ae6fd00faf
before the last block, not in the last block itself. Approved by: rpaulo (mentor) Obtained from: OpenBSD MFC after: 3 weeks
6438 lines
177 KiB
C
6438 lines
177 KiB
C
/*-
|
|
* Copyright (c) 2007-2009
|
|
* Damien Bergamini <damien.bergamini@free.fr>
|
|
* Copyright (c) 2008
|
|
* Benjamin Close <benjsc@FreeBSD.org>
|
|
* Copyright (c) 2008 Sam Leffler, Errno Consulting
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
/*
|
|
* Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
|
|
* adapters.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/rman.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/firmware.h>
|
|
#include <sys/limits.h>
|
|
#include <sys/module.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/taskqueue.h>
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/resource.h>
|
|
#include <machine/clock.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
|
|
#include <net/bpf.h>
|
|
#include <net/if.h>
|
|
#include <net/if_arp.h>
|
|
#include <net/ethernet.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_types.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/if_ether.h>
|
|
#include <netinet/ip.h>
|
|
|
|
#include <net80211/ieee80211_var.h>
|
|
#include <net80211/ieee80211_amrr.h>
|
|
#include <net80211/ieee80211_radiotap.h>
|
|
#include <net80211/ieee80211_regdomain.h>
|
|
|
|
#include <dev/iwn/if_iwnreg.h>
|
|
#include <dev/iwn/if_iwnvar.h>
|
|
|
|
static int iwn_probe(device_t);
|
|
static int iwn_attach(device_t);
|
|
const struct iwn_hal *iwn_hal_attach(struct iwn_softc *);
|
|
void iwn_radiotap_attach(struct iwn_softc *);
|
|
static struct ieee80211vap *iwn_vap_create(struct ieee80211com *,
|
|
const char name[IFNAMSIZ], int unit, int opmode,
|
|
int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
|
|
const uint8_t mac[IEEE80211_ADDR_LEN]);
|
|
static void iwn_vap_delete(struct ieee80211vap *);
|
|
static int iwn_cleanup(device_t);
|
|
static int iwn_detach(device_t);
|
|
int iwn_nic_lock(struct iwn_softc *);
|
|
int iwn_eeprom_lock(struct iwn_softc *);
|
|
int iwn_init_otprom(struct iwn_softc *);
|
|
int iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
|
|
static int iwn_dma_contig_alloc(struct iwn_softc *, struct iwn_dma_info *,
|
|
void **, bus_size_t, bus_size_t, int);
|
|
static void iwn_dma_contig_free(struct iwn_dma_info *);
|
|
int iwn_alloc_sched(struct iwn_softc *);
|
|
void iwn_free_sched(struct iwn_softc *);
|
|
int iwn_alloc_kw(struct iwn_softc *);
|
|
void iwn_free_kw(struct iwn_softc *);
|
|
int iwn_alloc_ict(struct iwn_softc *);
|
|
void iwn_free_ict(struct iwn_softc *);
|
|
int iwn_alloc_fwmem(struct iwn_softc *);
|
|
void iwn_free_fwmem(struct iwn_softc *);
|
|
int iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
|
|
void iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
|
|
void iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
|
|
int iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
|
|
int);
|
|
void iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
|
|
void iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
|
|
void iwn5000_ict_reset(struct iwn_softc *);
|
|
int iwn_read_eeprom(struct iwn_softc *,
|
|
uint8_t macaddr[IEEE80211_ADDR_LEN]);
|
|
void iwn4965_read_eeprom(struct iwn_softc *);
|
|
void iwn4965_print_power_group(struct iwn_softc *, int);
|
|
void iwn5000_read_eeprom(struct iwn_softc *);
|
|
static void iwn_read_eeprom_channels(struct iwn_softc *, int,
|
|
uint32_t);
|
|
void iwn_read_eeprom_enhinfo(struct iwn_softc *);
|
|
struct ieee80211_node *iwn_node_alloc(struct ieee80211vap *,
|
|
const uint8_t mac[IEEE80211_ADDR_LEN]);
|
|
void iwn_newassoc(struct ieee80211_node *, int);
|
|
int iwn_media_change(struct ifnet *);
|
|
int iwn_newstate(struct ieee80211vap *, enum ieee80211_state, int);
|
|
void iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
|
|
struct iwn_rx_data *);
|
|
static void iwn_timer_timeout(void *);
|
|
static void iwn_calib_reset(struct iwn_softc *);
|
|
void iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
|
|
struct iwn_rx_data *);
|
|
#if 0 /* HT */
|
|
void iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
|
|
struct iwn_rx_data *);
|
|
#endif
|
|
void iwn5000_rx_calib_results(struct iwn_softc *,
|
|
struct iwn_rx_desc *, struct iwn_rx_data *);
|
|
void iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
|
|
struct iwn_rx_data *);
|
|
void iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
|
|
struct iwn_rx_data *);
|
|
void iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
|
|
struct iwn_rx_data *);
|
|
void iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *, int,
|
|
uint8_t);
|
|
void iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
|
|
void iwn_notif_intr(struct iwn_softc *);
|
|
void iwn_wakeup_intr(struct iwn_softc *);
|
|
void iwn_rftoggle_intr(struct iwn_softc *);
|
|
void iwn_fatal_intr(struct iwn_softc *);
|
|
void iwn_intr(void *);
|
|
void iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
|
|
uint16_t);
|
|
void iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
|
|
uint16_t);
|
|
void iwn5000_reset_sched(struct iwn_softc *, int, int);
|
|
int iwn_tx_data(struct iwn_softc *, struct mbuf *,
|
|
struct ieee80211_node *, struct iwn_tx_ring *);
|
|
static int iwn_raw_xmit(struct ieee80211_node *, struct mbuf *,
|
|
const struct ieee80211_bpf_params *);
|
|
void iwn_start(struct ifnet *);
|
|
void iwn_start_locked(struct ifnet *);
|
|
static void iwn_watchdog(struct iwn_softc *sc);
|
|
int iwn_ioctl(struct ifnet *, u_long, caddr_t);
|
|
int iwn_cmd(struct iwn_softc *, int, const void *, int, int);
|
|
int iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
|
|
int);
|
|
int iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
|
|
int);
|
|
int iwn_set_link_quality(struct iwn_softc *, uint8_t, int);
|
|
int iwn_add_broadcast_node(struct iwn_softc *, int);
|
|
int iwn_wme_update(struct ieee80211com *);
|
|
static void iwn_update_mcast(struct ifnet *);
|
|
void iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
|
|
int iwn_set_critical_temp(struct iwn_softc *);
|
|
int iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
|
|
void iwn4965_power_calibration(struct iwn_softc *, int);
|
|
int iwn4965_set_txpower(struct iwn_softc *,
|
|
struct ieee80211_channel *, int);
|
|
int iwn5000_set_txpower(struct iwn_softc *,
|
|
struct ieee80211_channel *, int);
|
|
int iwn4965_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
|
|
int iwn5000_get_rssi(struct iwn_softc *, struct iwn_rx_stat *);
|
|
int iwn_get_noise(const struct iwn_rx_general_stats *);
|
|
int iwn4965_get_temperature(struct iwn_softc *);
|
|
int iwn5000_get_temperature(struct iwn_softc *);
|
|
int iwn_init_sensitivity(struct iwn_softc *);
|
|
void iwn_collect_noise(struct iwn_softc *,
|
|
const struct iwn_rx_general_stats *);
|
|
int iwn4965_init_gains(struct iwn_softc *);
|
|
int iwn5000_init_gains(struct iwn_softc *);
|
|
int iwn4965_set_gains(struct iwn_softc *);
|
|
int iwn5000_set_gains(struct iwn_softc *);
|
|
void iwn_tune_sensitivity(struct iwn_softc *,
|
|
const struct iwn_rx_stats *);
|
|
int iwn_send_sensitivity(struct iwn_softc *);
|
|
int iwn_set_pslevel(struct iwn_softc *, int, int, int);
|
|
int iwn_config(struct iwn_softc *);
|
|
int iwn_scan(struct iwn_softc *);
|
|
int iwn_auth(struct iwn_softc *, struct ieee80211vap *vap);
|
|
int iwn_run(struct iwn_softc *, struct ieee80211vap *vap);
|
|
int iwn5000_query_calibration(struct iwn_softc *);
|
|
int iwn5000_send_calibration(struct iwn_softc *);
|
|
int iwn5000_send_wimax_coex(struct iwn_softc *);
|
|
int iwn4965_post_alive(struct iwn_softc *);
|
|
int iwn5000_post_alive(struct iwn_softc *);
|
|
int iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
|
|
int);
|
|
int iwn4965_load_firmware(struct iwn_softc *);
|
|
int iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
|
|
const uint8_t *, int);
|
|
int iwn5000_load_firmware(struct iwn_softc *);
|
|
int iwn_read_firmware(struct iwn_softc *);
|
|
int iwn_clock_wait(struct iwn_softc *);
|
|
int iwn_apm_init(struct iwn_softc *);
|
|
void iwn_apm_stop_master(struct iwn_softc *);
|
|
void iwn_apm_stop(struct iwn_softc *);
|
|
int iwn4965_nic_config(struct iwn_softc *);
|
|
int iwn5000_nic_config(struct iwn_softc *);
|
|
int iwn_hw_prepare(struct iwn_softc *);
|
|
int iwn_hw_init(struct iwn_softc *);
|
|
void iwn_hw_stop(struct iwn_softc *);
|
|
void iwn_init_locked(struct iwn_softc *);
|
|
void iwn_init(void *);
|
|
void iwn_stop_locked(struct iwn_softc *);
|
|
void iwn_stop(struct iwn_softc *);
|
|
static void iwn_scan_start(struct ieee80211com *);
|
|
static void iwn_scan_end(struct ieee80211com *);
|
|
static void iwn_set_channel(struct ieee80211com *);
|
|
static void iwn_scan_curchan(struct ieee80211_scan_state *, unsigned long);
|
|
static void iwn_scan_mindwell(struct ieee80211_scan_state *);
|
|
static int iwn_setregdomain(struct ieee80211com *,
|
|
struct ieee80211_regdomain *, int,
|
|
struct ieee80211_channel []);
|
|
static void iwn_hw_reset(void *, int);
|
|
static void iwn_radio_on(void *, int);
|
|
static void iwn_radio_off(void *, int);
|
|
static void iwn_sysctlattach(struct iwn_softc *);
|
|
static int iwn_shutdown(device_t);
|
|
static int iwn_suspend(device_t);
|
|
static int iwn_resume(device_t);
|
|
|
|
#define IWN_DEBUG
|
|
#ifdef IWN_DEBUG
|
|
enum {
|
|
IWN_DEBUG_XMIT = 0x00000001, /* basic xmit operation */
|
|
IWN_DEBUG_RECV = 0x00000002, /* basic recv operation */
|
|
IWN_DEBUG_STATE = 0x00000004, /* 802.11 state transitions */
|
|
IWN_DEBUG_TXPOW = 0x00000008, /* tx power processing */
|
|
IWN_DEBUG_RESET = 0x00000010, /* reset processing */
|
|
IWN_DEBUG_OPS = 0x00000020, /* iwn_ops processing */
|
|
IWN_DEBUG_BEACON = 0x00000040, /* beacon handling */
|
|
IWN_DEBUG_WATCHDOG = 0x00000080, /* watchdog timeout */
|
|
IWN_DEBUG_INTR = 0x00000100, /* ISR */
|
|
IWN_DEBUG_CALIBRATE = 0x00000200, /* periodic calibration */
|
|
IWN_DEBUG_NODE = 0x00000400, /* node management */
|
|
IWN_DEBUG_LED = 0x00000800, /* led management */
|
|
IWN_DEBUG_CMD = 0x00001000, /* cmd submission */
|
|
IWN_DEBUG_FATAL = 0x80000000, /* fatal errors */
|
|
IWN_DEBUG_ANY = 0xffffffff
|
|
};
|
|
|
|
#define DPRINTF(sc, m, fmt, ...) do { \
|
|
if (sc->sc_debug & (m)) \
|
|
printf(fmt, __VA_ARGS__); \
|
|
} while (0)
|
|
|
|
static const char *iwn_intr_str(uint8_t);
|
|
#else
|
|
#define DPRINTF(sc, m, fmt, ...) do { (void) sc; } while (0)
|
|
#endif
|
|
|
|
struct iwn_ident {
|
|
uint16_t vendor;
|
|
uint16_t device;
|
|
const char *name;
|
|
};
|
|
|
|
static const struct iwn_ident iwn_ident_table [] = {
|
|
{ 0x8086, 0x4229, "Intel(R) PRO/Wireless 4965BGN" },
|
|
{ 0x8086, 0x422D, "Intel(R) PRO/Wireless 4965BGN" },
|
|
{ 0x8086, 0x4230, "Intel(R) PRO/Wireless 4965BGN" },
|
|
{ 0x8086, 0x4233, "Intel(R) PRO/Wireless 4965BGN" },
|
|
{ 0x8086, 0x4232, "Intel(R) PRO/Wireless 5100" },
|
|
{ 0x8086, 0x4237, "Intel(R) PRO/Wireless 5100" },
|
|
{ 0x8086, 0x423C, "Intel(R) PRO/Wireless 5150" },
|
|
{ 0x8086, 0x423D, "Intel(R) PRO/Wireless 5150" },
|
|
{ 0x8086, 0x4235, "Intel(R) PRO/Wireless 5300" },
|
|
{ 0x8086, 0x4236, "Intel(R) PRO/Wireless 5300" },
|
|
{ 0x8086, 0x4236, "Intel(R) PRO/Wireless 5350" },
|
|
{ 0x8086, 0x423A, "Intel(R) PRO/Wireless 5350" },
|
|
{ 0x8086, 0x423B, "Intel(R) PRO/Wireless 5350" },
|
|
{ 0x8086, 0x0083, "Intel(R) PRO/Wireless 1000" },
|
|
{ 0x8086, 0x0084, "Intel(R) PRO/Wireless 1000" },
|
|
{ 0x8086, 0x008D, "Intel(R) PRO/Wireless 6000" },
|
|
{ 0x8086, 0x008E, "Intel(R) PRO/Wireless 6000" },
|
|
{ 0x8086, 0x4238, "Intel(R) PRO/Wireless 6000" },
|
|
{ 0x8086, 0x4239, "Intel(R) PRO/Wireless 6000" },
|
|
{ 0x8086, 0x422B, "Intel(R) PRO/Wireless 6000" },
|
|
{ 0x8086, 0x422C, "Intel(R) PRO/Wireless 6000" },
|
|
{ 0x8086, 0x0086, "Intel(R) PRO/Wireless 6050" },
|
|
{ 0x8086, 0x0087, "Intel(R) PRO/Wireless 6050" },
|
|
{ 0, 0, NULL }
|
|
};
|
|
|
|
static const struct iwn_hal iwn4965_hal = {
|
|
iwn4965_load_firmware,
|
|
iwn4965_read_eeprom,
|
|
iwn4965_post_alive,
|
|
iwn4965_nic_config,
|
|
iwn4965_update_sched,
|
|
iwn4965_get_temperature,
|
|
iwn4965_get_rssi,
|
|
iwn4965_set_txpower,
|
|
iwn4965_init_gains,
|
|
iwn4965_set_gains,
|
|
iwn4965_add_node,
|
|
iwn4965_tx_done,
|
|
#if 0 /* HT */
|
|
iwn4965_ampdu_tx_start,
|
|
iwn4965_ampdu_tx_stop,
|
|
#endif
|
|
IWN4965_NTXQUEUES,
|
|
IWN4965_NDMACHNLS,
|
|
IWN4965_ID_BROADCAST,
|
|
IWN4965_RXONSZ,
|
|
IWN4965_SCHEDSZ,
|
|
IWN4965_FW_TEXT_MAXSZ,
|
|
IWN4965_FW_DATA_MAXSZ,
|
|
IWN4965_FWSZ,
|
|
IWN4965_SCHED_TXFACT
|
|
};
|
|
|
|
static const struct iwn_hal iwn5000_hal = {
|
|
iwn5000_load_firmware,
|
|
iwn5000_read_eeprom,
|
|
iwn5000_post_alive,
|
|
iwn5000_nic_config,
|
|
iwn5000_update_sched,
|
|
iwn5000_get_temperature,
|
|
iwn5000_get_rssi,
|
|
iwn5000_set_txpower,
|
|
iwn5000_init_gains,
|
|
iwn5000_set_gains,
|
|
iwn5000_add_node,
|
|
iwn5000_tx_done,
|
|
#if 0 /* HT */
|
|
iwn5000_ampdu_tx_start,
|
|
iwn5000_ampdu_tx_stop,
|
|
#endif
|
|
IWN5000_NTXQUEUES,
|
|
IWN5000_NDMACHNLS,
|
|
IWN5000_ID_BROADCAST,
|
|
IWN5000_RXONSZ,
|
|
IWN5000_SCHEDSZ,
|
|
IWN5000_FW_TEXT_MAXSZ,
|
|
IWN5000_FW_DATA_MAXSZ,
|
|
IWN5000_FWSZ,
|
|
IWN5000_SCHED_TXFACT
|
|
};
|
|
|
|
static int
|
|
iwn_probe(device_t dev)
|
|
{
|
|
const struct iwn_ident *ident;
|
|
|
|
for (ident = iwn_ident_table; ident->name != NULL; ident++) {
|
|
if (pci_get_vendor(dev) == ident->vendor &&
|
|
pci_get_device(dev) == ident->device) {
|
|
device_set_desc(dev, ident->name);
|
|
return 0;
|
|
}
|
|
}
|
|
return ENXIO;
|
|
}
|
|
|
|
static int
|
|
iwn_attach(device_t dev)
|
|
{
|
|
struct iwn_softc *sc = (struct iwn_softc *)device_get_softc(dev);
|
|
struct ieee80211com *ic;
|
|
struct ifnet *ifp;
|
|
const struct iwn_hal *hal;
|
|
uint32_t tmp;
|
|
int i, error, result;
|
|
uint8_t macaddr[IEEE80211_ADDR_LEN];
|
|
|
|
sc->sc_dev = dev;
|
|
|
|
/*
|
|
* Get the offset of the PCI Express Capability Structure in PCI
|
|
* Configuration Space.
|
|
*/
|
|
error = pci_find_extcap(dev, PCIY_EXPRESS, &sc->sc_cap_off);
|
|
if (error != 0) {
|
|
device_printf(dev, "PCIe capability structure not found!\n");
|
|
return error;
|
|
}
|
|
|
|
/* Clear device-specific "PCI retry timeout" register (41h). */
|
|
pci_write_config(dev, 0x41, 0, 1);
|
|
|
|
/* Hardware bug workaround. */
|
|
tmp = pci_read_config(dev, PCIR_COMMAND, 1);
|
|
if (tmp & PCIM_CMD_INTxDIS) {
|
|
DPRINTF(sc, IWN_DEBUG_RESET, "%s: PCIe INTx Disable set\n",
|
|
__func__);
|
|
tmp &= ~PCIM_CMD_INTxDIS;
|
|
pci_write_config(dev, PCIR_COMMAND, tmp, 1);
|
|
}
|
|
|
|
/* Enable bus-mastering. */
|
|
pci_enable_busmaster(dev);
|
|
|
|
sc->mem_rid = PCIR_BAR(0);
|
|
sc->mem = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->mem_rid,
|
|
RF_ACTIVE);
|
|
if (sc->mem == NULL ) {
|
|
device_printf(dev, "could not allocate memory resources\n");
|
|
error = ENOMEM;
|
|
return error;
|
|
}
|
|
|
|
sc->sc_st = rman_get_bustag(sc->mem);
|
|
sc->sc_sh = rman_get_bushandle(sc->mem);
|
|
sc->irq_rid = 0;
|
|
if ((result = pci_msi_count(dev)) == 1 &&
|
|
pci_alloc_msi(dev, &result) == 0)
|
|
sc->irq_rid = 1;
|
|
sc->irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &sc->irq_rid,
|
|
RF_ACTIVE | RF_SHAREABLE);
|
|
if (sc->irq == NULL) {
|
|
device_printf(dev, "could not allocate interrupt resource\n");
|
|
error = ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
IWN_LOCK_INIT(sc);
|
|
callout_init_mtx(&sc->sc_timer_to, &sc->sc_mtx, 0);
|
|
TASK_INIT(&sc->sc_reinit_task, 0, iwn_hw_reset, sc );
|
|
TASK_INIT(&sc->sc_radioon_task, 0, iwn_radio_on, sc );
|
|
TASK_INIT(&sc->sc_radiooff_task, 0, iwn_radio_off, sc );
|
|
|
|
/* Attach Hardware Abstraction Layer. */
|
|
hal = iwn_hal_attach(sc);
|
|
if (hal == NULL) {
|
|
error = ENXIO; /* XXX: Wrong error code? */
|
|
goto fail;
|
|
}
|
|
|
|
error = iwn_hw_prepare(sc);
|
|
if (error != 0) {
|
|
device_printf(dev, "hardware not ready, error %d\n", error);
|
|
goto fail;
|
|
}
|
|
|
|
/* Allocate DMA memory for firmware transfers. */
|
|
error = iwn_alloc_fwmem(sc);
|
|
if (error != 0) {
|
|
device_printf(dev,
|
|
"could not allocate memory for firmware, error %d\n",
|
|
error);
|
|
goto fail;
|
|
}
|
|
|
|
/* Allocate "Keep Warm" page. */
|
|
error = iwn_alloc_kw(sc);
|
|
if (error != 0) {
|
|
device_printf(dev,
|
|
"could not allocate \"Keep Warm\" page, error %d\n", error);
|
|
goto fail;
|
|
}
|
|
|
|
/* Allocate ICT table for 5000 Series. */
|
|
if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
|
|
(error = iwn_alloc_ict(sc)) != 0) {
|
|
device_printf(dev,
|
|
"%s: could not allocate ICT table, error %d\n",
|
|
__func__, error);
|
|
goto fail;
|
|
}
|
|
|
|
/* Allocate TX scheduler "rings". */
|
|
error = iwn_alloc_sched(sc);
|
|
if (error != 0) {
|
|
device_printf(dev,
|
|
"could not allocate TX scheduler rings, error %d\n",
|
|
error);
|
|
goto fail;
|
|
}
|
|
|
|
/* Allocate TX rings (16 on 4965AGN, 20 on 5000). */
|
|
for (i = 0; i < hal->ntxqs; i++) {
|
|
error = iwn_alloc_tx_ring(sc, &sc->txq[i], i);
|
|
if (error != 0) {
|
|
device_printf(dev,
|
|
"could not allocate Tx ring %d, error %d\n",
|
|
i, error);
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
/* Allocate RX ring. */
|
|
error = iwn_alloc_rx_ring(sc, &sc->rxq);
|
|
if (error != 0 ){
|
|
device_printf(dev,
|
|
"could not allocate Rx ring, error %d\n", error);
|
|
goto fail;
|
|
}
|
|
|
|
/* Clear pending interrupts. */
|
|
IWN_WRITE(sc, IWN_INT, 0xffffffff);
|
|
|
|
/* Count the number of available chains. */
|
|
sc->ntxchains =
|
|
((sc->txchainmask >> 2) & 1) +
|
|
((sc->txchainmask >> 1) & 1) +
|
|
((sc->txchainmask >> 0) & 1);
|
|
sc->nrxchains =
|
|
((sc->rxchainmask >> 2) & 1) +
|
|
((sc->rxchainmask >> 1) & 1) +
|
|
((sc->rxchainmask >> 0) & 1);
|
|
|
|
ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
|
|
if (ifp == NULL) {
|
|
device_printf(dev, "can not allocate ifnet structure\n");
|
|
goto fail;
|
|
}
|
|
ic = ifp->if_l2com;
|
|
|
|
ic->ic_ifp = ifp;
|
|
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
|
|
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
|
|
|
|
/* Set device capabilities. */
|
|
ic->ic_caps =
|
|
IEEE80211_C_STA /* station mode supported */
|
|
| IEEE80211_C_MONITOR /* monitor mode supported */
|
|
| IEEE80211_C_TXPMGT /* tx power management */
|
|
| IEEE80211_C_SHSLOT /* short slot time supported */
|
|
| IEEE80211_C_WPA
|
|
| IEEE80211_C_SHPREAMBLE /* short preamble supported */
|
|
| IEEE80211_C_BGSCAN /* background scanning */
|
|
#if 0
|
|
| IEEE80211_C_IBSS /* ibss/adhoc mode */
|
|
#endif
|
|
| IEEE80211_C_WME /* WME */
|
|
;
|
|
#if 0 /* HT */
|
|
/* XXX disable until HT channel setup works */
|
|
ic->ic_htcaps =
|
|
IEEE80211_HTCAP_SMPS_ENA /* SM PS mode enabled */
|
|
| IEEE80211_HTCAP_CHWIDTH40 /* 40MHz channel width */
|
|
| IEEE80211_HTCAP_SHORTGI20 /* short GI in 20MHz */
|
|
| IEEE80211_HTCAP_SHORTGI40 /* short GI in 40MHz */
|
|
| IEEE80211_HTCAP_RXSTBC_2STREAM/* 1-2 spatial streams */
|
|
| IEEE80211_HTCAP_MAXAMSDU_3839 /* max A-MSDU length */
|
|
/* s/w capabilities */
|
|
| IEEE80211_HTC_HT /* HT operation */
|
|
| IEEE80211_HTC_AMPDU /* tx A-MPDU */
|
|
| IEEE80211_HTC_AMSDU /* tx A-MSDU */
|
|
;
|
|
|
|
/* Set HT capabilities. */
|
|
ic->ic_htcaps =
|
|
#if IWN_RBUF_SIZE == 8192
|
|
IEEE80211_HTCAP_AMSDU7935 |
|
|
#endif
|
|
IEEE80211_HTCAP_SMPS_DIS |
|
|
IEEE80211_HTCAP_CBW20_40 |
|
|
IEEE80211_HTCAP_SGI20 |
|
|
IEEE80211_HTCAP_SGI40;
|
|
if (sc->hw_type != IWN_HW_REV_TYPE_4965)
|
|
ic->ic_htcaps |= IEEE80211_HTCAP_GF;
|
|
#endif
|
|
|
|
/* Read MAC address, channels, etc from EEPROM. */
|
|
error = iwn_read_eeprom(sc, macaddr);
|
|
if (error != 0) {
|
|
device_printf(dev, "could not read EEPROM, error %d\n",
|
|
error);
|
|
goto fail;
|
|
}
|
|
|
|
device_printf(sc->sc_dev, "MIMO %dT%dR, %.4s, address %6D\n",
|
|
sc->ntxchains, sc->nrxchains, sc->eeprom_domain,
|
|
macaddr, ":");
|
|
|
|
#if 0 /* HT */
|
|
/* Set supported HT rates. */
|
|
ic->ic_sup_mcs[0] = 0xff;
|
|
if (sc->nrxchains > 1)
|
|
ic->ic_sup_mcs[1] = 0xff;
|
|
if (sc->nrxchains > 2)
|
|
ic->ic_sup_mcs[2] = 0xff;
|
|
#endif
|
|
|
|
if_initname(ifp, device_get_name(dev), device_get_unit(dev));
|
|
ifp->if_softc = sc;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_init = iwn_init;
|
|
ifp->if_ioctl = iwn_ioctl;
|
|
ifp->if_start = iwn_start;
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
|
|
ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
ieee80211_ifattach(ic, macaddr);
|
|
ic->ic_vap_create = iwn_vap_create;
|
|
ic->ic_vap_delete = iwn_vap_delete;
|
|
ic->ic_raw_xmit = iwn_raw_xmit;
|
|
ic->ic_node_alloc = iwn_node_alloc;
|
|
ic->ic_newassoc = iwn_newassoc;
|
|
ic->ic_wme.wme_update = iwn_wme_update;
|
|
ic->ic_update_mcast = iwn_update_mcast;
|
|
ic->ic_scan_start = iwn_scan_start;
|
|
ic->ic_scan_end = iwn_scan_end;
|
|
ic->ic_set_channel = iwn_set_channel;
|
|
ic->ic_scan_curchan = iwn_scan_curchan;
|
|
ic->ic_scan_mindwell = iwn_scan_mindwell;
|
|
ic->ic_setregdomain = iwn_setregdomain;
|
|
#if 0 /* HT */
|
|
ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
|
|
ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
|
|
ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
|
|
ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
|
|
#endif
|
|
|
|
iwn_radiotap_attach(sc);
|
|
iwn_sysctlattach(sc);
|
|
|
|
/*
|
|
* Hook our interrupt after all initialization is complete.
