freebsd-dev/module/zfs/zap.c
Richard Yao b8d06fca08 Switch KM_SLEEP to KM_PUSHPAGE
Differences between how paging is done on Solaris and Linux can cause
deadlocks if KM_SLEEP is used in any the following contexts.

  * The txg_sync thread
  * The zvol write/discard threads
  * The zpl_putpage() VFS callback

This is because KM_SLEEP will allow for direct reclaim which may result
in the VM calling back in to the filesystem or block layer to write out
pages.  If a lock is held over this operation the potential exists to
deadlock the system.  To ensure forward progress all memory allocations
in these contexts must us KM_PUSHPAGE which disables performing any I/O
to accomplish the memory allocation.

Previously, this behavior was acheived by setting PF_MEMALLOC on the
thread.  However, that resulted in unexpected side effects such as the
exhaustion of pages in ZONE_DMA.  This approach touchs more of the zfs
code, but it is more consistent with the right way to handle these cases
under Linux.

This is patch lays the ground work for being able to safely revert the
following commits which used PF_MEMALLOC:

  21ade34 Disable direct reclaim for z_wr_* threads
  cfc9a5c Fix zpl_writepage() deadlock
  eec8164 Fix ASSERTION(!dsl_pool_sync_context(tx->tx_pool))

Signed-off-by: Richard Yao <ryao@cs.stonybrook.edu>
Signed-off-by: Brian Behlendorf <behlendorf1@llnl.gov>
Issue #726
2012-08-27 12:01:37 -07:00

1355 lines
32 KiB
C

/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
*/
/*
* This file contains the top half of the zfs directory structure
* implementation. The bottom half is in zap_leaf.c.
*
* The zdir is an extendable hash data structure. There is a table of
* pointers to buckets (zap_t->zd_data->zd_leafs). The buckets are
* each a constant size and hold a variable number of directory entries.
* The buckets (aka "leaf nodes") are implemented in zap_leaf.c.
*
* The pointer table holds a power of 2 number of pointers.
* (1<<zap_t->zd_data->zd_phys->zd_prefix_len). The bucket pointed to
* by the pointer at index i in the table holds entries whose hash value
* has a zd_prefix_len - bit prefix
*/
#include <sys/spa.h>
#include <sys/dmu.h>
#include <sys/zfs_context.h>
#include <sys/zfs_znode.h>
#include <sys/fs/zfs.h>
#include <sys/zap.h>
#include <sys/refcount.h>
#include <sys/zap_impl.h>
#include <sys/zap_leaf.h>
int fzap_default_block_shift = 14; /* 16k blocksize */
static void zap_leaf_pageout(dmu_buf_t *db, void *vl);
static uint64_t zap_allocate_blocks(zap_t *zap, int nblocks);
void
fzap_byteswap(void *vbuf, size_t size)
{
uint64_t block_type;
block_type = *(uint64_t *)vbuf;
if (block_type == ZBT_LEAF || block_type == BSWAP_64(ZBT_LEAF))
zap_leaf_byteswap(vbuf, size);
else {
/* it's a ptrtbl block */
byteswap_uint64_array(vbuf, size);
}
}
void
fzap_upgrade(zap_t *zap, dmu_tx_t *tx, zap_flags_t flags)
{
dmu_buf_t *db;
zap_leaf_t *l;
int i;
zap_phys_t *zp;
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
zap->zap_ismicro = FALSE;
(void) dmu_buf_update_user(zap->zap_dbuf, zap, zap,
&zap->zap_f.zap_phys, zap_evict);
mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0);
zap->zap_f.zap_block_shift = highbit(zap->zap_dbuf->db_size) - 1;
zp = zap->zap_f.zap_phys;
/*
* explicitly zero it since it might be coming from an
* initialized microzap
*/
bzero(zap->zap_dbuf->db_data, zap->zap_dbuf->db_size);
zp->zap_block_type = ZBT_HEADER;
zp->zap_magic = ZAP_MAGIC;
zp->zap_ptrtbl.zt_shift = ZAP_EMBEDDED_PTRTBL_SHIFT(zap);
zp->zap_freeblk = 2; /* block 1 will be the first leaf */
zp->zap_num_leafs = 1;
zp->zap_num_entries = 0;
zp->zap_salt = zap->zap_salt;
zp->zap_normflags = zap->zap_normflags;
zp->zap_flags = flags;
/* block 1 will be the first leaf */
for (i = 0; i < (1<<zp->zap_ptrtbl.zt_shift); i++)
ZAP_EMBEDDED_PTRTBL_ENT(zap, i) = 1;
/*
* set up block 1 - the first leaf
*/
VERIFY(0 == dmu_buf_hold(zap->zap_objset, zap->zap_object,
1<<FZAP_BLOCK_SHIFT(zap), FTAG, &db, DMU_READ_NO_PREFETCH));
dmu_buf_will_dirty(db, tx);
l = kmem_zalloc(sizeof (zap_leaf_t), KM_PUSHPAGE);
l->l_dbuf = db;
l->l_phys = db->db_data;
zap_leaf_init(l, zp->zap_normflags != 0);
kmem_free(l, sizeof (zap_leaf_t));
dmu_buf_rele(db, FTAG);
}
static int
zap_tryupgradedir(zap_t *zap, dmu_tx_t *tx)
{
if (RW_WRITE_HELD(&zap->zap_rwlock))
return (1);
if (rw_tryupgrade(&zap->zap_rwlock)) {
dmu_buf_will_dirty(zap->zap_dbuf, tx);
return (1);
}
return (0);
}
/*
* Generic routines for dealing with the pointer & cookie tables.
