ff6c7bf5ca
performance... Use SSE2 instructions for calculating the XTS tweek factor... Let the compiler do more work and handle register allocation by using intrinsics, now only the key schedule is in assembly... Replace .byte hard coded instructions w/ the proper instructions now that both clang and gcc support them... On my machine, pulling the code to userland I saw performance go from ~150MB/sec to 2GB/sec in XTS mode. GELI on GNOP saw a more modest increase of about 3x due to other system overhead (geom and opencrypto)... These changes allow almost full disk io rate w/ geli... Reviewed by: -current, -security Thanks to: Mike Hamburg for the XTS tweek algorithm
448 lines
12 KiB
C
448 lines
12 KiB
C
/*-
|
|
* Copyright (C) 2008 Damien Miller <djm@mindrot.org>
|
|
* Copyright (c) 2010 Konstantin Belousov <kib@FreeBSD.org>
|
|
* Copyright (c) 2010-2011 Pawel Jakub Dawidek <pawel@dawidek.net>
|
|
* Copyright 2012-2013 John-Mark Gurney <jmg@FreeBSD.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/libkern.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/systm.h>
|
|
#include <crypto/aesni/aesni.h>
|
|
|
|
#include "aesencdec.h"
|
|
|
|
MALLOC_DECLARE(M_AESNI);
|
|
|
|
void
|
|
aesni_encrypt_cbc(int rounds, const void *key_schedule, size_t len,
|
|
const uint8_t *from, uint8_t *to, const uint8_t iv[AES_BLOCK_LEN])
|
|
{
|
|
__m128i tot, ivreg;
|
|
size_t i;
|
|
|
|
len /= AES_BLOCK_LEN;
|
|
ivreg = _mm_loadu_si128((const __m128i *)iv);
|
|
for (i = 0; i < len; i++) {
|
|
tot = aesni_enc(rounds - 1, key_schedule,
|
|
_mm_loadu_si128((const __m128i *)from) ^ ivreg);
|
|
ivreg = tot;
|
|
_mm_storeu_si128((__m128i *)to, tot);
|
|
from += AES_BLOCK_LEN;
|
|
to += AES_BLOCK_LEN;
|
|
}
|
|
}
|
|
|
|
void
|
|
aesni_decrypt_cbc(int rounds, const void *key_schedule, size_t len,
|
|
uint8_t *buf, const uint8_t iv[AES_BLOCK_LEN])
|
|
{
|
|
__m128i blocks[8];
|
|
__m128i *bufs;
|
|
__m128i ivreg, nextiv;
|
|
size_t i, j, cnt;
|
|
|
|
ivreg = _mm_loadu_si128((const __m128i *)iv);
|
|
cnt = len / AES_BLOCK_LEN / 8;
|
|
for (i = 0; i < cnt; i++) {
|
|
bufs = (__m128i *)buf;
|
|
aesni_dec8(rounds - 1, key_schedule, bufs[0], bufs[1],
|
|
bufs[2], bufs[3], bufs[4], bufs[5], bufs[6],
|
|
bufs[7], &blocks[0]);
|
|
for (j = 0; j < 8; j++) {
|
|
nextiv = bufs[j];
|
|
bufs[j] = blocks[j] ^ ivreg;
|
|
ivreg = nextiv;
|
|
}
|
|
buf += AES_BLOCK_LEN * 8;
|
|
}
|
|
i *= 8;
|
|
cnt = len / AES_BLOCK_LEN;
|
|
for (; i < cnt; i++) {
|
|
bufs = (__m128i *)buf;
|
|
nextiv = bufs[0];
|
|
bufs[0] = aesni_dec(rounds - 1, key_schedule, bufs[0]) ^ ivreg;
|
|
ivreg = nextiv;
|
|
buf += AES_BLOCK_LEN;
|
|
}
|
|
}
|
|
|
|
void
|
|
aesni_encrypt_ecb(int rounds, const void *key_schedule, size_t len,
|
|
const uint8_t *from, uint8_t *to)
|
|
{
|
|
__m128i tot;
|
|
const __m128i *blocks;
|