|
|
*/
|
|
error = bus_setup_intr(dev, sc->irq, INTR_TYPE_NET | INTR_MPSAFE,
|
|
NULL, iwn_intr, sc, &sc->sc_ih);
|
|
if (error != 0) {
|
|
device_printf(dev, "could not set up interrupt, error %d\n",
|
|
error);
|
|
goto fail;
|
|
}
|
|
|
|
ieee80211_announce(ic);
|
|
return 0;
|
|
fail:
|
|
iwn_cleanup(dev);
|
|
return error;
|
|
}
|
|
|
|
const struct iwn_hal *
|
|
iwn_hal_attach(struct iwn_softc *sc)
|
|
{
|
|
sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0xf;
|
|
|
|
switch (sc->hw_type) {
|
|
case IWN_HW_REV_TYPE_4965:
|
|
sc->sc_hal = &iwn4965_hal;
|
|
sc->limits = &iwn4965_sensitivity_limits;
|
|
sc->fwname = "iwn4965fw";
|
|
sc->txchainmask = IWN_ANT_AB;
|
|
sc->rxchainmask = IWN_ANT_ABC;
|
|
break;
|
|
case IWN_HW_REV_TYPE_5100:
|
|
sc->sc_hal = &iwn5000_hal;
|
|
sc->limits = &iwn5000_sensitivity_limits;
|
|
sc->fwname = "iwn5000fw";
|
|
sc->txchainmask = IWN_ANT_B;
|
|
sc->rxchainmask = IWN_ANT_AB;
|
|
break;
|
|
case IWN_HW_REV_TYPE_5150:
|
|
sc->sc_hal = &iwn5000_hal;
|
|
sc->limits = &iwn5150_sensitivity_limits;
|
|
sc->fwname = "iwn5150fw";
|
|
sc->txchainmask = IWN_ANT_A;
|
|
sc->rxchainmask = IWN_ANT_AB;
|
|
break;
|
|
case IWN_HW_REV_TYPE_5300:
|
|
case IWN_HW_REV_TYPE_5350:
|
|
sc->sc_hal = &iwn5000_hal;
|
|
sc->limits = &iwn5000_sensitivity_limits;
|
|
sc->fwname = "iwn5000fw";
|
|
sc->txchainmask = IWN_ANT_ABC;
|
|
sc->rxchainmask = IWN_ANT_ABC;
|
|
break;
|
|
case IWN_HW_REV_TYPE_1000:
|
|
sc->sc_hal = &iwn5000_hal;
|
|
sc->limits = &iwn5000_sensitivity_limits;
|
|
sc->fwname = "iwn1000fw";
|
|
sc->txchainmask = IWN_ANT_A;
|
|
sc->rxchainmask = IWN_ANT_AB;
|
|
break;
|
|
case IWN_HW_REV_TYPE_6000:
|
|
sc->sc_hal = &iwn5000_hal;
|
|
sc->limits = &iwn6000_sensitivity_limits;
|
|
sc->fwname = "iwn6000fw";
|
|
switch (pci_get_device(sc->sc_dev)) {
|
|
case 0x422C:
|
|
case 0x4239:
|
|
sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
|
|
sc->txchainmask = IWN_ANT_BC;
|
|
sc->rxchainmask = IWN_ANT_BC;
|
|
break;
|
|
default:
|
|
sc->txchainmask = IWN_ANT_ABC;
|
|
sc->rxchainmask = IWN_ANT_ABC;
|
|
break;
|
|
}
|
|
break;
|
|
case IWN_HW_REV_TYPE_6050:
|
|
sc->sc_hal = &iwn5000_hal;
|
|
sc->limits = &iwn6000_sensitivity_limits;
|
|
sc->fwname = "iwn6000fw";
|
|
sc->txchainmask = IWN_ANT_AB;
|
|
sc->rxchainmask = IWN_ANT_AB;
|
|
break;
|
|
default:
|
|
device_printf(sc->sc_dev, "adapter type %d not supported\n",
|
|
sc->hw_type);
|
|
return NULL;
|
|
}
|
|
return sc->sc_hal;
|
|
}
|
|
|
|
/*
|
|
* Attach the interface to 802.11 radiotap.
|
|
*/
|
|
void
|
|
iwn_radiotap_attach(struct iwn_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
|
|
ieee80211_radiotap_attach(ic,
|
|
&sc->sc_txtap.wt_ihdr, sizeof(sc->sc_txtap),
|
|
IWN_TX_RADIOTAP_PRESENT,
|
|
&sc->sc_rxtap.wr_ihdr, sizeof(sc->sc_rxtap),
|
|
IWN_RX_RADIOTAP_PRESENT);
|
|
}
|
|
|
|
static struct ieee80211vap *
|
|
iwn_vap_create(struct ieee80211com *ic,
|
|
const char name[IFNAMSIZ], int unit, int opmode, int flags,
|
|
const uint8_t bssid[IEEE80211_ADDR_LEN],
|
|
const uint8_t mac[IEEE80211_ADDR_LEN])
|
|
{
|
|
struct iwn_vap *ivp;
|
|
struct ieee80211vap *vap;
|
|
|
|
if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */
|
|
return NULL;
|
|
ivp = (struct iwn_vap *) malloc(sizeof(struct iwn_vap),
|
|
M_80211_VAP, M_NOWAIT | M_ZERO);
|
|
if (ivp == NULL)
|
|
return NULL;
|
|
vap = &ivp->iv_vap;
|
|
ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid, mac);
|
|
vap->iv_bmissthreshold = 10; /* override default */
|
|
/* Override with driver methods. */
|
|
ivp->iv_newstate = vap->iv_newstate;
|
|
vap->iv_newstate = iwn_newstate;
|
|
|
|
ieee80211_amrr_init(&ivp->iv_amrr, vap,
|
|
IEEE80211_AMRR_MIN_SUCCESS_THRESHOLD,
|
|
IEEE80211_AMRR_MAX_SUCCESS_THRESHOLD,
|
|
500 /* ms */);
|
|
|
|
/* Complete setup. */
|
|
ieee80211_vap_attach(vap, ieee80211_media_change,
|
|
ieee80211_media_status);
|
|
ic->ic_opmode = opmode;
|
|
return vap;
|
|
}
|
|
|
|
static void
|
|
iwn_vap_delete(struct ieee80211vap *vap)
|
|
{
|
|
struct iwn_vap *ivp = IWN_VAP(vap);
|
|
|
|
ieee80211_amrr_cleanup(&ivp->iv_amrr);
|
|
ieee80211_vap_detach(vap);
|
|
free(ivp, M_80211_VAP);
|
|
}
|
|
|
|
int
|
|
iwn_cleanup(device_t dev)
|
|
{
|
|
struct iwn_softc *sc = device_get_softc(dev);
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic;
|
|
int i;
|
|
|
|
if (ifp != NULL) {
|
|
ic = ifp->if_l2com;
|
|
|
|
ieee80211_draintask(ic, &sc->sc_reinit_task);
|
|
ieee80211_draintask(ic, &sc->sc_radioon_task);
|
|
ieee80211_draintask(ic, &sc->sc_radiooff_task);
|
|
|
|
iwn_stop(sc);
|
|
callout_drain(&sc->sc_timer_to);
|
|
ieee80211_ifdetach(ic);
|
|
}
|
|
|
|
/* Free DMA resources. */
|
|
iwn_free_rx_ring(sc, &sc->rxq);
|
|
if (sc->sc_hal != NULL)
|
|
for (i = 0; i < sc->sc_hal->ntxqs; i++)
|
|
iwn_free_tx_ring(sc, &sc->txq[i]);
|
|
iwn_free_sched(sc);
|
|
iwn_free_kw(sc);
|
|
if (sc->ict != NULL)
|
|
iwn_free_ict(sc);
|
|
iwn_free_fwmem(sc);
|
|
|
|
if (sc->irq != NULL) {
|
|
bus_teardown_intr(dev, sc->irq, sc->sc_ih);
|
|
bus_release_resource(dev, SYS_RES_IRQ, sc->irq_rid, sc->irq);
|
|
if (sc->irq_rid == 1)
|
|
pci_release_msi(dev);
|
|
}
|
|
|
|
if (sc->mem != NULL)
|
|
bus_release_resource(dev, SYS_RES_MEMORY, sc->mem_rid, sc->mem);
|
|
|
|
if (ifp != NULL)
|
|
if_free(ifp);
|
|
|
|
IWN_LOCK_DESTROY(sc);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
iwn_detach(device_t dev)
|
|
{
|
|
iwn_cleanup(dev);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwn_nic_lock(struct iwn_softc *sc)
|
|
{
|
|
int ntries;
|
|
|
|
/* Request exclusive access to NIC. */
|
|
IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
|
|
|
|
/* Spin until we actually get the lock. */
|
|
for (ntries = 0; ntries < 1000; ntries++) {
|
|
if ((IWN_READ(sc, IWN_GP_CNTRL) &
|
|
(IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
|
|
IWN_GP_CNTRL_MAC_ACCESS_ENA)
|
|
return 0;
|
|
DELAY(10);
|
|
}
|
|
return ETIMEDOUT;
|
|
}
|
|
|
|
static __inline void
|
|
iwn_nic_unlock(struct iwn_softc *sc)
|
|
{
|
|
IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
|
|
}
|
|
|
|
static __inline uint32_t
|
|
iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
|
|
{
|
|
IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
|
|
IWN_BARRIER_READ_WRITE(sc);
|
|
return IWN_READ(sc, IWN_PRPH_RDATA);
|
|
}
|
|
|
|
static __inline void
|
|
iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
|
|
{
|
|
IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
|
|
IWN_BARRIER_WRITE(sc);
|
|
IWN_WRITE(sc, IWN_PRPH_WDATA, data);
|
|
}
|
|
|
|
static __inline void
|
|
iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
|
|
{
|
|
iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
|
|
}
|
|
|
|
static __inline void
|
|
iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
|
|
{
|
|
iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
|
|
}
|
|
|
|
static __inline void
|
|
iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
|
|
const uint32_t *data, int count)
|
|
{
|
|
for (; count > 0; count--, data++, addr += 4)
|
|
iwn_prph_write(sc, addr, *data);
|
|
}
|
|
|
|
static __inline uint32_t
|
|
iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
|
|
{
|
|
IWN_WRITE(sc, IWN_MEM_RADDR, addr);
|
|
IWN_BARRIER_READ_WRITE(sc);
|
|
return IWN_READ(sc, IWN_MEM_RDATA);
|
|
}
|
|
|
|
static __inline void
|
|
iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
|
|
{
|
|
IWN_WRITE(sc, IWN_MEM_WADDR, addr);
|
|
IWN_BARRIER_WRITE(sc);
|
|
IWN_WRITE(sc, IWN_MEM_WDATA, data);
|
|
}
|
|
|
|
static __inline void
|
|
iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
|
|
{
|
|
uint32_t tmp;
|
|
|
|
tmp = iwn_mem_read(sc, addr & ~3);
|
|
if (addr & 3)
|
|
tmp = (tmp & 0x0000ffff) | data << 16;
|
|
else
|
|
tmp = (tmp & 0xffff0000) | data;
|
|
iwn_mem_write(sc, addr & ~3, tmp);
|
|
}
|
|
|
|
static __inline void
|
|
iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
|
|
int count)
|
|
{
|
|
for (; count > 0; count--, addr += 4)
|
|
*data++ = iwn_mem_read(sc, addr);
|
|
}
|
|
|
|
static __inline void
|
|
iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
|
|
int count)
|
|
{
|
|
for (; count > 0; count--, addr += 4)
|
|
iwn_mem_write(sc, addr, val);
|
|
}
|
|
|
|
int
|
|
iwn_eeprom_lock(struct iwn_softc *sc)
|
|
{
|
|
int i, ntries;
|
|
|
|
for (i = 0; i < 100; i++) {
|
|
/* Request exclusive access to EEPROM. */
|
|
IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
|
|
IWN_HW_IF_CONFIG_EEPROM_LOCKED);
|
|
|
|
/* Spin until we actually get the lock. */
|
|
for (ntries = 0; ntries < 100; ntries++) {
|
|
if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
|
|
IWN_HW_IF_CONFIG_EEPROM_LOCKED)
|
|
return 0;
|
|
DELAY(10);
|
|
}
|
|
}
|
|
return ETIMEDOUT;
|
|
}
|
|
|
|
static __inline void
|
|
iwn_eeprom_unlock(struct iwn_softc *sc)
|
|
{
|
|
IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
|
|
}
|
|
|
|
/*
|
|
* Initialize access by host to One Time Programmable ROM.
|
|
* NB: This kind of ROM can be found on 1000 or 6000 Series only.
|
|
*/
|
|
int
|
|
iwn_init_otprom(struct iwn_softc *sc)
|
|
{
|
|
uint16_t prev, base, next;
|
|
int count, error;
|
|
|
|
/* Wait for clock stabilization before accessing prph. */
|
|
error = iwn_clock_wait(sc);
|
|
if (error != 0)
|
|
return error;
|
|
|
|
error = iwn_nic_lock(sc);
|
|
if (error != 0)
|
|
return error;
|
|
iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
|
|
DELAY(5);
|
|
iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
|
|
iwn_nic_unlock(sc);
|
|
|
|
/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
|
|
if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
|
|
IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
|
|
IWN_RESET_LINK_PWR_MGMT_DIS);
|
|
}
|
|
IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
|
|
/* Clear ECC status. */
|
|
IWN_SETBITS(sc, IWN_OTP_GP,
|
|
IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
|
|
|
|
/*
|
|
* Find the block before last block (contains the EEPROM image)
|
|
* for HW without OTP shadow RAM.
|
|
*/
|
|
if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
|
|
/* Switch to absolute addressing mode. */
|
|
IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
|
|
base = prev = 0;
|
|
for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
|
|
error = iwn_read_prom_data(sc, base, &next, 2);
|
|
if (error != 0)
|
|
return error;
|
|
if (next == 0) /* End of linked-list. */
|
|
break;
|
|
prev = base;
|
|
base = le16toh(next);
|
|
}
|
|
if (count == 0 || count == IWN1000_OTP_NBLOCKS)
|
|
return EIO;
|
|
/* Skip "next" word. */
|
|
sc->prom_base = prev + 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
|
|
{
|
|
uint32_t val, tmp;
|
|
int ntries;
|
|
uint8_t *out = data;
|
|
|
|
addr += sc->prom_base;
|
|
for (; count > 0; count -= 2, addr++) {
|
|
IWN_WRITE(sc, IWN_EEPROM, addr << 2);
|
|
for (ntries = 0; ntries < 10; ntries++) {
|
|
val = IWN_READ(sc, IWN_EEPROM);
|
|
if (val & IWN_EEPROM_READ_VALID)
|
|
break;
|
|
DELAY(5);
|
|
}
|
|
if (ntries == 10) {
|
|
device_printf(sc->sc_dev,
|
|
"timeout reading ROM at 0x%x\n", addr);
|
|
return ETIMEDOUT;
|
|
}
|
|
if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
|
|
/* OTPROM, check for ECC errors. */
|
|
tmp = IWN_READ(sc, IWN_OTP_GP);
|
|
if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
|
|
device_printf(sc->sc_dev,
|
|
"OTPROM ECC error at 0x%x\n", addr);
|
|
return EIO;
|
|
}
|
|
if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
|
|
/* Correctable ECC error, clear bit. */
|
|
IWN_SETBITS(sc, IWN_OTP_GP,
|
|
IWN_OTP_GP_ECC_CORR_STTS);
|
|
}
|
|
}
|
|
*out++ = val >> 16;
|
|
if (count > 1)
|
|
*out++ = val >> 24;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
iwn_dma_map_addr(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
|
|
{
|
|
if (error != 0)
|
|
return;
|
|
KASSERT(nsegs == 1, ("too many DMA segments, %d should be 1", nsegs));
|
|
*(bus_addr_t *)arg = segs[0].ds_addr;
|
|
}
|
|
|
|
static int
|
|
iwn_dma_contig_alloc(struct iwn_softc *sc, struct iwn_dma_info *dma,
|
|
void **kvap, bus_size_t size, bus_size_t alignment, int flags)
|
|
{
|
|
int error;
|
|
|
|
dma->size = size;
|
|
dma->tag = NULL;
|
|
|
|
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), alignment,
|
|
0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, size,
|
|
1, size, flags, NULL, NULL, &dma->tag);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: bus_dma_tag_create failed, error %d\n",
|
|
__func__, error);
|
|
goto fail;
|
|
}
|
|
error = bus_dmamem_alloc(dma->tag, (void **)&dma->vaddr,
|
|
flags | BUS_DMA_ZERO, &dma->map);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: bus_dmamem_alloc failed, error %d\n",
|
|
__func__, error);
|
|
goto fail;
|
|
}
|
|
error = bus_dmamap_load(dma->tag, dma->map, dma->vaddr,
|
|
size, iwn_dma_map_addr, &dma->paddr, flags);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: bus_dmamap_load failed, error %d\n", __func__, error);
|
|
goto fail;
|
|
}
|
|
|
|
if (kvap != NULL)
|
|
*kvap = dma->vaddr;
|
|
return 0;
|
|
fail:
|
|
iwn_dma_contig_free(dma);
|
|
return error;
|
|
}
|
|
|
|
void
|
|
iwn_dma_contig_free(struct iwn_dma_info *dma)
|
|
{
|
|
if (dma->tag != NULL) {
|
|
if (dma->map != NULL) {
|
|
if (dma->paddr == 0) {
|
|
bus_dmamap_sync(dma->tag, dma->map,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(dma->tag, dma->map);
|
|
}
|
|
bus_dmamem_free(dma->tag, &dma->vaddr, dma->map);
|
|
}
|
|
bus_dma_tag_destroy(dma->tag);
|
|
}
|
|
}
|
|
|
|
int
|
|
iwn_alloc_sched(struct iwn_softc *sc)
|
|
{
|
|
/* TX scheduler rings must be aligned on a 1KB boundary. */
|
|
return iwn_dma_contig_alloc(sc, &sc->sched_dma,
|
|
(void **)&sc->sched, sc->sc_hal->schedsz, 1024, BUS_DMA_NOWAIT);
|
|
}
|
|
|
|
void
|
|
iwn_free_sched(struct iwn_softc *sc)
|
|
{
|
|
iwn_dma_contig_free(&sc->sched_dma);
|
|
}
|
|
|
|
int
|
|
iwn_alloc_kw(struct iwn_softc *sc)
|
|
{
|
|
/* "Keep Warm" page must be aligned on a 4KB boundary. */
|
|
return iwn_dma_contig_alloc(sc, &sc->kw_dma, NULL, 4096, 4096,
|
|
BUS_DMA_NOWAIT);
|
|
}
|
|
|
|
void
|
|
iwn_free_kw(struct iwn_softc *sc)
|
|
{
|
|
iwn_dma_contig_free(&sc->kw_dma);
|
|
}
|
|
|
|
int
|
|
iwn_alloc_ict(struct iwn_softc *sc)
|
|
{
|
|
/* ICT table must be aligned on a 4KB boundary. */
|
|
return iwn_dma_contig_alloc(sc, &sc->ict_dma,
|
|
(void **)&sc->ict, IWN_ICT_SIZE, 4096, BUS_DMA_NOWAIT);
|
|
}
|
|
|
|
void
|
|
iwn_free_ict(struct iwn_softc *sc)
|
|
{
|
|
iwn_dma_contig_free(&sc->ict_dma);
|
|
}
|
|
|
|
int
|
|
iwn_alloc_fwmem(struct iwn_softc *sc)
|
|
{
|
|
/* Must be aligned on a 16-byte boundary. */
|
|
return iwn_dma_contig_alloc(sc, &sc->fw_dma, NULL,
|
|
sc->sc_hal->fwsz, 16, BUS_DMA_NOWAIT);
|
|
}
|
|
|
|
void
|
|
iwn_free_fwmem(struct iwn_softc *sc)
|
|
{
|
|
iwn_dma_contig_free(&sc->fw_dma);
|
|
}
|
|
|
|
int
|
|
iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
|
|
{
|
|
bus_size_t size;
|
|
int i, error;
|
|
|
|
ring->cur = 0;
|
|
|
|
/* Allocate RX descriptors (256-byte aligned). */
|
|
size = IWN_RX_RING_COUNT * sizeof (uint32_t);
|
|
error = iwn_dma_contig_alloc(sc, &ring->desc_dma,
|
|
(void **)&ring->desc, size, 256, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: could not allocate Rx ring DMA memory, error %d\n",
|
|
__func__, error);
|
|
goto fail;
|
|
}
|
|
|
|
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
|
|
BUS_SPACE_MAXADDR_32BIT,
|
|
BUS_SPACE_MAXADDR, NULL, NULL, MJUMPAGESIZE, 1,
|
|
MJUMPAGESIZE, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: bus_dma_tag_create_failed, error %d\n",
|
|
__func__, error);
|
|
goto fail;
|
|
}
|
|
|
|
/* Allocate RX status area (16-byte aligned). */
|
|
error = iwn_dma_contig_alloc(sc, &ring->stat_dma,
|
|
(void **)&ring->stat, sizeof (struct iwn_rx_status),
|
|
16, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: could not allocate Rx status DMA memory, error %d\n",
|
|
__func__, error);
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Allocate and map RX buffers.
|
|
*/
|
|
for (i = 0; i < IWN_RX_RING_COUNT; i++) {
|
|
struct iwn_rx_data *data = &ring->data[i];
|
|
bus_addr_t paddr;
|
|
|
|
error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: bus_dmamap_create failed, error %d\n",
|
|
__func__, error);
|
|
goto fail;
|
|
}
|
|
|
|
data->m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
|
|
if (data->m == NULL) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: could not allocate rx mbuf\n", __func__);
|
|
error = ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
/* Map page. */
|
|
error = bus_dmamap_load(ring->data_dmat, data->map,
|
|
mtod(data->m, caddr_t), MJUMPAGESIZE,
|
|
iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
|
|
if (error != 0 && error != EFBIG) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: bus_dmamap_load failed, error %d\n",
|
|
__func__, error);
|
|
m_freem(data->m);
|
|
error = ENOMEM; /* XXX unique code */
|
|
goto fail;
|
|
}
|
|
bus_dmamap_sync(ring->data_dmat, data->map,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Set physical address of RX buffer (256-byte aligned). */
|
|
ring->desc[i] = htole32(paddr >> 8);
|
|
}
|
|
bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
|
|
BUS_DMASYNC_PREWRITE);
|
|
return 0;
|
|
fail:
|
|
iwn_free_rx_ring(sc, ring);
|
|
return error;
|
|
}
|
|
|
|
void
|
|
iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
|
|
{
|
|
int ntries;
|
|
|
|
if (iwn_nic_lock(sc) == 0) {
|
|
IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
|
|
for (ntries = 0; ntries < 1000; ntries++) {
|
|
if (IWN_READ(sc, IWN_FH_RX_STATUS) &
|
|
IWN_FH_RX_STATUS_IDLE)
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
iwn_nic_unlock(sc);
|
|
#ifdef IWN_DEBUG
|
|
if (ntries == 1000)
|
|
DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
|
|
"timeout resetting Rx ring");
|
|
#endif
|
|
}
|
|
ring->cur = 0;
|
|
sc->last_rx_valid = 0;
|
|
}
|
|
|
|
void
|
|
iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
|
|
{
|
|
int i;
|
|
|
|
iwn_dma_contig_free(&ring->desc_dma);
|
|
iwn_dma_contig_free(&ring->stat_dma);
|
|
|
|
for (i = 0; i < IWN_RX_RING_COUNT; i++) {
|
|
struct iwn_rx_data *data = &ring->data[i];
|
|
|
|
if (data->m != NULL) {
|
|
bus_dmamap_sync(ring->data_dmat, data->map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(ring->data_dmat, data->map);
|
|
m_freem(data->m);
|
|
}
|
|
if (data->map != NULL)
|
|
bus_dmamap_destroy(ring->data_dmat, data->map);
|
|
}
|
|
}
|
|
|
|
int
|
|
iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
|
|
{
|
|
bus_size_t size;
|
|
bus_addr_t paddr;
|
|
int i, error;
|
|
|
|
ring->qid = qid;
|
|
ring->queued = 0;
|
|
ring->cur = 0;
|
|
|
|
/* Allocate TX descriptors (256-byte aligned.) */
|
|
size = IWN_TX_RING_COUNT * sizeof(struct iwn_tx_desc);
|
|
error = iwn_dma_contig_alloc(sc, &ring->desc_dma,
|
|
(void **)&ring->desc, size, 256, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: could not allocate TX ring DMA memory, error %d\n",
|
|
__func__, error);
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* We only use rings 0 through 4 (4 EDCA + cmd) so there is no need
|
|
* to allocate commands space for other rings.
|
|
*/
|
|
if (qid > 4)
|
|
return 0;
|
|
|
|
size = IWN_TX_RING_COUNT * sizeof(struct iwn_tx_cmd);
|
|
error = iwn_dma_contig_alloc(sc, &ring->cmd_dma,
|
|
(void **)&ring->cmd, size, 4, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: could not allocate TX cmd DMA memory, error %d\n",
|
|
__func__, error);
|
|
goto fail;
|
|
}
|
|
|
|
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
|
|
BUS_SPACE_MAXADDR_32BIT,
|
|
BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES, IWN_MAX_SCATTER - 1,
|
|
MCLBYTES, BUS_DMA_NOWAIT, NULL, NULL, &ring->data_dmat);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: bus_dma_tag_create_failed, error %d\n",
|
|
__func__, error);
|
|
goto fail;
|
|
}
|
|
|
|
paddr = ring->cmd_dma.paddr;
|
|
for (i = 0; i < IWN_TX_RING_COUNT; i++) {
|
|
struct iwn_tx_data *data = &ring->data[i];
|
|
|
|
data->cmd_paddr = paddr;
|
|
data->scratch_paddr = paddr + 12;
|
|
paddr += sizeof (struct iwn_tx_cmd);
|
|
|
|
error = bus_dmamap_create(ring->data_dmat, 0, &data->map);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: bus_dmamap_create failed, error %d\n",
|
|
__func__, error);
|
|
goto fail;
|
|
}
|
|
bus_dmamap_sync(ring->data_dmat, data->map,
|
|
BUS_DMASYNC_PREWRITE);
|
|
}
|
|
return 0;
|
|
fail:
|
|
iwn_free_tx_ring(sc, ring);
|
|
return error;
|
|
}
|
|
|
|
void
|
|
iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < IWN_TX_RING_COUNT; i++) {
|
|
struct iwn_tx_data *data = &ring->data[i];
|
|
|
|
if (data->m != NULL) {
|
|
bus_dmamap_unload(ring->data_dmat, data->map);
|
|
m_freem(data->m);
|
|
data->m = NULL;
|
|
}
|
|
}
|
|
/* Clear TX descriptors. */
|
|
memset(ring->desc, 0, ring->desc_dma.size);
|
|
bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
|
|
BUS_DMASYNC_PREWRITE);
|
|
sc->qfullmsk &= ~(1 << ring->qid);
|
|
ring->queued = 0;
|
|
ring->cur = 0;
|
|
}
|
|
|
|
void
|
|
iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
|
|
{
|
|
int i;
|
|
|
|
iwn_dma_contig_free(&ring->desc_dma);
|
|
iwn_dma_contig_free(&ring->cmd_dma);
|
|
|
|
for (i = 0; i < IWN_TX_RING_COUNT; i++) {
|
|
struct iwn_tx_data *data = &ring->data[i];
|
|
|
|
if (data->m != NULL) {
|
|
bus_dmamap_sync(ring->data_dmat, data->map,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(ring->data_dmat, data->map);
|
|
m_freem(data->m);
|
|
}
|
|
if (data->map != NULL)
|
|
bus_dmamap_destroy(ring->data_dmat, data->map);
|
|
}
|
|
}
|
|
|
|
void
|
|
iwn5000_ict_reset(struct iwn_softc *sc)
|
|
{
|
|
/* Disable interrupts. */
|
|
IWN_WRITE(sc, IWN_INT_MASK, 0);
|
|
|
|
/* Reset ICT table. */
|
|
memset(sc->ict, 0, IWN_ICT_SIZE);
|
|
sc->ict_cur = 0;
|
|
|
|
/* Set physical address of ICT table (4KB aligned.) */
|
|
DPRINTF(sc, IWN_DEBUG_RESET, "%s: enabling ICT\n", __func__);
|
|
IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
|
|
IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
|
|
|
|
/* Enable periodic RX interrupt. */
|
|
sc->int_mask |= IWN_INT_RX_PERIODIC;
|
|
/* Switch to ICT interrupt mode in driver. */
|
|
sc->sc_flags |= IWN_FLAG_USE_ICT;
|
|
|
|
/* Re-enable interrupts. */
|
|
IWN_WRITE(sc, IWN_INT, 0xffffffff);
|
|
IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
|
|
}
|
|
|
|
int
|
|
iwn_read_eeprom(struct iwn_softc *sc, uint8_t macaddr[IEEE80211_ADDR_LEN])
|
|
{
|
|
const struct iwn_hal *hal = sc->sc_hal;
|
|
int error;
|
|
uint16_t val;
|
|
|
|
/* Check whether adapter has an EEPROM or an OTPROM. */
|
|
if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
|
|
(IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
|
|
sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
|
|
DPRINTF(sc, IWN_DEBUG_RESET, "%s found\n",
|
|
(sc->sc_flags & IWN_FLAG_HAS_OTPROM) ? "OTPROM" : "EEPROM");
|
|
|
|
/* Adapter has to be powered on for EEPROM access to work. */
|
|
error = iwn_apm_init(sc);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: could not power ON adapter, error %d\n",
|
|
__func__, error);
|
|
return error;
|
|
}
|
|
|
|
if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
|
|
device_printf(sc->sc_dev, "%s: bad ROM signature\n", __func__);
|
|
return EIO;
|
|
}
|
|
error = iwn_eeprom_lock(sc);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: could not lock ROM, error %d\n",
|
|
__func__, error);
|
|
return error;
|
|
}
|
|
|
|
if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
|
|
error = iwn_init_otprom(sc);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: could not initialize OTPROM, error %d\n",
|
|
__func__, error);
|
|
return error;
|
|
}
|
|
}
|
|
|
|
iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
|
|
sc->rfcfg = le16toh(val);
|
|
DPRINTF(sc, IWN_DEBUG_RESET, "radio config=0x%04x\n", sc->rfcfg);
|
|
|
|
/* Read MAC address. */
|
|
iwn_read_prom_data(sc, IWN_EEPROM_MAC, macaddr, 6);
|
|
|
|
/* Read adapter-specific information from EEPROM. */
|
|
hal->read_eeprom(sc);
|
|
|
|
iwn_apm_stop(sc); /* Power OFF adapter. */
|
|
|
|
iwn_eeprom_unlock(sc);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
iwn4965_read_eeprom(struct iwn_softc *sc)
|
|
{
|
|
uint32_t addr;
|
|
int i;
|
|
uint16_t val;
|
|
|
|
/* Read regulatory domain (4 ASCII characters.) */
|
|
iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
|
|
|
|
/* Read the list of authorized channels (20MHz ones only.) */
|
|
for (i = 0; i < 5; i++) {
|
|
addr = iwn4965_regulatory_bands[i];
|
|
iwn_read_eeprom_channels(sc, i, addr);
|
|
}
|
|
|
|
/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
|
|
iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
|
|
sc->maxpwr2GHz = val & 0xff;
|
|
sc->maxpwr5GHz = val >> 8;
|
|
/* Check that EEPROM values are within valid range. */
|
|
if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
|
|
sc->maxpwr5GHz = 38;
|
|
if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
|
|
sc->maxpwr2GHz = 38;
|
|
DPRINTF(sc, IWN_DEBUG_RESET, "maxpwr 2GHz=%d 5GHz=%d\n",
|
|
sc->maxpwr2GHz, sc->maxpwr5GHz);
|
|
|
|
/* Read samples for each TX power group. */
|
|
iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
|
|
sizeof sc->bands);
|
|
|
|
/* Read voltage at which samples were taken. */
|
|
iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
|
|
sc->eeprom_voltage = (int16_t)le16toh(val);
|
|
DPRINTF(sc, IWN_DEBUG_RESET, "voltage=%d (in 0.3V)\n",
|
|
sc->eeprom_voltage);
|
|
|
|
#ifdef IWN_DEBUG
|
|
/* Print samples. */
|
|
if (sc->sc_debug & IWN_DEBUG_ANY) {
|
|
for (i = 0; i < IWN_NBANDS; i++)
|
|
iwn4965_print_power_group(sc, i);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#ifdef IWN_DEBUG
|
|
void
|
|
iwn4965_print_power_group(struct iwn_softc *sc, int i)
|
|
{
|
|
struct iwn4965_eeprom_band *band = &sc->bands[i];
|
|
struct iwn4965_eeprom_chan_samples *chans = band->chans;
|
|
int j, c;
|
|
|
|
printf("===band %d===\n", i);
|
|
printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
|
|
printf("chan1 num=%d\n", chans[0].num);
|
|
for (c = 0; c < 2; c++) {
|
|
for (j = 0; j < IWN_NSAMPLES; j++) {
|
|
printf("chain %d, sample %d: temp=%d gain=%d "
|
|
"power=%d pa_det=%d\n", c, j,
|
|
chans[0].samples[c][j].temp,
|
|
chans[0].samples[c][j].gain,
|
|
chans[0].samples[c][j].power,
|
|
chans[0].samples[c][j].pa_det);
|
|
}
|
|
}
|
|
printf("chan2 num=%d\n", chans[1].num);
|
|
for (c = 0; c < 2; c++) {
|
|
for (j = 0; j < IWN_NSAMPLES; j++) {
|
|
printf("chain %d, sample %d: temp=%d gain=%d "
|
|
"power=%d pa_det=%d\n", c, j,
|
|
chans[1].samples[c][j].temp,
|
|
chans[1].samples[c][j].gain,
|
|
chans[1].samples[c][j].power,
|
|
chans[1].samples[c][j].pa_det);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void
|
|
iwn5000_read_eeprom(struct iwn_softc *sc)
|
|
{
|
|
int32_t temp, volt;
|
|
uint32_t addr, base;
|
|
int i;
|
|
uint16_t val;
|
|
|
|
/* Read regulatory domain (4 ASCII characters.) */
|
|
iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
|
|
base = le16toh(val);
|
|
iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
|
|
sc->eeprom_domain, 4);
|
|
|
|
/* Read the list of authorized channels (20MHz ones only.) */
|
|
for (i = 0; i < 5; i++) {
|
|
addr = base + iwn5000_regulatory_bands[i];
|
|
iwn_read_eeprom_channels(sc, i, addr);
|
|
}
|
|
|
|
/* Read enhanced TX power information for 6000 Series. */
|
|
if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
|
|
iwn_read_eeprom_enhinfo(sc);
|
|
|
|
iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
|
|
base = le16toh(val);
|
|
if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
|
|
/* Compute temperature offset. */
|
|
iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
|
|
temp = le16toh(val);
|
|
iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
|
|
volt = le16toh(val);
|
|
sc->temp_off = temp - (volt / -5);
|
|
DPRINTF(sc, IWN_DEBUG_CALIBRATE, "temp=%d volt=%d offset=%dK\n",
|
|
temp, volt, sc->temp_off);
|
|
} else {
|
|
/* Read crystal calibration. */
|
|
iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
|
|
&sc->eeprom_crystal, sizeof (uint32_t));
|
|
DPRINTF(sc, IWN_DEBUG_CALIBRATE, "crystal calibration 0x%08x\n",
|
|
le32toh(sc->eeprom_crystal));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Translate EEPROM flags to net80211.