*/
static int
zap_table_grow(zap_t *zap, zap_table_phys_t *tbl,
void (*transfer_func)(const uint64_t *src, uint64_t *dst, int n),
dmu_tx_t *tx)
{
uint64_t b, newblk;
dmu_buf_t *db_old, *db_new;
int err;
int bs = FZAP_BLOCK_SHIFT(zap);
int hepb = 1<<(bs-4);
/* hepb = half the number of entries in a block */
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
ASSERT(tbl->zt_blk != 0);
ASSERT(tbl->zt_numblks > 0);
if (tbl->zt_nextblk != 0) {
newblk = tbl->zt_nextblk;
} else {
newblk = zap_allocate_blocks(zap, tbl->zt_numblks * 2);
tbl->zt_nextblk = newblk;
ASSERT3U(tbl->zt_blks_copied, ==, 0);
dmu_prefetch(zap->zap_objset, zap->zap_object,
tbl->zt_blk << bs, tbl->zt_numblks << bs);
}
/*
* Copy the ptrtbl from the old to new location.
*/
b = tbl->zt_blks_copied;
err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
(tbl->zt_blk + b) << bs, FTAG, &db_old, DMU_READ_NO_PREFETCH);
if (err)
return (err);
/* first half of entries in old[b] go to new[2*b+0] */
VERIFY(0 == dmu_buf_hold(zap->zap_objset, zap->zap_object,
(newblk + 2*b+0) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH));
dmu_buf_will_dirty(db_new, tx);
transfer_func(db_old->db_data, db_new->db_data, hepb);
dmu_buf_rele(db_new, FTAG);
/* second half of entries in old[b] go to new[2*b+1] */
VERIFY(0 == dmu_buf_hold(zap->zap_objset, zap->zap_object,
(newblk + 2*b+1) << bs, FTAG, &db_new, DMU_READ_NO_PREFETCH));
dmu_buf_will_dirty(db_new, tx);
transfer_func((uint64_t *)db_old->db_data + hepb,
db_new->db_data, hepb);
dmu_buf_rele(db_new, FTAG);
dmu_buf_rele(db_old, FTAG);
tbl->zt_blks_copied++;
dprintf("copied block %llu of %llu\n",
tbl->zt_blks_copied, tbl->zt_numblks);
if (tbl->zt_blks_copied == tbl->zt_numblks) {
(void) dmu_free_range(zap->zap_objset, zap->zap_object,
tbl->zt_blk << bs, tbl->zt_numblks << bs, tx);
tbl->zt_blk = newblk;
tbl->zt_numblks *= 2;
tbl->zt_shift++;
tbl->zt_nextblk = 0;
tbl->zt_blks_copied = 0;
dprintf("finished; numblocks now %llu (%lluk entries)\n",
tbl->zt_numblks, 1<<(tbl->zt_shift-10));
}
return (0);
}
static int
zap_table_store(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t val,
dmu_tx_t *tx)
{
int err;
uint64_t blk, off;
int bs = FZAP_BLOCK_SHIFT(zap);
dmu_buf_t *db;
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
ASSERT(tbl->zt_blk != 0);
dprintf("storing %llx at index %llx\n", val, idx);
blk = idx >> (bs-3);
off = idx & ((1<<(bs-3))-1);
err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
(tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH);
if (err)
return (err);
dmu_buf_will_dirty(db, tx);
if (tbl->zt_nextblk != 0) {
uint64_t idx2 = idx * 2;
uint64_t blk2 = idx2 >> (bs-3);
uint64_t off2 = idx2 & ((1<<(bs-3))-1);
dmu_buf_t *db2;
err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
(tbl->zt_nextblk + blk2) << bs, FTAG, &db2,
DMU_READ_NO_PREFETCH);
if (err) {
dmu_buf_rele(db, FTAG);
return (err);
}
dmu_buf_will_dirty(db2, tx);
((uint64_t *)db2->db_data)[off2] = val;
((uint64_t *)db2->db_data)[off2+1] = val;
dmu_buf_rele(db2, FTAG);
}
((uint64_t *)db->db_data)[off] = val;
dmu_buf_rele(db, FTAG);
return (0);
}
static int
zap_table_load(zap_t *zap, zap_table_phys_t *tbl, uint64_t idx, uint64_t *valp)
{
uint64_t blk, off;
int err;
dmu_buf_t *db;
int bs = FZAP_BLOCK_SHIFT(zap);
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
blk = idx >> (bs-3);
off = idx & ((1<<(bs-3))-1);
err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
(tbl->zt_blk + blk) << bs, FTAG, &db, DMU_READ_NO_PREFETCH);
if (err)
return (err);
*valp = ((uint64_t *)db->db_data)[off];
dmu_buf_rele(db, FTAG);
if (tbl->zt_nextblk != 0) {
/*
* read the nextblk for the sake of i/o error checking,
* so that zap_table_load() will catch errors for
* zap_table_store.
*/
blk = (idx*2) >> (bs-3);
err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
(tbl->zt_nextblk + blk) << bs, FTAG, &db,
DMU_READ_NO_PREFETCH);
dmu_buf_rele(db, FTAG);
}
return (err);
}
/*
* Routines for growing the ptrtbl.
