freebsd-dev/include/llvm/CodeGen/MachineFrameInfo.h
2009-10-14 17:57:32 +00:00

438 lines
17 KiB
C++

//===-- CodeGen/MachineFrameInfo.h - Abstract Stack Frame Rep. --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The file defines the MachineFrameInfo class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_MACHINEFRAMEINFO_H
#define LLVM_CODEGEN_MACHINEFRAMEINFO_H
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/Support/DataTypes.h"
#include <cassert>
#include <vector>
namespace llvm {
class raw_ostream;
class TargetData;
class TargetRegisterClass;
class Type;
class MachineModuleInfo;
class MachineFunction;
class MachineBasicBlock;
class TargetFrameInfo;
/// The CalleeSavedInfo class tracks the information need to locate where a
/// callee saved register in the current frame.
class CalleeSavedInfo {
private:
unsigned Reg;
const TargetRegisterClass *RegClass;
int FrameIdx;
public:
CalleeSavedInfo(unsigned R, const TargetRegisterClass *RC, int FI = 0)
: Reg(R)
, RegClass(RC)
, FrameIdx(FI)
{}
// Accessors.
unsigned getReg() const { return Reg; }
const TargetRegisterClass *getRegClass() const { return RegClass; }
int getFrameIdx() const { return FrameIdx; }
void setFrameIdx(int FI) { FrameIdx = FI; }
};
/// The MachineFrameInfo class represents an abstract stack frame until
/// prolog/epilog code is inserted. This class is key to allowing stack frame
/// representation optimizations, such as frame pointer elimination. It also
/// allows more mundane (but still important) optimizations, such as reordering
/// of abstract objects on the stack frame.
///
/// To support this, the class assigns unique integer identifiers to stack
/// objects requested clients. These identifiers are negative integers for
/// fixed stack objects (such as arguments passed on the stack) or nonnegative
/// for objects that may be reordered. Instructions which refer to stack
/// objects use a special MO_FrameIndex operand to represent these frame
/// indexes.
///
/// Because this class keeps track of all references to the stack frame, it
/// knows when a variable sized object is allocated on the stack. This is the
/// sole condition which prevents frame pointer elimination, which is an
/// important optimization on register-poor architectures. Because original
/// variable sized alloca's in the source program are the only source of
/// variable sized stack objects, it is safe to decide whether there will be
/// any variable sized objects before all stack objects are known (for
/// example, register allocator spill code never needs variable sized
/// objects).
///
/// When prolog/epilog code emission is performed, the final stack frame is
/// built and the machine instructions are modified to refer to the actual
/// stack offsets of the object, eliminating all MO_FrameIndex operands from
/// the program.
///
/// @brief Abstract Stack Frame Information
class MachineFrameInfo {
// StackObject - Represent a single object allocated on the stack.
struct StackObject {
// The size of this object on the stack. 0 means a variable sized object,
// ~0ULL means a dead object.
uint64_t Size;
// Alignment - The required alignment of this stack slot.
unsigned Alignment;
// isImmutable - If true, the value of the stack object is set before
// entering the function and is not modified inside the function. By
// default, fixed objects are immutable unless marked otherwise.
bool isImmutable;
// SPOffset - The offset of this object from the stack pointer on entry to
// the function. This field has no meaning for a variable sized element.
int64_t SPOffset;
StackObject(uint64_t Sz, unsigned Al, int64_t SP = 0, bool IM = false)
: Size(Sz), Alignment(Al), isImmutable(IM), SPOffset(SP) {}
};
/// Objects - The list of stack objects allocated...
///
std::vector<StackObject> Objects;
/// NumFixedObjects - This contains the number of fixed objects contained on
/// the stack. Because fixed objects are stored at a negative index in the
/// Objects list, this is also the index to the 0th object in the list.
///
unsigned NumFixedObjects;
/// HasVarSizedObjects - This boolean keeps track of whether any variable
/// sized objects have been allocated yet.