|
size_t i, cnt;
|
|
|
|
cnt = len / AES_BLOCK_LEN / 8;
|
|
for (i = 0; i < cnt; i++) {
|
|
blocks = (const __m128i *)from;
|
|
aesni_enc8(rounds - 1, key_schedule, blocks[0], blocks[1],
|
|
blocks[2], blocks[3], blocks[4], blocks[5], blocks[6],
|
|
blocks[7], (__m128i *)to);
|
|
from += AES_BLOCK_LEN * 8;
|
|
to += AES_BLOCK_LEN * 8;
|
|
}
|
|
i *= 8;
|
|
cnt = len / AES_BLOCK_LEN;
|
|
for (; i < cnt; i++) {
|
|
tot = aesni_enc(rounds - 1, key_schedule,
|
|
_mm_loadu_si128((const __m128i *)from));
|
|
_mm_storeu_si128((__m128i *)to, tot);
|
|
from += AES_BLOCK_LEN;
|
|
to += AES_BLOCK_LEN;
|
|
}
|
|
}
|
|
|
|
void
|
|
aesni_decrypt_ecb(int rounds, const void *key_schedule, size_t len,
|
|
const uint8_t from[AES_BLOCK_LEN], uint8_t to[AES_BLOCK_LEN])
|
|
{
|
|
__m128i tot;
|
|
const __m128i *blocks;
|
|
size_t i, cnt;
|
|
|
|
cnt = len / AES_BLOCK_LEN / 8;
|
|
for (i = 0; i < cnt; i++) {
|
|
blocks = (const __m128i *)from;
|
|
aesni_dec8(rounds - 1, key_schedule, blocks[0], blocks[1],
|
|
blocks[2], blocks[3], blocks[4], blocks[5], blocks[6],
|
|
blocks[7], (__m128i *)to);
|
|
from += AES_BLOCK_LEN * 8;
|
|
to += AES_BLOCK_LEN * 8;
|
|
}
|
|
i *= 8;
|
|
cnt = len / AES_BLOCK_LEN;
|
|
for (; i < cnt; i++) {
|
|
tot = aesni_dec(rounds - 1, key_schedule,
|
|
_mm_loadu_si128((const __m128i *)from));
|
|
_mm_storeu_si128((__m128i *)to, tot);
|
|
from += AES_BLOCK_LEN;
|
|
to += AES_BLOCK_LEN;
|
|
}
|
|
}
|
|
|
|
#define AES_XTS_BLOCKSIZE 16
|
|
#define AES_XTS_IVSIZE 8
|
|
#define AES_XTS_ALPHA 0x87 /* GF(2^128) generator polynomial */
|
|
|
|
static inline __m128i
|
|
xts_crank_lfsr(__m128i inp)
|
|
{
|
|
const __m128i alphamask = _mm_set_epi32(1, 1, 1, AES_XTS_ALPHA);
|
|
__m128i xtweak, ret;
|
|
|
|
/* set up xor mask */
|
|
xtweak = _mm_shuffle_epi32(inp, 0x93);
|
|
xtweak = _mm_srai_epi32(xtweak, 31);
|
|
xtweak &= alphamask;
|
|
|
|
/* next term */
|
|
ret = _mm_slli_epi32(inp, 1);
|
|
ret ^= xtweak;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
aesni_crypt_xts_block(int rounds, const void *key_schedule, __m128i *tweak,
|
|
const __m128i *from, __m128i *to, int do_encrypt)
|
|
{
|
|
__m128i block;
|
|
|
|
block = *from ^ *tweak;
|
|
|
|
if (do_encrypt)
|
|
block = aesni_enc(rounds - 1, key_schedule, block);
|
|
else
|
|
block = aesni_dec(rounds - 1, key_schedule, block);
|
|
|
|
*to = block ^ *tweak;
|
|
|
|
*tweak = xts_crank_lfsr(*tweak);
|
|
}
|
|
|
|
static void
|
|
aesni_crypt_xts_block8(int rounds, const void *key_schedule, __m128i *tweak,
|
|
const __m128i *from, __m128i *to, int do_encrypt)
|
|
{
|
|
__m128i tmptweak;
|
|
__m128i a, b, c, d, e, f, g, h;
|
|
__m128i tweaks[8];
|
|
__m128i tmp[8];
|
|
|
|
tmptweak = *tweak;
|
|
|
|
/*
|
|
* unroll the loop. This lets gcc put values directly in the
|
|
* register and saves memory accesses.