*/
static void
zap_ptrtbl_transfer(const uint64_t *src, uint64_t *dst, int n)
{
int i;
for (i = 0; i < n; i++) {
uint64_t lb = src[i];
dst[2*i+0] = lb;
dst[2*i+1] = lb;
}
}
static int
zap_grow_ptrtbl(zap_t *zap, dmu_tx_t *tx)
{
/*
* The pointer table should never use more hash bits than we
* have (otherwise we'd be using useless zero bits to index it).
* If we are within 2 bits of running out, stop growing, since
* this is already an aberrant condition.
*/
if (zap->zap_f.zap_phys->zap_ptrtbl.zt_shift >= zap_hashbits(zap) - 2)
return (ENOSPC);
if (zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks == 0) {
/*
* We are outgrowing the "embedded" ptrtbl (the one
* stored in the header block). Give it its own entire
* block, which will double the size of the ptrtbl.
*/
uint64_t newblk;
dmu_buf_t *db_new;
int err;
ASSERT3U(zap->zap_f.zap_phys->zap_ptrtbl.zt_shift, ==,
ZAP_EMBEDDED_PTRTBL_SHIFT(zap));
ASSERT3U(zap->zap_f.zap_phys->zap_ptrtbl.zt_blk, ==, 0);
newblk = zap_allocate_blocks(zap, 1);
err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
newblk << FZAP_BLOCK_SHIFT(zap), FTAG, &db_new,
DMU_READ_NO_PREFETCH);
if (err)
return (err);
dmu_buf_will_dirty(db_new, tx);
zap_ptrtbl_transfer(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0),
db_new->db_data, 1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap));
dmu_buf_rele(db_new, FTAG);
zap->zap_f.zap_phys->zap_ptrtbl.zt_blk = newblk;
zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks = 1;
zap->zap_f.zap_phys->zap_ptrtbl.zt_shift++;
ASSERT3U(1ULL << zap->zap_f.zap_phys->zap_ptrtbl.zt_shift, ==,
zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks <<
(FZAP_BLOCK_SHIFT(zap)-3));
return (0);
} else {
return (zap_table_grow(zap, &zap->zap_f.zap_phys->zap_ptrtbl,
zap_ptrtbl_transfer, tx));
}
}
static void
zap_increment_num_entries(zap_t *zap, int delta, dmu_tx_t *tx)
{
dmu_buf_will_dirty(zap->zap_dbuf, tx);
mutex_enter(&zap->zap_f.zap_num_entries_mtx);
ASSERT(delta > 0 || zap->zap_f.zap_phys->zap_num_entries >= -delta);
zap->zap_f.zap_phys->zap_num_entries += delta;
mutex_exit(&zap->zap_f.zap_num_entries_mtx);
}
static uint64_t
zap_allocate_blocks(zap_t *zap, int nblocks)
{
uint64_t newblk;
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
newblk = zap->zap_f.zap_phys->zap_freeblk;
zap->zap_f.zap_phys->zap_freeblk += nblocks;
return (newblk);
}
static zap_leaf_t *
zap_create_leaf(zap_t *zap, dmu_tx_t *tx)
{
void *winner;
zap_leaf_t *l = kmem_alloc(sizeof (zap_leaf_t), KM_PUSHPAGE);
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
rw_init(&l->l_rwlock, NULL, RW_DEFAULT, NULL);
rw_enter(&l->l_rwlock, RW_WRITER);
l->l_blkid = zap_allocate_blocks(zap, 1);
l->l_dbuf = NULL;
l->l_phys = NULL;
VERIFY(0 == dmu_buf_hold(zap->zap_objset, zap->zap_object,
l->l_blkid << FZAP_BLOCK_SHIFT(zap), NULL, &l->l_dbuf,
DMU_READ_NO_PREFETCH));
winner = dmu_buf_set_user(l->l_dbuf, l, &l->l_phys, zap_leaf_pageout);
ASSERT(winner == NULL);
dmu_buf_will_dirty(l->l_dbuf, tx);
zap_leaf_init(l, zap->zap_normflags != 0);
zap->zap_f.zap_phys->zap_num_leafs++;
return (l);
}
int
fzap_count(zap_t *zap, uint64_t *count)
{
ASSERT(!zap->zap_ismicro);
mutex_enter(&zap->zap_f.zap_num_entries_mtx); /* unnecessary */
*count = zap->zap_f.zap_phys->zap_num_entries;
mutex_exit(&zap->zap_f.zap_num_entries_mtx);
return (0);
}
/*
* Routines for obtaining zap_leaf_t's
*/
void
zap_put_leaf(zap_leaf_t *l)
{
rw_exit(&l->l_rwlock);
dmu_buf_rele(l->l_dbuf, NULL);
}
_NOTE(ARGSUSED(0))
static void
zap_leaf_pageout(dmu_buf_t *db, void *vl)
{
zap_leaf_t *l = vl;
rw_destroy(&l->l_rwlock);
kmem_free(l, sizeof (zap_leaf_t));
}
static zap_leaf_t *
zap_open_leaf(uint64_t blkid, dmu_buf_t *db)
{
zap_leaf_t *l, *winner;
ASSERT(blkid != 0);
l = kmem_alloc(sizeof (zap_leaf_t), KM_PUSHPAGE);
rw_init(&l->l_rwlock, NULL, RW_DEFAULT, NULL);
rw_enter(&l->l_rwlock, RW_WRITER);
l->l_blkid = blkid;
l->l_bs = highbit(db->db_size)-1;
l->l_dbuf = db;
l->l_phys = NULL;
winner = dmu_buf_set_user(db, l, &l->l_phys, zap_leaf_pageout);
rw_exit(&l->l_rwlock);
if (winner != NULL) {
/* someone else set it first */
zap_leaf_pageout(NULL, l);
l = winner;
}
/*
* lhr_pad was previously used for the next leaf in the leaf
* chain. There should be no chained leafs (as we have removed
* support for them).