///
bool HasVarSizedObjects;
/// FrameAddressTaken - This boolean keeps track of whether there is a call
/// to builtin \@llvm.frameaddress.
bool FrameAddressTaken;
/// StackSize - The prolog/epilog code inserter calculates the final stack
/// offsets for all of the fixed size objects, updating the Objects list
/// above. It then updates StackSize to contain the number of bytes that need
/// to be allocated on entry to the function.
///
uint64_t StackSize;
/// OffsetAdjustment - The amount that a frame offset needs to be adjusted to
/// have the actual offset from the stack/frame pointer. The exact usage of
/// this is target-dependent, but it is typically used to adjust between
/// SP-relative and FP-relative offsets. E.G., if objects are accessed via
/// SP then OffsetAdjustment is zero; if FP is used, OffsetAdjustment is set
/// to the distance between the initial SP and the value in FP. For many
/// targets, this value is only used when generating debug info (via
/// TargetRegisterInfo::getFrameIndexOffset); when generating code, the
/// corresponding adjustments are performed directly.
int OffsetAdjustment;
/// MaxAlignment - The prolog/epilog code inserter may process objects
/// that require greater alignment than the default alignment the target
/// provides. To handle this, MaxAlignment is set to the maximum alignment
/// needed by the objects on the current frame. If this is greater than the
/// native alignment maintained by the compiler, dynamic alignment code will
/// be needed.
///
unsigned MaxAlignment;
/// HasCalls - Set to true if this function has any function calls. This is
/// only valid during and after prolog/epilog code insertion.
bool HasCalls;
/// StackProtectorIdx - The frame index for the stack protector.
int StackProtectorIdx;
/// MaxCallFrameSize - This contains the size of the largest call frame if the
/// target uses frame setup/destroy pseudo instructions (as defined in the
/// TargetFrameInfo class). This information is important for frame pointer
/// elimination. If is only valid during and after prolog/epilog code
/// insertion.
///
unsigned MaxCallFrameSize;
/// CSInfo - The prolog/epilog code inserter fills in this vector with each
/// callee saved register saved in the frame. Beyond its use by the prolog/
/// epilog code inserter, this data used for debug info and exception
/// handling.
std::vector<CalleeSavedInfo> CSInfo;
/// CSIValid - Has CSInfo been set yet?
bool CSIValid;
/// MMI - This field is set (via setMachineModuleInfo) by a module info
/// consumer (ex. DwarfWriter) to indicate that frame layout information
/// should be acquired. Typically, it's the responsibility of the target's
/// TargetRegisterInfo prologue/epilogue emitting code to inform
/// MachineModuleInfo of frame layouts.
MachineModuleInfo *MMI;
/// TargetFrameInfo - Target information about frame layout.
///
const TargetFrameInfo &TFI;
public:
explicit MachineFrameInfo(const TargetFrameInfo &tfi) : TFI(tfi) {
StackSize = NumFixedObjects = OffsetAdjustment = MaxAlignment = 0;
HasVarSizedObjects = false;
FrameAddressTaken = false;
HasCalls = false;
StackProtectorIdx = -1;
MaxCallFrameSize = 0;
CSIValid = false;
MMI = 0;
}
/// hasStackObjects - Return true if there are any stack objects in this
/// function.
///
bool hasStackObjects() const { return !Objects.empty(); }
/// hasVarSizedObjects - This method may be called any time after instruction
/// selection is complete to determine if the stack frame for this function
/// contains any variable sized objects.
///
bool hasVarSizedObjects() const { return HasVarSizedObjects; }
/// getStackProtectorIndex/setStackProtectorIndex - Return the index for the
/// stack protector object.
///
int getStackProtectorIndex() const { return StackProtectorIdx; }
void setStackProtectorIndex(int I) { StackProtectorIdx = I; }
/// isFrameAddressTaken - This method may be called any time after instruction
/// selection is complete to determine if there is a call to
/// \@llvm.frameaddress in this function.
bool isFrameAddressTaken() const { return FrameAddressTaken; }
void setFrameAddressIsTaken(bool T) { FrameAddressTaken = T; }
/// getObjectIndexBegin - Return the minimum frame object index.