|
|
*/
|
|
#define PREPINP(v, pos) \
|
|
do { \
|
|
tweaks[(pos)] = tmptweak; \
|
|
(v) = from[(pos)] ^ tmptweak; \
|
|
tmptweak = xts_crank_lfsr(tmptweak); \
|
|
} while (0)
|
|
PREPINP(a, 0);
|
|
PREPINP(b, 1);
|
|
PREPINP(c, 2);
|
|
PREPINP(d, 3);
|
|
PREPINP(e, 4);
|
|
PREPINP(f, 5);
|
|
PREPINP(g, 6);
|
|
PREPINP(h, 7);
|
|
*tweak = tmptweak;
|
|
|
|
if (do_encrypt)
|
|
aesni_enc8(rounds - 1, key_schedule, a, b, c, d, e, f, g, h,
|
|
tmp);
|
|
else
|
|
aesni_dec8(rounds - 1, key_schedule, a, b, c, d, e, f, g, h,
|
|
tmp);
|
|
|
|
to[0] = tmp[0] ^ tweaks[0];
|
|
to[1] = tmp[1] ^ tweaks[1];
|
|
to[2] = tmp[2] ^ tweaks[2];
|
|
to[3] = tmp[3] ^ tweaks[3];
|
|
to[4] = tmp[4] ^ tweaks[4];
|
|
to[5] = tmp[5] ^ tweaks[5];
|
|
to[6] = tmp[6] ^ tweaks[6];
|
|
to[7] = tmp[7] ^ tweaks[7];
|
|
}
|
|
|
|
static void
|
|
aesni_crypt_xts(int rounds, const void *data_schedule,
|
|
const void *tweak_schedule, size_t len, const uint8_t *from, uint8_t *to,
|
|
const uint8_t iv[AES_BLOCK_LEN], int do_encrypt)
|
|
{
|
|
__m128i tweakreg;
|
|
uint8_t tweak[AES_XTS_BLOCKSIZE] __aligned(16);
|
|
size_t i, cnt;
|
|
|
|
/*
|
|
* Prepare tweak as E_k2(IV). IV is specified as LE representation
|
|
* of a 64-bit block number which we allow to be passed in directly.
|
|
*/
|
|
#if BYTE_ORDER == LITTLE_ENDIAN
|
|
bcopy(iv, tweak, AES_XTS_IVSIZE);
|
|
/* Last 64 bits of IV are always zero. */
|
|
bzero(tweak + AES_XTS_IVSIZE, AES_XTS_IVSIZE);
|
|
#else
|
|
#error Only LITTLE_ENDIAN architectures are supported.
|
|
#endif
|
|
tweakreg = _mm_loadu_si128((__m128i *)&tweak[0]);
|
|
tweakreg = aesni_enc(rounds - 1, tweak_schedule, tweakreg);
|
|
|
|
cnt = len / AES_XTS_BLOCKSIZE / 8;
|
|
for (i = 0; i < cnt; i++) {
|
|
aesni_crypt_xts_block8(rounds, data_schedule, &tweakreg,
|
|
(const __m128i *)from, (__m128i *)to, do_encrypt);
|
|
from += AES_XTS_BLOCKSIZE * 8;
|
|
to += AES_XTS_BLOCKSIZE * 8;
|
|
}
|
|
i *= 8;
|
|
cnt = len / AES_XTS_BLOCKSIZE;
|
|
for (; i < cnt; i++) {
|
|
aesni_crypt_xts_block(rounds, data_schedule, &tweakreg,
|
|
(const __m128i *)from, (__m128i *)to, do_encrypt);
|
|
from += AES_XTS_BLOCKSIZE;
|
|
to += AES_XTS_BLOCKSIZE;
|
|
}
|
|
}
|
|
|
|
void
|
|
aesni_encrypt_xts(int rounds, const void *data_schedule,
|
|
const void *tweak_schedule, size_t len, const uint8_t *from, uint8_t *to,
|
|
const uint8_t iv[AES_BLOCK_LEN])
|
|
{
|
|
|
|
aesni_crypt_xts(rounds, data_schedule, tweak_schedule, len, from, to,
|
|
iv, 1);
|
|
}
|
|
|
|
void
|
|
aesni_decrypt_xts(int rounds, const void *data_schedule,
|
|
const void *tweak_schedule, size_t len, const uint8_t *from, uint8_t *to,
|
|
const uint8_t iv[AES_BLOCK_LEN])
|
|
{
|
|
|
|
aesni_crypt_xts(rounds, data_schedule, tweak_schedule, len, from, to,
|
|
iv, 0);
|
|
}
|
|
|
|
static int
|
|
aesni_cipher_setup_common(struct aesni_session *ses, const uint8_t *key,
|
|
int keylen)
|
|
{
|
|
|
|
switch (ses->algo) {
|
|
case CRYPTO_AES_CBC:
|
|
switch (keylen) {
|
|
case 128:
|
|
ses->rounds = AES128_ROUNDS;
|
|
break;
|
|
case 192:
|
|
ses->rounds = AES192_ROUNDS;
|
|
break;
|
|
case 256:
|
|
ses->rounds = AES256_ROUNDS;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
break;
|
|
case CRYPTO_AES_XTS:
|
|
switch (keylen) {
|
|
case 256:
|
|
ses->rounds = AES128_ROUNDS;
|
|
break;
|
|
case 512:
|
|
