freebsd-dev/sys/netinet/tcp_stacks/rack_bbr_common.c
Michael Tuexen 8f63a52bdb The server side of TCP fast open relies on the delayed ACK timer to allow
including user data in the SYN-ACK. When DSACK support was added in
r347382, an immediate ACK was sent even for the received SYN with
user data. This patch fixes that and allows again to send user data with
the SYN-ACK.

Reported by:		Jeremy Harris
Reviewed by:		Richard Scheffenegger, rrs@
MFC after:		1 week
Sponsored by:		Netflix, Inc.
Differential Revision:	https://reviews.freebsd.org/D23212
2020-01-24 22:37:53 +00:00

914 lines
25 KiB
C

/*-
* Copyright (c) 2016-9
* Netflix Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
/*
* Author: Randall Stewart <rrs@netflix.com>
* This work is based on the ACM Queue paper
* BBR - Congestion Based Congestion Control
* and also numerous discussions with Neal, Yuchung and Van.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include "opt_inet.h"
#include "opt_inet6.h"
#include "opt_ipsec.h"
#include "opt_tcpdebug.h"
#include "opt_ratelimit.h"
#include "opt_kern_tls.h"
#include <sys/param.h>
#include <sys/arb.h>
#include <sys/module.h>
#include <sys/kernel.h>
#ifdef TCP_HHOOK
#include <sys/hhook.h>
#endif
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/proc.h>
#include <sys/qmath.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#ifdef KERN_TLS
#include <sys/ktls.h>
#endif
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/tree.h>
#ifdef NETFLIX_STATS
#include <sys/stats.h> /* Must come after qmath.h and tree.h */
#endif
#include <sys/refcount.h>
#include <sys/queue.h>
#include <sys/smp.h>
#include <sys/kthread.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/tim_filter.h>
#include <sys/time.h>
#include <vm/uma.h>
#include <sys/kern_prefetch.h>
#include <net/route.h>
#include <net/vnet.h>
#include <net/ethernet.h>
#include <net/bpf.h>
#define TCPSTATES /* for logging */
#include <netinet/in.h>
#include <netinet/in_kdtrace.h>
#include <netinet/in_pcb.h>
#include <netinet/ip.h>
#include <netinet/ip_icmp.h> /* required for icmp_var.h */
#include <netinet/icmp_var.h> /* for ICMP_BANDLIM */
#include <netinet/ip_var.h>
#include <netinet/ip6.h>
#include <netinet6/in6_pcb.h>
#include <netinet6/ip6_var.h>
#include <netinet/tcp.h>
#include <netinet/tcp_fsm.h>
#include <netinet/tcp_seq.h>
#include <netinet/tcp_timer.h>
#include <netinet/tcp_var.h>
#include <netinet/tcpip.h>
#include <netinet/tcp_hpts.h>
#include <netinet/cc/cc.h>
#include <netinet/tcp_log_buf.h>
#ifdef TCPDEBUG
#include <netinet/tcp_debug.h>
#endif /* TCPDEBUG */
#ifdef TCP_OFFLOAD
#include <netinet/tcp_offload.h>
#endif
#ifdef INET6
#include <netinet6/tcp6_var.h>
#endif
#include <netinet/tcp_fastopen.h>
#include <netipsec/ipsec_support.h>
#include <net/if.h>
#include <net/if_var.h>
#if defined(IPSEC) || defined(IPSEC_SUPPORT)
#include <netipsec/ipsec.h>
#include <netipsec/ipsec6.h>
#endif /* IPSEC */
#include <netinet/udp.h>
#include <netinet/udp_var.h>
#include <machine/in_cksum.h>
#ifdef MAC
#include <security/mac/mac_framework.h>
#endif
#include "rack_bbr_common.h"
/*
* Common TCP Functions - These are shared by borth
* rack and BBR.
*/
#ifdef KERN_TLS
uint32_t
ctf_get_opt_tls_size(struct socket *so, uint32_t rwnd)
{
struct ktls_session *tls;
uint32_t len;
again:
tls = so->so_snd.sb_tls_info;
len = tls->params.max_frame_len; /* max tls payload */
len += tls->params.tls_hlen; /* tls header len */
len += tls->params.tls_tlen; /* tls trailer len */
if ((len * 4) > rwnd) {
/*
* Stroke this will suck counter and what
* else should we do Drew? From the
* TCP perspective I am not sure
* what should be done...
