freebsd-dev/sys/dev/sdhci/sdhci_fsl_fdt.c
Hubert Mazur f97e7d6e9d sdhci_fsl_fdt: Add voltage switching through syscon
Some SoCs does not have a fixed regulator to handle voltage
switching automatically. Add support for voltage switching
through syscon register when necessary. Add new errata flag
indicating missing regulator. Apply errata to SoCs, which are
known to be affected, i.e. LS1046 and LS1012.

Obtained from: Semihalf
Sponsored by: Alstom Group
Differential revision: https://reviews.freebsd.org/D34029
2022-02-22 09:58:38 +01:00

1579 lines
43 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause-FreeBSD
*
* Copyright (c) 2020 - 2021 Alstom Group.
* Copyright (c) 2020 - 2021 Semihalf.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* eSDHC controller driver for NXP QorIQ Layerscape SoCs. */
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/endian.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/rman.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <machine/bus.h>
#include <machine/resource.h>
#include <dev/extres/clk/clk.h>
#include <dev/extres/syscon/syscon.h>
#include <dev/mmc/bridge.h>
#include <dev/mmc/mmcbrvar.h>
#include <dev/mmc/mmc_fdt_helpers.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#include <dev/sdhci/sdhci.h>
#include <dev/sdhci/sdhci_fdt_gpio.h>
#include "mmcbr_if.h"
#include "sdhci_if.h"
#include "syscon_if.h"
#define RD4 (sc->read)
#define WR4 (sc->write)
#define SDHCI_FSL_PRES_STATE 0x24
#define SDHCI_FSL_PRES_SDSTB (1 << 3)
#define SDHCI_FSL_PRES_COMPAT_MASK 0x000f0f07
#define SDHCI_FSL_PROT_CTRL 0x28
#define SDHCI_FSL_PROT_CTRL_WIDTH_1BIT (0 << 1)
#define SDHCI_FSL_PROT_CTRL_WIDTH_4BIT (1 << 1)
#define SDHCI_FSL_PROT_CTRL_WIDTH_8BIT (2 << 1)
#define SDHCI_FSL_PROT_CTRL_WIDTH_MASK (3 << 1)
#define SDHCI_FSL_PROT_CTRL_BYTE_SWAP (0 << 4)
#define SDHCI_FSL_PROT_CTRL_BYTE_NATIVE (2 << 4)
#define SDHCI_FSL_PROT_CTRL_BYTE_MASK (3 << 4)
#define SDHCI_FSL_PROT_CTRL_DMA_MASK (3 << 8)
#define SDHCI_FSL_PROT_CTRL_VOLT_SEL (1 << 10)
#define SDHCI_FSL_IRQSTAT 0x30
#define SDHCI_FSL_IRQSTAT_BRR (1 << 5)
#define SDHCI_FSL_IRQSTAT_CINTSEN (1 << 8)
#define SDHCI_FSL_IRQSTAT_RTE (1 << 12)
#define SDHCI_FSL_IRQSTAT_TNE (1 << 26)
#define SDHCI_FSL_SYS_CTRL 0x2c
#define SDHCI_FSL_CLK_IPGEN (1 << 0)
#define SDHCI_FSL_CLK_SDCLKEN (1 << 3)
#define SDHCI_FSL_CLK_DIVIDER_MASK 0x000000f0
#define SDHCI_FSL_CLK_DIVIDER_SHIFT 4
#define SDHCI_FSL_CLK_PRESCALE_MASK 0x0000ff00
#define SDHCI_FSL_CLK_PRESCALE_SHIFT 8
#define SDHCI_FSL_WTMK_LVL 0x44
#define SDHCI_FSL_WTMK_RD_512B (0 << 0)
#define SDHCI_FSL_WTMK_WR_512B (0 << 15)
#define SDHCI_FSL_AUTOCERR 0x3C
#define SDHCI_FSL_AUTOCERR_UHMS_HS200 (3 << 16)
#define SDHCI_FSL_AUTOCERR_UHMS (7 << 16)
#define SDHCI_FSL_AUTOCERR_EXTN (1 << 22)
#define SDHCI_FSL_AUTOCERR_SMPCLKSEL (1 << 23)
#define SDHCI_FSL_AUTOCERR_UHMS_SHIFT 16
#define SDHCI_FSL_HOST_VERSION 0xfc
#define SDHCI_FSL_VENDOR_V23 0x13
#define SDHCI_FSL_CAPABILITIES2 0x114
#define SDHCI_FSL_TBCTL 0x120
#define SDHCI_FSL_TBSTAT 0x124
#define SDHCI_FSL_TBCTL_TBEN (1 << 2)
#define SDHCI_FSL_TBCTL_HS400_EN (1 << 4)
#define SDHCI_FSL_TBCTL_SAMP_CMD_DQS (1 << 5)
#define SDHCI_FSL_TBCTL_HS400_WND_ADJ (1 << 6)
#define SDHCI_FSL_TBCTL_TB_MODE_MASK 0x3
#define SDHCI_FSL_TBCTL_MODE_1 0
#define SDHCI_FSL_TBCTL_MODE_2 1
#define SDHCI_FSL_TBCTL_MODE_3 2