ses->rounds = AES256_ROUNDS;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
aesni_set_enckey(key, ses->enc_schedule, ses->rounds);
|
|
aesni_set_deckey(ses->enc_schedule, ses->dec_schedule, ses->rounds);
|
|
if (ses->algo == CRYPTO_AES_CBC)
|
|
arc4rand(ses->iv, sizeof(ses->iv), 0);
|
|
else /* if (ses->algo == CRYPTO_AES_XTS) */ {
|
|
aesni_set_enckey(key + keylen / 16, ses->xts_schedule,
|
|
ses->rounds);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
aesni_cipher_setup(struct aesni_session *ses, struct cryptoini *encini)
|
|
{
|
|
struct thread *td;
|
|
int error, saved_ctx;
|
|
|
|
td = curthread;
|
|
if (!is_fpu_kern_thread(0)) {
|
|
error = fpu_kern_enter(td, ses->fpu_ctx, FPU_KERN_NORMAL);
|
|
saved_ctx = 1;
|
|
} else {
|
|
error = 0;
|
|
saved_ctx = 0;
|
|
}
|
|
if (error == 0) {
|
|
error = aesni_cipher_setup_common(ses, encini->cri_key,
|
|
encini->cri_klen);
|
|
if (saved_ctx)
|
|
fpu_kern_leave(td, ses->fpu_ctx);
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
aesni_cipher_process(struct aesni_session *ses, struct cryptodesc *enccrd,
|
|
struct cryptop *crp)
|
|
{
|
|
struct thread *td;
|
|
uint8_t *buf;
|
|
int error, allocated, saved_ctx;
|
|
|
|
buf = aesni_cipher_alloc(enccrd, crp, &allocated);
|
|
if (buf == NULL)
|
|
return (ENOMEM);
|
|
|
|
td = curthread;
|
|
if (!is_fpu_kern_thread(0)) {
|
|
error = fpu_kern_enter(td, ses->fpu_ctx, FPU_KERN_NORMAL);
|
|
if (error != 0)
|
|
goto out;
|
|
saved_ctx = 1;
|
|
} else {
|
|
saved_ctx = 0;
|
|
error = 0;
|
|
}
|
|
|
|
if ((enccrd->crd_flags & CRD_F_KEY_EXPLICIT) != 0) {
|
|
error = aesni_cipher_setup_common(ses, enccrd->crd_key,
|
|
enccrd->crd_klen);
|
|
if (error != 0)
|
|
goto out;
|
|
}
|
|
|
|
if ((enccrd->crd_flags & CRD_F_ENCRYPT) != 0) {
|
|
if ((enccrd->crd_flags & CRD_F_IV_EXPLICIT) != 0)
|
|
bcopy(enccrd->crd_iv, ses->iv, AES_BLOCK_LEN);
|
|
if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0)
|
|
crypto_copyback(crp->crp_flags, crp->crp_buf,
|
|
enccrd->crd_inject, AES_BLOCK_LEN, ses->iv);
|
|
if (ses->algo == CRYPTO_AES_CBC) {
|
|
aesni_encrypt_cbc(ses->rounds, ses->enc_schedule,
|
|
enccrd->crd_len, buf, buf, ses->iv);
|
|
} else /* if (ses->algo == CRYPTO_AES_XTS) */ {
|
|
aesni_encrypt_xts(ses->rounds, ses->enc_schedule,
|
|
ses->xts_schedule, enccrd->crd_len, buf, buf,
|
|
ses->iv);
|
|
}
|
|
} else {
|
|
if ((enccrd->crd_flags & CRD_F_IV_EXPLICIT) != 0)
|
|
bcopy(enccrd->crd_iv, ses->iv, AES_BLOCK_LEN);
|
|
else
|
|
crypto_copydata(crp->crp_flags, crp->crp_buf,
|
|
enccrd->crd_inject, AES_BLOCK_LEN, ses->iv);
|
|
if (ses->algo == CRYPTO_AES_CBC) {
|
|
aesni_decrypt_cbc(ses->rounds, ses->dec_schedule,
|
|
enccrd->crd_len, buf, ses->iv);
|
|
} else /* if (ses->algo == CRYPTO_AES_XTS) */ {
|
|
aesni_decrypt_xts(ses->rounds, ses->dec_schedule,
|
|
ses->xts_schedule, enccrd->crd_len, buf, buf,
|
|
ses->iv);
|
|
}
|
|
}
|
|
if (saved_ctx)
|
|
fpu_kern_leave(td, ses->fpu_ctx);
|
|
if (allocated)
|
|
crypto_copyback(crp->crp_flags, crp->crp_buf, enccrd->crd_skip,
|
|
enccrd->crd_len, buf);
|
|
if ((enccrd->crd_flags & CRD_F_ENCRYPT) != 0)
|
|
crypto_copydata(crp->crp_flags, crp->crp_buf,
|
|
enccrd->crd_skip + enccrd->crd_len - AES_BLOCK_LEN,
|
|
AES_BLOCK_LEN, ses->iv);
|
|
out:
|
|
if (allocated) {
|
|
bzero(buf, enccrd->crd_len);
|
|
free(buf, M_AESNI);
|
|
}
|
|
return (error);
|
|
}
|