*/
ASSERT3U(l->l_phys->l_hdr.lh_pad1, ==, 0);
/*
* There should be more hash entries than there can be
* chunks to put in the hash table
*/
ASSERT3U(ZAP_LEAF_HASH_NUMENTRIES(l), >, ZAP_LEAF_NUMCHUNKS(l) / 3);
/* The chunks should begin at the end of the hash table */
ASSERT3P(&ZAP_LEAF_CHUNK(l, 0), ==, (zap_leaf_chunk_t *)
&l->l_phys->l_hash[ZAP_LEAF_HASH_NUMENTRIES(l)]);
/* The chunks should end at the end of the block */
ASSERT3U((uintptr_t)&ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)) -
(uintptr_t)l->l_phys, ==, l->l_dbuf->db_size);
return (l);
}
static int
zap_get_leaf_byblk(zap_t *zap, uint64_t blkid, dmu_tx_t *tx, krw_t lt,
zap_leaf_t **lp)
{
dmu_buf_t *db;
zap_leaf_t *l;
int bs = FZAP_BLOCK_SHIFT(zap);
int err;
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
blkid << bs, NULL, &db, DMU_READ_NO_PREFETCH);
if (err)
return (err);
ASSERT3U(db->db_object, ==, zap->zap_object);
ASSERT3U(db->db_offset, ==, blkid << bs);
ASSERT3U(db->db_size, ==, 1 << bs);
ASSERT(blkid != 0);
l = dmu_buf_get_user(db);
if (l == NULL)
l = zap_open_leaf(blkid, db);
rw_enter(&l->l_rwlock, lt);
/*
* Must lock before dirtying, otherwise l->l_phys could change,
* causing ASSERT below to fail.
*/
if (lt == RW_WRITER)
dmu_buf_will_dirty(db, tx);
ASSERT3U(l->l_blkid, ==, blkid);
ASSERT3P(l->l_dbuf, ==, db);
ASSERT3P(l->l_phys, ==, l->l_dbuf->db_data);
ASSERT3U(l->l_phys->l_hdr.lh_block_type, ==, ZBT_LEAF);
ASSERT3U(l->l_phys->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC);
*lp = l;
return (0);
}
static int
zap_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t *valp)
{
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
if (zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks == 0) {
ASSERT3U(idx, <,
(1ULL << zap->zap_f.zap_phys->zap_ptrtbl.zt_shift));
*valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx);
return (0);
} else {
return (zap_table_load(zap, &zap->zap_f.zap_phys->zap_ptrtbl,
idx, valp));
}
}
static int
zap_set_idx_to_blk(zap_t *zap, uint64_t idx, uint64_t blk, dmu_tx_t *tx)
{
ASSERT(tx != NULL);
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
if (zap->zap_f.zap_phys->zap_ptrtbl.zt_blk == 0) {
ZAP_EMBEDDED_PTRTBL_ENT(zap, idx) = blk;
return (0);
} else {
return (zap_table_store(zap, &zap->zap_f.zap_phys->zap_ptrtbl,
idx, blk, tx));
}
}
static int
zap_deref_leaf(zap_t *zap, uint64_t h, dmu_tx_t *tx, krw_t lt, zap_leaf_t **lp)
{
uint64_t idx, blk;
int err;
ASSERT(zap->zap_dbuf == NULL ||
zap->zap_f.zap_phys == zap->zap_dbuf->db_data);
ASSERT3U(zap->zap_f.zap_phys->zap_magic, ==, ZAP_MAGIC);
idx = ZAP_HASH_IDX(h, zap->zap_f.zap_phys->zap_ptrtbl.zt_shift);
err = zap_idx_to_blk(zap, idx, &blk);
if (err != 0)
return (err);
err = zap_get_leaf_byblk(zap, blk, tx, lt, lp);
ASSERT(err || ZAP_HASH_IDX(h, (*lp)->l_phys->l_hdr.lh_prefix_len) ==
(*lp)->l_phys->l_hdr.lh_prefix);
return (err);
}
static int
zap_expand_leaf(zap_name_t *zn, zap_leaf_t *l, dmu_tx_t *tx, zap_leaf_t **lp)
{
zap_t *zap = zn->zn_zap;
uint64_t hash = zn->zn_hash;
zap_leaf_t *nl;
int prefix_diff, i, err;
uint64_t sibling;
int old_prefix_len = l->l_phys->l_hdr.lh_prefix_len;
ASSERT3U(old_prefix_len, <=, zap->zap_f.zap_phys->zap_ptrtbl.zt_shift);
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==,
l->l_phys->l_hdr.lh_prefix);