*/
if (tls->params.max_frame_len > 4096) {
tls->params.max_frame_len -= 4096;
if (tls->params.max_frame_len < 4096)
tls->params.max_frame_len = 4096;
goto again;
}
}
return (len);
}
#endif
/*
* The function ctf_process_inbound_raw() is used by
* transport developers to do the steps needed to
* support MBUF Queuing i.e. the flags in
* inp->inp_flags2:
*
* - INP_SUPPORTS_MBUFQ
* - INP_MBUF_QUEUE_READY
* - INP_DONT_SACK_QUEUE
*
* These flags help control how LRO will deliver
* packets to the transport. You first set in inp_flags2
* the INP_SUPPORTS_MBUFQ to tell the LRO code that you
* will gladly take a queue of packets instead of a compressed
* single packet. You also set in your t_fb pointer the
* tfb_do_queued_segments to point to ctf_process_inbound_raw.
*
* This then gets you lists of inbound ACK's/Data instead
* of a condensed compressed ACK/DATA packet. Why would you
* want that? This will get you access to all the arrival
* times of at least LRO and possibly at the Hardware (if
* the interface card supports that) of the actual ACK/DATA.
* In some transport designs this is important since knowing
* the actual time we got the packet is useful information.
*
* Now there are some interesting Caveats that the transport
* designer needs to take into account when using this feature.
*
* 1) It is used with HPTS and pacing, when the pacing timer
* for output calls it will first call the input.
* 2) When you set INP_MBUF_QUEUE_READY this tells LRO
* queue normal packets, I am busy pacing out data and
* will process the queued packets before my tfb_tcp_output
* call from pacing. If a non-normal packet arrives, (e.g. sack)
* you will be awoken immediately.
* 3) Finally you can add the INP_DONT_SACK_QUEUE to not even
* be awoken if a SACK has arrived. You would do this when
* you were not only running a pacing for output timer
* but a Rack timer as well i.e. you know you are in recovery
* and are in the process (via the timers) of dealing with
* the loss.
*
* Now a critical thing you must be aware of here is that the
* use of the flags has a far greater scope then just your
* typical LRO. Why? Well thats because in the normal compressed
* LRO case at the end of a driver interupt all packets are going
* to get presented to the transport no matter if there is one
* or 100. With the MBUF_QUEUE model, this is not true. You will
* only be awoken to process the queue of packets when:
* a) The flags discussed above allow it.
* <or>
* b) You exceed a ack or data limit (by default the
* ack limit is infinity (64k acks) and the data
* limit is 64k of new TCP data)
* <or>
* c) The push bit has been set by the peer
*/
int
ctf_process_inbound_raw(struct tcpcb *tp, struct socket *so, struct mbuf *m, int has_pkt)
{
/*
* We are passed a raw change of mbuf packets
* that arrived in LRO. They are linked via
* the m_nextpkt link in the pkt-headers.
*
* We process each one by:
* a) saving off the next
* b) stripping off the ether-header
* c) formulating the arguments for
* the tfb_tcp_hpts_do_segment
* d) calling each mbuf to tfb_tcp_hpts_do_segment
* after adjusting the time to match the arrival time.
* Note that the LRO code assures no IP options are present.
*
* The symantics for calling tfb_tcp_hpts_do_segment are the
* following:
* 1) It returns 0 if all went well and you (the caller) need
* to release the lock.
* 2) If nxt_pkt is set, then the function will surpress calls
* to tfb_tcp_output() since you are promising to call again
* with another packet.
* 3) If it returns 1, then you must free all the packets being
* shipped in, the tcb has been destroyed (or about to be destroyed).