///
int getObjectIndexBegin() const { return -NumFixedObjects; }
/// getObjectIndexEnd - Return one past the maximum frame object index.
///
int getObjectIndexEnd() const { return (int)Objects.size()-NumFixedObjects; }
/// getNumFixedObjects() - Return the number of fixed objects.
unsigned getNumFixedObjects() const { return NumFixedObjects; }
/// getNumObjects() - Return the number of objects.
///
unsigned getNumObjects() const { return Objects.size(); }
/// getObjectSize - Return the size of the specified object.
///
int64_t getObjectSize(int ObjectIdx) const {
assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
"Invalid Object Idx!");
return Objects[ObjectIdx+NumFixedObjects].Size;
}
/// setObjectSize - Change the size of the specified stack object.
void setObjectSize(int ObjectIdx, int64_t Size) {
assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
"Invalid Object Idx!");
Objects[ObjectIdx+NumFixedObjects].Size = Size;
}
/// getObjectAlignment - Return the alignment of the specified stack object.
unsigned getObjectAlignment(int ObjectIdx) const {
assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
"Invalid Object Idx!");
return Objects[ObjectIdx+NumFixedObjects].Alignment;
}
/// setObjectAlignment - Change the alignment of the specified stack object.
void setObjectAlignment(int ObjectIdx, unsigned Align) {
assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
"Invalid Object Idx!");
Objects[ObjectIdx+NumFixedObjects].Alignment = Align;
}
/// getObjectOffset - Return the assigned stack offset of the specified object
/// from the incoming stack pointer.
///
int64_t getObjectOffset(int ObjectIdx) const {
assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
"Invalid Object Idx!");
assert(!isDeadObjectIndex(ObjectIdx) &&
"Getting frame offset for a dead object?");
return Objects[ObjectIdx+NumFixedObjects].SPOffset;
}
/// setObjectOffset - Set the stack frame offset of the specified object. The
/// offset is relative to the stack pointer on entry to the function.
///
void setObjectOffset(int ObjectIdx, int64_t SPOffset) {
assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
"Invalid Object Idx!");
assert(!isDeadObjectIndex(ObjectIdx) &&
"Setting frame offset for a dead object?");
Objects[ObjectIdx+NumFixedObjects].SPOffset = SPOffset;
}
/// getStackSize - Return the number of bytes that must be allocated to hold
/// all of the fixed size frame objects. This is only valid after
/// Prolog/Epilog code insertion has finalized the stack frame layout.
///
uint64_t getStackSize() const { return StackSize; }
/// setStackSize - Set the size of the stack...
///
void setStackSize(uint64_t Size) { StackSize = Size; }
/// getOffsetAdjustment - Return the correction for frame offsets.
///
int getOffsetAdjustment() const { return OffsetAdjustment; }
/// setOffsetAdjustment - Set the correction for frame offsets.
///
void setOffsetAdjustment(int Adj) { OffsetAdjustment = Adj; }
/// getMaxAlignment - Return the alignment in bytes that this function must be
/// aligned to, which is greater than the default stack alignment provided by
/// the target.
///
unsigned getMaxAlignment() const { return MaxAlignment; }
/// setMaxAlignment - Set the preferred alignment.
///
void setMaxAlignment(unsigned Align) { MaxAlignment = Align; }
/// hasCalls - Return true if the current function has no function calls.
/// This is only valid during or after prolog/epilog code emission.
///
bool hasCalls() const { return HasCalls; }
void setHasCalls(bool V) { HasCalls = V; }
/// getMaxCallFrameSize - Return the maximum size of a call frame that must be
/// allocated for an outgoing function call. This is only available if
/// CallFrameSetup/Destroy pseudo instructions are used by the target, and
/// then only during or after prolog/epilog code insertion.