if (zap_tryupgradedir(zap, tx) == 0 ||
old_prefix_len == zap->zap_f.zap_phys->zap_ptrtbl.zt_shift) {
/* We failed to upgrade, or need to grow the pointer table */
objset_t *os = zap->zap_objset;
uint64_t object = zap->zap_object;
zap_put_leaf(l);
zap_unlockdir(zap);
err = zap_lockdir(os, object, tx, RW_WRITER,
FALSE, FALSE, &zn->zn_zap);
zap = zn->zn_zap;
if (err)
return (err);
ASSERT(!zap->zap_ismicro);
while (old_prefix_len ==
zap->zap_f.zap_phys->zap_ptrtbl.zt_shift) {
err = zap_grow_ptrtbl(zap, tx);
if (err)
return (err);
}
err = zap_deref_leaf(zap, hash, tx, RW_WRITER, &l);
if (err)
return (err);
if (l->l_phys->l_hdr.lh_prefix_len != old_prefix_len) {
/* it split while our locks were down */
*lp = l;
return (0);
}
}
ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
ASSERT3U(old_prefix_len, <, zap->zap_f.zap_phys->zap_ptrtbl.zt_shift);
ASSERT3U(ZAP_HASH_IDX(hash, old_prefix_len), ==,
l->l_phys->l_hdr.lh_prefix);
prefix_diff = zap->zap_f.zap_phys->zap_ptrtbl.zt_shift -
(old_prefix_len + 1);
sibling = (ZAP_HASH_IDX(hash, old_prefix_len + 1) | 1) << prefix_diff;
/* check for i/o errors before doing zap_leaf_split */
for (i = 0; i < (1ULL<<prefix_diff); i++) {
uint64_t blk;
err = zap_idx_to_blk(zap, sibling+i, &blk);
if (err)
return (err);
ASSERT3U(blk, ==, l->l_blkid);
}
nl = zap_create_leaf(zap, tx);
zap_leaf_split(l, nl, zap->zap_normflags != 0);
/* set sibling pointers */
for (i = 0; i < (1ULL<<prefix_diff); i++) {
err = zap_set_idx_to_blk(zap, sibling+i, nl->l_blkid, tx);
ASSERT3U(err, ==, 0); /* we checked for i/o errors above */
}
if (hash & (1ULL << (64 - l->l_phys->l_hdr.lh_prefix_len))) {
/* we want the sibling */
zap_put_leaf(l);
*lp = nl;
} else {
zap_put_leaf(nl);
*lp = l;
}
return (0);
}
static void
zap_put_leaf_maybe_grow_ptrtbl(zap_name_t *zn, zap_leaf_t *l, dmu_tx_t *tx)
{
zap_t *zap = zn->zn_zap;
int shift = zap->zap_f.zap_phys->zap_ptrtbl.zt_shift;
int leaffull = (l->l_phys->l_hdr.lh_prefix_len == shift &&
l->l_phys->l_hdr.lh_nfree < ZAP_LEAF_LOW_WATER);
zap_put_leaf(l);
if (leaffull || zap->zap_f.zap_phys->zap_ptrtbl.zt_nextblk) {
int err;
/*
* We are in the middle of growing the pointer table, or
* this leaf will soon make us grow it.
*/
if (zap_tryupgradedir(zap, tx) == 0) {
objset_t *os = zap->zap_objset;
uint64_t zapobj = zap->zap_object;
zap_unlockdir(zap);
err = zap_lockdir(os, zapobj, tx,
RW_WRITER, FALSE, FALSE, &zn->zn_zap);
zap = zn->zn_zap;
if (err)
return;
}
/* could have finished growing while our locks were down */
if (zap->zap_f.zap_phys->zap_ptrtbl.zt_shift == shift)
(void) zap_grow_ptrtbl(zap, tx);
}
}
static int
fzap_checkname(zap_name_t *zn)
{
if (zn->zn_key_orig_numints * zn->zn_key_intlen > ZAP_MAXNAMELEN)
return (ENAMETOOLONG);
return (0);
}
static int
fzap_checksize(uint64_t integer_size, uint64_t num_integers)
{
/* Only integer sizes supported by C */
switch (integer_size) {
case 1:
case 2:
case 4:
case 8:
break;
default:
return (EINVAL);
}
if (integer_size * num_integers > ZAP_MAXVALUELEN)
return (E2BIG);
return (0);
}
static int
fzap_check(zap_name_t *zn, uint64_t integer_size, uint64_t num_integers)
{
int err;
if ((err = fzap_checkname(zn)) != 0)
return (err);
return (fzap_checksize(integer_size, num_integers));
}
/*
* Routines for manipulating attributes.