*/
struct mbuf *m_save;
struct ether_header *eh;
struct tcphdr *th;
#ifdef INET6
struct ip6_hdr *ip6 = NULL; /* Keep compiler happy. */
#endif
#ifdef INET
struct ip *ip = NULL; /* Keep compiler happy. */
#endif
struct ifnet *ifp;
struct timeval tv;
int32_t retval, nxt_pkt, tlen, off;
uint16_t etype;
uint16_t drop_hdrlen;
uint8_t iptos, no_vn=0, bpf_req=0;
NET_EPOCH_ASSERT();
if (m && m->m_pkthdr.rcvif)
ifp = m->m_pkthdr.rcvif;
else
ifp = NULL;
if (ifp) {
bpf_req = bpf_peers_present(ifp->if_bpf);
} else {
/*
* We probably should not work around
* but kassert, since lro alwasy sets rcvif.
*/
no_vn = 1;
goto skip_vnet;
}
CURVNET_SET(ifp->if_vnet);
skip_vnet:
while (m) {
m_save = m->m_nextpkt;
m->m_nextpkt = NULL;
/* Now lets get the ether header */
eh = mtod(m, struct ether_header *);
etype = ntohs(eh->ether_type);
/* Let the BPF see the packet */
if (bpf_req && ifp)
ETHER_BPF_MTAP(ifp, m);
m_adj(m, sizeof(*eh));
/* Trim off the ethernet header */
switch (etype) {
#ifdef INET6
case ETHERTYPE_IPV6:
{
if (m->m_len < (sizeof(*ip6) + sizeof(*th))) {
m = m_pullup(m, sizeof(*ip6) + sizeof(*th));
if (m == NULL) {
TCPSTAT_INC(tcps_rcvshort);
m_freem(m);
goto skipped_pkt;
}
}
ip6 = (struct ip6_hdr *)(eh + 1);
th = (struct tcphdr *)(ip6 + 1);
tlen = ntohs(ip6->ip6_plen);
drop_hdrlen = sizeof(*ip6);
if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID_IPV6) {
if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
th->th_sum = m->m_pkthdr.csum_data;
else
th->th_sum = in6_cksum_pseudo(ip6, tlen,
IPPROTO_TCP, m->m_pkthdr.csum_data);
th->th_sum ^= 0xffff;
} else
th->th_sum = in6_cksum(m, IPPROTO_TCP, drop_hdrlen, tlen);
if (th->th_sum) {
TCPSTAT_INC(tcps_rcvbadsum);
m_freem(m);
goto skipped_pkt;
}
/*
* Be proactive about unspecified IPv6 address in source.
* As we use all-zero to indicate unbounded/unconnected pcb,
* unspecified IPv6 address can be used to confuse us.
*
* Note that packets with unspecified IPv6 destination is
* already dropped in ip6_input.
*/
if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
/* XXX stat */
m_freem(m);
goto skipped_pkt;
}
iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
break;
}
#endif
#ifdef INET
case ETHERTYPE_IP:
{
if (m->m_len < sizeof (struct tcpiphdr)) {
if ((m = m_pullup(m, sizeof (struct tcpiphdr)))
== NULL) {
TCPSTAT_INC(tcps_rcvshort);
m_freem(m);
goto skipped_pkt;
}
}
ip = (struct ip *)(eh + 1);
th = (struct tcphdr *)(ip + 1);
drop_hdrlen = sizeof(*ip);
iptos = ip->ip_tos;
tlen = ntohs(ip->ip_len) - sizeof(struct ip);
if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) {
if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR)
th->th_sum = m->m_pkthdr.csum_data;
else
th->th_sum = in_pseudo(ip->ip_src.s_addr,
ip->ip_dst.s_addr,
htonl(m->m_pkthdr.csum_data + tlen +
IPPROTO_TCP));
th->th_sum ^= 0xffff;
} else {
int len;
struct ipovly *ipov = (struct ipovly *)ip;
/*
* Checksum extended TCP header and data.
*/
len = drop_hdrlen + tlen;
bzero(ipov->ih_x1, sizeof(ipov->ih_x1));
ipov->ih_len = htons(tlen);
th->th_sum = in_cksum(m, len);
/* Reset length for SDT probes. */
ip->ip_len = htons(len);
/* Reset TOS bits */
ip->ip_tos = iptos;
/* Re-initialization for later version check */
ip->ip_v = IPVERSION;
ip->ip_hl = sizeof(*ip) >> 2;
}
if (th->th_sum) {
TCPSTAT_INC(tcps_rcvbadsum);
m_freem(m);
goto skipped_pkt;
}
break;
}
#endif
}
/*
* Convert TCP protocol specific fields to host format.