|
|
*/
|
|
static uint32_t
|
|
iwn_eeprom_channel_flags(struct iwn_eeprom_chan *channel)
|
|
{
|
|
uint32_t nflags;
|
|
|
|
nflags = 0;
|
|
if ((channel->flags & IWN_EEPROM_CHAN_ACTIVE) == 0)
|
|
nflags |= IEEE80211_CHAN_PASSIVE;
|
|
if ((channel->flags & IWN_EEPROM_CHAN_IBSS) == 0)
|
|
nflags |= IEEE80211_CHAN_NOADHOC;
|
|
if (channel->flags & IWN_EEPROM_CHAN_RADAR) {
|
|
nflags |= IEEE80211_CHAN_DFS;
|
|
/* XXX apparently IBSS may still be marked */
|
|
nflags |= IEEE80211_CHAN_NOADHOC;
|
|
}
|
|
|
|
return nflags;
|
|
}
|
|
|
|
static void
|
|
iwn_read_eeprom_band(struct iwn_softc *sc, int n)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
|
|
const struct iwn_chan_band *band = &iwn_bands[n];
|
|
struct ieee80211_channel *c;
|
|
int i, chan, nflags;
|
|
|
|
for (i = 0; i < band->nchan; i++) {
|
|
if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID)) {
|
|
DPRINTF(sc, IWN_DEBUG_RESET,
|
|
"skip chan %d flags 0x%x maxpwr %d\n",
|
|
band->chan[i], channels[i].flags,
|
|
channels[i].maxpwr);
|
|
continue;
|
|
}
|
|
chan = band->chan[i];
|
|
nflags = iwn_eeprom_channel_flags(&channels[i]);
|
|
|
|
DPRINTF(sc, IWN_DEBUG_RESET,
|
|
"add chan %d flags 0x%x maxpwr %d\n",
|
|
chan, channels[i].flags, channels[i].maxpwr);
|
|
|
|
c = &ic->ic_channels[ic->ic_nchans++];
|
|
c->ic_ieee = chan;
|
|
c->ic_maxregpower = channels[i].maxpwr;
|
|
c->ic_maxpower = 2*c->ic_maxregpower;
|
|
if (n == 0) { /* 2GHz band */
|
|
c->ic_freq = ieee80211_ieee2mhz(chan,
|
|
IEEE80211_CHAN_G);
|
|
|
|
/* G =>'s B is supported */
|
|
c->ic_flags = IEEE80211_CHAN_B | nflags;
|
|
|
|
c = &ic->ic_channels[ic->ic_nchans++];
|
|
c[0] = c[-1];
|
|
c->ic_flags = IEEE80211_CHAN_G | nflags;
|
|
} else { /* 5GHz band */
|
|
c->ic_freq = ieee80211_ieee2mhz(chan,
|
|
IEEE80211_CHAN_A);
|
|
c->ic_flags = IEEE80211_CHAN_A | nflags;
|
|
sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
|
|
}
|
|
#if 0 /* HT */
|
|
/* XXX no constraints on using HT20 */
|
|
/* add HT20, HT40 added separately */
|
|
c = &ic->ic_channels[ic->ic_nchans++];
|
|
c[0] = c[-1];
|
|
c->ic_flags |= IEEE80211_CHAN_HT20;
|
|
/* XXX NARROW =>'s 1/2 and 1/4 width? */
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#if 0 /* HT */
|
|
static void
|
|
iwn_read_eeprom_ht40(struct iwn_softc *sc, int n)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
struct iwn_eeprom_chan *channels = sc->eeprom_channels[n];
|
|
const struct iwn_chan_band *band = &iwn_bands[n];
|
|
struct ieee80211_channel *c, *cent, *extc;
|
|
int i;
|
|
|
|
for (i = 0; i < band->nchan; i++) {
|
|
if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID) ||
|
|
!(channels[i].flags & IWN_EEPROM_CHAN_WIDE)) {
|
|
DPRINTF(sc, IWN_DEBUG_RESET,
|
|
"skip chan %d flags 0x%x maxpwr %d\n",
|
|
band->chan[i], channels[i].flags,
|
|
channels[i].maxpwr);
|
|
continue;
|
|
}
|
|
/*
|
|
* Each entry defines an HT40 channel pair; find the
|
|
* center channel, then the extension channel above.
|
|
*/
|
|
cent = ieee80211_find_channel_byieee(ic, band->chan[i],
|
|
band->flags & ~IEEE80211_CHAN_HT);
|
|
if (cent == NULL) { /* XXX shouldn't happen */
|
|
device_printf(sc->sc_dev,
|
|
"%s: no entry for channel %d\n",
|
|
__func__, band->chan[i]);
|
|
continue;
|
|
}
|
|
extc = ieee80211_find_channel(ic, cent->ic_freq+20,
|
|
band->flags & ~IEEE80211_CHAN_HT);
|
|
if (extc == NULL) {
|
|
DPRINTF(sc, IWN_DEBUG_RESET,
|
|
"skip chan %d, extension channel not found\n",
|
|
band->chan[i]);
|
|
continue;
|
|
}
|
|
|
|
DPRINTF(sc, IWN_DEBUG_RESET,
|
|
"add ht40 chan %d flags 0x%x maxpwr %d\n",
|
|
band->chan[i], channels[i].flags, channels[i].maxpwr);
|
|
|
|
c = &ic->ic_channels[ic->ic_nchans++];
|
|
c[0] = cent[0];
|
|
c->ic_extieee = extc->ic_ieee;
|
|
c->ic_flags &= ~IEEE80211_CHAN_HT;
|
|
c->ic_flags |= IEEE80211_CHAN_HT40U;
|
|
c = &ic->ic_channels[ic->ic_nchans++];
|
|
c[0] = extc[0];
|
|
c->ic_extieee = cent->ic_ieee;
|
|
c->ic_flags &= ~IEEE80211_CHAN_HT;
|
|
c->ic_flags |= IEEE80211_CHAN_HT40D;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
|
|
iwn_read_prom_data(sc, addr, &sc->eeprom_channels[n],
|
|
iwn_bands[n].nchan * sizeof (struct iwn_eeprom_chan));
|
|
|
|
if (n < 5)
|
|
iwn_read_eeprom_band(sc, n);
|
|
#if 0 /* HT */
|
|
else
|
|
iwn_read_eeprom_ht40(sc, n);
|
|
#endif
|
|
ieee80211_sort_channels(ic->ic_channels, ic->ic_nchans);
|
|
}
|
|
|
|
#define nitems(_a) (sizeof((_a)) / sizeof((_a)[0]))
|
|
|
|
void
|
|
iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
|
|
{
|
|
struct iwn_eeprom_enhinfo enhinfo[35];
|
|
uint16_t val, base;
|
|
int8_t maxpwr;
|
|
int i;
|
|
|
|
iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
|
|
base = le16toh(val);
|
|
iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
|
|
enhinfo, sizeof enhinfo);
|
|
|
|
memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
|
|
for (i = 0; i < nitems(enhinfo); i++) {
|
|
if (enhinfo[i].chan == 0 || enhinfo[i].reserved != 0)
|
|
continue; /* Skip invalid entries. */
|
|
|
|
maxpwr = 0;
|
|
if (sc->txchainmask & IWN_ANT_A)
|
|
maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
|
|
if (sc->txchainmask & IWN_ANT_B)
|
|
maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
|
|
if (sc->txchainmask & IWN_ANT_C)
|
|
maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
|
|
if (sc->ntxchains == 2)
|
|
maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
|
|
else if (sc->ntxchains == 3)
|
|
maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
|
|
maxpwr /= 2; /* Convert half-dBm to dBm. */
|
|
|
|
DPRINTF(sc, IWN_DEBUG_RESET, "enhinfo %d, maxpwr=%d\n", i,
|
|
maxpwr);
|
|
sc->enh_maxpwr[i] = maxpwr;
|
|
}
|
|
}
|
|
|
|
struct ieee80211_node *
|
|
iwn_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
|
|
{
|
|
return malloc(sizeof (struct iwn_node), M_80211_NODE,M_NOWAIT | M_ZERO);
|
|
}
|
|
|
|
void
|
|
iwn_newassoc(struct ieee80211_node *ni, int isnew)
|
|
{
|
|
struct ieee80211vap *vap = ni->ni_vap;
|
|
struct iwn_node *wn = (void *)ni;
|
|
|
|
ieee80211_amrr_node_init(&IWN_VAP(vap)->iv_amrr,
|
|
&wn->amn, ni);
|
|
}
|
|
|
|
int
|
|
iwn_media_change(struct ifnet *ifp)
|
|
{
|
|
int error = ieee80211_media_change(ifp);
|
|
/* NB: only the fixed rate can change and that doesn't need a reset */
|
|
return (error == ENETRESET ? 0 : error);
|
|
}
|
|
|
|
int
|
|
iwn_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
|
|
{
|
|
struct iwn_vap *ivp = IWN_VAP(vap);
|
|
struct ieee80211com *ic = vap->iv_ic;
|
|
struct iwn_softc *sc = ic->ic_ifp->if_softc;
|
|
int error;
|
|
|
|
DPRINTF(sc, IWN_DEBUG_STATE, "%s: %s -> %s\n", __func__,
|
|
ieee80211_state_name[vap->iv_state],
|
|
ieee80211_state_name[nstate]);
|
|
|
|
IEEE80211_UNLOCK(ic);
|
|
IWN_LOCK(sc);
|
|
callout_stop(&sc->sc_timer_to);
|
|
|
|
if (nstate == IEEE80211_S_AUTH && vap->iv_state != IEEE80211_S_AUTH) {
|
|
/* !AUTH -> AUTH requires adapter config */
|
|
/* Reset state to handle reassociations correctly. */
|
|
sc->rxon.associd = 0;
|
|
sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
|
|
iwn_calib_reset(sc);
|
|
error = iwn_auth(sc, vap);
|
|
}
|
|
if (nstate == IEEE80211_S_RUN && vap->iv_state != IEEE80211_S_RUN) {
|
|
/*
|
|
* !RUN -> RUN requires setting the association id
|
|
* which is done with a firmware cmd. We also defer
|
|
* starting the timers until that work is done.
|
|
*/
|
|
error = iwn_run(sc, vap);
|
|
}
|
|
if (nstate == IEEE80211_S_RUN) {
|
|
/*
|
|
* RUN -> RUN transition; just restart the timers.
|
|
*/
|
|
iwn_calib_reset(sc);
|
|
}
|
|
IWN_UNLOCK(sc);
|
|
IEEE80211_LOCK(ic);
|
|
return ivp->iv_newstate(vap, nstate, arg);
|
|
}
|
|
|
|
/*
|
|
* Process an RX_PHY firmware notification. This is usually immediately
|
|
* followed by an MPDU_RX_DONE notification.
|
|
*/
|
|
void
|
|
iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
|
|
struct iwn_rx_data *data)
|
|
{
|
|
struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
|
|
|
|
DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: received PHY stats\n", __func__);
|
|
bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
|
|
|
|
/* Save RX statistics, they will be used on MPDU_RX_DONE. */
|
|
memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
|
|
sc->last_rx_valid = 1;
|
|
}
|
|
|
|
static void
|
|
iwn_timer_timeout(void *arg)
|
|
{
|
|
struct iwn_softc *sc = arg;
|
|
uint32_t flags = 0;
|
|
|
|
IWN_LOCK_ASSERT(sc);
|
|
|
|
if (sc->calib_cnt && --sc->calib_cnt == 0) {
|
|
DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s\n",
|
|
"send statistics request");
|
|
(void) iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
|
|
sizeof flags, 1);
|
|
sc->calib_cnt = 60; /* do calibration every 60s */
|
|
}
|
|
iwn_watchdog(sc); /* NB: piggyback tx watchdog */
|
|
callout_reset(&sc->sc_timer_to, hz, iwn_timer_timeout, sc);
|
|
}
|
|
|
|
static void
|
|
iwn_calib_reset(struct iwn_softc *sc)
|
|
{
|
|
callout_reset(&sc->sc_timer_to, hz, iwn_timer_timeout, sc);
|
|
sc->calib_cnt = 60; /* do calibration every 60s */
|
|
}
|
|
|
|
/*
|
|
* Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
|
|
* Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
|
|
*/
|
|
void
|
|
iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
|
|
struct iwn_rx_data *data)
|
|
{
|
|
const struct iwn_hal *hal = sc->sc_hal;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
struct iwn_rx_ring *ring = &sc->rxq;
|
|
struct ieee80211_frame *wh;
|
|
struct ieee80211_node *ni;
|
|
struct mbuf *m, *m1;
|
|
struct iwn_rx_stat *stat;
|
|
caddr_t head;
|
|
bus_addr_t paddr;
|
|
uint32_t flags;
|
|
int error, len, rssi, nf;
|
|
|
|
if (desc->type == IWN_MPDU_RX_DONE) {
|
|
/* Check for prior RX_PHY notification. */
|
|
if (!sc->last_rx_valid) {
|
|
DPRINTF(sc, IWN_DEBUG_ANY,
|
|
"%s: missing RX_PHY\n", __func__);
|
|
ifp->if_ierrors++;
|
|
return;
|
|
}
|
|
sc->last_rx_valid = 0;
|
|
stat = &sc->last_rx_stat;
|
|
} else
|
|
stat = (struct iwn_rx_stat *)(desc + 1);
|
|
|
|
bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTREAD);
|
|
|
|
if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: invalid rx statistic header, len %d\n",
|
|
__func__, stat->cfg_phy_len);
|
|
ifp->if_ierrors++;
|
|
return;
|
|
}
|
|
if (desc->type == IWN_MPDU_RX_DONE) {
|
|
struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
|
|
head = (caddr_t)(mpdu + 1);
|
|
len = le16toh(mpdu->len);
|
|
} else {
|
|
head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
|
|
len = le16toh(stat->len);
|
|
}
|
|
|
|
flags = le32toh(*(uint32_t *)(head + len));
|
|
|
|
/* Discard frames with a bad FCS early. */
|
|
if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
|
|
DPRINTF(sc, IWN_DEBUG_RECV, "%s: rx flags error %x\n",
|
|
__func__, flags);
|
|
ifp->if_ierrors++;
|
|
return;
|
|
}
|
|
/* Discard frames that are too short. */
|
|
if (len < sizeof (*wh)) {
|
|
DPRINTF(sc, IWN_DEBUG_RECV, "%s: frame too short: %d\n",
|
|
__func__, len);
|
|
ifp->if_ierrors++;
|
|
return;
|
|
}
|
|
|
|
/* XXX don't need mbuf, just dma buffer */
|
|
m1 = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
|
|
if (m1 == NULL) {
|
|
DPRINTF(sc, IWN_DEBUG_ANY, "%s: no mbuf to restock ring\n",
|
|
__func__);
|
|
ifp->if_ierrors++;
|
|
return;
|
|
}
|
|
bus_dmamap_unload(ring->data_dmat, data->map);
|
|
|
|
error = bus_dmamap_load(ring->data_dmat, data->map,
|
|
mtod(m1, caddr_t), MJUMPAGESIZE,
|
|
iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
|
|
if (error != 0 && error != EFBIG) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: bus_dmamap_load failed, error %d\n", __func__, error);
|
|
m_freem(m1);
|
|
ifp->if_ierrors++;
|
|
return;
|
|
}
|
|
|
|
m = data->m;
|
|
data->m = m1;
|
|
/* Update RX descriptor. */
|
|
ring->desc[ring->cur] = htole32(paddr >> 8);
|
|
bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Finalize mbuf. */
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_data = head;
|
|
m->m_pkthdr.len = m->m_len = len;
|
|
|
|
rssi = hal->get_rssi(sc, stat);
|
|
|
|
/* Grab a reference to the source node. */
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
|
|
nf = (ni != NULL && ni->ni_vap->iv_state == IEEE80211_S_RUN &&
|
|
(ic->ic_flags & IEEE80211_F_SCAN) == 0) ? sc->noise : -95;
|
|
|
|
if (ieee80211_radiotap_active(ic)) {
|
|
struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
|
|
|
|
tap->wr_tsft = htole64(stat->tstamp);
|
|
tap->wr_flags = 0;
|
|
if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
|
|
tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
|
|
switch (stat->rate) {
|
|
/* CCK rates. */
|
|
case 10: tap->wr_rate = 2; break;
|
|
case 20: tap->wr_rate = 4; break;
|
|
case 55: tap->wr_rate = 11; break;
|
|
case 110: tap->wr_rate = 22; break;
|
|
/* OFDM rates. */
|
|
case 0xd: tap->wr_rate = 12; break;
|
|
case 0xf: tap->wr_rate = 18; break;
|
|
case 0x5: tap->wr_rate = 24; break;
|
|
case 0x7: tap->wr_rate = 36; break;
|
|
case 0x9: tap->wr_rate = 48; break;
|
|
case 0xb: tap->wr_rate = 72; break;
|
|
case 0x1: tap->wr_rate = 96; break;
|
|
case 0x3: tap->wr_rate = 108; break;
|
|
/* Unknown rate: should not happen. */
|
|
default: tap->wr_rate = 0;
|
|
}
|
|
tap->wr_dbm_antsignal = rssi;
|
|
tap->wr_dbm_antnoise = nf;
|
|
}
|
|
|
|
IWN_UNLOCK(sc);
|
|
|
|
/* Send the frame to the 802.11 layer. */
|
|
if (ni != NULL) {
|
|
(void) ieee80211_input(ni, m, rssi - nf, nf);
|
|
/* Node is no longer needed. */
|
|
ieee80211_free_node(ni);
|
|
} else
|
|
(void) ieee80211_input_all(ic, m, rssi - nf, nf);
|
|
|
|
IWN_LOCK(sc);
|
|
}
|
|
|
|
#if 0 /* HT */
|
|
/* Process an incoming Compressed BlockAck. */
|
|
void
|
|
iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
|
|
struct iwn_rx_data *data)
|
|
{
|
|
struct iwn_compressed_ba *ba = (struct iwn_compressed_ba *)(desc + 1);
|
|
struct iwn_tx_ring *txq;
|
|
|
|
txq = &sc->txq[letoh16(ba->qid)];
|
|
/* XXX TBD */
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Process a CALIBRATION_RESULT notification sent by the initialization
|
|
* firmware on response to a CMD_CALIB_CONFIG command (5000 only.)
|
|
*/
|
|
void
|
|
iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
|
|
struct iwn_rx_data *data)
|
|
{
|
|
struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
|
|
int len, idx = -1;
|
|
|
|
/* Runtime firmware should not send such a notification. */
|
|
if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
|
|
return;
|
|
|
|
bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
|
|
len = (le32toh(desc->len) & 0x3fff) - 4;
|
|
|
|
switch (calib->code) {
|
|
case IWN5000_PHY_CALIB_DC:
|
|
if (sc->hw_type == IWN_HW_REV_TYPE_5150)
|
|
idx = 0;
|
|
break;
|
|
case IWN5000_PHY_CALIB_LO:
|
|
idx = 1;
|
|
break;
|
|
case IWN5000_PHY_CALIB_TX_IQ:
|
|
idx = 2;
|
|
break;
|
|
case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
|
|
if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
|
|
sc->hw_type != IWN_HW_REV_TYPE_5150)
|
|
idx = 3;
|
|
break;
|
|
case IWN5000_PHY_CALIB_BASE_BAND:
|
|
idx = 4;
|
|
break;
|
|
}
|
|
if (idx == -1) /* Ignore other results. */
|
|
return;
|
|
|
|
/* Save calibration result. */
|
|
if (sc->calibcmd[idx].buf != NULL)
|
|
free(sc->calibcmd[idx].buf, M_DEVBUF);
|
|
sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
|
|
if (sc->calibcmd[idx].buf == NULL) {
|
|
DPRINTF(sc, IWN_DEBUG_CALIBRATE,
|
|
"not enough memory for calibration result %d\n",
|
|
calib->code);
|
|
return;
|
|
}
|
|
DPRINTF(sc, IWN_DEBUG_CALIBRATE,
|
|
"saving calibration result code=%d len=%d\n", calib->code, len);
|
|
sc->calibcmd[idx].len = len;
|
|
memcpy(sc->calibcmd[idx].buf, calib, len);
|
|
}
|
|
|
|
/*
|
|
* Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
|
|
* The latter is sent by the firmware after each received beacon.
|
|
*/
|
|
void
|
|
iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
|
|
struct iwn_rx_data *data)
|
|
{
|
|
const struct iwn_hal *hal = sc->sc_hal;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
|
|
struct iwn_calib_state *calib = &sc->calib;
|
|
struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
|
|
int temp;
|
|
|
|
/* Beacon stats are meaningful only when associated and not scanning. */
|
|
if (vap->iv_state != IEEE80211_S_RUN ||
|
|
(ic->ic_flags & IEEE80211_F_SCAN))
|
|
return;
|
|
|
|
bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
|
|
DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: cmd %d\n", __func__, desc->type);
|
|
iwn_calib_reset(sc); /* Reset TX power calibration timeout. */
|
|
|
|
/* Test if temperature has changed. */
|
|
if (stats->general.temp != sc->rawtemp) {
|
|
/* Convert "raw" temperature to degC. */
|
|
sc->rawtemp = stats->general.temp;
|
|
temp = hal->get_temperature(sc);
|
|
DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d\n",
|
|
__func__, temp);
|
|
|
|
/* Update TX power if need be (4965AGN only.) */
|
|
if (sc->hw_type == IWN_HW_REV_TYPE_4965)
|
|
iwn4965_power_calibration(sc, temp);
|
|
}
|
|
|
|
if (desc->type != IWN_BEACON_STATISTICS)
|
|
return; /* Reply to a statistics request. */
|
|
|
|
sc->noise = iwn_get_noise(&stats->rx.general);
|
|
DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: noise %d\n", __func__, sc->noise);
|
|
|
|
/* Test that RSSI and noise are present in stats report. */
|
|
if (le32toh(stats->rx.general.flags) != 1) {
|
|
DPRINTF(sc, IWN_DEBUG_ANY, "%s\n",
|
|
"received statistics without RSSI");
|
|
return;
|
|
}
|
|
|
|
if (calib->state == IWN_CALIB_STATE_ASSOC)
|
|
iwn_collect_noise(sc, &stats->rx.general);
|
|
else if (calib->state == IWN_CALIB_STATE_RUN)
|
|
iwn_tune_sensitivity(sc, &stats->rx);
|
|
}
|
|
|
|
/*
|
|
* Process a TX_DONE firmware notification. Unfortunately, the 4965AGN
|
|
* and 5000 adapters have different incompatible TX status formats.
|
|
*/
|
|
void
|
|
iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
|
|
struct iwn_rx_data *data)
|
|
{
|
|
struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
|
|
|
|
DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
|
|
"qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
|
|
__func__, desc->qid, desc->idx, stat->ackfailcnt,
|
|
stat->btkillcnt, stat->rate, le16toh(stat->duration),
|
|
le32toh(stat->status));
|
|
|
|
bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
|
|
iwn_tx_done(sc, desc, stat->ackfailcnt, le32toh(stat->status) & 0xff);
|
|
}
|
|
|
|
void
|
|
iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
|
|
struct iwn_rx_data *data)
|
|
{
|
|
struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
|
|
|
|
DPRINTF(sc, IWN_DEBUG_XMIT, "%s: "
|
|
"qid %d idx %d retries %d nkill %d rate %x duration %d status %x\n",
|
|
__func__, desc->qid, desc->idx, stat->ackfailcnt,
|
|
stat->btkillcnt, stat->rate, le16toh(stat->duration),
|
|
le32toh(stat->status));
|
|
|
|
#ifdef notyet
|
|
/* Reset TX scheduler slot. */
|
|
iwn5000_reset_sched(sc, desc->qid & 0xf, desc->idx);
|
|
#endif
|
|
|
|
bus_dmamap_sync(sc->rxq.data_dmat, data->map, BUS_DMASYNC_POSTREAD);
|
|
iwn_tx_done(sc, desc, stat->ackfailcnt, le16toh(stat->status) & 0xff);
|
|
}
|
|
|
|
/*
|
|
* Adapter-independent backend for TX_DONE firmware notifications.
|
|
*/
|
|
void
|
|
iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc, int ackfailcnt,
|
|
uint8_t status)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct iwn_tx_ring *ring = &sc->txq[desc->qid & 0xf];
|
|
struct iwn_tx_data *data = &ring->data[desc->idx];
|
|
struct iwn_node *wn = (void *)data->ni;
|
|
struct mbuf *m;
|
|
struct ieee80211_node *ni;
|
|
|
|
KASSERT(data->ni != NULL, ("no node"));
|
|
|
|
/* Unmap and free mbuf. */
|
|
bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(ring->data_dmat, data->map);
|
|
m = data->m, data->m = NULL;
|
|
ni = data->ni, data->ni = NULL;
|
|
|
|
if (m->m_flags & M_TXCB) {
|
|
/*
|
|
* Channels marked for "radar" require traffic to be received
|
|
* to unlock before we can transmit. Until traffic is seen
|
|
* any attempt to transmit is returned immediately with status
|
|
* set to IWN_TX_FAIL_TX_LOCKED. Unfortunately this can easily
|
|
* happen on first authenticate after scanning. To workaround
|
|
* this we ignore a failure of this sort in AUTH state so the
|
|
* 802.11 layer will fall back to using a timeout to wait for
|
|
* the AUTH reply. This allows the firmware time to see
|
|
* traffic so a subsequent retry of AUTH succeeds. It's
|
|
* unclear why the firmware does not maintain state for
|
|
* channels recently visited as this would allow immediate
|
|
* use of the channel after a scan (where we see traffic).
|
|
*/
|
|
if (status == IWN_TX_FAIL_TX_LOCKED &&
|
|
ni->ni_vap->iv_state == IEEE80211_S_AUTH)
|
|
ieee80211_process_callback(ni, m, 0);
|
|
else
|
|
ieee80211_process_callback(ni, m,
|
|
(status & IWN_TX_FAIL) != 0);
|
|
}
|
|
|
|
/*
|
|
* Update rate control statistics for the node.
