
|
|
|
(void) efx_mcdi_vadaptor_free(enp, enp->en_vport_id);
|
|
enp->en_vport_id = 0;
|
|
|
|
/* Unlink piobufs from extra VIs in WC mapping */
|
|
if (enp->en_arch.ef10.ena_piobuf_count > 0) {
|
|
for (i = 0; i < enp->en_arch.ef10.ena_piobuf_count; i++) {
|
|
rc = efx_mcdi_unlink_piobuf(enp,
|
|
enp->en_arch.ef10.ena_pio_write_vi_base + i);
|
|
if (rc != 0)
|
|
break;
|
|
}
|
|
}
|
|
|
|
ef10_nic_free_piobufs(enp);
|
|
|
|
(void) efx_mcdi_free_vis(enp);
|
|
enp->en_arch.ef10.ena_vi_count = 0;
|
|
}
|
|
|
|
void
|
|
ef10_nic_unprobe(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
#if EFSYS_OPT_MON_STATS
|
|
mcdi_mon_cfg_free(enp);
|
|
#endif /* EFSYS_OPT_MON_STATS */
|
|
(void) efx_mcdi_drv_attach(enp, B_FALSE);
|
|
}
|
|
|
|
#if EFSYS_OPT_DIAG
|
|
|
|
__checkReturn efx_rc_t
|
|
ef10_nic_register_test(
|
|
__in efx_nic_t *enp)
|
|
{
|
|
efx_rc_t rc;
|
|
|
|
/* FIXME */
|
|
_NOTE(ARGUNUSED(enp))
|
|
_NOTE(CONSTANTCONDITION)
|
|
if (B_FALSE) {
|
|
rc = ENOTSUP;
|
|
goto fail1;
|
|
}
|
|
/* FIXME */
|
|
|
|
return (0);
|
|
|
|
fail1:
|
|
EFSYS_PROBE1(fail1, efx_rc_t, rc);
|
|
|
|
return (rc);
|
|
}
|
|
|
|
#endif /* EFSYS_OPT_DIAG */
|
|
|
|
|
|
#endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD */
|