*/
tcp_fields_to_host(th);
off = th->th_off << 2;
if (off < sizeof (struct tcphdr) || off > tlen) {
TCPSTAT_INC(tcps_rcvbadoff);
m_freem(m);
goto skipped_pkt;
}
tlen -= off;
drop_hdrlen += off;
/*
* Now lets setup the timeval to be when we should
* have been called (if we can).
*/
m->m_pkthdr.lro_nsegs = 1;
if (m->m_flags & M_TSTMP_LRO) {
tv.tv_sec = m->m_pkthdr.rcv_tstmp /1000000000;
tv.tv_usec = (m->m_pkthdr.rcv_tstmp % 1000000000)/1000;
} else {
/* Should not be should we kassert instead? */
tcp_get_usecs(&tv);
}
/* Now what about next packet? */
if (m_save || has_pkt)
nxt_pkt = 1;
else
nxt_pkt = 0;
retval = (*tp->t_fb->tfb_do_segment_nounlock)(m, th, so, tp, drop_hdrlen, tlen,
iptos, nxt_pkt, &tv);
if (retval) {
/* We lost the lock and tcb probably */
m = m_save;
while(m) {
m_save = m->m_nextpkt;
m->m_nextpkt = NULL;
m_freem(m);
m = m_save;
}
if (no_vn == 0)
CURVNET_RESTORE();
return(retval);
}
skipped_pkt:
m = m_save;
}
if (no_vn == 0)
CURVNET_RESTORE();
return(retval);
}
int
ctf_do_queued_segments(struct socket *so, struct tcpcb *tp, int have_pkt)
{
struct mbuf *m;
/* First lets see if we have old packets */
if (tp->t_in_pkt) {
m = tp->t_in_pkt;
tp->t_in_pkt = NULL;
tp->t_tail_pkt = NULL;
if (ctf_process_inbound_raw(tp, so, m, have_pkt)) {
/* We lost the tcpcb (maybe a RST came in)? */
return(1);
}
}
return (0);
}
uint32_t
ctf_outstanding(struct tcpcb *tp)
{
return(tp->snd_max - tp->snd_una);
}
uint32_t
ctf_flight_size(struct tcpcb *tp, uint32_t rc_sacked)
{
if (rc_sacked <= ctf_outstanding(tp))
return(ctf_outstanding(tp) - rc_sacked);
else {
/* TSNH */
#ifdef INVARIANTS
panic("tp:%p rc_sacked:%d > out:%d",
tp, rc_sacked, ctf_outstanding(tp));
#endif
return (0);
}
}
void
ctf_do_dropwithreset(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th,
int32_t rstreason, int32_t tlen)
{
if (tp != NULL) {
tcp_dropwithreset(m, th, tp, tlen, rstreason);
INP_WUNLOCK(tp->t_inpcb);
} else
tcp_dropwithreset(m, th, NULL, tlen, rstreason);
}
/*
* ctf_drop_checks returns 1 for you should not proceed. It places
* in ret_val what should be returned 1/0 by the caller. The 1 indicates
* that the TCB is unlocked and probably dropped. The 0 indicates the
* TCB is still valid and locked.
*/
int
ctf_drop_checks(struct tcpopt *to, struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, int32_t * tlenp, int32_t * thf, int32_t * drop_hdrlen, int32_t * ret_val)
{
int32_t todrop;
int32_t thflags;
int32_t tlen;
thflags = *thf;
tlen = *tlenp;
todrop = tp->rcv_nxt - th->th_seq;
if (todrop > 0) {
if (thflags & TH_SYN) {
thflags &= ~TH_SYN;
th->th_seq++;
if (th->th_urp > 1)
th->th_urp--;
else
thflags &= ~TH_URG;
todrop--;
}
/*
* Following if statement from Stevens, vol. 2, p. 960.
*/
if (todrop > tlen
|| (todrop == tlen && (thflags & TH_FIN) == 0)) {
/*
* Any valid FIN must be to the left of the window.
* At this point the FIN must be a duplicate or out
* of sequence; drop it.
*/
thflags &= ~TH_FIN;
/*
* Send an ACK to resynchronize and drop any data.