|
|
*/
|
|
if (status & 0x80) {
|
|
ifp->if_oerrors++;
|
|
ieee80211_amrr_tx_complete(&wn->amn,
|
|
IEEE80211_AMRR_FAILURE, ackfailcnt);
|
|
} else {
|
|
ieee80211_amrr_tx_complete(&wn->amn,
|
|
IEEE80211_AMRR_SUCCESS, ackfailcnt);
|
|
}
|
|
m_freem(m);
|
|
ieee80211_free_node(ni);
|
|
|
|
sc->sc_tx_timer = 0;
|
|
if (--ring->queued < IWN_TX_RING_LOMARK) {
|
|
sc->qfullmsk &= ~(1 << ring->qid);
|
|
if (sc->qfullmsk == 0 &&
|
|
(ifp->if_drv_flags & IFF_DRV_OACTIVE)) {
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
iwn_start_locked(ifp);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Process a "command done" firmware notification. This is where we wakeup
|
|
* processes waiting for a synchronous command completion.
|
|
*/
|
|
void
|
|
iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
|
|
{
|
|
struct iwn_tx_ring *ring = &sc->txq[4];
|
|
struct iwn_tx_data *data;
|
|
|
|
if ((desc->qid & 0xf) != 4)
|
|
return; /* Not a command ack. */
|
|
|
|
data = &ring->data[desc->idx];
|
|
|
|
/* If the command was mapped in an mbuf, free it. */
|
|
if (data->m != NULL) {
|
|
bus_dmamap_unload(ring->data_dmat, data->map);
|
|
m_freem(data->m);
|
|
data->m = NULL;
|
|
}
|
|
wakeup(&ring->desc[desc->idx]);
|
|
}
|
|
|
|
/*
|
|
* Process an INT_FH_RX or INT_SW_RX interrupt.
|
|
*/
|
|
void
|
|
iwn_notif_intr(struct iwn_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
|
|
uint16_t hw;
|
|
|
|
bus_dmamap_sync(sc->rxq.stat_dma.tag, sc->rxq.stat_dma.map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
|
|
hw = le16toh(sc->rxq.stat->closed_count) & 0xfff;
|
|
while (sc->rxq.cur != hw) {
|
|
struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
|
|
struct iwn_rx_desc *desc;
|
|
|
|
bus_dmamap_sync(sc->rxq.data_dmat, data->map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
desc = mtod(data->m, struct iwn_rx_desc *);
|
|
|
|
DPRINTF(sc, IWN_DEBUG_RECV,
|
|
"%s: qid %x idx %d flags %x type %d(%s) len %d\n",
|
|
__func__, desc->qid & 0xf, desc->idx, desc->flags,
|
|
desc->type, iwn_intr_str(desc->type),
|
|
le16toh(desc->len));
|
|
|
|
if (!(desc->qid & 0x80)) /* Reply to a command. */
|
|
iwn_cmd_done(sc, desc);
|
|
|
|
switch (desc->type) {
|
|
case IWN_RX_PHY:
|
|
iwn_rx_phy(sc, desc, data);
|
|
break;
|
|
|
|
case IWN_RX_DONE: /* 4965AGN only. */
|
|
case IWN_MPDU_RX_DONE:
|
|
/* An 802.11 frame has been received. */
|
|
iwn_rx_done(sc, desc, data);
|
|
break;
|
|
|
|
#if 0 /* HT */
|
|
case IWN_RX_COMPRESSED_BA:
|
|
/* A Compressed BlockAck has been received. */
|
|
iwn_rx_compressed_ba(sc, desc, data);
|
|
break;
|
|
#endif
|
|
|
|
case IWN_TX_DONE:
|
|
/* An 802.11 frame has been transmitted. */
|
|
sc->sc_hal->tx_done(sc, desc, data);
|
|
break;
|
|
|
|
case IWN_RX_STATISTICS:
|
|
case IWN_BEACON_STATISTICS:
|
|
iwn_rx_statistics(sc, desc, data);
|
|
break;
|
|
|
|
case IWN_BEACON_MISSED:
|
|
{
|
|
struct iwn_beacon_missed *miss =
|
|
(struct iwn_beacon_missed *)(desc + 1);
|
|
int misses;
|
|
|
|
bus_dmamap_sync(sc->rxq.data_dmat, data->map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
misses = le32toh(miss->consecutive);
|
|
|
|
/* XXX not sure why we're notified w/ zero */
|
|
if (misses == 0)
|
|
break;
|
|
DPRINTF(sc, IWN_DEBUG_STATE,
|
|
"%s: beacons missed %d/%d\n", __func__,
|
|
misses, le32toh(miss->total));
|
|
|
|
/*
|
|
* If more than 5 consecutive beacons are missed,
|
|
* reinitialize the sensitivity state machine.
|
|
*/
|
|
if (vap->iv_state == IEEE80211_S_RUN && misses > 5)
|
|
(void) iwn_init_sensitivity(sc);
|
|
if (misses >= vap->iv_bmissthreshold) {
|
|
IWN_UNLOCK(sc);
|
|
ieee80211_beacon_miss(ic);
|
|
IWN_LOCK(sc);
|
|
}
|
|
break;
|
|
}
|
|
case IWN_UC_READY:
|
|
{
|
|
struct iwn_ucode_info *uc =
|
|
(struct iwn_ucode_info *)(desc + 1);
|
|
|
|
/* The microcontroller is ready. */
|
|
bus_dmamap_sync(sc->rxq.data_dmat, data->map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
DPRINTF(sc, IWN_DEBUG_RESET,
|
|
"microcode alive notification version=%d.%d "
|
|
"subtype=%x alive=%x\n", uc->major, uc->minor,
|
|
uc->subtype, le32toh(uc->valid));
|
|
|
|
if (le32toh(uc->valid) != 1) {
|
|
device_printf(sc->sc_dev,
|
|
"microcontroller initialization failed");
|
|
break;
|
|
}
|
|
if (uc->subtype == IWN_UCODE_INIT) {
|
|
/* Save microcontroller report. */
|
|
memcpy(&sc->ucode_info, uc, sizeof (*uc));
|
|
}
|
|
/* Save the address of the error log in SRAM. */
|
|
sc->errptr = le32toh(uc->errptr);
|
|
break;
|
|
}
|
|
case IWN_STATE_CHANGED:
|
|
{
|
|
uint32_t *status = (uint32_t *)(desc + 1);
|
|
|
|
/*
|
|
* State change allows hardware switch change to be
|
|
* noted. However, we handle this in iwn_intr as we
|
|
* get both the enable/disble intr.
|
|
*/
|
|
bus_dmamap_sync(sc->rxq.data_dmat, data->map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
DPRINTF(sc, IWN_DEBUG_INTR, "state changed to %x\n",
|
|
le32toh(*status));
|
|
break;
|
|
}
|
|
case IWN_START_SCAN:
|
|
{
|
|
struct iwn_start_scan *scan =
|
|
(struct iwn_start_scan *)(desc + 1);
|
|
|
|
bus_dmamap_sync(sc->rxq.data_dmat, data->map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
DPRINTF(sc, IWN_DEBUG_ANY,
|
|
"%s: scanning channel %d status %x\n",
|
|
__func__, scan->chan, le32toh(scan->status));
|
|
break;
|
|
}
|
|
case IWN_STOP_SCAN:
|
|
{
|
|
struct iwn_stop_scan *scan =
|
|
(struct iwn_stop_scan *)(desc + 1);
|
|
|
|
bus_dmamap_sync(sc->rxq.data_dmat, data->map,
|
|
BUS_DMASYNC_POSTREAD);
|
|
DPRINTF(sc, IWN_DEBUG_STATE,
|
|
"scan finished nchan=%d status=%d chan=%d\n",
|
|
scan->nchan, scan->status, scan->chan);
|
|
|
|
IWN_UNLOCK(sc);
|
|
ieee80211_scan_next(vap);
|
|
IWN_LOCK(sc);
|
|
break;
|
|
}
|
|
case IWN5000_CALIBRATION_RESULT:
|
|
iwn5000_rx_calib_results(sc, desc, data);
|
|
break;
|
|
|
|
case IWN5000_CALIBRATION_DONE:
|
|
sc->sc_flags |= IWN_FLAG_CALIB_DONE;
|
|
wakeup(sc);
|
|
break;
|
|
}
|
|
|
|
sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
|
|
}
|
|
|
|
/* Tell the firmware what we have processed. */
|
|
hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
|
|
IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
|
|
}
|
|
|
|
/*
|
|
* Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
|
|
* from power-down sleep mode.
|
|
*/
|
|
void
|
|
iwn_wakeup_intr(struct iwn_softc *sc)
|
|
{
|
|
int qid;
|
|
|
|
DPRINTF(sc, IWN_DEBUG_RESET, "%s: ucode wakeup from power-down sleep\n",
|
|
__func__);
|
|
|
|
/* Wakeup RX and TX rings. */
|
|
IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
|
|
for (qid = 0; qid < sc->sc_hal->ntxqs; qid++) {
|
|
struct iwn_tx_ring *ring = &sc->txq[qid];
|
|
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
|
|
}
|
|
}
|
|
|
|
void
|
|
iwn_rftoggle_intr(struct iwn_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
uint32_t tmp = IWN_READ(sc, IWN_GP_CNTRL);
|
|
|
|
IWN_LOCK_ASSERT(sc);
|
|
|
|
device_printf(sc->sc_dev, "RF switch: radio %s\n",
|
|
(tmp & IWN_GP_CNTRL_RFKILL) ? "enabled" : "disabled");
|
|
if (tmp & IWN_GP_CNTRL_RFKILL)
|
|
ieee80211_runtask(ic, &sc->sc_radioon_task);
|
|
else
|
|
ieee80211_runtask(ic, &sc->sc_radiooff_task);
|
|
}
|
|
|
|
/*
|
|
* Dump the error log of the firmware when a firmware panic occurs. Although
|
|
* we can't debug the firmware because it is neither open source nor free, it
|
|
* can help us to identify certain classes of problems.
|
|
*/
|
|
void
|
|
iwn_fatal_intr(struct iwn_softc *sc)
|
|
{
|
|
const struct iwn_hal *hal = sc->sc_hal;
|
|
struct iwn_fw_dump dump;
|
|
int i;
|
|
|
|
IWN_LOCK_ASSERT(sc);
|
|
|
|
/* Force a complete recalibration on next init. */
|
|
sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
|
|
|
|
/* Check that the error log address is valid. */
|
|
if (sc->errptr < IWN_FW_DATA_BASE ||
|
|
sc->errptr + sizeof (dump) >
|
|
IWN_FW_DATA_BASE + hal->fw_data_maxsz) {
|
|
printf("%s: bad firmware error log address 0x%08x\n",
|
|
__func__, sc->errptr);
|
|
return;
|
|
}
|
|
if (iwn_nic_lock(sc) != 0) {
|
|
printf("%s: could not read firmware error log\n",
|
|
__func__);
|
|
return;
|
|
}
|
|
/* Read firmware error log from SRAM. */
|
|
iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
|
|
sizeof (dump) / sizeof (uint32_t));
|
|
iwn_nic_unlock(sc);
|
|
|
|
if (dump.valid == 0) {
|
|
printf("%s: firmware error log is empty\n",
|
|
__func__);
|
|
return;
|
|
}
|
|
printf("firmware error log:\n");
|
|
printf(" error type = \"%s\" (0x%08X)\n",
|
|
(dump.id < nitems(iwn_fw_errmsg)) ?
|
|
iwn_fw_errmsg[dump.id] : "UNKNOWN",
|
|
dump.id);
|
|
printf(" program counter = 0x%08X\n", dump.pc);
|
|
printf(" source line = 0x%08X\n", dump.src_line);
|
|
printf(" error data = 0x%08X%08X\n",
|
|
dump.error_data[0], dump.error_data[1]);
|
|
printf(" branch link = 0x%08X%08X\n",
|
|
dump.branch_link[0], dump.branch_link[1]);
|
|
printf(" interrupt link = 0x%08X%08X\n",
|
|
dump.interrupt_link[0], dump.interrupt_link[1]);
|
|
printf(" time = %u\n", dump.time[0]);
|
|
|
|
/* Dump driver status (TX and RX rings) while we're here. */
|
|
printf("driver status:\n");
|
|
for (i = 0; i < hal->ntxqs; i++) {
|
|
struct iwn_tx_ring *ring = &sc->txq[i];
|
|
printf(" tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
|
|
i, ring->qid, ring->cur, ring->queued);
|
|
}
|
|
printf(" rx ring: cur=%d\n", sc->rxq.cur);
|
|
}
|
|
|
|
void
|
|
iwn_intr(void *arg)
|
|
{
|
|
struct iwn_softc *sc = arg;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
uint32_t r1, r2, tmp;
|
|
|
|
IWN_LOCK(sc);
|
|
|
|
/* Disable interrupts. */
|
|
IWN_WRITE(sc, IWN_INT_MASK, 0);
|
|
|
|
/* Read interrupts from ICT (fast) or from registers (slow). */
|
|
if (sc->sc_flags & IWN_FLAG_USE_ICT) {
|
|
tmp = 0;
|
|
while (sc->ict[sc->ict_cur] != 0) {
|
|
tmp |= sc->ict[sc->ict_cur];
|
|
sc->ict[sc->ict_cur] = 0; /* Acknowledge. */
|
|
sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
|
|
}
|
|
tmp = le32toh(tmp);
|
|
if (tmp == 0xffffffff)
|
|
tmp = 0; /* Shouldn't happen. */
|
|
r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
|
|
r2 = 0; /* Unused. */
|
|
} else {
|
|
r1 = IWN_READ(sc, IWN_INT);
|
|
if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
|
|
return; /* Hardware gone! */
|
|
r2 = IWN_READ(sc, IWN_FH_INT);
|
|
}
|
|
|
|
DPRINTF(sc, IWN_DEBUG_INTR, "interrupt reg1=%x reg2=%x\n", r1, r2);
|
|
|
|
if (r1 == 0 && r2 == 0)
|
|
goto done; /* Interrupt not for us. */
|
|
|
|
/* Acknowledge interrupts. */
|
|
IWN_WRITE(sc, IWN_INT, r1);
|
|
if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
|
|
IWN_WRITE(sc, IWN_FH_INT, r2);
|
|
|
|
if (r1 & IWN_INT_RF_TOGGLED) {
|
|
iwn_rftoggle_intr(sc);
|
|
goto done;
|
|
}
|
|
if (r1 & IWN_INT_CT_REACHED) {
|
|
device_printf(sc->sc_dev, "%s: critical temperature reached!\n",
|
|
__func__);
|
|
}
|
|
if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
|
|
iwn_fatal_intr(sc);
|
|
ifp->if_flags &= ~IFF_UP;
|
|
iwn_stop_locked(sc);
|
|
goto done;
|
|
}
|
|
if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
|
|
(r2 & IWN_FH_INT_RX)) {
|
|
if (sc->sc_flags & IWN_FLAG_USE_ICT) {
|
|
if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
|
|
IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
|
|
IWN_WRITE_1(sc, IWN_INT_PERIODIC,
|
|
IWN_INT_PERIODIC_DIS);
|
|
iwn_notif_intr(sc);
|
|
if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
|
|
IWN_WRITE_1(sc, IWN_INT_PERIODIC,
|
|
IWN_INT_PERIODIC_ENA);
|
|
}
|
|
} else
|
|
iwn_notif_intr(sc);
|
|
}
|
|
|
|
if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
|
|
if (sc->sc_flags & IWN_FLAG_USE_ICT)
|
|
IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
|
|
wakeup(sc); /* FH DMA transfer completed. */
|
|
}
|
|
|
|
if (r1 & IWN_INT_ALIVE)
|
|
wakeup(sc); /* Firmware is alive. */
|
|
|
|
if (r1 & IWN_INT_WAKEUP)
|
|
iwn_wakeup_intr(sc);
|
|
|
|
done:
|
|
/* Re-enable interrupts. */
|
|
if (ifp->if_flags & IFF_UP)
|
|
IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
|
|
|
|
IWN_UNLOCK(sc);
|
|
}
|
|
|
|
/*
|
|
* Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
|
|
* 5000 adapters use a slightly different format.)
|
|
*/
|
|
void
|
|
iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
|
|
uint16_t len)
|
|
{
|
|
uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
|
|
|
|
*w = htole16(len + 8);
|
|
bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
|
|
BUS_DMASYNC_PREWRITE);
|
|
if (idx < IWN_SCHED_WINSZ) {
|
|
*(w + IWN_TX_RING_COUNT) = *w;
|
|
bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
|
|
BUS_DMASYNC_PREWRITE);
|
|
}
|
|
}
|
|
|
|
void
|
|
iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
|
|
uint16_t len)
|
|
{
|
|
uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
|
|
|
|
*w = htole16(id << 12 | (len + 8));
|
|
|
|
bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
|
|
BUS_DMASYNC_PREWRITE);
|
|
if (idx < IWN_SCHED_WINSZ) {
|
|
*(w + IWN_TX_RING_COUNT) = *w;
|
|
bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
|
|
BUS_DMASYNC_PREWRITE);
|
|
}
|
|
}
|
|
|
|
void
|
|
iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
|
|
{
|
|
uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
|
|
|
|
*w = (*w & htole16(0xf000)) | htole16(1);
|
|
bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
|
|
BUS_DMASYNC_PREWRITE);
|
|
if (idx < IWN_SCHED_WINSZ) {
|
|
*(w + IWN_TX_RING_COUNT) = *w;
|
|
bus_dmamap_sync(sc->sched_dma.tag, sc->sched_dma.map,
|
|
BUS_DMASYNC_PREWRITE);
|
|
}
|
|
}
|
|
|
|
static uint8_t
|
|
iwn_plcp_signal(int rate) {
|
|
int i;
|
|
|
|
for (i = 0; i < IWN_RIDX_MAX + 1; i++) {
|
|
if (rate == iwn_rates[i].rate)
|
|
return i;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwn_tx_data(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
|
|
struct iwn_tx_ring *ring)
|
|
{
|
|
const struct iwn_hal *hal = sc->sc_hal;
|
|
const struct ieee80211_txparam *tp;
|
|
const struct iwn_rate *rinfo;
|
|
struct ieee80211vap *vap = ni->ni_vap;
|
|
struct ieee80211com *ic = ni->ni_ic;
|
|
struct iwn_node *wn = (void *)ni;
|
|
struct iwn_tx_desc *desc;
|
|
struct iwn_tx_data *data;
|
|
struct iwn_tx_cmd *cmd;
|
|
struct iwn_cmd_data *tx;
|
|
struct ieee80211_frame *wh;
|
|
struct ieee80211_key *k = NULL;
|
|
struct mbuf *mnew;
|
|
bus_dma_segment_t segs[IWN_MAX_SCATTER];
|
|
uint32_t flags;
|
|
u_int hdrlen;
|
|
int totlen, error, pad, nsegs = 0, i, rate;
|
|
uint8_t ridx, type, txant;
|
|
|
|
IWN_LOCK_ASSERT(sc);
|
|
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
hdrlen = ieee80211_anyhdrsize(wh);
|
|
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
|
|
|
|
desc = &ring->desc[ring->cur];
|
|
data = &ring->data[ring->cur];
|
|
|
|
/* Choose a TX rate index. */
|
|
tp = &vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)];
|
|
if (type == IEEE80211_FC0_TYPE_MGT)
|
|
rate = tp->mgmtrate;
|
|
else if (IEEE80211_IS_MULTICAST(wh->i_addr1))
|
|
rate = tp->mcastrate;
|
|
else if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
|
|
rate = tp->ucastrate;
|
|
else {
|
|
(void) ieee80211_amrr_choose(ni, &wn->amn);
|
|
rate = ni->ni_txrate;
|
|
}
|
|
ridx = iwn_plcp_signal(rate);
|
|
rinfo = &iwn_rates[ridx];
|
|
|
|
/* Encrypt the frame if need be. */
|
|
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
|
|
k = ieee80211_crypto_encap(ni, m);
|
|
if (k == NULL) {
|
|
m_freem(m);
|
|
return ENOBUFS;
|
|
}
|
|
/* Packet header may have moved, reset our local pointer. */
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
}
|
|
totlen = m->m_pkthdr.len;
|
|
|
|
if (ieee80211_radiotap_active_vap(vap)) {
|
|
struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
|
|
|
|
tap->wt_flags = 0;
|
|
tap->wt_rate = rinfo->rate;
|
|
if (k != NULL)
|
|
tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
|
|
|
|
ieee80211_radiotap_tx(vap, m);
|
|
}
|
|
|
|
/* Prepare TX firmware command. */
|
|
cmd = &ring->cmd[ring->cur];
|
|
cmd->code = IWN_CMD_TX_DATA;
|
|
cmd->flags = 0;
|
|
cmd->qid = ring->qid;
|
|
cmd->idx = ring->cur;
|
|
|
|
tx = (struct iwn_cmd_data *)cmd->data;
|
|
/* NB: No need to clear tx, all fields are reinitialized here. */
|
|
tx->scratch = 0; /* clear "scratch" area */
|
|
|
|
flags = 0;
|
|
if (!IEEE80211_IS_MULTICAST(wh->i_addr1))
|
|
flags |= IWN_TX_NEED_ACK;
|
|
if ((wh->i_fc[0] &
|
|
(IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
|
|
(IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_BAR))
|
|
flags |= IWN_TX_IMM_BA; /* Cannot happen yet. */
|
|
|
|
if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
|
|
flags |= IWN_TX_MORE_FRAG; /* Cannot happen yet. */
|
|
|
|
/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
|
|
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
|
|
/* NB: Group frames are sent using CCK in 802.11b/g. */
|
|
if (totlen + IEEE80211_CRC_LEN > vap->iv_rtsthreshold) {
|
|
flags |= IWN_TX_NEED_RTS;
|
|
} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
|
|
ridx >= IWN_RIDX_OFDM6) {
|
|
if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
|
|
flags |= IWN_TX_NEED_CTS;
|
|
else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
|
|
flags |= IWN_TX_NEED_RTS;
|
|
}
|
|
if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
|
|
if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
|
|
/* 5000 autoselects RTS/CTS or CTS-to-self. */
|
|
flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
|
|
flags |= IWN_TX_NEED_PROTECTION;
|
|
} else
|
|
flags |= IWN_TX_FULL_TXOP;
|
|
}
|
|
}
|
|
|
|
if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
|
|
type != IEEE80211_FC0_TYPE_DATA)
|
|
tx->id = hal->broadcast_id;
|
|
else
|
|
tx->id = wn->id;
|
|
|
|
if (type == IEEE80211_FC0_TYPE_MGT) {
|
|
uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
|
|
|
|
/* Tell HW to set timestamp in probe responses. */
|
|
if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
|
|
flags |= IWN_TX_INSERT_TSTAMP;
|
|
|
|
if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
|
|
subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
|
|
tx->timeout = htole16(3);
|
|
else
|
|
tx->timeout = htole16(2);
|
|
} else
|
|
tx->timeout = htole16(0);
|
|
|
|
if (hdrlen & 3) {
|
|
/* First segment length must be a multiple of 4. */
|
|
flags |= IWN_TX_NEED_PADDING;
|
|
pad = 4 - (hdrlen & 3);
|
|
} else
|
|
pad = 0;
|
|
|
|
tx->len = htole16(totlen);
|
|
tx->tid = 0;
|
|
tx->rts_ntries = 60;
|
|
tx->data_ntries = 15;
|
|
tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
|
|
tx->plcp = rinfo->plcp;
|
|
tx->rflags = rinfo->flags;
|
|
if (tx->id == hal->broadcast_id) {
|
|
/* Group or management frame. */
|
|
tx->linkq = 0;
|
|
/* XXX Alternate between antenna A and B? */
|
|
txant = IWN_LSB(sc->txchainmask);
|
|
tx->rflags |= IWN_RFLAG_ANT(txant);
|
|
} else {
|
|
tx->linkq = 0;
|
|
flags |= IWN_TX_LINKQ; /* enable MRR */
|
|
}
|
|
|
|
/* Set physical address of "scratch area". */
|
|
tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
|
|
tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
|
|
|
|
/* Copy 802.11 header in TX command. */
|
|
memcpy((uint8_t *)(tx + 1), wh, hdrlen);
|
|
|
|
/* Trim 802.11 header. */
|
|
m_adj(m, hdrlen);
|
|
tx->security = 0;
|
|
tx->flags = htole32(flags);
|
|
|
|
if (m->m_len > 0) {
|
|
error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
|
|
m, segs, &nsegs, BUS_DMA_NOWAIT);
|
|
if (error == EFBIG) {
|
|
/* too many fragments, linearize */
|
|
mnew = m_collapse(m, M_DONTWAIT, IWN_MAX_SCATTER);
|
|
if (mnew == NULL) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: could not defrag mbuf\n", __func__);
|
|
m_freem(m);
|
|
return ENOBUFS;
|
|
}
|
|
m = mnew;
|
|
error = bus_dmamap_load_mbuf_sg(ring->data_dmat,
|
|
data->map, m, segs, &nsegs, BUS_DMA_NOWAIT);
|
|
}
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: bus_dmamap_load_mbuf_sg failed, error %d\n",
|
|
__func__, error);
|
|
m_freem(m);
|
|
return error;
|
|
}
|
|
}
|
|
|
|
data->m = m;
|
|
data->ni = ni;
|
|
|
|
DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
|
|
__func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
|
|
|
|
/* Fill TX descriptor. */
|
|
desc->nsegs = 1 + nsegs;
|
|
/* First DMA segment is used by the TX command. */
|
|
desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
|
|
desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) |
|
|
(4 + sizeof (*tx) + hdrlen + pad) << 4);
|
|
/* Other DMA segments are for data payload. */
|
|
for (i = 1; i <= nsegs; i++) {
|
|
desc->segs[i].addr = htole32(IWN_LOADDR(segs[i - 1].ds_addr));
|
|
desc->segs[i].len = htole16(IWN_HIADDR(segs[i - 1].ds_addr) |
|
|
segs[i - 1].ds_len << 4);
|
|
}
|
|
|
|
bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
|
|
bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
|
|
BUS_DMASYNC_PREWRITE);
|
|
bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
#ifdef notyet
|
|
/* Update TX scheduler. */
|
|
hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
|
|
#endif
|
|
|
|
/* Kick TX ring. */
|
|
ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
|
|
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
|
|
|
|
/* Mark TX ring as full if we reach a certain threshold. */
|
|
if (++ring->queued > IWN_TX_RING_HIMARK)
|
|
sc->qfullmsk |= 1 << ring->qid;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
iwn_tx_data_raw(struct iwn_softc *sc, struct mbuf *m,
|
|
struct ieee80211_node *ni, struct iwn_tx_ring *ring,
|
|
const struct ieee80211_bpf_params *params)
|
|
{
|
|
const struct iwn_hal *hal = sc->sc_hal;
|
|
const struct iwn_rate *rinfo;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211vap *vap = ni->ni_vap;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
struct iwn_tx_cmd *cmd;
|
|
struct iwn_cmd_data *tx;
|
|
struct ieee80211_frame *wh;
|
|
struct iwn_tx_desc *desc;
|
|
struct iwn_tx_data *data;
|
|
struct mbuf *mnew;
|
|
bus_addr_t paddr;
|
|
bus_dma_segment_t segs[IWN_MAX_SCATTER];
|
|
uint32_t flags;
|
|
u_int hdrlen;
|
|
int totlen, error, pad, nsegs = 0, i, rate;
|
|
uint8_t ridx, type, txant;
|
|
|
|
IWN_LOCK_ASSERT(sc);
|
|
|
|
wh = mtod(m, struct ieee80211_frame *);
|
|
hdrlen = ieee80211_anyhdrsize(wh);
|
|
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
|
|
|
|
desc = &ring->desc[ring->cur];
|
|
data = &ring->data[ring->cur];
|
|
|
|
/* Choose a TX rate index. */
|
|
rate = params->ibp_rate0;
|
|
if (!ieee80211_isratevalid(ic->ic_rt, rate)) {
|
|
/* XXX fall back to mcast/mgmt rate? */
|
|
m_freem(m);
|
|
return EINVAL;
|
|
}
|
|
ridx = iwn_plcp_signal(rate);
|
|
rinfo = &iwn_rates[ridx];
|
|
|
|
totlen = m->m_pkthdr.len;
|
|
|
|
/* Prepare TX firmware command. */
|
|
cmd = &ring->cmd[ring->cur];
|
|
cmd->code = IWN_CMD_TX_DATA;
|
|
cmd->flags = 0;
|
|
cmd->qid = ring->qid;
|
|
cmd->idx = ring->cur;
|
|
|
|
tx = (struct iwn_cmd_data *)cmd->data;
|
|
/* NB: No need to clear tx, all fields are reinitialized here. */
|
|
tx->scratch = 0; /* clear "scratch" area */
|
|
|
|
flags = 0;
|
|
if ((params->ibp_flags & IEEE80211_BPF_NOACK) == 0)
|
|
flags |= IWN_TX_NEED_ACK;
|
|
if (params->ibp_flags & IEEE80211_BPF_RTS) {
|
|
if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
|
|
/* 5000 autoselects RTS/CTS or CTS-to-self. */
|
|
flags &= ~IWN_TX_NEED_RTS;
|
|
flags |= IWN_TX_NEED_PROTECTION;
|
|
} else
|
|
flags |= IWN_TX_NEED_RTS | IWN_TX_FULL_TXOP;
|
|
}
|
|
if (params->ibp_flags & IEEE80211_BPF_CTS) {
|
|
if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
|
|
/* 5000 autoselects RTS/CTS or CTS-to-self. */
|
|
flags &= ~IWN_TX_NEED_CTS;
|
|
flags |= IWN_TX_NEED_PROTECTION;
|
|
} else
|
|
flags |= IWN_TX_NEED_CTS | IWN_TX_FULL_TXOP;
|
|
}
|
|
if (type == IEEE80211_FC0_TYPE_MGT) {
|
|
uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
|
|
|
|
if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
|
|
flags |= IWN_TX_INSERT_TSTAMP;
|
|
|
|
if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
|
|
subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
|
|
tx->timeout = htole16(3);
|
|
else
|
|
tx->timeout = htole16(2);
|
|
} else
|
|
tx->timeout = htole16(0);
|
|
|
|
if (hdrlen & 3) {
|
|
/* First segment length must be a multiple of 4. */
|
|
flags |= IWN_TX_NEED_PADDING;
|
|
pad = 4 - (hdrlen & 3);
|
|
} else
|
|
pad = 0;
|
|
|
|
if (ieee80211_radiotap_active_vap(vap)) {
|
|
struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
|
|
|
|
tap->wt_flags = 0;
|
|
tap->wt_rate = rate;
|
|
|
|
ieee80211_radiotap_tx(vap, m);
|
|
}
|
|
|
|
tx->len = htole16(totlen);
|
|
tx->tid = 0;
|
|
tx->id = hal->broadcast_id;
|
|
tx->rts_ntries = params->ibp_try1;
|
|
tx->data_ntries = params->ibp_try0;
|
|
tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
|
|
tx->plcp = rinfo->plcp;
|
|
tx->rflags = rinfo->flags;
|
|
/* Group or management frame. */
|
|
tx->linkq = 0;
|
|
txant = IWN_LSB(sc->txchainmask);
|
|
tx->rflags |= IWN_RFLAG_ANT(txant);
|
|
/* Set physical address of "scratch area". */
|
|
paddr = ring->cmd_dma.paddr + ring->cur * sizeof (struct iwn_tx_cmd);
|
|
tx->loaddr = htole32(IWN_LOADDR(paddr));
|
|
tx->hiaddr = IWN_HIADDR(paddr);
|
|
|
|
/* Copy 802.11 header in TX command. */
|
|
memcpy((uint8_t *)(tx + 1), wh, hdrlen);
|
|
|
|
/* Trim 802.11 header. */
|
|
m_adj(m, hdrlen);
|
|
tx->security = 0;
|
|
tx->flags = htole32(flags);
|
|
|
|
if (m->m_len > 0) {
|
|
error = bus_dmamap_load_mbuf_sg(ring->data_dmat, data->map,
|
|
m, segs, &nsegs, BUS_DMA_NOWAIT);
|
|
if (error == EFBIG) {
|
|
/* Too many fragments, linearize. */
|
|
mnew = m_collapse(m, M_DONTWAIT, IWN_MAX_SCATTER);
|
|
if (mnew == NULL) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: could not defrag mbuf\n", __func__);
|
|
m_freem(m);
|
|
return ENOBUFS;
|
|
}
|
|
m = mnew;
|
|
error = bus_dmamap_load_mbuf_sg(ring->data_dmat,
|
|
data->map, m, segs, &nsegs, BUS_DMA_NOWAIT);
|
|
}
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: bus_dmamap_load_mbuf_sg failed, error %d\n",
|
|
__func__, error);
|
|
m_freem(m);
|
|
return error;
|
|
}
|
|
}
|
|
|
|
data->m = m;
|
|
data->ni = ni;
|
|
|
|
DPRINTF(sc, IWN_DEBUG_XMIT, "%s: qid %d idx %d len %d nsegs %d\n",
|
|
__func__, ring->qid, ring->cur, m->m_pkthdr.len, nsegs);
|
|
|
|
/* Fill TX descriptor. */
|
|
desc->nsegs = 1 + nsegs;
|
|
/* First DMA segment is used by the TX command. */
|
|
desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
|
|
desc->segs[0].len = htole16(IWN_HIADDR(data->cmd_paddr) |
|
|
(4 + sizeof (*tx) + hdrlen + pad) << 4);
|
|
/* Other DMA segments are for data payload. */
|
|
for (i = 1; i <= nsegs; i++) {
|
|
desc->segs[i].addr = htole32(IWN_LOADDR(segs[i - 1].ds_addr));
|
|
desc->segs[i].len = htole16(IWN_HIADDR(segs[i - 1].ds_addr) |
|
|
segs[i - 1].ds_len << 4);
|
|
}
|
|
|
|
bus_dmamap_sync(ring->data_dmat, data->map, BUS_DMASYNC_PREWRITE);
|
|
bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
|
|
BUS_DMASYNC_PREWRITE);
|
|
bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
#ifdef notyet
|
|
/* Update TX scheduler. */
|
|
hal->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
|
|
#endif
|
|
|
|
/* Kick TX ring. */
|
|
ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
|
|
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
|
|
|
|
/* Mark TX ring as full if we reach a certain threshold. */
|
|
if (++ring->queued > IWN_TX_RING_HIMARK)
|
|
sc->qfullmsk |= 1 << ring->qid;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
iwn_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
|
|
const struct ieee80211_bpf_params *params)
|
|
{
|
|
struct ieee80211com *ic = ni->ni_ic;
|
|
struct ifnet *ifp = ic->ic_ifp;
|
|
struct iwn_softc *sc = ifp->if_softc;
|
|
struct iwn_tx_ring *txq;
|
|
int error = 0;
|
|
|
|
if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
|
|
ieee80211_free_node(ni);
|
|
m_freem(m);
|
|
return ENETDOWN;
|
|
}
|
|
|
|
IWN_LOCK(sc);
|
|
if (params == NULL)
|
|
txq = &sc->txq[M_WME_GETAC(m)];
|
|
else
|
|
txq = &sc->txq[params->ibp_pri & 3];
|
|
|
|
if (params == NULL) {
|
|
/*
|
|
* Legacy path; interpret frame contents to decide
|
|
* precisely how to send the frame.