*/
int
fzap_lookup(zap_name_t *zn,
uint64_t integer_size, uint64_t num_integers, void *buf,
char *realname, int rn_len, boolean_t *ncp)
{
zap_leaf_t *l;
int err;
zap_entry_handle_t zeh;
if ((err = fzap_checkname(zn)) != 0)
return (err);
err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l);
if (err != 0)
return (err);
err = zap_leaf_lookup(l, zn, &zeh);
if (err == 0) {
if ((err = fzap_checksize(integer_size, num_integers)) != 0) {
zap_put_leaf(l);
return (err);
}
err = zap_entry_read(&zeh, integer_size, num_integers, buf);
(void) zap_entry_read_name(zn->zn_zap, &zeh, rn_len, realname);
if (ncp) {
*ncp = zap_entry_normalization_conflict(&zeh,
zn, NULL, zn->zn_zap);
}
}
zap_put_leaf(l);
return (err);
}
int
fzap_add_cd(zap_name_t *zn,
uint64_t integer_size, uint64_t num_integers,
const void *val, uint32_t cd, dmu_tx_t *tx)
{
zap_leaf_t *l;
int err;
zap_entry_handle_t zeh;
zap_t *zap = zn->zn_zap;
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
ASSERT(!zap->zap_ismicro);
ASSERT(fzap_check(zn, integer_size, num_integers) == 0);
err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l);
if (err != 0)
return (err);
retry:
err = zap_leaf_lookup(l, zn, &zeh);
if (err == 0) {
err = EEXIST;
goto out;
}
if (err != ENOENT)
goto out;
err = zap_entry_create(l, zn, cd,
integer_size, num_integers, val, &zeh);
if (err == 0) {
zap_increment_num_entries(zap, 1, tx);
} else if (err == EAGAIN) {
err = zap_expand_leaf(zn, l, tx, &l);
zap = zn->zn_zap; /* zap_expand_leaf() may change zap */
if (err == 0)
goto retry;
}
out:
if (zap != NULL)
zap_put_leaf_maybe_grow_ptrtbl(zn, l, tx);
return (err);
}
int
fzap_add(zap_name_t *zn,
uint64_t integer_size, uint64_t num_integers,
const void *val, dmu_tx_t *tx)
{
int err = fzap_check(zn, integer_size, num_integers);
if (err != 0)
return (err);
return (fzap_add_cd(zn, integer_size, num_integers,
val, ZAP_NEED_CD, tx));
}
int
fzap_update(zap_name_t *zn,
int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
{
zap_leaf_t *l;
int err, create;
zap_entry_handle_t zeh;
zap_t *zap = zn->zn_zap;
ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
err = fzap_check(zn, integer_size, num_integers);
if (err != 0)
return (err);
err = zap_deref_leaf(zap, zn->zn_hash, tx, RW_WRITER, &l);
if (err != 0)
return (err);
retry:
err = zap_leaf_lookup(l, zn, &zeh);
create = (err == ENOENT);
ASSERT(err == 0 || err == ENOENT);
if (create) {
err = zap_entry_create(l, zn, ZAP_NEED_CD,
integer_size, num_integers, val, &zeh);
if (err == 0)
zap_increment_num_entries(zap, 1, tx);
} else {
err = zap_entry_update(&zeh, integer_size, num_integers, val);
}
if (err == EAGAIN) {
err = zap_expand_leaf(zn, l, tx, &l);
zap = zn->zn_zap; /* zap_expand_leaf() may change zap */
if (err == 0)
goto retry;
}
if (zap != NULL)
zap_put_leaf_maybe_grow_ptrtbl(zn, l, tx);
return (err);
}
int
fzap_length(zap_name_t *zn,
uint64_t *integer_size, uint64_t *num_integers)
{
zap_leaf_t *l;
int err;
zap_entry_handle_t zeh;
err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, NULL, RW_READER, &l);
if (err != 0)
return (err);
err = zap_leaf_lookup(l, zn, &zeh);
if (err != 0)
goto out;
if (integer_size)
*integer_size = zeh.zeh_integer_size;
if (num_integers)
*num_integers = zeh.zeh_num_integers;
out:
zap_put_leaf(l);
return (err);
}
int
fzap_remove(zap_name_t *zn, dmu_tx_t *tx)
{
zap_leaf_t *l;
int err;
zap_entry_handle_t zeh;
err = zap_deref_leaf(zn->zn_zap, zn->zn_hash, tx, RW_WRITER, &l);
if (err != 0)
return (err);
err = zap_leaf_lookup(l, zn, &zeh);
if (err == 0) {
zap_entry_remove(&zeh);
zap_increment_num_entries(zn->zn_zap, -1, tx);
}
zap_put_leaf(l);
return (err);
}
void
fzap_prefetch(zap_name_t *zn)
{
uint64_t idx, blk;
zap_t *zap = zn->zn_zap;
int bs;
idx = ZAP_HASH_IDX(zn->zn_hash,
zap->zap_f.zap_phys->zap_ptrtbl.zt_shift);
if (zap_idx_to_blk(zap, idx, &blk) != 0)
return;
bs = FZAP_BLOCK_SHIFT(zap);
dmu_prefetch(zap->zap_objset, zap->zap_object, blk << bs, 1 << bs);
}
/*
* Helper functions for consumers.