* But keep on processing for RST or ACK.
*/
tp->t_flags |= TF_ACKNOW;
todrop = tlen;
TCPSTAT_INC(tcps_rcvduppack);
TCPSTAT_ADD(tcps_rcvdupbyte, todrop);
} else {
TCPSTAT_INC(tcps_rcvpartduppack);
TCPSTAT_ADD(tcps_rcvpartdupbyte, todrop);
}
/*
* DSACK - add SACK block for dropped range
*/
if ((todrop > 0) && (tp->t_flags & TF_SACK_PERMIT)) {
tcp_update_sack_list(tp, th->th_seq,
th->th_seq + todrop);
/*
* ACK now, as the next in-sequence segment
* will clear the DSACK block again
*/
tp->t_flags |= TF_ACKNOW;
}
*drop_hdrlen += todrop; /* drop from the top afterwards */
th->th_seq += todrop;
tlen -= todrop;
if (th->th_urp > todrop)
th->th_urp -= todrop;
else {
thflags &= ~TH_URG;
th->th_urp = 0;
}
}
/*
* If segment ends after window, drop trailing data (and PUSH and
* FIN); if nothing left, just ACK.
*/
todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
if (todrop > 0) {
TCPSTAT_INC(tcps_rcvpackafterwin);
if (todrop >= tlen) {
TCPSTAT_ADD(tcps_rcvbyteafterwin, tlen);
/*
* If window is closed can only take segments at
* window edge, and have to drop data and PUSH from
* incoming segments. Continue processing, but
* remember to ack. Otherwise, drop segment and
* ack.
*/
if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
tp->t_flags |= TF_ACKNOW;
TCPSTAT_INC(tcps_rcvwinprobe);
} else {
ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val);
return (1);
}
} else
TCPSTAT_ADD(tcps_rcvbyteafterwin, todrop);
m_adj(m, -todrop);
tlen -= todrop;
thflags &= ~(TH_PUSH | TH_FIN);
}
*thf = thflags;
*tlenp = tlen;
return (0);
}
/*
* The value in ret_val informs the caller
* if we dropped the tcb (and lock) or not.
* 1 = we dropped it, 0 = the TCB is still locked
* and valid.
*/
void
ctf_do_dropafterack(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th, int32_t thflags, int32_t tlen, int32_t * ret_val)
{
/*
* Generate an ACK dropping incoming segment if it occupies sequence
* space, where the ACK reflects our state.
*
* We can now skip the test for the RST flag since all paths to this
* code happen after packets containing RST have been dropped.
*
* In the SYN-RECEIVED state, don't send an ACK unless the segment
* we received passes the SYN-RECEIVED ACK test. If it fails send a
* RST. This breaks the loop in the "LAND" DoS attack, and also
* prevents an ACK storm between two listening ports that have been
* sent forged SYN segments, each with the source address of the
* other.
*/
if (tp->t_state == TCPS_SYN_RECEIVED && (thflags & TH_ACK) &&
(SEQ_GT(tp->snd_una, th->th_ack) ||
SEQ_GT(th->th_ack, tp->snd_max))) {
*ret_val = 1;
ctf_do_dropwithreset(m, tp, th, BANDLIM_RST_OPENPORT, tlen);
return;
} else
*ret_val = 0;
tp->t_flags |= TF_ACKNOW;
if (m)
m_freem(m);
}
void
ctf_do_drop(struct mbuf *m, struct tcpcb *tp)
{
/*
* Drop space held by incoming segment and return.
*/
if (tp != NULL)
INP_WUNLOCK(tp->t_inpcb);
if (m)
m_freem(m);
}
int
ctf_process_rst(struct mbuf *m, struct tcphdr *th, struct socket *so, struct tcpcb *tp)
{
/*
* RFC5961 Section 3.2
*
* - RST drops connection only if SEG.SEQ == RCV.NXT. - If RST is in
* window, we send challenge ACK.
*
* Note: to take into account delayed ACKs, we should test against
* last_ack_sent instead of rcv_nxt. Note 2: we handle special case
* of closed window, not covered by the RFC.