///
unsigned getMaxCallFrameSize() const { return MaxCallFrameSize; }
void setMaxCallFrameSize(unsigned S) { MaxCallFrameSize = S; }
/// CreateFixedObject - Create a new object at a fixed location on the stack.
/// All fixed objects should be created before other objects are created for
/// efficiency. By default, fixed objects are immutable. This returns an
/// index with a negative value.
///
int CreateFixedObject(uint64_t Size, int64_t SPOffset,
bool Immutable = true);
/// isFixedObjectIndex - Returns true if the specified index corresponds to a
/// fixed stack object.
bool isFixedObjectIndex(int ObjectIdx) const {
return ObjectIdx < 0 && (ObjectIdx >= -(int)NumFixedObjects);
}
/// isImmutableObjectIndex - Returns true if the specified index corresponds
/// to an immutable object.
bool isImmutableObjectIndex(int ObjectIdx) const {
assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
"Invalid Object Idx!");
return Objects[ObjectIdx+NumFixedObjects].isImmutable;
}
/// isDeadObjectIndex - Returns true if the specified index corresponds to
/// a dead object.
bool isDeadObjectIndex(int ObjectIdx) const {
assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
"Invalid Object Idx!");
return Objects[ObjectIdx+NumFixedObjects].Size == ~0ULL;
}
/// CreateStackObject - Create a new statically sized stack object, returning
/// a nonnegative identifier to represent it.
///
int CreateStackObject(uint64_t Size, unsigned Alignment) {
assert(Size != 0 && "Cannot allocate zero size stack objects!");
Objects.push_back(StackObject(Size, Alignment));
return (int)Objects.size()-NumFixedObjects-1;
}
/// RemoveStackObject - Remove or mark dead a statically sized stack object.
///
void RemoveStackObject(int ObjectIdx) {
// Mark it dead.
Objects[ObjectIdx+NumFixedObjects].Size = ~0ULL;
}
/// CreateVariableSizedObject - Notify the MachineFrameInfo object that a
/// variable sized object has been created. This must be created whenever a
/// variable sized object is created, whether or not the index returned is
/// actually used.
///
int CreateVariableSizedObject() {
HasVarSizedObjects = true;
Objects.push_back(StackObject(0, 1));
return (int)Objects.size()-NumFixedObjects-1;
}
/// getCalleeSavedInfo - Returns a reference to call saved info vector for the
/// current function.
const std::vector<CalleeSavedInfo> &getCalleeSavedInfo() const {
return CSInfo;
}
/// setCalleeSavedInfo - Used by prolog/epilog inserter to set the function's
/// callee saved information.
void setCalleeSavedInfo(const std::vector<CalleeSavedInfo> &CSI) {
CSInfo = CSI;
}
/// isCalleeSavedInfoValid - Has the callee saved info been calculated yet?
bool isCalleeSavedInfoValid() const { return CSIValid; }
void setCalleeSavedInfoValid(bool v) { CSIValid = v; }
/// getPristineRegs - Return a set of physical registers that are pristine on
/// entry to the MBB.
///
/// Pristine registers hold a value that is useless to the current function,
/// but that must be preserved - they are callee saved registers that have not
/// been saved yet.
///
/// Before the PrologueEpilogueInserter has placed the CSR spill code, this
/// method always returns an empty set.
BitVector getPristineRegs(const MachineBasicBlock *MBB) const;
/// getMachineModuleInfo - Used by a prologue/epilogue
/// emitter (TargetRegisterInfo) to provide frame layout information.
MachineModuleInfo *getMachineModuleInfo() const { return MMI; }
/// setMachineModuleInfo - Used by a meta info consumer (DwarfWriter) to
/// indicate that frame layout information should be gathered.
void setMachineModuleInfo(MachineModuleInfo *mmi) { MMI = mmi; }
/// print - Used by the MachineFunction printer to print information about
/// stack objects. Implemented in MachineFunction.cpp
///
void print(const MachineFunction &MF, raw_ostream &OS) const;
/// dump - Print the function to stderr.
void dump(const MachineFunction &MF) const;
};
} // End llvm namespace
#endif