|
|
*/
|
|
error = iwn_tx_data(sc, m, ni, txq);
|
|
} else {
|
|
/*
|
|
* Caller supplied explicit parameters to use in
|
|
* sending the frame.
|
|
*/
|
|
error = iwn_tx_data_raw(sc, m, ni, txq, params);
|
|
}
|
|
if (error != 0) {
|
|
/* NB: m is reclaimed on tx failure */
|
|
ieee80211_free_node(ni);
|
|
ifp->if_oerrors++;
|
|
}
|
|
IWN_UNLOCK(sc);
|
|
return error;
|
|
}
|
|
|
|
void
|
|
iwn_start(struct ifnet *ifp)
|
|
{
|
|
struct iwn_softc *sc = ifp->if_softc;
|
|
|
|
IWN_LOCK(sc);
|
|
iwn_start_locked(ifp);
|
|
IWN_UNLOCK(sc);
|
|
}
|
|
|
|
void
|
|
iwn_start_locked(struct ifnet *ifp)
|
|
{
|
|
struct iwn_softc *sc = ifp->if_softc;
|
|
struct ieee80211_node *ni;
|
|
struct iwn_tx_ring *txq;
|
|
struct mbuf *m;
|
|
int pri;
|
|
|
|
IWN_LOCK_ASSERT(sc);
|
|
|
|
for (;;) {
|
|
if (sc->qfullmsk != 0) {
|
|
ifp->if_drv_flags |= IFF_DRV_OACTIVE;
|
|
break;
|
|
}
|
|
IFQ_DRV_DEQUEUE(&ifp->if_snd, m);
|
|
if (m == NULL)
|
|
break;
|
|
ni = (struct ieee80211_node *)m->m_pkthdr.rcvif;
|
|
pri = M_WME_GETAC(m);
|
|
txq = &sc->txq[pri];
|
|
if (iwn_tx_data(sc, m, ni, txq) != 0) {
|
|
ifp->if_oerrors++;
|
|
ieee80211_free_node(ni);
|
|
break;
|
|
}
|
|
sc->sc_tx_timer = 5;
|
|
}
|
|
}
|
|
|
|
static void
|
|
iwn_watchdog(struct iwn_softc *sc)
|
|
{
|
|
if (sc->sc_tx_timer > 0 && --sc->sc_tx_timer == 0) {
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
|
|
if_printf(ifp, "device timeout\n");
|
|
ieee80211_runtask(ic, &sc->sc_reinit_task);
|
|
}
|
|
}
|
|
|
|
int
|
|
iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
|
|
{
|
|
struct iwn_softc *sc = ifp->if_softc;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
|
|
struct ifreq *ifr = (struct ifreq *) data;
|
|
int error = 0, startall = 0, stop = 0;
|
|
|
|
switch (cmd) {
|
|
case SIOCSIFFLAGS:
|
|
IWN_LOCK(sc);
|
|
if (ifp->if_flags & IFF_UP) {
|
|
if (!(ifp->if_drv_flags & IFF_DRV_RUNNING)) {
|
|
iwn_init_locked(sc);
|
|
if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)
|
|
startall = 1;
|
|
else
|
|
stop = 1;
|
|
}
|
|
} else {
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
iwn_stop_locked(sc);
|
|
}
|
|
IWN_UNLOCK(sc);
|
|
if (startall)
|
|
ieee80211_start_all(ic);
|
|
else if (vap != NULL && stop)
|
|
ieee80211_stop(vap);
|
|
break;
|
|
case SIOCGIFMEDIA:
|
|
error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
|
|
break;
|
|
case SIOCGIFADDR:
|
|
error = ether_ioctl(ifp, cmd, data);
|
|
break;
|
|
default:
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Send a command to the firmware.
|
|
*/
|
|
int
|
|
iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
|
|
{
|
|
struct iwn_tx_ring *ring = &sc->txq[4];
|
|
struct iwn_tx_desc *desc;
|
|
struct iwn_tx_data *data;
|
|
struct iwn_tx_cmd *cmd;
|
|
struct mbuf *m;
|
|
bus_addr_t paddr;
|
|
int totlen, error;
|
|
|
|
IWN_LOCK_ASSERT(sc);
|
|
|
|
desc = &ring->desc[ring->cur];
|
|
data = &ring->data[ring->cur];
|
|
totlen = 4 + size;
|
|
|
|
if (size > sizeof cmd->data) {
|
|
/* Command is too large to fit in a descriptor. */
|
|
if (totlen > MCLBYTES)
|
|
return EINVAL;
|
|
m = m_getjcl(M_DONTWAIT, MT_DATA, M_PKTHDR, MJUMPAGESIZE);
|
|
if (m == NULL)
|
|
return ENOMEM;
|
|
cmd = mtod(m, struct iwn_tx_cmd *);
|
|
error = bus_dmamap_load(ring->data_dmat, data->map, cmd,
|
|
totlen, iwn_dma_map_addr, &paddr, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
m_freem(m);
|
|
return error;
|
|
}
|
|
data->m = m;
|
|
} else {
|
|
cmd = &ring->cmd[ring->cur];
|
|
paddr = data->cmd_paddr;
|
|
}
|
|
|
|
cmd->code = code;
|
|
cmd->flags = 0;
|
|
cmd->qid = ring->qid;
|
|
cmd->idx = ring->cur;
|
|
memcpy(cmd->data, buf, size);
|
|
|
|
desc->nsegs = 1;
|
|
desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
|
|
desc->segs[0].len = htole16(IWN_HIADDR(paddr) | totlen << 4);
|
|
|
|
DPRINTF(sc, IWN_DEBUG_CMD, "%s: %s (0x%x) flags %d qid %d idx %d\n",
|
|
__func__, iwn_intr_str(cmd->code), cmd->code,
|
|
cmd->flags, cmd->qid, cmd->idx);
|
|
|
|
if (size > sizeof cmd->data) {
|
|
bus_dmamap_sync(ring->data_dmat, data->map,
|
|
BUS_DMASYNC_PREWRITE);
|
|
} else {
|
|
bus_dmamap_sync(ring->data_dmat, ring->cmd_dma.map,
|
|
BUS_DMASYNC_PREWRITE);
|
|
}
|
|
bus_dmamap_sync(ring->desc_dma.tag, ring->desc_dma.map,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
#ifdef notyet
|
|
/* Update TX scheduler. */
|
|
sc->sc_hal->update_sched(sc, ring->qid, ring->cur, 0, 0);
|
|
#endif
|
|
|
|
/* Kick command ring. */
|
|
ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
|
|
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
|
|
|
|
return async ? 0 : msleep(desc, &sc->sc_mtx, PCATCH, "iwncmd", hz);
|
|
}
|
|
|
|
int
|
|
iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
|
|
{
|
|
struct iwn4965_node_info hnode;
|
|
caddr_t src, dst;
|
|
|
|
/*
|
|
* We use the node structure for 5000 Series internally (it is
|
|
* a superset of the one for 4965AGN). We thus copy the common
|
|
* fields before sending the command.
|
|
*/
|
|
src = (caddr_t)node;
|
|
dst = (caddr_t)&hnode;
|
|
memcpy(dst, src, 48);
|
|
/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
|
|
memcpy(dst + 48, src + 72, 20);
|
|
return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
|
|
}
|
|
|
|
int
|
|
iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
|
|
{
|
|
/* Direct mapping. */
|
|
return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
|
|
}
|
|
|
|
#if 0 /* HT */
|
|
static const uint8_t iwn_ridx_to_plcp[] = {
|
|
10, 20, 55, 110, /* CCK */
|
|
0xd, 0xf, 0x5, 0x7, 0x9, 0xb, 0x1, 0x3, 0x3 /* OFDM R1-R4 */
|
|
};
|
|
static const uint8_t iwn_siso_mcs_to_plcp[] = {
|
|
0, 0, 0, 0, /* CCK */
|
|
0, 0, 1, 2, 3, 4, 5, 6, 7 /* HT */
|
|
};
|
|
static const uint8_t iwn_mimo_mcs_to_plcp[] = {
|
|
0, 0, 0, 0, /* CCK */
|
|
8, 8, 9, 10, 11, 12, 13, 14, 15 /* HT */
|
|
};
|
|
#endif
|
|
static const uint8_t iwn_prev_ridx[] = {
|
|
/* NB: allow fallback from CCK11 to OFDM9 and from OFDM6 to CCK5 */
|
|
0, 0, 1, 5, /* CCK */
|
|
2, 4, 3, 6, 7, 8, 9, 10, 10 /* OFDM */
|
|
};
|
|
|
|
/*
|
|
* Configure hardware link parameters for the specified
|
|
* node operating on the specified channel.
|
|
*/
|
|
int
|
|
iwn_set_link_quality(struct iwn_softc *sc, uint8_t id, int async)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
struct iwn_cmd_link_quality linkq;
|
|
const struct iwn_rate *rinfo;
|
|
int i;
|
|
uint8_t txant, ridx;
|
|
|
|
/* Use the first valid TX antenna. */
|
|
txant = IWN_LSB(sc->txchainmask);
|
|
|
|
memset(&linkq, 0, sizeof linkq);
|
|
linkq.id = id;
|
|
linkq.antmsk_1stream = txant;
|
|
linkq.antmsk_2stream = IWN_ANT_AB;
|
|
linkq.ampdu_max = 31;
|
|
linkq.ampdu_threshold = 3;
|
|
linkq.ampdu_limit = htole16(4000); /* 4ms */
|
|
|
|
#if 0 /* HT */
|
|
if (IEEE80211_IS_CHAN_HT(c))
|
|
linkq.mimo = 1;
|
|
#endif
|
|
|
|
if (id == IWN_ID_BSS)
|
|
ridx = IWN_RIDX_OFDM54;
|
|
else if (IEEE80211_IS_CHAN_A(ic->ic_curchan))
|
|
ridx = IWN_RIDX_OFDM6;
|
|
else
|
|
ridx = IWN_RIDX_CCK1;
|
|
|
|
for (i = 0; i < IWN_MAX_TX_RETRIES; i++) {
|
|
rinfo = &iwn_rates[ridx];
|
|
#if 0 /* HT */
|
|
if (IEEE80211_IS_CHAN_HT40(c)) {
|
|
linkq.retry[i].plcp = iwn_mimo_mcs_to_plcp[ridx]
|
|
| IWN_RIDX_MCS;
|
|
linkq.retry[i].rflags = IWN_RFLAG_HT
|
|
| IWN_RFLAG_HT40;
|
|
/* XXX shortGI */
|
|
} else if (IEEE80211_IS_CHAN_HT(c)) {
|
|
linkq.retry[i].plcp = iwn_siso_mcs_to_plcp[ridx]
|
|
| IWN_RIDX_MCS;
|
|
linkq.retry[i].rflags = IWN_RFLAG_HT;
|
|
/* XXX shortGI */
|
|
} else
|
|
#endif
|
|
{
|
|
linkq.retry[i].plcp = rinfo->plcp;
|
|
linkq.retry[i].rflags = rinfo->flags;
|
|
}
|
|
linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
|
|
ridx = iwn_prev_ridx[ridx];
|
|
}
|
|
#ifdef IWN_DEBUG
|
|
if (sc->sc_debug & IWN_DEBUG_STATE) {
|
|
printf("%s: set link quality for node %d, mimo %d ssmask %d\n",
|
|
__func__, id, linkq.mimo, linkq.antmsk_1stream);
|
|
printf("%s:", __func__);
|
|
for (i = 0; i < IWN_MAX_TX_RETRIES; i++)
|
|
printf(" %d:%x", linkq.retry[i].plcp,
|
|
linkq.retry[i].rflags);
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
|
|
}
|
|
|
|
/*
|
|
* Broadcast node is used to send group-addressed and management frames.
|
|
*/
|
|
int
|
|
iwn_add_broadcast_node(struct iwn_softc *sc, int async)
|
|
{
|
|
const struct iwn_hal *hal = sc->sc_hal;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct iwn_node_info node;
|
|
int error;
|
|
|
|
memset(&node, 0, sizeof node);
|
|
IEEE80211_ADDR_COPY(node.macaddr, ifp->if_broadcastaddr);
|
|
node.id = hal->broadcast_id;
|
|
DPRINTF(sc, IWN_DEBUG_RESET, "%s: adding broadcast node\n", __func__);
|
|
error = hal->add_node(sc, &node, async);
|
|
if (error != 0)
|
|
return error;
|
|
|
|
error = iwn_set_link_quality(sc, hal->broadcast_id, async);
|
|
return error;
|
|
}
|
|
|
|
int
|
|
iwn_wme_update(struct ieee80211com *ic)
|
|
{
|
|
#define IWN_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */
|
|
#define IWN_TXOP_TO_US(v) (v<<5)
|
|
struct iwn_softc *sc = ic->ic_ifp->if_softc;
|
|
struct iwn_edca_params cmd;
|
|
int i;
|
|
|
|
memset(&cmd, 0, sizeof cmd);
|
|
cmd.flags = htole32(IWN_EDCA_UPDATE);
|
|
for (i = 0; i < WME_NUM_AC; i++) {
|
|
const struct wmeParams *wmep =
|
|
&ic->ic_wme.wme_chanParams.cap_wmeParams[i];
|
|
cmd.ac[i].aifsn = wmep->wmep_aifsn;
|
|
cmd.ac[i].cwmin = htole16(IWN_EXP2(wmep->wmep_logcwmin));
|
|
cmd.ac[i].cwmax = htole16(IWN_EXP2(wmep->wmep_logcwmax));
|
|
cmd.ac[i].txoplimit =
|
|
htole16(IWN_TXOP_TO_US(wmep->wmep_txopLimit));
|
|
}
|
|
IEEE80211_UNLOCK(ic);
|
|
IWN_LOCK(sc);
|
|
(void) iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1 /*async*/);
|
|
IWN_UNLOCK(sc);
|
|
IEEE80211_LOCK(ic);
|
|
return 0;
|
|
#undef IWN_TXOP_TO_US
|
|
#undef IWN_EXP2
|
|
}
|
|
|
|
static void
|
|
iwn_update_mcast(struct ifnet *ifp)
|
|
{
|
|
/* Ignore */
|
|
}
|
|
|
|
void
|
|
iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
|
|
{
|
|
struct iwn_cmd_led led;
|
|
|
|
/* Clear microcode LED ownership. */
|
|
IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
|
|
|
|
led.which = which;
|
|
led.unit = htole32(10000); /* on/off in unit of 100ms */
|
|
led.off = off;
|
|
led.on = on;
|
|
(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
|
|
}
|
|
|
|
/*
|
|
* Set the critical temperature at which the firmware will stop the radio
|
|
* and notify us.
|
|
*/
|
|
int
|
|
iwn_set_critical_temp(struct iwn_softc *sc)
|
|
{
|
|
struct iwn_critical_temp crit;
|
|
int32_t temp;
|
|
|
|
IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
|
|
|
|
if (sc->hw_type == IWN_HW_REV_TYPE_5150)
|
|
temp = (IWN_CTOK(110) - sc->temp_off) * -5;
|
|
else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
|
|
temp = IWN_CTOK(110);
|
|
else
|
|
temp = 110;
|
|
memset(&crit, 0, sizeof crit);
|
|
crit.tempR = htole32(temp);
|
|
DPRINTF(sc, IWN_DEBUG_RESET, "setting critical temp to %d\n",
|
|
temp);
|
|
return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
|
|
}
|
|
|
|
int
|
|
iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
|
|
{
|
|
struct iwn_cmd_timing cmd;
|
|
uint64_t val, mod;
|
|
|
|
memset(&cmd, 0, sizeof cmd);
|
|
memcpy(&cmd.tstamp, ni->ni_tstamp.data, sizeof (uint64_t));
|
|
cmd.bintval = htole16(ni->ni_intval);
|
|
cmd.lintval = htole16(10);
|
|
|
|
/* Compute remaining time until next beacon. */
|
|
val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
|
|
mod = le64toh(cmd.tstamp) % val;
|
|
cmd.binitval = htole32((uint32_t)(val - mod));
|
|
|
|
DPRINTF(sc, IWN_DEBUG_RESET, "timing bintval=%u tstamp=%ju, init=%u\n",
|
|
ni->ni_intval, le64toh(cmd.tstamp), (uint32_t)(val - mod));
|
|
|
|
return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
|
|
}
|
|
|
|
void
|
|
iwn4965_power_calibration(struct iwn_softc *sc, int temp)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
|
|
/* Adjust TX power if need be (delta >= 3 degC.) */
|
|
DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: temperature %d->%d\n",
|
|
__func__, sc->temp, temp);
|
|
if (abs(temp - sc->temp) >= 3) {
|
|
/* Record temperature of last calibration. */
|
|
sc->temp = temp;
|
|
(void)iwn4965_set_txpower(sc, ic->ic_bsschan, 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set TX power for current channel (each rate has its own power settings).
|
|
* This function takes into account the regulatory information from EEPROM,
|
|
* the current temperature and the current voltage.
|
|
*/
|
|
int
|
|
iwn4965_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
|
|
int async)
|
|
{
|
|
/* Fixed-point arithmetic division using a n-bit fractional part. */
|
|
#define fdivround(a, b, n) \
|
|
((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
|
|
/* Linear interpolation. */
|
|
#define interpolate(x, x1, y1, x2, y2, n) \
|
|
((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
|
|
|
|
static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
struct iwn_ucode_info *uc = &sc->ucode_info;
|
|
struct iwn4965_cmd_txpower cmd;
|
|
struct iwn4965_eeprom_chan_samples *chans;
|
|
int32_t vdiff, tdiff;
|
|
int i, c, grp, maxpwr;
|
|
const uint8_t *rf_gain, *dsp_gain;
|
|
uint8_t chan;
|
|
|
|
/* Retrieve channel number. */
|
|
chan = ieee80211_chan2ieee(ic, ch);
|
|
DPRINTF(sc, IWN_DEBUG_RESET, "setting TX power for channel %d\n",
|
|
chan);
|
|
|
|
memset(&cmd, 0, sizeof cmd);
|
|
cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
|
|
cmd.chan = chan;
|
|
|
|
if (IEEE80211_IS_CHAN_5GHZ(ch)) {
|
|
maxpwr = sc->maxpwr5GHz;
|
|
rf_gain = iwn4965_rf_gain_5ghz;
|
|
dsp_gain = iwn4965_dsp_gain_5ghz;
|
|
} else {
|
|
maxpwr = sc->maxpwr2GHz;
|
|
rf_gain = iwn4965_rf_gain_2ghz;
|
|
dsp_gain = iwn4965_dsp_gain_2ghz;
|
|
}
|
|
|
|
/* Compute voltage compensation. */
|
|
vdiff = ((int32_t)le32toh(uc->volt) - sc->eeprom_voltage) / 7;
|
|
if (vdiff > 0)
|
|
vdiff *= 2;
|
|
if (abs(vdiff) > 2)
|
|
vdiff = 0;
|
|
DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
|
|
"%s: voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
|
|
__func__, vdiff, le32toh(uc->volt), sc->eeprom_voltage);
|
|
|
|
/* Get channel attenuation group. */
|
|
if (chan <= 20) /* 1-20 */
|
|
grp = 4;
|
|
else if (chan <= 43) /* 34-43 */
|
|
grp = 0;
|
|
else if (chan <= 70) /* 44-70 */
|
|
grp = 1;
|
|
else if (chan <= 124) /* 71-124 */
|
|
grp = 2;
|
|
else /* 125-200 */
|
|
grp = 3;
|
|
DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
|
|
"%s: chan %d, attenuation group=%d\n", __func__, chan, grp);
|
|
|
|
/* Get channel sub-band. */
|
|
for (i = 0; i < IWN_NBANDS; i++)
|
|
if (sc->bands[i].lo != 0 &&
|
|
sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
|
|
break;
|
|
if (i == IWN_NBANDS) /* Can't happen in real-life. */
|
|
return EINVAL;
|
|
chans = sc->bands[i].chans;
|
|
DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
|
|
"%s: chan %d sub-band=%d\n", __func__, chan, i);
|
|
|
|
for (c = 0; c < 2; c++) {
|
|
uint8_t power, gain, temp;
|
|
int maxchpwr, pwr, ridx, idx;
|
|
|
|
power = interpolate(chan,
|
|
chans[0].num, chans[0].samples[c][1].power,
|
|
chans[1].num, chans[1].samples[c][1].power, 1);
|
|
gain = interpolate(chan,
|
|
chans[0].num, chans[0].samples[c][1].gain,
|
|
chans[1].num, chans[1].samples[c][1].gain, 1);
|
|
temp = interpolate(chan,
|
|
chans[0].num, chans[0].samples[c][1].temp,
|
|
chans[1].num, chans[1].samples[c][1].temp, 1);
|
|
DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
|
|
"%s: Tx chain %d: power=%d gain=%d temp=%d\n",
|
|
__func__, c, power, gain, temp);
|
|
|
|
/* Compute temperature compensation. */
|
|
tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
|
|
DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
|
|
"%s: temperature compensation=%d (current=%d, EEPROM=%d)\n",
|
|
__func__, tdiff, sc->temp, temp);
|
|
|
|
for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
|
|
/* Convert dBm to half-dBm. */
|
|
maxchpwr = sc->maxpwr[chan] * 2;
|
|
if ((ridx / 8) & 1)
|
|
maxchpwr -= 6; /* MIMO 2T: -3dB */
|
|
|
|
pwr = maxpwr;
|
|
|
|
/* Adjust TX power based on rate. */
|
|
if ((ridx % 8) == 5)
|
|
pwr -= 15; /* OFDM48: -7.5dB */
|
|
else if ((ridx % 8) == 6)
|
|
pwr -= 17; /* OFDM54: -8.5dB */
|
|
else if ((ridx % 8) == 7)
|
|
pwr -= 20; /* OFDM60: -10dB */
|
|
else
|
|
pwr -= 10; /* Others: -5dB */
|
|
|
|
/* Do not exceed channel max TX power. */
|
|
if (pwr > maxchpwr)
|
|
pwr = maxchpwr;
|
|
|
|
idx = gain - (pwr - power) - tdiff - vdiff;
|
|
if ((ridx / 8) & 1) /* MIMO */
|
|
idx += (int32_t)le32toh(uc->atten[grp][c]);
|
|
|
|
if (cmd.band == 0)
|
|
idx += 9; /* 5GHz */
|
|
if (ridx == IWN_RIDX_MAX)
|
|
idx += 5; /* CCK */
|
|
|
|
/* Make sure idx stays in a valid range. */
|
|
if (idx < 0)
|
|
idx = 0;
|
|
else if (idx > IWN4965_MAX_PWR_INDEX)
|
|
idx = IWN4965_MAX_PWR_INDEX;
|
|
|
|
DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
|
|
"%s: Tx chain %d, rate idx %d: power=%d\n",
|
|
__func__, c, ridx, idx);
|
|
cmd.power[ridx].rf_gain[c] = rf_gain[idx];
|
|
cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
|
|
}
|
|
}
|
|
|
|
DPRINTF(sc, IWN_DEBUG_CALIBRATE | IWN_DEBUG_TXPOW,
|
|
"%s: set tx power for chan %d\n", __func__, chan);
|
|
return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
|
|
|
|
#undef interpolate
|
|
#undef fdivround
|
|
}
|
|
|
|
int
|
|
iwn5000_set_txpower(struct iwn_softc *sc, struct ieee80211_channel *ch,
|
|
int async)
|
|
{
|
|
struct iwn5000_cmd_txpower cmd;
|
|
|
|
/*
|
|
* TX power calibration is handled automatically by the firmware
|
|
* for 5000 Series.
|
|
*/
|
|
memset(&cmd, 0, sizeof cmd);
|
|
cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM; /* 16 dBm */
|
|
cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
|
|
cmd.srv_limit = IWN5000_TXPOWER_AUTO;
|
|
DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: setting TX power\n", __func__);
|
|
return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
|
|
}
|
|
|
|
/*
|
|
* Retrieve the maximum RSSI (in dBm) among receivers.
|
|
*/
|
|
int
|
|
iwn4965_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
|
|
{
|
|
struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
|
|
uint8_t mask, agc;
|
|
int rssi;
|
|
|
|
mask = (le16toh(phy->antenna) >> 4) & IWN_ANT_ABC;
|
|
agc = (le16toh(phy->agc) >> 7) & 0x7f;
|
|
|
|
rssi = 0;
|
|
#if 0
|
|
if (mask & IWN_ANT_A) /* Ant A */
|
|
rssi = max(rssi, phy->rssi[0]);
|
|
if (mask & IWN_ATH_B) /* Ant B */
|
|
rssi = max(rssi, phy->rssi[2]);
|
|
if (mask & IWN_ANT_C) /* Ant C */
|
|
rssi = max(rssi, phy->rssi[4]);
|
|
#else
|
|
rssi = max(rssi, phy->rssi[0]);
|
|
rssi = max(rssi, phy->rssi[2]);
|
|
rssi = max(rssi, phy->rssi[4]);
|
|
#endif
|
|
|
|
DPRINTF(sc, IWN_DEBUG_RECV, "%s: agc %d mask 0x%x rssi %d %d %d "
|
|
"result %d\n", __func__, agc, mask,
|
|
phy->rssi[0], phy->rssi[2], phy->rssi[4],
|
|
rssi - agc - IWN_RSSI_TO_DBM);
|
|
return rssi - agc - IWN_RSSI_TO_DBM;
|
|
}
|
|
|
|
int
|
|
iwn5000_get_rssi(struct iwn_softc *sc, struct iwn_rx_stat *stat)
|
|
{
|
|
struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
|
|
int rssi;
|
|
uint8_t agc;
|
|
|
|
agc = (le32toh(phy->agc) >> 9) & 0x7f;
|
|
|
|
rssi = MAX(le16toh(phy->rssi[0]) & 0xff,
|
|
le16toh(phy->rssi[1]) & 0xff);
|
|
rssi = MAX(le16toh(phy->rssi[2]) & 0xff, rssi);
|
|
|
|
DPRINTF(sc, IWN_DEBUG_RECV, "%s: agc %d rssi %d %d %d "
|
|
"result %d\n", __func__, agc,
|
|
phy->rssi[0], phy->rssi[1], phy->rssi[2],
|
|
rssi - agc - IWN_RSSI_TO_DBM);
|
|
return rssi - agc - IWN_RSSI_TO_DBM;
|
|
}
|
|
|
|
/*
|
|
* Retrieve the average noise (in dBm) among receivers.