*/
int dropped = 0;
if ((SEQ_GEQ(th->th_seq, (tp->last_ack_sent - 1)) &&
SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) ||
(tp->rcv_wnd == 0 && tp->last_ack_sent == th->th_seq)) {
KASSERT(tp->t_state != TCPS_SYN_SENT,
("%s: TH_RST for TCPS_SYN_SENT th %p tp %p",
__func__, th, tp));
if (V_tcp_insecure_rst ||
(tp->last_ack_sent == th->th_seq) ||
(tp->rcv_nxt == th->th_seq) ||
((tp->last_ack_sent - 1) == th->th_seq)) {
TCPSTAT_INC(tcps_drops);
/* Drop the connection. */
switch (tp->t_state) {
case TCPS_SYN_RECEIVED:
so->so_error = ECONNREFUSED;
goto close;
case TCPS_ESTABLISHED:
case TCPS_FIN_WAIT_1:
case TCPS_FIN_WAIT_2:
case TCPS_CLOSE_WAIT:
case TCPS_CLOSING:
case TCPS_LAST_ACK:
so->so_error = ECONNRESET;
close:
tcp_state_change(tp, TCPS_CLOSED);
/* FALLTHROUGH */
default:
tp = tcp_close(tp);
}
dropped = 1;
ctf_do_drop(m, tp);
} else {
TCPSTAT_INC(tcps_badrst);
/* Send challenge ACK. */
tcp_respond(tp, mtod(m, void *), th, m,
tp->rcv_nxt, tp->snd_nxt, TH_ACK);
tp->last_ack_sent = tp->rcv_nxt;
}
} else {
m_freem(m);
}
return (dropped);
}
/*
* The value in ret_val informs the caller
* if we dropped the tcb (and lock) or not.
* 1 = we dropped it, 0 = the TCB is still locked
* and valid.
*/
void
ctf_challenge_ack(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp, int32_t * ret_val)
{
NET_EPOCH_ASSERT();
TCPSTAT_INC(tcps_badsyn);
if (V_tcp_insecure_syn &&
SEQ_GEQ(th->th_seq, tp->last_ack_sent) &&
SEQ_LT(th->th_seq, tp->last_ack_sent + tp->rcv_wnd)) {
tp = tcp_drop(tp, ECONNRESET);
*ret_val = 1;
ctf_do_drop(m, tp);
} else {
/* Send challenge ACK. */
tcp_respond(tp, mtod(m, void *), th, m, tp->rcv_nxt,
tp->snd_nxt, TH_ACK);
tp->last_ack_sent = tp->rcv_nxt;
m = NULL;
*ret_val = 0;
ctf_do_drop(m, NULL);
}
}
/*
* bbr_ts_check returns 1 for you should not proceed, the state
* machine should return. It places in ret_val what should
* be returned 1/0 by the caller (hpts_do_segment). The 1 indicates
* that the TCB is unlocked and probably dropped. The 0 indicates the
* TCB is still valid and locked.
*/
int
ctf_ts_check(struct mbuf *m, struct tcphdr *th, struct tcpcb *tp,
int32_t tlen, int32_t thflags, int32_t * ret_val)
{
if (tcp_ts_getticks() - tp->ts_recent_age > TCP_PAWS_IDLE) {
/*
* Invalidate ts_recent. If this segment updates ts_recent,
* the age will be reset later and ts_recent will get a
* valid value. If it does not, setting ts_recent to zero
* will at least satisfy the requirement that zero be placed
* in the timestamp echo reply when ts_recent isn't valid.
* The age isn't reset until we get a valid ts_recent
* because we don't want out-of-order segments to be dropped
* when ts_recent is old.
*/
tp->ts_recent = 0;
} else {
TCPSTAT_INC(tcps_rcvduppack);
TCPSTAT_ADD(tcps_rcvdupbyte, tlen);
TCPSTAT_INC(tcps_pawsdrop);
*ret_val = 0;
if (tlen) {
ctf_do_dropafterack(m, tp, th, thflags, tlen, ret_val);
} else {
ctf_do_drop(m, NULL);
}
return (1);
}
return (0);
}
void
ctf_calc_rwin(struct socket *so, struct tcpcb *tp)
{
int32_t win;
/*
* Calculate amount of space in receive window, and then do TCP
* input processing. Receive window is amount of space in rcv queue,
* but not less than advertised window.