*/
int
zap_value_search(objset_t *os, uint64_t zapobj, uint64_t value, uint64_t mask,
char *name)
{
zap_cursor_t zc;
zap_attribute_t *za;
int err;
if (mask == 0)
mask = -1ULL;
za = kmem_alloc(sizeof (zap_attribute_t), KM_PUSHPAGE);
for (zap_cursor_init(&zc, os, zapobj);
(err = zap_cursor_retrieve(&zc, za)) == 0;
zap_cursor_advance(&zc)) {
if ((za->za_first_integer & mask) == (value & mask)) {
(void) strcpy(name, za->za_name);
break;
}
}
zap_cursor_fini(&zc);
kmem_free(za, sizeof (zap_attribute_t));
return (err);
}
int
zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx)
{
zap_cursor_t zc;
zap_attribute_t za;
int err;
for (zap_cursor_init(&zc, os, fromobj);
zap_cursor_retrieve(&zc, &za) == 0;
(void) zap_cursor_advance(&zc)) {
if (za.za_integer_length != 8 || za.za_num_integers != 1)
return (EINVAL);
err = zap_add(os, intoobj, za.za_name,
8, 1, &za.za_first_integer, tx);
if (err)
return (err);
}
zap_cursor_fini(&zc);
return (0);
}
int
zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj,
uint64_t value, dmu_tx_t *tx)
{
zap_cursor_t zc;
zap_attribute_t za;
int err;
for (zap_cursor_init(&zc, os, fromobj);
zap_cursor_retrieve(&zc, &za) == 0;
(void) zap_cursor_advance(&zc)) {
if (za.za_integer_length != 8 || za.za_num_integers != 1)
return (EINVAL);
err = zap_add(os, intoobj, za.za_name,
8, 1, &value, tx);
if (err)
return (err);
}
zap_cursor_fini(&zc);
return (0);
}
int
zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj,
dmu_tx_t *tx)
{
zap_cursor_t zc;
zap_attribute_t za;
int err;
for (zap_cursor_init(&zc, os, fromobj);
zap_cursor_retrieve(&zc, &za) == 0;
(void) zap_cursor_advance(&zc)) {
uint64_t delta = 0;
if (za.za_integer_length != 8 || za.za_num_integers != 1)
return (EINVAL);
err = zap_lookup(os, intoobj, za.za_name, 8, 1, &delta);
if (err != 0 && err != ENOENT)
return (err);
delta += za.za_first_integer;
err = zap_update(os, intoobj, za.za_name, 8, 1, &delta, tx);
if (err)
return (err);
}
zap_cursor_fini(&zc);
return (0);
}
int
zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx)
{
char name[20];
(void) snprintf(name, sizeof (name), "%llx", (longlong_t)value);
return (zap_add(os, obj, name, 8, 1, &value, tx));
}
int
zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx)
{
char name[20];
(void) snprintf(name, sizeof (name), "%llx", (longlong_t)value);
return (zap_remove(os, obj, name, tx));
}
int
zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value)
{
char name[20];
(void) snprintf(name, sizeof (name), "%llx", (longlong_t)value);
return (zap_lookup(os, obj, name, 8, 1, &value));
}
int
zap_add_int_key(objset_t *os, uint64_t obj,
uint64_t key, uint64_t value, dmu_tx_t *tx)
{
char name[20];
(void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
return (zap_add(os, obj, name, 8, 1, &value, tx));
}
int
zap_lookup_int_key(objset_t *os, uint64_t obj, uint64_t key, uint64_t *valuep)
{
char name[20];
(void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
return (zap_lookup(os, obj, name, 8, 1, valuep));
}
int
zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta,
dmu_tx_t *tx)
{
uint64_t value = 0;
int err;
if (delta == 0)
return (0);
err = zap_lookup(os, obj, name, 8, 1, &value);
if (err != 0 && err != ENOENT)
return (err);
value += delta;
if (value == 0)
err = zap_remove(os, obj, name, tx);
else
err = zap_update(os, obj, name, 8, 1, &value, tx);
return (err);
}
int
zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta,
dmu_tx_t *tx)
{
char name[20];
(void) snprintf(name, sizeof (name), "%llx", (longlong_t)key);
return (zap_increment(os, obj, name, delta, tx));
}
/*
* Routines for iterating over the attributes.
*/
int
fzap_cursor_retrieve(zap_t *zap, zap_cursor_t *zc, zap_attribute_t *za)
{
int err = ENOENT;
zap_entry_handle_t zeh;
zap_leaf_t *l;
/* retrieve the next entry at or after zc_hash/zc_cd */
/* if no entry, return ENOENT */
if (zc->zc_leaf &&
(ZAP_HASH_IDX(zc->zc_hash,
zc->zc_leaf->l_phys->l_hdr.lh_prefix_len) !=
zc->zc_leaf->l_phys->l_hdr.lh_prefix)) {
rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
zap_put_leaf(zc->zc_leaf);
zc->zc_leaf = NULL;
}
again:
if (zc->zc_leaf == NULL) {
err = zap_deref_leaf(zap, zc->zc_hash, NULL, RW_READER,
&zc->zc_leaf);
if (err != 0)
return (err);
} else {
rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
}
l = zc->zc_leaf;
err = zap_leaf_lookup_closest(l, zc->zc_hash, zc->zc_cd, &zeh);
if (err == ENOENT) {
uint64_t nocare =
(1ULL << (64 - l->l_phys->l_hdr.lh_prefix_len)) - 1;
zc->zc_hash = (zc->zc_hash & ~nocare) + nocare + 1;
zc->zc_cd = 0;
if (l->l_phys->l_hdr.lh_prefix_len == 0 || zc->zc_hash == 0) {
zc->zc_hash = -1ULL;
} else {
zap_put_leaf(zc->zc_leaf);
zc->zc_leaf = NULL;
goto again;
}
}
if (err == 0) {
zc->zc_hash = zeh.zeh_hash;
zc->zc_cd = zeh.zeh_cd;
za->za_integer_length = zeh.zeh_integer_size;
za->za_num_integers = zeh.zeh_num_integers;
if (zeh.zeh_num_integers == 0) {
za->za_first_integer = 0;
} else {
err = zap_entry_read(&zeh, 8, 1, &za->za_first_integer);
ASSERT(err == 0 || err == EOVERFLOW);
}
err = zap_entry_read_name(zap, &zeh,
sizeof (za->za_name), za->za_name);
ASSERT(err == 0);
za->za_normalization_conflict =
zap_entry_normalization_conflict(&zeh,
NULL, za->za_name, zap);
}
rw_exit(&zc->zc_leaf->l_rwlock);
return (err);
}
static void
zap_stats_ptrtbl(zap_t *zap, uint64_t *tbl, int len, zap_stats_t *zs)
{
int i, err;
uint64_t lastblk = 0;
/*
* NB: if a leaf has more pointers than an entire ptrtbl block
* can hold, then it'll be accounted for more than once, since
* we won't have lastblk.