|
|
*/
|
|
int
|
|
iwn_get_noise(const struct iwn_rx_general_stats *stats)
|
|
{
|
|
int i, total, nbant, noise;
|
|
|
|
total = nbant = 0;
|
|
for (i = 0; i < 3; i++) {
|
|
if ((noise = le32toh(stats->noise[i]) & 0xff) == 0)
|
|
continue;
|
|
total += noise;
|
|
nbant++;
|
|
}
|
|
/* There should be at least one antenna but check anyway. */
|
|
return (nbant == 0) ? -127 : (total / nbant) - 107;
|
|
}
|
|
|
|
/*
|
|
* Compute temperature (in degC) from last received statistics.
|
|
*/
|
|
int
|
|
iwn4965_get_temperature(struct iwn_softc *sc)
|
|
{
|
|
struct iwn_ucode_info *uc = &sc->ucode_info;
|
|
int32_t r1, r2, r3, r4, temp;
|
|
|
|
r1 = le32toh(uc->temp[0].chan20MHz);
|
|
r2 = le32toh(uc->temp[1].chan20MHz);
|
|
r3 = le32toh(uc->temp[2].chan20MHz);
|
|
r4 = le32toh(sc->rawtemp);
|
|
|
|
if (r1 == r3) /* Prevents division by 0 (should not happen.) */
|
|
return 0;
|
|
|
|
/* Sign-extend 23-bit R4 value to 32-bit. */
|
|
r4 = (r4 << 8) >> 8;
|
|
/* Compute temperature in Kelvin. */
|
|
temp = (259 * (r4 - r2)) / (r3 - r1);
|
|
temp = (temp * 97) / 100 + 8;
|
|
|
|
DPRINTF(sc, IWN_DEBUG_ANY, "temperature %dK/%dC\n", temp,
|
|
IWN_KTOC(temp));
|
|
return IWN_KTOC(temp);
|
|
}
|
|
|
|
int
|
|
iwn5000_get_temperature(struct iwn_softc *sc)
|
|
{
|
|
int32_t temp;
|
|
|
|
/*
|
|
* Temperature is not used by the driver for 5000 Series because
|
|
* TX power calibration is handled by firmware. We export it to
|
|
* users through the sensor framework though.
|
|
*/
|
|
temp = le32toh(sc->rawtemp);
|
|
if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
|
|
temp = (temp / -5) + sc->temp_off;
|
|
temp = IWN_KTOC(temp);
|
|
}
|
|
return temp;
|
|
}
|
|
|
|
/*
|
|
* Initialize sensitivity calibration state machine.
|
|
*/
|
|
int
|
|
iwn_init_sensitivity(struct iwn_softc *sc)
|
|
{
|
|
const struct iwn_hal *hal = sc->sc_hal;
|
|
struct iwn_calib_state *calib = &sc->calib;
|
|
uint32_t flags;
|
|
int error;
|
|
|
|
/* Reset calibration state machine. */
|
|
memset(calib, 0, sizeof (*calib));
|
|
calib->state = IWN_CALIB_STATE_INIT;
|
|
calib->cck_state = IWN_CCK_STATE_HIFA;
|
|
/* Set initial correlation values. */
|
|
calib->ofdm_x1 = sc->limits->min_ofdm_x1;
|
|
calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
|
|
calib->ofdm_x4 = 90;
|
|
calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
|
|
calib->cck_x4 = 125;
|
|
calib->cck_mrc_x4 = sc->limits->min_cck_mrc_x4;
|
|
calib->energy_cck = sc->limits->energy_cck;
|
|
|
|
/* Write initial sensitivity. */
|
|
error = iwn_send_sensitivity(sc);
|
|
if (error != 0)
|
|
return error;
|
|
|
|
/* Write initial gains. */
|
|
error = hal->init_gains(sc);
|
|
if (error != 0)
|
|
return error;
|
|
|
|
/* Request statistics at each beacon interval. */
|
|
flags = 0;
|
|
DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: calibrate phy\n", __func__);
|
|
return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
|
|
}
|
|
|
|
/*
|
|
* Collect noise and RSSI statistics for the first 20 beacons received
|
|
* after association and use them to determine connected antennas and
|
|
* to set differential gains.
|
|
*/
|
|
void
|
|
iwn_collect_noise(struct iwn_softc *sc,
|
|
const struct iwn_rx_general_stats *stats)
|
|
{
|
|
const struct iwn_hal *hal = sc->sc_hal;
|
|
struct iwn_calib_state *calib = &sc->calib;
|
|
uint32_t val;
|
|
int i;
|
|
|
|
/* Accumulate RSSI and noise for all 3 antennas. */
|
|
for (i = 0; i < 3; i++) {
|
|
calib->rssi[i] += le32toh(stats->rssi[i]) & 0xff;
|
|
calib->noise[i] += le32toh(stats->noise[i]) & 0xff;
|
|
}
|
|
/* NB: We update differential gains only once after 20 beacons. */
|
|
if (++calib->nbeacons < 20)
|
|
return;
|
|
|
|
/* Determine highest average RSSI. */
|
|
val = MAX(calib->rssi[0], calib->rssi[1]);
|
|
val = MAX(calib->rssi[2], val);
|
|
|
|
/* Determine which antennas are connected. */
|
|
sc->chainmask = 0;
|
|
for (i = 0; i < 3; i++)
|
|
if (val - calib->rssi[i] <= 15 * 20)
|
|
sc->chainmask |= 1 << i;
|
|
/* If none of the TX antennas are connected, keep at least one. */
|
|
if ((sc->chainmask & sc->txchainmask) == 0)
|
|
sc->chainmask |= IWN_LSB(sc->txchainmask);
|
|
|
|
(void)hal->set_gains(sc);
|
|
calib->state = IWN_CALIB_STATE_RUN;
|
|
|
|
#ifdef notyet
|
|
/* XXX Disable RX chains with no antennas connected. */
|
|
sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
|
|
(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
|
|
#endif
|
|
|
|
#if 0
|
|
/* XXX: not yet */
|
|
/* Enable power-saving mode if requested by user. */
|
|
if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
|
|
(void)iwn_set_pslevel(sc, 0, 3, 1);
|
|
#endif
|
|
}
|
|
|
|
int
|
|
iwn4965_init_gains(struct iwn_softc *sc)
|
|
{
|
|
struct iwn_phy_calib_gain cmd;
|
|
|
|
memset(&cmd, 0, sizeof cmd);
|
|
cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
|
|
/* Differential gains initially set to 0 for all 3 antennas. */
|
|
DPRINTF(sc, IWN_DEBUG_CALIBRATE,
|
|
"%s: setting initial differential gains\n", __func__);
|
|
return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
|
|
}
|
|
|
|
int
|
|
iwn5000_init_gains(struct iwn_softc *sc)
|
|
{
|
|
struct iwn_phy_calib cmd;
|
|
|
|
if (sc->hw_type == IWN_HW_REV_TYPE_6050)
|
|
return 0;
|
|
|
|
memset(&cmd, 0, sizeof cmd);
|
|
cmd.code = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
|
|
cmd.ngroups = 1;
|
|
cmd.isvalid = 1;
|
|
DPRINTF(sc, IWN_DEBUG_CALIBRATE,
|
|
"%s: setting initial differential gains\n", __func__);
|
|
return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
|
|
}
|
|
|
|
int
|
|
iwn4965_set_gains(struct iwn_softc *sc)
|
|
{
|
|
struct iwn_calib_state *calib = &sc->calib;
|
|
struct iwn_phy_calib_gain cmd;
|
|
int i, delta, noise;
|
|
|
|
/* Get minimal noise among connected antennas. */
|
|
noise = INT_MAX; /* NB: There's at least one antenna. */
|
|
for (i = 0; i < 3; i++)
|
|
if (sc->chainmask & (1 << i))
|
|
noise = MIN(calib->noise[i], noise);
|
|
|
|
memset(&cmd, 0, sizeof cmd);
|
|
cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
|
|
/* Set differential gains for connected antennas. */
|
|
for (i = 0; i < 3; i++) {
|
|
if (sc->chainmask & (1 << i)) {
|
|
/* Compute attenuation (in unit of 1.5dB). */
|
|
delta = (noise - (int32_t)calib->noise[i]) / 30;
|
|
/* NB: delta <= 0 */
|
|
/* Limit to [-4.5dB,0]. */
|
|
cmd.gain[i] = MIN(abs(delta), 3);
|
|
if (delta < 0)
|
|
cmd.gain[i] |= 1 << 2; /* sign bit */
|
|
}
|
|
}
|
|
DPRINTF(sc, IWN_DEBUG_CALIBRATE,
|
|
"setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
|
|
cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask);
|
|
return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
|
|
}
|
|
|
|
int
|
|
iwn5000_set_gains(struct iwn_softc *sc)
|
|
{
|
|
struct iwn_calib_state *calib = &sc->calib;
|
|
struct iwn_phy_calib_gain cmd;
|
|
int i, ant, delta;
|
|
|
|
if (sc->hw_type == IWN_HW_REV_TYPE_6050)
|
|
return 0;
|
|
|
|
memset(&cmd, 0, sizeof cmd);
|
|
cmd.code = IWN5000_PHY_CALIB_NOISE_GAIN;
|
|
cmd.ngroups = 1;
|
|
cmd.isvalid = 1;
|
|
/* Get first available RX antenna as referential. */
|
|
ant = IWN_LSB(sc->rxchainmask);
|
|
/* Set differential gains for other antennas. */
|
|
for (i = ant + 1; i < 3; i++) {
|
|
if (sc->chainmask & (1 << i)) {
|
|
/* The delta is relative to antenna "ant". */
|
|
delta = ((int32_t)calib->noise[ant] -
|
|
(int32_t)calib->noise[i]) / 30;
|
|
/* Limit to [-4.5dB,+4.5dB]. */
|
|
cmd.gain[i - 1] = MIN(abs(delta), 3);
|
|
if (delta < 0)
|
|
cmd.gain[i - 1] |= 1 << 2; /* sign bit */
|
|
}
|
|
}
|
|
DPRINTF(sc, IWN_DEBUG_CALIBRATE,
|
|
"setting differential gains Ant B/C: %x/%x (%x)\n",
|
|
cmd.gain[0], cmd.gain[1], sc->chainmask);
|
|
return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
|
|
}
|
|
|
|
/*
|
|
* Tune RF RX sensitivity based on the number of false alarms detected
|
|
* during the last beacon period.
|
|
*/
|
|
void
|
|
iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
|
|
{
|
|
#define inc(val, inc, max) \
|
|
if ((val) < (max)) { \
|
|
if ((val) < (max) - (inc)) \
|
|
(val) += (inc); \
|
|
else \
|
|
(val) = (max); \
|
|
needs_update = 1; \
|
|
}
|
|
#define dec(val, dec, min) \
|
|
if ((val) > (min)) { \
|
|
if ((val) > (min) + (dec)) \
|
|
(val) -= (dec); \
|
|
else \
|
|
(val) = (min); \
|
|
needs_update = 1; \
|
|
}
|
|
|
|
const struct iwn_sensitivity_limits *limits = sc->limits;
|
|
struct iwn_calib_state *calib = &sc->calib;
|
|
uint32_t val, rxena, fa;
|
|
uint32_t energy[3], energy_min;
|
|
uint8_t noise[3], noise_ref;
|
|
int i, needs_update = 0;
|
|
|
|
/* Check that we've been enabled long enough. */
|
|
rxena = le32toh(stats->general.load);
|
|
if (rxena == 0)
|
|
return;
|
|
|
|
/* Compute number of false alarms since last call for OFDM. */
|
|
fa = le32toh(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
|
|
fa += le32toh(stats->ofdm.fa) - calib->fa_ofdm;
|
|
fa *= 200 * 1024; /* 200TU */
|
|
|
|
/* Save counters values for next call. */
|
|
calib->bad_plcp_ofdm = le32toh(stats->ofdm.bad_plcp);
|
|
calib->fa_ofdm = le32toh(stats->ofdm.fa);
|
|
|
|
if (fa > 50 * rxena) {
|
|
/* High false alarm count, decrease sensitivity. */
|
|
DPRINTF(sc, IWN_DEBUG_CALIBRATE,
|
|
"%s: OFDM high false alarm count: %u\n", __func__, fa);
|
|
inc(calib->ofdm_x1, 1, limits->max_ofdm_x1);
|
|
inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
|
|
inc(calib->ofdm_x4, 1, limits->max_ofdm_x4);
|
|
inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
|
|
|
|
} else if (fa < 5 * rxena) {
|
|
/* Low false alarm count, increase sensitivity. */
|
|
DPRINTF(sc, IWN_DEBUG_CALIBRATE,
|
|
"%s: OFDM low false alarm count: %u\n", __func__, fa);
|
|
dec(calib->ofdm_x1, 1, limits->min_ofdm_x1);
|
|
dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
|
|
dec(calib->ofdm_x4, 1, limits->min_ofdm_x4);
|
|
dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
|
|
}
|
|
|
|
/* Compute maximum noise among 3 receivers. */
|
|
for (i = 0; i < 3; i++)
|
|
noise[i] = (le32toh(stats->general.noise[i]) >> 8) & 0xff;
|
|
val = MAX(noise[0], noise[1]);
|
|
val = MAX(noise[2], val);
|
|
/* Insert it into our samples table. */
|
|
calib->noise_samples[calib->cur_noise_sample] = val;
|
|
calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
|
|
|
|
/* Compute maximum noise among last 20 samples. */
|
|
noise_ref = calib->noise_samples[0];
|
|
for (i = 1; i < 20; i++)
|
|
noise_ref = MAX(noise_ref, calib->noise_samples[i]);
|
|
|
|
/* Compute maximum energy among 3 receivers. */
|
|
for (i = 0; i < 3; i++)
|
|
energy[i] = le32toh(stats->general.energy[i]);
|
|
val = MIN(energy[0], energy[1]);
|
|
val = MIN(energy[2], val);
|
|
/* Insert it into our samples table. */
|
|
calib->energy_samples[calib->cur_energy_sample] = val;
|
|
calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
|
|
|
|
/* Compute minimum energy among last 10 samples. */
|
|
energy_min = calib->energy_samples[0];
|
|
for (i = 1; i < 10; i++)
|
|
energy_min = MAX(energy_min, calib->energy_samples[i]);
|
|
energy_min += 6;
|
|
|
|
/* Compute number of false alarms since last call for CCK. */
|
|
fa = le32toh(stats->cck.bad_plcp) - calib->bad_plcp_cck;
|
|
fa += le32toh(stats->cck.fa) - calib->fa_cck;
|
|
fa *= 200 * 1024; /* 200TU */
|
|
|
|
/* Save counters values for next call. */
|
|
calib->bad_plcp_cck = le32toh(stats->cck.bad_plcp);
|
|
calib->fa_cck = le32toh(stats->cck.fa);
|
|
|
|
if (fa > 50 * rxena) {
|
|
/* High false alarm count, decrease sensitivity. */
|
|
DPRINTF(sc, IWN_DEBUG_CALIBRATE,
|
|
"%s: CCK high false alarm count: %u\n", __func__, fa);
|
|
calib->cck_state = IWN_CCK_STATE_HIFA;
|
|
calib->low_fa = 0;
|
|
|
|
if (calib->cck_x4 > 160) {
|
|
calib->noise_ref = noise_ref;
|
|
if (calib->energy_cck > 2)
|
|
dec(calib->energy_cck, 2, energy_min);
|
|
}
|
|
if (calib->cck_x4 < 160) {
|
|
calib->cck_x4 = 161;
|
|
needs_update = 1;
|
|
} else
|
|
inc(calib->cck_x4, 3, limits->max_cck_x4);
|
|
|
|
inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
|
|
|
|
} else if (fa < 5 * rxena) {
|
|
/* Low false alarm count, increase sensitivity. */
|
|
DPRINTF(sc, IWN_DEBUG_CALIBRATE,
|
|
"%s: CCK low false alarm count: %u\n", __func__, fa);
|
|
calib->cck_state = IWN_CCK_STATE_LOFA;
|
|
calib->low_fa++;
|
|
|
|
if (calib->cck_state != IWN_CCK_STATE_INIT &&
|
|
(((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
|
|
calib->low_fa > 100)) {
|
|
inc(calib->energy_cck, 2, limits->min_energy_cck);
|
|
dec(calib->cck_x4, 3, limits->min_cck_x4);
|
|
dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
|
|
}
|
|
} else {
|
|
/* Not worth to increase or decrease sensitivity. */
|
|
DPRINTF(sc, IWN_DEBUG_CALIBRATE,
|
|
"%s: CCK normal false alarm count: %u\n", __func__, fa);
|
|
calib->low_fa = 0;
|
|
calib->noise_ref = noise_ref;
|
|
|
|
if (calib->cck_state == IWN_CCK_STATE_HIFA) {
|
|
/* Previous interval had many false alarms. */
|
|
dec(calib->energy_cck, 8, energy_min);
|
|
}
|
|
calib->cck_state = IWN_CCK_STATE_INIT;
|
|
}
|
|
|
|
if (needs_update)
|
|
(void)iwn_send_sensitivity(sc);
|
|
#undef dec
|
|
#undef inc
|
|
}
|
|
|
|
int
|
|
iwn_send_sensitivity(struct iwn_softc *sc)
|
|
{
|
|
struct iwn_calib_state *calib = &sc->calib;
|
|
struct iwn_sensitivity_cmd cmd;
|
|
|
|
memset(&cmd, 0, sizeof cmd);
|
|
cmd.which = IWN_SENSITIVITY_WORKTBL;
|
|
/* OFDM modulation. */
|
|
cmd.corr_ofdm_x1 = htole16(calib->ofdm_x1);
|
|
cmd.corr_ofdm_mrc_x1 = htole16(calib->ofdm_mrc_x1);
|
|
cmd.corr_ofdm_x4 = htole16(calib->ofdm_x4);
|
|
cmd.corr_ofdm_mrc_x4 = htole16(calib->ofdm_mrc_x4);
|
|
cmd.energy_ofdm = htole16(sc->limits->energy_ofdm);
|
|
cmd.energy_ofdm_th = htole16(62);
|
|
/* CCK modulation. */
|
|
cmd.corr_cck_x4 = htole16(calib->cck_x4);
|
|
cmd.corr_cck_mrc_x4 = htole16(calib->cck_mrc_x4);
|
|
cmd.energy_cck = htole16(calib->energy_cck);
|
|
/* Barker modulation: use default values. */
|
|
cmd.corr_barker = htole16(190);
|
|
cmd.corr_barker_mrc = htole16(390);
|
|
|
|
DPRINTF(sc, IWN_DEBUG_CALIBRATE,
|
|
"%s: set sensitivity %d/%d/%d/%d/%d/%d/%d\n", __func__,
|
|
calib->ofdm_x1, calib->ofdm_mrc_x1, calib->ofdm_x4,
|
|
calib->ofdm_mrc_x4, calib->cck_x4,
|
|
calib->cck_mrc_x4, calib->energy_cck);
|
|
return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, sizeof cmd, 1);
|
|
}
|
|
|
|
/*
|
|
* Set STA mode power saving level (between 0 and 5).
|
|
* Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
|
|
*/
|
|
int
|
|
iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
|
|
{
|
|
const struct iwn_pmgt *pmgt;
|
|
struct iwn_pmgt_cmd cmd;
|
|
uint32_t max, skip_dtim;
|
|
uint32_t tmp;
|
|
int i;
|
|
|
|
/* Select which PS parameters to use. */
|
|
if (dtim <= 2)
|
|
pmgt = &iwn_pmgt[0][level];
|
|
else if (dtim <= 10)
|
|
pmgt = &iwn_pmgt[1][level];
|
|
else
|
|
pmgt = &iwn_pmgt[2][level];
|
|
|
|
memset(&cmd, 0, sizeof cmd);
|
|
if (level != 0) /* not CAM */
|
|
cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
|
|
if (level == 5)
|
|
cmd.flags |= htole16(IWN_PS_FAST_PD);
|
|
/* Retrieve PCIe Active State Power Management (ASPM). */
|
|
tmp = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
|
|
if (!(tmp & 0x1)) /* L0s Entry disabled. */
|
|
cmd.flags |= htole16(IWN_PS_PCI_PMGT);
|
|
cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
|
|
cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
|
|
|
|
if (dtim == 0) {
|
|
dtim = 1;
|
|
skip_dtim = 0;
|
|
} else
|
|
skip_dtim = pmgt->skip_dtim;
|
|
if (skip_dtim != 0) {
|
|
cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
|
|
max = pmgt->intval[4];
|
|
if (max == (uint32_t)-1)
|
|
max = dtim * (skip_dtim + 1);
|
|
else if (max > dtim)
|
|
max = (max / dtim) * dtim;
|
|
} else
|
|
max = dtim;
|
|
for (i = 0; i < 5; i++)
|
|
cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
|
|
|
|
DPRINTF(sc, IWN_DEBUG_RESET, "setting power saving level to %d\n",
|
|
level);
|
|
return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
|
|
}
|
|
|
|
int
|
|
iwn_config(struct iwn_softc *sc)
|
|
{
|
|
const struct iwn_hal *hal = sc->sc_hal;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
struct iwn_bluetooth bluetooth;
|
|
uint32_t txmask;
|
|
int error;
|
|
uint16_t rxchain;
|
|
|
|
/* Configure valid TX chains for 5000 Series. */
|
|
if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
|
|
txmask = htole32(sc->txchainmask);
|
|
DPRINTF(sc, IWN_DEBUG_RESET,
|
|
"%s: configuring valid TX chains 0x%x\n", __func__, txmask);
|
|
error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
|
|
sizeof txmask, 0);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: could not configure valid TX chains, "
|
|
"error %d\n", __func__, error);
|
|
return error;
|
|
}
|
|
}
|
|
|
|
/* Configure bluetooth coexistence. */
|
|
memset(&bluetooth, 0, sizeof bluetooth);
|
|
bluetooth.flags = IWN_BT_COEX_MODE_4WIRE;
|
|
bluetooth.lead_time = IWN_BT_LEAD_TIME_DEF;
|
|
bluetooth.max_kill = IWN_BT_MAX_KILL_DEF;
|
|
DPRINTF(sc, IWN_DEBUG_RESET, "%s: config bluetooth coexistence\n",
|
|
__func__);
|
|
error = iwn_cmd(sc, IWN_CMD_BT_COEX, &bluetooth, sizeof bluetooth, 0);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: could not configure bluetooth coexistence, error %d\n",
|
|
__func__, error);
|
|
return error;
|
|
}
|
|
|
|
/* Set mode, channel, RX filter and enable RX. */
|
|
memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
|
|
IEEE80211_ADDR_COPY(sc->rxon.myaddr, IF_LLADDR(ifp));
|
|
IEEE80211_ADDR_COPY(sc->rxon.wlap, IF_LLADDR(ifp));
|
|
sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_curchan);
|
|
sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
|
|
if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
|
|
sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
|
|
switch (ic->ic_opmode) {
|
|
case IEEE80211_M_STA:
|
|
sc->rxon.mode = IWN_MODE_STA;
|
|
sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
|
|
break;
|
|
case IEEE80211_M_MONITOR:
|
|
sc->rxon.mode = IWN_MODE_MONITOR;
|
|
sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
|
|
IWN_FILTER_CTL | IWN_FILTER_PROMISC);
|
|
break;
|
|
default:
|
|
/* Should not get there. */
|
|
break;
|
|
}
|
|
sc->rxon.cck_mask = 0x0f; /* not yet negotiated */
|
|
sc->rxon.ofdm_mask = 0xff; /* not yet negotiated */
|
|
sc->rxon.ht_single_mask = 0xff;
|
|
sc->rxon.ht_dual_mask = 0xff;
|
|
sc->rxon.ht_triple_mask = 0xff;
|
|
rxchain =
|
|
IWN_RXCHAIN_VALID(sc->rxchainmask) |
|
|
IWN_RXCHAIN_MIMO_COUNT(2) |
|
|
IWN_RXCHAIN_IDLE_COUNT(2);
|
|
sc->rxon.rxchain = htole16(rxchain);
|
|
DPRINTF(sc, IWN_DEBUG_RESET, "%s: setting configuration\n", __func__);
|
|
error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 0);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: RXON command failed\n", __func__);
|
|
return error;
|
|
}
|
|
|
|
error = iwn_add_broadcast_node(sc, 0);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: could not add broadcast node\n", __func__);
|
|
return error;
|
|
}
|
|
|
|
/* Configuration has changed, set TX power accordingly. */
|
|
error = hal->set_txpower(sc, ic->ic_curchan, 0);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: could not set TX power\n", __func__);
|
|
return error;
|
|
}
|
|
|
|
error = iwn_set_critical_temp(sc);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: ccould not set critical temperature\n", __func__);
|
|
return error;
|
|
}
|
|
|
|
/* Set power saving level to CAM during initialization. */
|
|
error = iwn_set_pslevel(sc, 0, 0, 0);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: could not set power saving level\n", __func__);
|
|
return error;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwn_scan(struct iwn_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
struct ieee80211_scan_state *ss = ic->ic_scan; /*XXX*/
|
|
struct iwn_scan_hdr *hdr;
|
|
struct iwn_cmd_data *tx;
|
|
struct iwn_scan_essid *essid;
|
|
struct iwn_scan_chan *chan;
|
|
struct ieee80211_frame *wh;
|
|
struct ieee80211_rateset *rs;
|
|
struct ieee80211_channel *c;
|
|
int buflen, error, nrates;
|
|
uint16_t rxchain;
|
|
uint8_t *buf, *frm, txant;
|
|
|
|
buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
|
|
if (buf == NULL) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: could not allocate buffer for scan command\n",
|
|
__func__);
|
|
return ENOMEM;
|
|
}
|
|
hdr = (struct iwn_scan_hdr *)buf;
|
|
|
|
/*
|
|
* Move to the next channel if no frames are received within 10ms
|
|
* after sending the probe request.
|
|
*/
|
|
hdr->quiet_time = htole16(10); /* timeout in milliseconds */
|
|
hdr->quiet_threshold = htole16(1); /* min # of packets */
|
|
|
|
/* Select antennas for scanning. */
|
|
rxchain =
|
|
IWN_RXCHAIN_VALID(sc->rxchainmask) |
|
|
IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
|
|
IWN_RXCHAIN_DRIVER_FORCE;
|
|
if (IEEE80211_IS_CHAN_A(ic->ic_curchan) &&
|
|
sc->hw_type == IWN_HW_REV_TYPE_4965) {
|
|
/* Ant A must be avoided in 5GHz because of an HW bug. */
|
|
rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_BC);
|
|
} else /* Use all available RX antennas. */
|
|
rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
|
|
hdr->rxchain = htole16(rxchain);
|
|
hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
|
|
|
|
tx = (struct iwn_cmd_data *)(hdr + 1);
|
|
tx->flags = htole32(IWN_TX_AUTO_SEQ);
|
|
tx->id = sc->sc_hal->broadcast_id;
|
|
tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
|
|
|
|
if (IEEE80211_IS_CHAN_A(ic->ic_curchan)) {
|
|
/* Send probe requests at 6Mbps. */
|
|
tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
|
|
rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
|
|
} else {
|
|
hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
|
|
/* Send probe requests at 1Mbps. */
|
|
tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
|
|
tx->rflags = IWN_RFLAG_CCK;
|
|
rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
|
|
}
|
|
/* Use the first valid TX antenna. */
|
|
txant = IWN_LSB(sc->txchainmask);
|
|
tx->rflags |= IWN_RFLAG_ANT(txant);
|
|
|
|
essid = (struct iwn_scan_essid *)(tx + 1);
|
|
if (ss->ss_ssid[0].len != 0) {
|
|
essid[0].id = IEEE80211_ELEMID_SSID;
|
|
essid[0].len = ss->ss_ssid[0].len;
|
|
memcpy(essid[0].data, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
|
|
}
|
|
|
|
/*
|
|
* Build a probe request frame. Most of the following code is a
|
|
* copy & paste of what is done in net80211.