*/
win = sbspace(&so->so_rcv);
if (win < 0)
win = 0;
tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
}
void
ctf_do_dropwithreset_conn(struct mbuf *m, struct tcpcb *tp, struct tcphdr *th,
int32_t rstreason, int32_t tlen)
{
if (tp->t_inpcb) {
tcp_set_inp_to_drop(tp->t_inpcb, ETIMEDOUT);
}
tcp_dropwithreset(m, th, tp, tlen, rstreason);
INP_WUNLOCK(tp->t_inpcb);
}
uint32_t
ctf_fixed_maxseg(struct tcpcb *tp)
{
int optlen;
if (tp->t_flags & TF_NOOPT)
return (tp->t_maxseg);
/*
* Here we have a simplified code from tcp_addoptions(),
* without a proper loop, and having most of paddings hardcoded.
* We only consider fixed options that we would send every
* time I.e. SACK is not considered.
*
*/
#define PAD(len) ((((len) / 4) + !!((len) % 4)) * 4)
if (TCPS_HAVEESTABLISHED(tp->t_state)) {
if (tp->t_flags & TF_RCVD_TSTMP)
optlen = TCPOLEN_TSTAMP_APPA;
else
optlen = 0;
#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
if (tp->t_flags & TF_SIGNATURE)
optlen += PAD(TCPOLEN_SIGNATURE);
#endif
} else {
if (tp->t_flags & TF_REQ_TSTMP)
optlen = TCPOLEN_TSTAMP_APPA;
else
optlen = PAD(TCPOLEN_MAXSEG);
if (tp->t_flags & TF_REQ_SCALE)
optlen += PAD(TCPOLEN_WINDOW);
#if defined(IPSEC_SUPPORT) || defined(TCP_SIGNATURE)
if (tp->t_flags & TF_SIGNATURE)
optlen += PAD(TCPOLEN_SIGNATURE);
#endif
if (tp->t_flags & TF_SACK_PERMIT)
optlen += PAD(TCPOLEN_SACK_PERMITTED);
}
#undef PAD
optlen = min(optlen, TCP_MAXOLEN);
return (tp->t_maxseg - optlen);
}
void
ctf_log_sack_filter(struct tcpcb *tp, int num_sack_blks, struct sackblk *sack_blocks)
{
if (tp->t_logstate != TCP_LOG_STATE_OFF) {
union tcp_log_stackspecific log;
struct timeval tv;
memset(&log, 0, sizeof(log));
log.u_bbr.timeStamp = tcp_get_usecs(&tv);
log.u_bbr.flex8 = num_sack_blks;
if (num_sack_blks > 0) {
log.u_bbr.flex1 = sack_blocks[0].start;
log.u_bbr.flex2 = sack_blocks[0].end;
}
if (num_sack_blks > 1) {
log.u_bbr.flex3 = sack_blocks[1].start;
log.u_bbr.flex4 = sack_blocks[1].end;
}
if (num_sack_blks > 2) {
log.u_bbr.flex5 = sack_blocks[2].start;
log.u_bbr.flex6 = sack_blocks[2].end;
}
if (num_sack_blks > 3) {
log.u_bbr.applimited = sack_blocks[3].start;
log.u_bbr.pkts_out = sack_blocks[3].end;
}
TCP_LOG_EVENTP(tp, NULL,
&tp->t_inpcb->inp_socket->so_rcv,
&tp->t_inpcb->inp_socket->so_snd,
TCP_SACK_FILTER_RES, 0,
0, &log, false, &tv);
}
}
uint32_t
ctf_decay_count(uint32_t count, uint32_t decay)
{
/*
* Given a count, decay it by a set percentage. The
* percentage is in thousands i.e. 100% = 1000,
* 19.3% = 193.
*/
uint64_t perc_count, decay_per;
uint32_t decayed_count;
if (decay > 1000) {
/* We don't raise it */
return (count);
}
perc_count = count;
decay_per = decay;
perc_count *= decay_per;
perc_count /= 1000;
/*
* So now perc_count holds the
* count decay value.
*/
decayed_count = count - (uint32_t)perc_count;
return(decayed_count);
}