*/
for (i = 0; i < len; i++) {
zap_leaf_t *l;
if (tbl[i] == lastblk)
continue;
lastblk = tbl[i];
err = zap_get_leaf_byblk(zap, tbl[i], NULL, RW_READER, &l);
if (err == 0) {
zap_leaf_stats(zap, l, zs);
zap_put_leaf(l);
}
}
}
int
fzap_cursor_move_to_key(zap_cursor_t *zc, zap_name_t *zn)
{
int err;
zap_leaf_t *l;
zap_entry_handle_t zeh;
if (zn->zn_key_orig_numints * zn->zn_key_intlen > ZAP_MAXNAMELEN)
return (ENAMETOOLONG);
err = zap_deref_leaf(zc->zc_zap, zn->zn_hash, NULL, RW_READER, &l);
if (err != 0)
return (err);
err = zap_leaf_lookup(l, zn, &zeh);
if (err != 0)
return (err);
zc->zc_leaf = l;
zc->zc_hash = zeh.zeh_hash;
zc->zc_cd = zeh.zeh_cd;
return (err);
}
void
fzap_get_stats(zap_t *zap, zap_stats_t *zs)
{
int bs = FZAP_BLOCK_SHIFT(zap);
zs->zs_blocksize = 1ULL << bs;
/*
* Set zap_phys_t fields
*/
zs->zs_num_leafs = zap->zap_f.zap_phys->zap_num_leafs;
zs->zs_num_entries = zap->zap_f.zap_phys->zap_num_entries;
zs->zs_num_blocks = zap->zap_f.zap_phys->zap_freeblk;
zs->zs_block_type = zap->zap_f.zap_phys->zap_block_type;
zs->zs_magic = zap->zap_f.zap_phys->zap_magic;
zs->zs_salt = zap->zap_f.zap_phys->zap_salt;
/*
* Set zap_ptrtbl fields
*/
zs->zs_ptrtbl_len = 1ULL << zap->zap_f.zap_phys->zap_ptrtbl.zt_shift;
zs->zs_ptrtbl_nextblk = zap->zap_f.zap_phys->zap_ptrtbl.zt_nextblk;
zs->zs_ptrtbl_blks_copied =
zap->zap_f.zap_phys->zap_ptrtbl.zt_blks_copied;
zs->zs_ptrtbl_zt_blk = zap->zap_f.zap_phys->zap_ptrtbl.zt_blk;
zs->zs_ptrtbl_zt_numblks = zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks;
zs->zs_ptrtbl_zt_shift = zap->zap_f.zap_phys->zap_ptrtbl.zt_shift;
if (zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks == 0) {
/* the ptrtbl is entirely in the header block. */
zap_stats_ptrtbl(zap, &ZAP_EMBEDDED_PTRTBL_ENT(zap, 0),
1 << ZAP_EMBEDDED_PTRTBL_SHIFT(zap), zs);
} else {
int b;
dmu_prefetch(zap->zap_objset, zap->zap_object,
zap->zap_f.zap_phys->zap_ptrtbl.zt_blk << bs,
zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks << bs);
for (b = 0; b < zap->zap_f.zap_phys->zap_ptrtbl.zt_numblks;
b++) {
dmu_buf_t *db;
int err;
err = dmu_buf_hold(zap->zap_objset, zap->zap_object,
(zap->zap_f.zap_phys->zap_ptrtbl.zt_blk + b) << bs,
FTAG, &db, DMU_READ_NO_PREFETCH);
if (err == 0) {
zap_stats_ptrtbl(zap, db->db_data,
1<<(bs-3), zs);
dmu_buf_rele(db, FTAG);
}
}
}
}
int
fzap_count_write(zap_name_t *zn, int add, uint64_t *towrite,
uint64_t *tooverwrite)
{
zap_t *zap = zn->zn_zap;
zap_leaf_t *l;
int err;
/*
* Account for the header block of the fatzap.
*/
if (!add && dmu_buf_freeable(zap->zap_dbuf)) {
*tooverwrite += zap->zap_dbuf->db_size;
} else {
*towrite += zap->zap_dbuf->db_size;
}
/*
* Account for the pointer table blocks.
* If we are adding we need to account for the following cases :
* - If the pointer table is embedded, this operation could force an
* external pointer table.
* - If this already has an external pointer table this operation
* could extend the table.
*/
if (add) {
if (zap->zap_f.zap_phys->zap_ptrtbl.zt_blk == 0)
*towrite += zap->zap_dbuf->db_size;
else
*towrite += (zap->zap_dbuf->db_size * 3);
}
/*
* Now, check if the block containing leaf is freeable
* and account accordingly.
*/
err = zap_deref_leaf(zap, zn->zn_hash, NULL, RW_READER, &l);
if (err != 0) {
return (err);
}
if (!add && dmu_buf_freeable(l->l_dbuf)) {
*tooverwrite += l->l_dbuf->db_size;
} else {
/*
* If this an add operation, the leaf block could split.
* Hence, we need to account for an additional leaf block.
*/
*towrite += (add ? 2 : 1) * l->l_dbuf->db_size;
}
zap_put_leaf(l);
return (0);
}