|
|
*/
|
|
wh = (struct ieee80211_frame *)(essid + 20);
|
|
wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
|
|
IEEE80211_FC0_SUBTYPE_PROBE_REQ;
|
|
wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
|
|
IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
|
|
IEEE80211_ADDR_COPY(wh->i_addr2, IF_LLADDR(ifp));
|
|
IEEE80211_ADDR_COPY(wh->i_addr3, ifp->if_broadcastaddr);
|
|
*(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */
|
|
*(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */
|
|
|
|
frm = (uint8_t *)(wh + 1);
|
|
|
|
/* Add SSID IE. */
|
|
*frm++ = IEEE80211_ELEMID_SSID;
|
|
*frm++ = ss->ss_ssid[0].len;
|
|
memcpy(frm, ss->ss_ssid[0].ssid, ss->ss_ssid[0].len);
|
|
frm += ss->ss_ssid[0].len;
|
|
|
|
/* Add supported rates IE. */
|
|
*frm++ = IEEE80211_ELEMID_RATES;
|
|
nrates = rs->rs_nrates;
|
|
if (nrates > IEEE80211_RATE_SIZE)
|
|
nrates = IEEE80211_RATE_SIZE;
|
|
*frm++ = nrates;
|
|
memcpy(frm, rs->rs_rates, nrates);
|
|
frm += nrates;
|
|
|
|
/* Add supported xrates IE. */
|
|
if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
|
|
nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
|
|
*frm++ = IEEE80211_ELEMID_XRATES;
|
|
*frm++ = (uint8_t)nrates;
|
|
memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
|
|
frm += nrates;
|
|
}
|
|
|
|
/* Set length of probe request. */
|
|
tx->len = htole16(frm - (uint8_t *)wh);
|
|
|
|
c = ic->ic_curchan;
|
|
chan = (struct iwn_scan_chan *)frm;
|
|
chan->chan = htole16(ieee80211_chan2ieee(ic, c));
|
|
chan->flags = 0;
|
|
if (ss->ss_nssid > 0)
|
|
chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
|
|
chan->dsp_gain = 0x6e;
|
|
if (IEEE80211_IS_CHAN_5GHZ(c) &&
|
|
!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
|
|
chan->rf_gain = 0x3b;
|
|
chan->active = htole16(24);
|
|
chan->passive = htole16(110);
|
|
chan->flags |= htole32(IWN_CHAN_ACTIVE);
|
|
} else if (IEEE80211_IS_CHAN_5GHZ(c)) {
|
|
chan->rf_gain = 0x3b;
|
|
chan->active = htole16(24);
|
|
if (sc->rxon.associd)
|
|
chan->passive = htole16(78);
|
|
else
|
|
chan->passive = htole16(110);
|
|
hdr->crc_threshold = htole16(1);
|
|
} else if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
|
|
chan->rf_gain = 0x28;
|
|
chan->active = htole16(36);
|
|
chan->passive = htole16(120);
|
|
chan->flags |= htole32(IWN_CHAN_ACTIVE);
|
|
} else {
|
|
chan->rf_gain = 0x28;
|
|
chan->active = htole16(36);
|
|
if (sc->rxon.associd)
|
|
chan->passive = htole16(88);
|
|
else
|
|
chan->passive = htole16(120);
|
|
hdr->crc_threshold = htole16(1);
|
|
}
|
|
|
|
DPRINTF(sc, IWN_DEBUG_STATE,
|
|
"%s: chan %u flags 0x%x rf_gain 0x%x "
|
|
"dsp_gain 0x%x active 0x%x passive 0x%x\n", __func__,
|
|
chan->chan, chan->flags, chan->rf_gain, chan->dsp_gain,
|
|
chan->active, chan->passive);
|
|
|
|
hdr->nchan++;
|
|
chan++;
|
|
buflen = (uint8_t *)chan - buf;
|
|
hdr->len = htole16(buflen);
|
|
|
|
DPRINTF(sc, IWN_DEBUG_STATE, "sending scan command nchan=%d\n",
|
|
hdr->nchan);
|
|
error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
|
|
free(buf, M_DEVBUF);
|
|
return error;
|
|
}
|
|
|
|
int
|
|
iwn_auth(struct iwn_softc *sc, struct ieee80211vap *vap)
|
|
{
|
|
const struct iwn_hal *hal = sc->sc_hal;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
struct ieee80211_node *ni = vap->iv_bss;
|
|
int error;
|
|
|
|
sc->calib.state = IWN_CALIB_STATE_INIT;
|
|
|
|
/* Update adapter configuration. */
|
|
IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
|
|
sc->rxon.chan = htole16(ieee80211_chan2ieee(ic, ni->ni_chan));
|
|
sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
|
|
if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
|
|
sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
|
|
if (ic->ic_flags & IEEE80211_F_SHSLOT)
|
|
sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
|
|
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
|
|
sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
|
|
if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
|
|
sc->rxon.cck_mask = 0;
|
|
sc->rxon.ofdm_mask = 0x15;
|
|
} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
|
|
sc->rxon.cck_mask = 0x03;
|
|
sc->rxon.ofdm_mask = 0;
|
|
} else {
|
|
/* XXX assume 802.11b/g */
|
|
sc->rxon.cck_mask = 0x0f;
|
|
sc->rxon.ofdm_mask = 0x15;
|
|
}
|
|
DPRINTF(sc, IWN_DEBUG_STATE,
|
|
"%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x "
|
|
"ht_single 0x%x ht_dual 0x%x rxchain 0x%x "
|
|
"myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n",
|
|
__func__,
|
|
le16toh(sc->rxon.chan), sc->rxon.mode, le32toh(sc->rxon.flags),
|
|
sc->rxon.cck_mask, sc->rxon.ofdm_mask,
|
|
sc->rxon.ht_single_mask, sc->rxon.ht_dual_mask,
|
|
le16toh(sc->rxon.rxchain),
|
|
sc->rxon.myaddr, ":", sc->rxon.wlap, ":", sc->rxon.bssid, ":",
|
|
le16toh(sc->rxon.associd), le32toh(sc->rxon.filter));
|
|
error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: RXON command failed, error %d\n", __func__, error);
|
|
return error;
|
|
}
|
|
|
|
/* Configuration has changed, set TX power accordingly. */
|
|
error = hal->set_txpower(sc, ni->ni_chan, 1);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: could not set Tx power, error %d\n", __func__, error);
|
|
return error;
|
|
}
|
|
/*
|
|
* Reconfiguring RXON clears the firmware nodes table so we must
|
|
* add the broadcast node again.
|
|
*/
|
|
error = iwn_add_broadcast_node(sc, 1);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: could not add broadcast node, error %d\n",
|
|
__func__, error);
|
|
return error;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Configure the adapter for associated state.
|
|
*/
|
|
int
|
|
iwn_run(struct iwn_softc *sc, struct ieee80211vap *vap)
|
|
{
|
|
#define MS(v,x) (((v) & x) >> x##_S)
|
|
const struct iwn_hal *hal = sc->sc_hal;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
struct ieee80211_node *ni = vap->iv_bss;
|
|
struct iwn_node_info node;
|
|
int error;
|
|
|
|
sc->calib.state = IWN_CALIB_STATE_INIT;
|
|
|
|
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
|
|
/* Link LED blinks while monitoring. */
|
|
iwn_set_led(sc, IWN_LED_LINK, 5, 5);
|
|
return 0;
|
|
}
|
|
error = iwn_set_timing(sc, ni);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: could not set timing, error %d\n", __func__, error);
|
|
return error;
|
|
}
|
|
|
|
/* Update adapter configuration. */
|
|
IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
|
|
sc->rxon.chan = htole16(ieee80211_chan2ieee(ic, ni->ni_chan));
|
|
sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
|
|
/* Short preamble and slot time are negotiated when associating. */
|
|
sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
|
|
sc->rxon.flags |= htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
|
|
if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
|
|
sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
|
|
else
|
|
sc->rxon.flags &= ~htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
|
|
if (ic->ic_flags & IEEE80211_F_SHSLOT)
|
|
sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
|
|
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
|
|
sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
|
|
if (IEEE80211_IS_CHAN_A(ni->ni_chan)) {
|
|
sc->rxon.cck_mask = 0;
|
|
sc->rxon.ofdm_mask = 0x15;
|
|
} else if (IEEE80211_IS_CHAN_B(ni->ni_chan)) {
|
|
sc->rxon.cck_mask = 0x03;
|
|
sc->rxon.ofdm_mask = 0;
|
|
} else {
|
|
/* XXX assume 802.11b/g */
|
|
sc->rxon.cck_mask = 0x0f;
|
|
sc->rxon.ofdm_mask = 0x15;
|
|
}
|
|
#if 0 /* HT */
|
|
if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
|
|
sc->rxon.flags &= ~htole32(IWN_RXON_HT);
|
|
if (IEEE80211_IS_CHAN_HT40U(ni->ni_chan))
|
|
sc->rxon.flags |= htole32(IWN_RXON_HT40U);
|
|
else if (IEEE80211_IS_CHAN_HT40D(ni->ni_chan))
|
|
sc->rxon.flags |= htole32(IWN_RXON_HT40D);
|
|
else
|
|
sc->rxon.flags |= htole32(IWN_RXON_HT20);
|
|
sc->rxon.rxchain = htole16(
|
|
IWN_RXCHAIN_VALID(3)
|
|
| IWN_RXCHAIN_MIMO_COUNT(3)
|
|
| IWN_RXCHAIN_IDLE_COUNT(1)
|
|
| IWN_RXCHAIN_MIMO_FORCE);
|
|
|
|
maxrxampdu = MS(ni->ni_htparam, IEEE80211_HTCAP_MAXRXAMPDU);
|
|
ampdudensity = MS(ni->ni_htparam, IEEE80211_HTCAP_MPDUDENSITY);
|
|
} else
|
|
maxrxampdu = ampdudensity = 0;
|
|
#endif
|
|
sc->rxon.filter |= htole32(IWN_FILTER_BSS);
|
|
|
|
DPRINTF(sc, IWN_DEBUG_STATE,
|
|
"%s: config chan %d mode %d flags 0x%x cck 0x%x ofdm 0x%x "
|
|
"ht_single 0x%x ht_dual 0x%x rxchain 0x%x "
|
|
"myaddr %6D wlap %6D bssid %6D associd %d filter 0x%x\n",
|
|
__func__,
|
|
le16toh(sc->rxon.chan), sc->rxon.mode, le32toh(sc->rxon.flags),
|
|
sc->rxon.cck_mask, sc->rxon.ofdm_mask,
|
|
sc->rxon.ht_single_mask, sc->rxon.ht_dual_mask,
|
|
le16toh(sc->rxon.rxchain),
|
|
sc->rxon.myaddr, ":", sc->rxon.wlap, ":", sc->rxon.bssid, ":",
|
|
le16toh(sc->rxon.associd), le32toh(sc->rxon.filter));
|
|
error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, hal->rxonsz, 1);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: could not update configuration, error %d\n",
|
|
__func__, error);
|
|
return error;
|
|
}
|
|
|
|
|
|
/* Configuration has changed, set TX power accordingly. */
|
|
error = hal->set_txpower(sc, ni->ni_chan, 1);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: could not set Tx power, error %d\n", __func__, error);
|
|
return error;
|
|
}
|
|
|
|
/* Add BSS node. */
|
|
memset(&node, 0, sizeof node);
|
|
IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
|
|
node.id = IWN_ID_BSS;
|
|
#ifdef notyet
|
|
node.htflags = htole32(IWN_AMDPU_SIZE_FACTOR(3) |
|
|
IWN_AMDPU_DENSITY(5)); /* 2us */
|
|
#endif
|
|
DPRINTF(sc, IWN_DEBUG_STATE, "%s: add BSS node, id %d htflags 0x%x\n",
|
|
__func__, node.id, le32toh(node.htflags));
|
|
error = hal->add_node(sc, &node, 1);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev, "could not add BSS node\n");
|
|
return error;
|
|
}
|
|
DPRINTF(sc, IWN_DEBUG_STATE, "setting link quality for node %d\n",
|
|
node.id);
|
|
error = iwn_set_link_quality(sc, node.id, 1);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: could not setup MRR for node %d, error %d\n",
|
|
__func__, node.id, error);
|
|
return error;
|
|
}
|
|
|
|
error = iwn_init_sensitivity(sc);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: could not set sensitivity, error %d\n",
|
|
__func__, error);
|
|
return error;
|
|
}
|
|
|
|
/* Start periodic calibration timer. */
|
|
sc->calib.state = IWN_CALIB_STATE_ASSOC;
|
|
iwn_calib_reset(sc);
|
|
|
|
/* Link LED always on while associated. */
|
|
iwn_set_led(sc, IWN_LED_LINK, 0, 1);
|
|
|
|
return 0;
|
|
#undef MS
|
|
}
|
|
|
|
#if 0 /* HT */
|
|
/*
|
|
* This function is called by upper layer when an ADDBA request is received
|
|
* from another STA and before the ADDBA response is sent.
|
|
*/
|
|
int
|
|
iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
|
|
uint8_t tid)
|
|
{
|
|
struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
|
|
struct iwn_softc *sc = ic->ic_softc;
|
|
struct iwn_node *wn = (void *)ni;
|
|
struct iwn_node_info node;
|
|
|
|
memset(&node, 0, sizeof node);
|
|
node.id = wn->id;
|
|
node.control = IWN_NODE_UPDATE;
|
|
node.flags = IWN_FLAG_SET_ADDBA;
|
|
node.addba_tid = tid;
|
|
node.addba_ssn = htole16(ba->ba_winstart);
|
|
DPRINTF(sc, IWN_DEBUG_RECV, "ADDBA RA=%d TID=%d SSN=%d\n",
|
|
wn->id, tid, ba->ba_winstart));
|
|
return sc->sc_hal->add_node(sc, &node, 1);
|
|
}
|
|
|
|
/*
|
|
* This function is called by upper layer on teardown of an HT-immediate
|
|
* Block Ack agreement (eg. uppon receipt of a DELBA frame.)
|
|
*/
|
|
void
|
|
iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
|
|
uint8_t tid)
|
|
{
|
|
struct iwn_softc *sc = ic->ic_softc;
|
|
struct iwn_node *wn = (void *)ni;
|
|
struct iwn_node_info node;
|
|
|
|
memset(&node, 0, sizeof node);
|
|
node.id = wn->id;
|
|
node.control = IWN_NODE_UPDATE;
|
|
node.flags = IWN_FLAG_SET_DELBA;
|
|
node.delba_tid = tid;
|
|
DPRINTF(sc, IWN_DEBUG_RECV, "DELBA RA=%d TID=%d\n", wn->id, tid);
|
|
(void)sc->sc_hal->add_node(sc, &node, 1);
|
|
}
|
|
|
|
/*
|
|
* This function is called by upper layer when an ADDBA response is received
|
|
* from another STA.
|
|
*/
|
|
int
|
|
iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
|
|
uint8_t tid)
|
|
{
|
|
struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
|
|
struct iwn_softc *sc = ic->ic_softc;
|
|
const struct iwn_hal *hal = sc->sc_hal;
|
|
struct iwn_node *wn = (void *)ni;
|
|
struct iwn_node_info node;
|
|
int error;
|
|
|
|
/* Enable TX for the specified RA/TID. */
|
|
wn->disable_tid &= ~(1 << tid);
|
|
memset(&node, 0, sizeof node);
|
|
node.id = wn->id;
|
|
node.control = IWN_NODE_UPDATE;
|
|
node.flags = IWN_FLAG_SET_DISABLE_TID;
|
|
node.disable_tid = htole16(wn->disable_tid);
|
|
error = hal->add_node(sc, &node, 1);
|
|
if (error != 0)
|
|
return error;
|
|
|
|
if ((error = iwn_nic_lock(sc)) != 0)
|
|
return error;
|
|
hal->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
|
|
iwn_nic_unlock(sc);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
|
|
uint8_t tid)
|
|
{
|
|
struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
|
|
struct iwn_softc *sc = ic->ic_softc;
|
|
int error;
|
|
|
|
error = iwn_nic_lock(sc);
|
|
if (error != 0)
|
|
return;
|
|
sc->sc_hal->ampdu_tx_stop(sc, tid, ba->ba_winstart);
|
|
iwn_nic_unlock(sc);
|
|
}
|
|
|
|
void
|
|
iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
|
|
uint8_t tid, uint16_t ssn)
|
|
{
|
|
struct iwn_node *wn = (void *)ni;
|
|
int qid = 7 + tid;
|
|
|
|
/* Stop TX scheduler while we're changing its configuration. */
|
|
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
|
|
IWN4965_TXQ_STATUS_CHGACT);
|
|
|
|
/* Assign RA/TID translation to the queue. */
|
|
iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
|
|
wn->id << 4 | tid);
|
|
|
|
/* Enable chain-building mode for the queue. */
|
|
iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
|
|
|
|
/* Set starting sequence number from the ADDBA request. */
|
|
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
|
|
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
|
|
|
|
/* Set scheduler window size. */
|
|
iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
|
|
IWN_SCHED_WINSZ);
|
|
/* Set scheduler frame limit. */
|
|
iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
|
|
IWN_SCHED_LIMIT << 16);
|
|
|
|
/* Enable interrupts for the queue. */
|
|
iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
|
|
|
|
/* Mark the queue as active. */
|
|
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
|
|
IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
|
|
iwn_tid2fifo[tid] << 1);
|
|
}
|
|
|
|
void
|
|
iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
|
|
{
|
|
int qid = 7 + tid;
|
|
|
|
/* Stop TX scheduler while we're changing its configuration. */
|
|
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
|
|
IWN4965_TXQ_STATUS_CHGACT);
|
|
|
|
/* Set starting sequence number from the ADDBA request. */
|
|
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
|
|
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
|
|
|
|
/* Disable interrupts for the queue. */
|
|
iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
|
|
|
|
/* Mark the queue as inactive. */
|
|
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
|
|
IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
|
|
}
|
|
|
|
void
|
|
iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
|
|
uint8_t tid, uint16_t ssn)
|
|
{
|
|
struct iwn_node *wn = (void *)ni;
|
|
int qid = 10 + tid;
|
|
|
|
/* Stop TX scheduler while we're changing its configuration. */
|
|
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
|
|
IWN5000_TXQ_STATUS_CHGACT);
|
|
|
|
/* Assign RA/TID translation to the queue. */
|
|
iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
|
|
wn->id << 4 | tid);
|
|
|
|
/* Enable chain-building mode for the queue. */
|
|
iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
|
|
|
|
/* Enable aggregation for the queue. */
|
|
iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
|
|
|
|
/* Set starting sequence number from the ADDBA request. */
|
|
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
|
|
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
|
|
|
|
/* Set scheduler window size and frame limit. */
|
|
iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
|
|
IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
|
|
|
|
/* Enable interrupts for the queue. */
|
|
iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
|
|
|
|
/* Mark the queue as active. */
|
|
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
|
|
IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
|
|
}
|
|
|
|
void
|
|
iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
|
|
{
|
|
int qid = 10 + tid;
|
|
|
|
/* Stop TX scheduler while we're changing its configuration. */
|
|
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
|
|
IWN5000_TXQ_STATUS_CHGACT);
|
|
|
|
/* Disable aggregation for the queue. */
|
|
iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
|
|
|
|
/* Set starting sequence number from the ADDBA request. */
|
|
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | (ssn & 0xff));
|
|
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
|
|
|
|
/* Disable interrupts for the queue. */
|
|
iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
|
|
|
|
/* Mark the queue as inactive. */
|
|
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
|
|
IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Query calibration tables from the initialization firmware. We do this
|
|
* only once at first boot. Called from a process context.
|
|
*/
|
|
int
|
|
iwn5000_query_calibration(struct iwn_softc *sc)
|
|
{
|
|
struct iwn5000_calib_config cmd;
|
|
int error;
|
|
|
|
memset(&cmd, 0, sizeof cmd);
|
|
cmd.ucode.once.enable = 0xffffffff;
|
|
cmd.ucode.once.start = 0xffffffff;
|
|
cmd.ucode.once.send = 0xffffffff;
|
|
cmd.ucode.flags = 0xffffffff;
|
|
DPRINTF(sc, IWN_DEBUG_CALIBRATE, "%s: sending calibration query\n",
|
|
__func__);
|
|
error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
|
|
if (error != 0)
|
|
return error;
|
|
|
|
/* Wait at most two seconds for calibration to complete. */
|
|
if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
|
|
error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", 2 * hz);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Send calibration results to the runtime firmware. These results were
|
|
* obtained on first boot from the initialization firmware.
|
|
*/
|
|
int
|
|
iwn5000_send_calibration(struct iwn_softc *sc)
|
|
{
|
|
int idx, error;
|
|
|
|
for (idx = 0; idx < 5; idx++) {
|
|
if (sc->calibcmd[idx].buf == NULL)
|
|
continue; /* No results available. */
|
|
DPRINTF(sc, IWN_DEBUG_CALIBRATE,
|
|
"send calibration result idx=%d len=%d\n",
|
|
idx, sc->calibcmd[idx].len);
|
|
error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
|
|
sc->calibcmd[idx].len, 0);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: could not send calibration result, error %d\n",
|
|
__func__, error);
|
|
return error;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwn5000_send_wimax_coex(struct iwn_softc *sc)
|
|
{
|
|
struct iwn5000_wimax_coex wimax;
|
|
|
|
#ifdef notyet
|
|
if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
|
|
/* Enable WiMAX coexistence for combo adapters. */
|
|
wimax.flags =
|
|
IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
|
|
IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
|
|
IWN_WIMAX_COEX_STA_TABLE_VALID |
|
|
IWN_WIMAX_COEX_ENABLE;
|
|
memcpy(wimax.events, iwn6050_wimax_events,
|
|
sizeof iwn6050_wimax_events);
|
|
} else
|
|
#endif
|
|
{
|
|
/* Disable WiMAX coexistence. */
|
|
wimax.flags = 0;
|
|
memset(wimax.events, 0, sizeof wimax.events);
|
|
}
|
|
DPRINTF(sc, IWN_DEBUG_RESET, "%s: Configuring WiMAX coexistence\n",
|
|
__func__);
|
|
return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
|
|
}
|
|
|
|
/*
|
|
* This function is called after the runtime firmware notifies us of its
|
|
* readiness (called in a process context.)
|
|
*/
|
|
int
|
|
iwn4965_post_alive(struct iwn_softc *sc)
|
|
{
|
|
int error, qid;
|
|
|
|
if ((error = iwn_nic_lock(sc)) != 0)
|
|
return error;
|
|
|
|
/* Clear TX scheduler state in SRAM. */
|
|
sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
|
|
iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
|
|
IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
|
|
|
|
/* Set physical address of TX scheduler rings (1KB aligned.) */
|
|
iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
|
|
|
|
IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
|
|
|
|
/* Disable chain mode for all our 16 queues. */
|
|
iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
|
|
|
|
for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
|
|
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
|
|
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
|
|
|
|
/* Set scheduler window size. */
|
|
iwn_mem_write(sc, sc->sched_base +
|
|
IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
|
|
/* Set scheduler frame limit. */
|
|
iwn_mem_write(sc, sc->sched_base +
|
|
IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
|
|
IWN_SCHED_LIMIT << 16);
|
|
}
|
|
|
|
/* Enable interrupts for all our 16 queues. */
|
|
iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
|
|
/* Identify TX FIFO rings (0-7). */
|
|
iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
|
|
|
|
/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
|
|
for (qid = 0; qid < 7; qid++) {
|
|
static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
|
|
iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
|
|
IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
|
|
}
|
|
iwn_nic_unlock(sc);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function is called after the initialization or runtime firmware
|
|
* notifies us of its readiness (called in a process context.)
|
|
*/
|
|
int
|
|
iwn5000_post_alive(struct iwn_softc *sc)
|
|
{
|
|
int error, qid;
|
|
|
|
/* Switch to using ICT interrupt mode. */
|
|
iwn5000_ict_reset(sc);
|
|
|
|
error = iwn_nic_lock(sc);
|
|
if (error != 0)
|
|
return error;
|
|
|
|
/* Clear TX scheduler state in SRAM. */
|
|
sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
|
|
iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
|
|
IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
|
|
|
|
/* Set physical address of TX scheduler rings (1KB aligned.) */
|
|
iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
|
|
|
|
IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
|
|
|
|
/* Enable chain mode for all queues, except command queue. */
|
|
iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
|
|
iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
|
|
|
|
for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
|
|
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
|
|
IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
|
|
|
|
iwn_mem_write(sc, sc->sched_base +
|
|
IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
|
|
/* Set scheduler window size and frame limit. */
|
|
iwn_mem_write(sc, sc->sched_base +
|
|
IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
|
|
IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
|
|
}
|
|
|
|
/* Enable interrupts for all our 20 queues. */
|
|
iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
|
|
/* Identify TX FIFO rings (0-7). */
|
|
iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
|
|
|
|
/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
|
|
for (qid = 0; qid < 7; qid++) {
|
|
static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
|
|
iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
|
|
IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
|
|
}
|
|
iwn_nic_unlock(sc);
|
|
|
|
/* Configure WiMAX coexistence for combo adapters. */
|
|
error = iwn5000_send_wimax_coex(sc);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: could not configure WiMAX coexistence, error %d\n",
|
|
__func__, error);
|
|
return error;
|
|
}
|
|
if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
|
|
struct iwn5000_phy_calib_crystal cmd;
|
|
|
|
/* Perform crystal calibration. */
|
|
memset(&cmd, 0, sizeof cmd);
|
|
cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
|
|
cmd.ngroups = 1;
|
|
cmd.isvalid = 1;
|
|
cmd.cap_pin[0] = le32toh(sc->eeprom_crystal) & 0xff;
|
|
cmd.cap_pin[1] = (le32toh(sc->eeprom_crystal) >> 16) & 0xff;
|
|
DPRINTF(sc, IWN_DEBUG_CALIBRATE,
|
|
"sending crystal calibration %d, %d\n",
|
|
cmd.cap_pin[0], cmd.cap_pin[1]);
|
|
error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: crystal calibration failed, error %d\n",
|
|
__func__, error);
|
|
return error;
|
|
}
|
|
}
|
|
if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
|
|
/* Query calibration from the initialization firmware. */
|
|
error = iwn5000_query_calibration(sc);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: could not query calibration, error %d\n",
|
|
__func__, error);
|
|
return error;
|
|
}
|
|
/*
|
|
* We have the calibration results now, reboot with the
|
|
* runtime firmware (call ourselves recursively!)
|
|
*/
|
|
iwn_hw_stop(sc);
|
|
error = iwn_hw_init(sc);
|
|
} else {
|
|
/* Send calibration results to runtime firmware. */
|
|
error = iwn5000_send_calibration(sc);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* The firmware boot code is small and is intended to be copied directly into
|
|
* the NIC internal memory (no DMA transfer.)
|
|
*/
|
|
int
|
|
iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
|
|
{
|
|
int error, ntries;
|
|
|
|
size /= sizeof (uint32_t);
|
|
|
|
error = iwn_nic_lock(sc);
|
|
if (error != 0)
|
|
return error;
|
|
|
|
/* Copy microcode image into NIC memory. */
|
|
iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
|
|
(const uint32_t *)ucode, size);
|
|
|
|
iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
|
|
iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
|
|
iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
|
|
|
|
/* Start boot load now. */
|
|
iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
|
|
|
|
/* Wait for transfer to complete. */
|
|
for (ntries = 0; ntries < 1000; ntries++) {
|
|
if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
|
|
IWN_BSM_WR_CTRL_START))
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
if (ntries == 1000) {
|
|
device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
|
|
__func__);
|
|
iwn_nic_unlock(sc);
|
|
return ETIMEDOUT;
|
|
}
|
|
|
|
/* Enable boot after power up. */
|
|
iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
|
|
|
|
iwn_nic_unlock(sc);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwn4965_load_firmware(struct iwn_softc *sc)
|
|
{
|
|
struct iwn_fw_info *fw = &sc->fw;
|
|
struct iwn_dma_info *dma = &sc->fw_dma;
|
|
int error;
|
|
|
|
/* Copy initialization sections into pre-allocated DMA-safe memory. */
|
|
memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
|
|
bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
|
|
memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
|
|
fw->init.text, fw->init.textsz);
|
|
bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Tell adapter where to find initialization sections. */
|
|
error = iwn_nic_lock(sc);
|
|
if (error != 0)
|
|
return error;
|
|
iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
|
|
iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
|
|
iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
|
|
(dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
|
|
iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
|
|
iwn_nic_unlock(sc);
|
|
|
|
/* Load firmware boot code. */
|
|
error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev, "%s: could not load boot firmware\n",
|
|
__func__);
|
|
return error;
|
|
}
|
|
/* Now press "execute". */
|
|
IWN_WRITE(sc, IWN_RESET, 0);
|
|
|
|
/* Wait at most one second for first alive notification. */
|
|
error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz);
|
|
if (error) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: timeout waiting for adapter to initialize, error %d\n",
|
|
__func__, error);
|
|
return error;
|
|
}
|
|
|
|
/* Retrieve current temperature for initial TX power calibration. */
|
|
sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
|
|
sc->temp = iwn4965_get_temperature(sc);
|
|
|
|
/* Copy runtime sections into pre-allocated DMA-safe memory. */
|
|
memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
|
|
bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
|
|
memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
|
|
fw->main.text, fw->main.textsz);
|
|
bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Tell adapter where to find runtime sections. */
|
|
error = iwn_nic_lock(sc);
|
|
if (error != 0)
|
|
return error;
|
|
|
|
iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
|
|
iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
|
|
iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
|
|
(dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
|
|
iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
|
|
IWN_FW_UPDATED | fw->main.textsz);
|
|
iwn_nic_unlock(sc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
|
|
const uint8_t *section, int size)
|
|
{
|
|
struct iwn_dma_info *dma = &sc->fw_dma;
|
|
int error;
|
|
|
|
/* Copy firmware section into pre-allocated DMA-safe memory. */
|
|
memcpy(dma->vaddr, section, size);
|
|
bus_dmamap_sync(sc->fw_dma.tag, dma->map, BUS_DMASYNC_PREWRITE);
|
|
|
|
error = iwn_nic_lock(sc);
|
|
if (error != 0)
|
|
return error;
|
|
|
|
IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
|
|
IWN_FH_TX_CONFIG_DMA_PAUSE);
|
|
|
|
IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
|
|
IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
|
|
IWN_LOADDR(dma->paddr));
|
|
IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
|
|
IWN_HIADDR(dma->paddr) << 28 | size);
|
|
IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
|
|
IWN_FH_TXBUF_STATUS_TBNUM(1) |
|
|
IWN_FH_TXBUF_STATUS_TBIDX(1) |
|
|
IWN_FH_TXBUF_STATUS_TFBD_VALID);
|
|
|
|
/* Kick Flow Handler to start DMA transfer. */
|
|
IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
|
|
IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
|
|
|
|
iwn_nic_unlock(sc);
|
|
|
|
/* Wait at most five seconds for FH DMA transfer to complete. */
|
|
return msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz);
|
|
}
|
|
|
|
int
|
|
iwn5000_load_firmware(struct iwn_softc *sc)
|
|
{
|
|
struct iwn_fw_part *fw;
|
|
int error;
|
|
|
|
/* Load the initialization firmware on first boot only. */
|
|
fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
|
|
&sc->fw.main : &sc->fw.init;
|
|
|
|
error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
|
|
fw->text, fw->textsz);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: could not load firmware %s section, error %d\n",
|
|
__func__, ".text", error);
|
|
return error;
|
|
}
|
|
error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
|
|
fw->data, fw->datasz);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: could not load firmware %s section, error %d\n",
|
|
__func__, ".data", error);
|
|
return error;
|
|
}
|
|
|
|
/* Now press "execute". */
|
|
IWN_WRITE(sc, IWN_RESET, 0);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwn_read_firmware(struct iwn_softc *sc)
|
|
{
|
|
const struct iwn_hal *hal = sc->sc_hal;
|
|
struct iwn_fw_info *fw = &sc->fw;
|
|
const uint32_t *ptr;
|
|
uint32_t rev;
|
|
size_t size;
|
|
|
|
IWN_UNLOCK(sc);
|
|
|
|
/* Read firmware image from filesystem. */
|
|
sc->fw_fp = firmware_get(sc->fwname);
|
|
if (sc->fw_fp == NULL) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: could not load firmare image \"%s\"\n", __func__,
|
|
sc->fwname);
|
|
IWN_LOCK(sc);
|
|
return EINVAL;
|
|
}
|
|
IWN_LOCK(sc);
|
|
|
|
size = sc->fw_fp->datasize;
|
|
if (size < 28) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: truncated firmware header: %zu bytes\n",
|
|
__func__, size);
|
|
return EINVAL;
|
|
}
|
|
|
|
/* Process firmware header. */
|
|
ptr = (const uint32_t *)sc->fw_fp->data;
|
|
rev = le32toh(*ptr++);
|
|
/* Check firmware API version. */
|
|
if (IWN_FW_API(rev) <= 1) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: bad firmware, need API version >=2\n", __func__);
|
|
return EINVAL;
|
|
}
|
|
if (IWN_FW_API(rev) >= 3) {
|
|
/* Skip build number (version 2 header). */
|
|
size -= 4;
|
|
ptr++;
|
|
}
|
|
fw->main.textsz = le32toh(*ptr++);
|
|
fw->main.datasz = le32toh(*ptr++);
|
|
fw->init.textsz = le32toh(*ptr++);
|
|
fw->init.datasz = le32toh(*ptr++);
|
|
fw->boot.textsz = le32toh(*ptr++);
|
|
size -= 24;
|
|
|
|
/* Sanity-check firmware header. */
|
|
if (fw->main.textsz > hal->fw_text_maxsz ||
|
|
fw->main.datasz > hal->fw_data_maxsz ||
|
|
fw->init.textsz > hal->fw_text_maxsz ||
|
|
fw->init.datasz > hal->fw_data_maxsz ||
|
|
fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
|
|
(fw->boot.textsz & 3) != 0) {
|
|
device_printf(sc->sc_dev, "%s: invalid firmware header\n",
|
|
__func__);
|
|
return EINVAL;
|
|
}
|
|
|
|
/* Check that all firmware sections fit. */
|
|
if (fw->main.textsz + fw->main.datasz + fw->init.textsz +
|
|
fw->init.datasz + fw->boot.textsz > size) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: firmware file too short: %zu bytes\n",
|
|
__func__, size);
|
|
return EINVAL;
|
|
}
|
|
|
|
/* Get pointers to firmware sections. */
|
|
fw->main.text = (const uint8_t *)ptr;
|
|
fw->main.data = fw->main.text + fw->main.textsz;
|
|
fw->init.text = fw->main.data + fw->main.datasz;
|
|
fw->init.data = fw->init.text + fw->init.textsz;
|
|
fw->boot.text = fw->init.data + fw->init.datasz;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwn_clock_wait(struct iwn_softc *sc)
|
|
{
|
|
int ntries;
|
|
|
|
/* Set "initialization complete" bit. */
|
|
IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
|
|
|
|
/* Wait for clock stabilization. */
|
|
for (ntries = 0; ntries < 2500; ntries++) {
|
|
if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
|
|
return 0;
|
|
DELAY(10);
|
|
}
|
|
device_printf(sc->sc_dev,
|
|
"%s: timeout waiting for clock stabilization\n", __func__);
|
|
return ETIMEDOUT;
|
|
}
|
|
|
|
int
|
|
iwn_apm_init(struct iwn_softc *sc)
|
|
{
|
|
uint32_t tmp;
|
|
int error;
|
|
|
|
/* Disable L0s exit timer (NMI bug workaround.) */
|
|
IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
|
|
/* Don't wait for ICH L0s (ICH bug workaround.) */
|
|
IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
|
|
|
|
/* Set FH wait threshold to max (HW bug under stress workaround.) */
|
|
IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
|
|
|
|
/* Enable HAP INTA to move adapter from L1a to L0s. */
|
|
IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
|
|
|
|
/* Retrieve PCIe Active State Power Management (ASPM). */
|
|
tmp = pci_read_config(sc->sc_dev, sc->sc_cap_off + 0x10, 1);
|
|
/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
|
|
if (tmp & 0x02) /* L1 Entry enabled. */
|
|
IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
|
|
else
|
|
IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
|
|
|
|
if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
|
|
sc->hw_type != IWN_HW_REV_TYPE_6000 &&
|
|
sc->hw_type != IWN_HW_REV_TYPE_6050)
|
|
IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
|
|
|
|
/* Wait for clock stabilization before accessing prph. */
|
|
error = iwn_clock_wait(sc);
|
|
if (error != 0)
|
|
return error;
|
|
|
|
error = iwn_nic_lock(sc);
|
|
if (error != 0)
|
|
return error;
|
|
|
|
if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
|
|
/* Enable DMA and BSM (Bootstrap State Machine.) */
|
|
iwn_prph_write(sc, IWN_APMG_CLK_EN,
|
|
IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
|
|
IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
|
|
} else {
|
|
/* Enable DMA. */
|
|
iwn_prph_write(sc, IWN_APMG_CLK_EN,
|
|
IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
|
|
}
|
|
DELAY(20);
|
|
|
|
/* Disable L1-Active. */
|
|
iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
|
|
iwn_nic_unlock(sc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
iwn_apm_stop_master(struct iwn_softc *sc)
|
|
{
|
|
int ntries;
|
|
|
|
/* Stop busmaster DMA activity. */
|
|
IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
|
|
for (ntries = 0; ntries < 100; ntries++) {
|
|
if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
|
|
return;
|
|
DELAY(10);
|
|
}
|
|
device_printf(sc->sc_dev, "%s: timeout waiting for master\n",
|
|
__func__);
|
|
}
|
|
|
|
void
|
|
iwn_apm_stop(struct iwn_softc *sc)
|
|
{
|
|
iwn_apm_stop_master(sc);
|
|
|
|
/* Reset the entire device. */
|
|
IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
|
|
DELAY(10);
|
|
/* Clear "initialization complete" bit. */
|
|
IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
|
|
}
|
|
|
|
int
|
|
iwn4965_nic_config(struct iwn_softc *sc)
|
|
{
|
|
if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
|
|
/*
|
|
* I don't believe this to be correct but this is what the
|
|
* vendor driver is doing. Probably the bits should not be
|
|
* shifted in IWN_RFCFG_*.
|
|
*/
|
|
IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
|
|
IWN_RFCFG_TYPE(sc->rfcfg) |
|
|
IWN_RFCFG_STEP(sc->rfcfg) |
|
|
IWN_RFCFG_DASH(sc->rfcfg));
|
|
}
|
|
IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
|
|
IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
iwn5000_nic_config(struct iwn_softc *sc)
|
|
{
|
|
uint32_t tmp;
|
|
int error;
|
|
|
|
if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
|
|
IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
|
|
IWN_RFCFG_TYPE(sc->rfcfg) |
|
|
IWN_RFCFG_STEP(sc->rfcfg) |
|
|
IWN_RFCFG_DASH(sc->rfcfg));
|
|
}
|
|
IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
|
|
IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
|
|
|
|
error = iwn_nic_lock(sc);
|
|
if (error != 0)
|
|
return error;
|
|
iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
|
|
|
|
if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
|
|
/*
|
|
* Select first Switching Voltage Regulator (1.32V) to
|
|
* solve a stability issue related to noisy DC2DC line
|
|
* in the silicon of 1000 Series.
|
|
*/
|
|
tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
|
|
tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
|
|
tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
|
|
iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
|
|
}
|
|
iwn_nic_unlock(sc);
|
|
|
|
if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
|
|
/* Use internal power amplifier only. */
|
|
IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Take NIC ownership over Intel Active Management Technology (AMT).
|
|
*/
|
|
int
|
|
iwn_hw_prepare(struct iwn_softc *sc)
|
|
{
|
|
int ntries;
|
|
|
|
/* Check if hardware is ready. */
|
|
IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
|
|
for (ntries = 0; ntries < 5; ntries++) {
|
|
if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
|
|
IWN_HW_IF_CONFIG_NIC_READY)
|
|
return 0;
|
|
DELAY(10);
|
|
}
|
|
|
|
/* Hardware not ready, force into ready state. */
|
|
IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
|
|
for (ntries = 0; ntries < 15000; ntries++) {
|
|
if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
|
|
IWN_HW_IF_CONFIG_PREPARE_DONE))
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
if (ntries == 15000)
|
|
return ETIMEDOUT;
|
|
|
|
/* Hardware should be ready now. */
|
|
IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
|
|
for (ntries = 0; ntries < 5; ntries++) {
|
|
if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
|
|
IWN_HW_IF_CONFIG_NIC_READY)
|
|
return 0;
|
|
DELAY(10);
|
|
}
|
|
return ETIMEDOUT;
|
|
}
|
|
|
|
int
|
|
iwn_hw_init(struct iwn_softc *sc)
|
|
{
|
|
const struct iwn_hal *hal = sc->sc_hal;
|
|
int error, chnl, qid;
|
|
|
|
/* Clear pending interrupts. */
|
|
IWN_WRITE(sc, IWN_INT, 0xffffffff);
|
|
|
|
error = iwn_apm_init(sc);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: could not power ON adapter, error %d\n",
|
|
__func__, error);
|
|
return error;
|
|
}
|
|
|
|
/* Select VMAIN power source. */
|
|
error = iwn_nic_lock(sc);
|
|
if (error != 0)
|
|
return error;
|
|
iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
|
|
iwn_nic_unlock(sc);
|
|
|
|
/* Perform adapter-specific initialization. */
|
|
error = hal->nic_config(sc);
|
|
if (error != 0)
|
|
return error;
|
|
|
|
/* Initialize RX ring. */
|
|
error = iwn_nic_lock(sc);
|
|
if (error != 0)
|
|
return error;
|
|
IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
|
|
IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
|
|
/* Set physical address of RX ring (256-byte aligned.) */
|
|
IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
|
|
/* Set physical address of RX status (16-byte aligned.) */
|
|
IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
|
|
/* Enable RX. */
|
|
IWN_WRITE(sc, IWN_FH_RX_CONFIG,
|
|
IWN_FH_RX_CONFIG_ENA |
|
|
IWN_FH_RX_CONFIG_IGN_RXF_EMPTY | /* HW bug workaround */
|
|
IWN_FH_RX_CONFIG_IRQ_DST_HOST |
|
|
IWN_FH_RX_CONFIG_SINGLE_FRAME |
|
|
IWN_FH_RX_CONFIG_RB_TIMEOUT(0) |
|
|
IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
|
|
iwn_nic_unlock(sc);
|
|
IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
|
|
|
|
error = iwn_nic_lock(sc);
|
|
if (error != 0)
|
|
return error;
|
|
|
|
/* Initialize TX scheduler. */
|
|
iwn_prph_write(sc, hal->sched_txfact_addr, 0);
|
|
|
|
/* Set physical address of "keep warm" page (16-byte aligned.) */
|
|
IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
|
|
|
|
/* Initialize TX rings. */
|
|
for (qid = 0; qid < hal->ntxqs; qid++) {
|
|
struct iwn_tx_ring *txq = &sc->txq[qid];
|
|
|
|
/* Set physical address of TX ring (256-byte aligned.) */
|
|
IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
|
|
txq->desc_dma.paddr >> 8);
|
|
}
|
|
iwn_nic_unlock(sc);
|
|
|
|
/* Enable DMA channels. */
|
|
for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
|
|
IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
|
|
IWN_FH_TX_CONFIG_DMA_ENA |
|
|
IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
|
|
}
|
|
|
|
/* Clear "radio off" and "commands blocked" bits. */
|
|
IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
|
|
IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
|
|
|
|
/* Clear pending interrupts. */
|
|
IWN_WRITE(sc, IWN_INT, 0xffffffff);
|
|
/* Enable interrupt coalescing. */
|
|
IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
|
|
/* Enable interrupts. */
|
|
IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
|
|
|
|
/* _Really_ make sure "radio off" bit is cleared! */
|
|
IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
|
|
IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
|
|
|
|
error = hal->load_firmware(sc);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: could not load firmware, error %d\n",
|
|
__func__, error);
|
|
return error;
|
|
}
|
|
/* Wait at most one second for firmware alive notification. */
|
|
error = msleep(sc, &sc->sc_mtx, PCATCH, "iwninit", hz);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: timeout waiting for adapter to initialize, error %d\n",
|
|
__func__, error);
|
|
return error;
|
|
}
|
|
/* Do post-firmware initialization. */
|
|
return hal->post_alive(sc);
|
|
}
|
|
|
|
void
|
|
iwn_hw_stop(struct iwn_softc *sc)
|
|
{
|
|
const struct iwn_hal *hal = sc->sc_hal;
|
|
uint32_t tmp;
|
|
int chnl, qid, ntries;
|
|
|
|
IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
|
|
|
|
/* Disable interrupts. */
|
|
IWN_WRITE(sc, IWN_INT_MASK, 0);
|
|
IWN_WRITE(sc, IWN_INT, 0xffffffff);
|
|
IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
|
|
sc->sc_flags &= ~IWN_FLAG_USE_ICT;
|
|
|
|
/* Make sure we no longer hold the NIC lock. */
|
|
iwn_nic_unlock(sc);
|
|
|
|
/* Stop TX scheduler. */
|
|
iwn_prph_write(sc, hal->sched_txfact_addr, 0);
|
|
|
|
/* Stop all DMA channels. */
|
|
if (iwn_nic_lock(sc) == 0) {
|
|
for (chnl = 0; chnl < hal->ndmachnls; chnl++) {
|
|
IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
|
|
for (ntries = 0; ntries < 200; ntries++) {
|
|
tmp = IWN_READ(sc, IWN_FH_TX_STATUS);
|
|
if ((tmp & IWN_FH_TX_STATUS_IDLE(chnl)) ==
|
|
IWN_FH_TX_STATUS_IDLE(chnl))
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
}
|
|
iwn_nic_unlock(sc);
|
|
}
|
|
|
|
/* Stop RX ring. */
|
|
iwn_reset_rx_ring(sc, &sc->rxq);
|
|
|
|
/* Reset all TX rings. */
|
|
for (qid = 0; qid < hal->ntxqs; qid++)
|
|
iwn_reset_tx_ring(sc, &sc->txq[qid]);
|
|
|
|
if (iwn_nic_lock(sc) == 0) {
|
|
iwn_prph_write(sc, IWN_APMG_CLK_DIS,
|
|
IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
|
|
iwn_nic_unlock(sc);
|
|
}
|
|
DELAY(5);
|
|
|
|
/* Power OFF adapter. */
|
|
iwn_apm_stop(sc);
|
|
}
|
|
|
|
void
|
|
iwn_init_locked(struct iwn_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
int error;
|
|
|
|
IWN_LOCK_ASSERT(sc);
|
|
|
|
error = iwn_hw_prepare(sc);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev, "%s: hardware not ready, eror %d\n",
|
|
__func__, error);
|
|
goto fail;
|
|
}
|
|
|
|
/* Initialize interrupt mask to default value. */
|
|
sc->int_mask = IWN_INT_MASK_DEF;
|
|
sc->sc_flags &= ~IWN_FLAG_USE_ICT;
|
|
|
|
/* Check that the radio is not disabled by hardware switch. */
|
|
if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
|
|
device_printf(sc->sc_dev,
|
|
"radio is disabled by hardware switch\n");
|
|
|
|
/* Enable interrupts to get RF toggle notifications. */
|
|
IWN_WRITE(sc, IWN_INT, 0xffffffff);
|
|
IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
|
|
return;
|
|
}
|
|
|
|
/* Read firmware images from the filesystem. */
|
|
error = iwn_read_firmware(sc);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: could not read firmware, error %d\n",
|
|
__func__, error);
|
|
goto fail;
|
|
}
|
|
|
|
/* Initialize hardware and upload firmware. */
|
|
error = iwn_hw_init(sc);
|
|
firmware_put(sc->fw_fp, FIRMWARE_UNLOAD);
|
|
sc->fw_fp = NULL;
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: could not initialize hardware, error %d\n",
|
|
__func__, error);
|
|
goto fail;
|
|
}
|
|
|
|
/* Configure adapter now that it is ready. */
|
|
error = iwn_config(sc);
|
|
if (error != 0) {
|
|
device_printf(sc->sc_dev,
|
|
"%s: could not configure device, error %d\n",
|
|
__func__, error);
|
|
goto fail;
|
|
}
|
|
|
|
ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
|
|
ifp->if_drv_flags |= IFF_DRV_RUNNING;
|
|
|
|
return;
|
|
|
|
fail:
|
|
iwn_stop_locked(sc);
|
|
}
|
|
|
|
void
|
|
iwn_init(void *arg)
|
|
{
|
|
struct iwn_softc *sc = arg;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
|
|
IWN_LOCK(sc);
|
|
iwn_init_locked(sc);
|
|
IWN_UNLOCK(sc);
|
|
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
ieee80211_start_all(ic);
|
|
}
|
|
|
|
void
|
|
iwn_stop_locked(struct iwn_softc *sc)
|
|
{
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
|
|
IWN_LOCK_ASSERT(sc);
|
|
|
|
sc->sc_tx_timer = 0;
|
|
callout_stop(&sc->sc_timer_to);
|
|
ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
|
|
|
|
/* Power OFF hardware. */
|
|
iwn_hw_stop(sc);
|
|
}
|
|
|
|
void
|
|
iwn_stop(struct iwn_softc *sc)
|
|
{
|
|
IWN_LOCK(sc);
|
|
iwn_stop_locked(sc);
|
|
IWN_UNLOCK(sc);
|
|
}
|
|
|
|
/*
|
|
* Callback from net80211 to start a scan.
|
|
*/
|
|
static void
|
|
iwn_scan_start(struct ieee80211com *ic)
|
|
{
|
|
struct ifnet *ifp = ic->ic_ifp;
|
|
struct iwn_softc *sc = ifp->if_softc;
|
|
|
|
IWN_LOCK(sc);
|
|
/* make the link LED blink while we're scanning */
|
|
iwn_set_led(sc, IWN_LED_LINK, 20, 2);
|
|
IWN_UNLOCK(sc);
|
|
}
|
|
|
|
/*
|
|
* Callback from net80211 to terminate a scan.
|
|
*/
|
|
static void
|
|
iwn_scan_end(struct ieee80211com *ic)
|
|
{
|
|
struct ifnet *ifp = ic->ic_ifp;
|
|
struct iwn_softc *sc = ifp->if_softc;
|
|
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
|
|
|
|
IWN_LOCK(sc);
|
|
if (vap->iv_state == IEEE80211_S_RUN) {
|
|
/* Set link LED to ON status if we are associated */
|
|
iwn_set_led(sc, IWN_LED_LINK, 0, 1);
|
|
}
|
|
IWN_UNLOCK(sc);
|
|
}
|
|
|
|
/*
|
|
* Callback from net80211 to force a channel change.
|
|
*/
|
|
static void
|
|
iwn_set_channel(struct ieee80211com *ic)
|
|
{
|
|
const struct ieee80211_channel *c = ic->ic_curchan;
|
|
struct ifnet *ifp = ic->ic_ifp;
|
|
struct iwn_softc *sc = ifp->if_softc;
|
|
|
|
IWN_LOCK(sc);
|
|
sc->sc_rxtap.wr_chan_freq = htole16(c->ic_freq);
|
|
sc->sc_rxtap.wr_chan_flags = htole16(c->ic_flags);
|
|
sc->sc_txtap.wt_chan_freq = htole16(c->ic_freq);
|
|
sc->sc_txtap.wt_chan_flags = htole16(c->ic_flags);
|
|
IWN_UNLOCK(sc);
|
|
}
|
|
|
|
/*
|
|
* Callback from net80211 to start scanning of the current channel.
|
|
*/
|
|
static void
|
|
iwn_scan_curchan(struct ieee80211_scan_state *ss, unsigned long maxdwell)
|
|
{
|
|
struct ieee80211vap *vap = ss->ss_vap;
|
|
struct iwn_softc *sc = vap->iv_ic->ic_ifp->if_softc;
|
|
int error;
|
|
|
|
IWN_LOCK(sc);
|
|
error = iwn_scan(sc);
|
|
IWN_UNLOCK(sc);
|
|
if (error != 0)
|
|
ieee80211_cancel_scan(vap);
|
|
}
|
|
|
|
/*
|
|
* Callback from net80211 to handle the minimum dwell time being met.
|
|
* The intent is to terminate the scan but we just let the firmware
|
|
* notify us when it's finished as we have no safe way to abort it.
|
|
*/
|
|
static void
|
|
iwn_scan_mindwell(struct ieee80211_scan_state *ss)
|
|
{
|
|
/* NB: don't try to abort scan; wait for firmware to finish */
|
|
}
|
|
|
|
static struct iwn_eeprom_chan *
|
|
iwn_find_eeprom_channel(struct iwn_softc *sc, struct ieee80211_channel *c)
|
|
{
|
|
int i, j;
|
|
|
|
for (j = 0; j < 7; j++) {
|
|
for (i = 0; i < iwn_bands[j].nchan; i++) {
|
|
if (iwn_bands[j].chan[i] == c->ic_ieee)
|
|
return &sc->eeprom_channels[j][i];
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Enforce flags read from EEPROM.
|
|
*/
|
|
static int
|
|
iwn_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
|
|
int nchan, struct ieee80211_channel chans[])
|
|
{
|
|
struct iwn_softc *sc = ic->ic_ifp->if_softc;
|
|
int i;
|
|
|
|
for (i = 0; i < nchan; i++) {
|
|
struct ieee80211_channel *c = &chans[i];
|
|
struct iwn_eeprom_chan *channel;
|
|
|
|
channel = iwn_find_eeprom_channel(sc, c);
|
|
if (channel == NULL) {
|
|
if_printf(ic->ic_ifp,
|
|
"%s: invalid channel %u freq %u/0x%x\n",
|
|
__func__, c->ic_ieee, c->ic_freq, c->ic_flags);
|
|
return EINVAL;
|
|
}
|
|
c->ic_flags |= iwn_eeprom_channel_flags(channel);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
iwn_hw_reset(void *arg0, int pending)
|
|
{
|
|
struct iwn_softc *sc = arg0;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
|
|
iwn_stop(sc);
|
|
iwn_init(sc);
|
|
ieee80211_notify_radio(ic, 1);
|
|
}
|
|
|
|
static void
|
|
iwn_radio_on(void *arg0, int pending)
|
|
{
|
|
struct iwn_softc *sc = arg0;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
|
|
|
|
if (vap != NULL) {
|
|
iwn_init(sc);
|
|
ieee80211_init(vap);
|
|
}
|
|
}
|
|
|
|
static void
|
|
iwn_radio_off(void *arg0, int pending)
|
|
{
|
|
struct iwn_softc *sc = arg0;
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
|
|
|
|
iwn_stop(sc);
|
|
if (vap != NULL)
|
|
ieee80211_stop(vap);
|
|
|
|
/* Enable interrupts to get RF toggle notification. */
|
|
IWN_LOCK(sc);
|
|
IWN_WRITE(sc, IWN_INT, 0xffffffff);
|
|
IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
|
|
IWN_UNLOCK(sc);
|
|
}
|
|
|
|
static void
|
|
iwn_sysctlattach(struct iwn_softc *sc)
|
|
{
|
|
struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
|
|
struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
|
|
|
|
#ifdef IWN_DEBUG
|
|
sc->sc_debug = 0;
|
|
SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
|
|
"debug", CTLFLAG_RW, &sc->sc_debug, 0, "control debugging printfs");
|
|
#endif
|
|
}
|
|
|
|
static int
|
|
iwn_shutdown(device_t dev)
|
|
{
|
|
struct iwn_softc *sc = device_get_softc(dev);
|
|
|
|
iwn_stop(sc);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
iwn_suspend(device_t dev)
|
|
{
|
|
struct iwn_softc *sc = device_get_softc(dev);
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
|
|
|
|
iwn_stop(sc);
|
|
if (vap != NULL)
|
|
ieee80211_stop(vap);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
iwn_resume(device_t dev)
|
|
{
|
|
struct iwn_softc *sc = device_get_softc(dev);
|
|
struct ifnet *ifp = sc->sc_ifp;
|
|
struct ieee80211com *ic = ifp->if_l2com;
|
|
struct ieee80211vap *vap = TAILQ_FIRST(&ic->ic_vaps);
|
|
|
|
/* Clear device-specific "PCI retry timeout" register (41h). */
|
|
pci_write_config(dev, 0x41, 0, 1);
|
|
|
|
if (ifp->if_flags & IFF_UP) {
|
|
iwn_init(sc);
|
|
if (vap != NULL)
|
|
ieee80211_init(vap);
|
|
if (ifp->if_drv_flags & IFF_DRV_RUNNING)
|
|
iwn_start(ifp);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifdef IWN_DEBUG
|
|
static const char *
|
|
iwn_intr_str(uint8_t cmd)
|
|
{
|
|
switch (cmd) {
|
|
/* Notifications */
|
|
case IWN_UC_READY: return "UC_READY";
|
|
case IWN_ADD_NODE_DONE: return "ADD_NODE_DONE";
|
|
case IWN_TX_DONE: return "TX_DONE";
|
|
case IWN_START_SCAN: return "START_SCAN";
|
|
case IWN_STOP_SCAN: return "STOP_SCAN";
|
|
case IWN_RX_STATISTICS: return "RX_STATS";
|
|
case IWN_BEACON_STATISTICS: return "BEACON_STATS";
|
|
case IWN_STATE_CHANGED: return "STATE_CHANGED";
|
|
case IWN_BEACON_MISSED: return "BEACON_MISSED";
|
|
case IWN_RX_PHY: return "RX_PHY";
|
|
case IWN_MPDU_RX_DONE: return "MPDU_RX_DONE";
|
|
case IWN_RX_DONE: return "RX_DONE";
|
|
|
|
/* Command Notifications */
|
|
case IWN_CMD_RXON: return "IWN_CMD_RXON";
|
|
case IWN_CMD_RXON_ASSOC: return "IWN_CMD_RXON_ASSOC";
|
|
case IWN_CMD_EDCA_PARAMS: return "IWN_CMD_EDCA_PARAMS";
|
|
case IWN_CMD_TIMING: return "IWN_CMD_TIMING";
|
|
case IWN_CMD_LINK_QUALITY: return "IWN_CMD_LINK_QUALITY";
|
|
case IWN_CMD_SET_LED: return "IWN_CMD_SET_LED";
|
|
case IWN5000_CMD_WIMAX_COEX: return "IWN5000_CMD_WIMAX_COEX";
|
|
case IWN5000_CMD_CALIB_CONFIG: return "IWN5000_CMD_CALIB_CONFIG";
|
|
case IWN5000_CMD_CALIB_RESULT: return "IWN5000_CMD_CALIB_RESULT";
|
|
case IWN5000_CMD_CALIB_COMPLETE: return "IWN5000_CMD_CALIB_COMPLETE";
|
|
case IWN_CMD_SET_POWER_MODE: return "IWN_CMD_SET_POWER_MODE";
|
|
case IWN_CMD_SCAN: return "IWN_CMD_SCAN";
|
|
case IWN_CMD_SCAN_RESULTS: return "IWN_CMD_SCAN_RESULTS";
|
|
case IWN_CMD_TXPOWER: return "IWN_CMD_TXPOWER";
|
|
case IWN_CMD_TXPOWER_DBM: return "IWN_CMD_TXPOWER_DBM";
|
|
case IWN5000_CMD_TX_ANT_CONFIG: return "IWN5000_CMD_TX_ANT_CONFIG";
|
|
case IWN_CMD_BT_COEX: return "IWN_CMD_BT_COEX";
|
|
case IWN_CMD_SET_CRITICAL_TEMP: return "IWN_CMD_SET_CRITICAL_TEMP";
|
|
case IWN_CMD_SET_SENSITIVITY: return "IWN_CMD_SET_SENSITIVITY";
|
|
case IWN_CMD_PHY_CALIB: return "IWN_CMD_PHY_CALIB";
|
|
}
|
|
return "UNKNOWN INTR NOTIF/CMD";
|
|
}
|
|
#endif /* IWN_DEBUG */
|
|
|
|
static device_method_t iwn_methods[] = {
|
|
/* Device interface */
|
|
DEVMETHOD(device_probe, iwn_probe),
|
|
DEVMETHOD(device_attach, iwn_attach),
|
|
DEVMETHOD(device_detach, iwn_detach),
|
|
DEVMETHOD(device_shutdown, iwn_shutdown),
|
|
DEVMETHOD(device_suspend, iwn_suspend),
|
|
DEVMETHOD(device_resume, iwn_resume),
|
|
{ 0, 0 }
|
|
};
|
|
|
|
static driver_t iwn_driver = {
|
|
"iwn",
|
|
iwn_methods,
|
|
sizeof (struct iwn_softc)
|
|
};
|
|
static devclass_t iwn_devclass;
|
|
|
|
DRIVER_MODULE(iwn, pci, iwn_driver, iwn_devclass, 0, 0);
|
|
MODULE_DEPEND(iwn, pci, 1, 1, 1);
|
|
MODULE_DEPEND(iwn, firmware, 1, 1, 1);
|
|
MODULE_DEPEND(iwn, wlan, 1, 1, 1);
|
|
MODULE_DEPEND(iwn, wlan_amrr, 1, 1, 1);
|