#define SDHCI_FSL_TBCTL_MODE_SW 3
#define SDHCI_FSL_TBPTR 0x128
#define SDHCI_FSL_TBPTR_WND_START_SHIFT 8
#define SDHCI_FSL_TBPTR_WND_MASK 0x7F
#define SDHCI_FSL_SDCLKCTL 0x144
#define SDHCI_FSL_SDCLKCTL_CMD_CLK_CTL (1 << 15)
#define SDHCI_FSL_SDCLKCTL_LPBK_CLK_SEL (1 << 31)
#define SDHCI_FSL_SDTIMINGCTL 0x148
#define SDHCI_FSL_SDTIMINGCTL_FLW_CTL (1 << 15)
#define SDHCI_FSL_DLLCFG0 0x160
#define SDHCI_FSL_DLLCFG0_FREQ_SEL (1 << 27)
#define SDHCI_FSL_DLLCFG0_RESET (1 << 30)
#define SDHCI_FSL_DLLCFG0_EN (1 << 31)
#define SDHCI_FSL_DLLCFG1 0x164
#define SDHCI_FSL_DLLCFG1_PULSE_STRETCH (1 << 31)
#define SDHCI_FSL_DLLSTAT0 0x170
#define SDHCI_FSL_DLLSTAT0_SLV_STS (1 << 27)
#define SDHCI_FSL_ESDHC_CTRL 0x40c
#define SDHCI_FSL_ESDHC_CTRL_SNOOP (1 << 6)
#define SDHCI_FSL_ESDHC_CTRL_FAF (1 << 18)
#define SDHCI_FSL_ESDHC_CTRL_CLK_DIV2 (1 << 19)
#define SCFG_SDHCIOVSELCR 0x408
#define SCFG_SDHCIOVSELCR_TGLEN (1 << 0)
#define SCFG_SDHCIOVSELCR_VS (1 << 31)
#define SCFG_SDHCIOVSELCR_VSELVAL_MASK (3 << 1)
#define SCFG_SDHCIOVSELCR_VSELVAL_1_8 0x0
#define SCFG_SDHCIOVSELCR_VSELVAL_3_3 0x2
#define SDHCI_FSL_CAN_VDD_MASK \
(SDHCI_CAN_VDD_180 | SDHCI_CAN_VDD_300 | SDHCI_CAN_VDD_330)
/* Some platforms do not detect pulse width correctly. */
#define SDHCI_FSL_UNRELIABLE_PULSE_DET (1 << 0)
/* On some platforms switching voltage to 1.8V is not supported */
#define SDHCI_FSL_UNSUPP_1_8V (1 << 1)
/* Hardware tuning can fail, fallback to SW tuning in that case. */
#define SDHCI_FSL_TUNING_ERRATUM_TYPE1 (1 << 2)
/*
* Pointer window might not be set properly on some platforms.
* Check window and perform SW tuning.
*/
#define SDHCI_FSL_TUNING_ERRATUM_TYPE2 (1 << 3)
/*
* In HS400 mode only 4, 8, 12 clock dividers can be used.
* Use the smallest value, bigger than requested in that case.
*/
#define SDHCI_FSL_HS400_LIMITED_CLK_DIV (1 << 4)
/*
* Some SoCs don't have a fixed regulator. Switching voltage
* requires special routine including syscon registers.
*/
#define SDHCI_FSL_MISSING_VCCQ_REG (1 << 5)
/*
* HS400 tuning is done in HS200 mode, but it has to be done using
* the target frequency. In order to apply the errata above we need to
* know the target mode during tuning procedure. Use this flag for just that.
*/
#define SDHCI_FSL_HS400_FLAG (1 << 0)
#define SDHCI_FSL_MAX_RETRIES 20000 /* DELAY(10) * this = 200ms */
struct sdhci_fsl_fdt_softc {
device_t dev;
const struct sdhci_fsl_fdt_soc_data *soc_data;
struct resource *mem_res;
struct resource *irq_res;
void *irq_cookie;
uint32_t baseclk_hz;
uint32_t maxclk_hz;
struct sdhci_fdt_gpio *gpio;
struct sdhci_slot slot;
bool slot_init_done;
uint32_t cmd_and_mode;
uint16_t sdclk_bits;
struct mmc_helper fdt_helper;
uint32_t div_ratio;
uint8_t vendor_ver;
uint32_t flags;
uint32_t (* read)(struct sdhci_fsl_fdt_softc *, bus_size_t);
void (* write)(struct sdhci_fsl_fdt_softc *, bus_size_t, uint32_t);
};
struct sdhci_fsl_fdt_soc_data {
int quirks;
int baseclk_div;
uint8_t errata;
char *syscon_compat;
};
static const struct sdhci_fsl_fdt_soc_data sdhci_fsl_fdt_ls1012a_soc_data = {
.quirks = 0,
.baseclk_div = 1,
.errata = SDHCI_FSL_MISSING_VCCQ_REG | SDHCI_FSL_TUNING_ERRATUM_TYPE2,
.syscon_compat = "fsl,ls1012a-scfg",
};
static const struct sdhci_fsl_fdt_soc_data sdhci_fsl_fdt_ls1028a_soc_data = {
.quirks = SDHCI_QUIRK_DONT_SET_HISPD_BIT |
SDHCI_QUIRK_BROKEN_AUTO_STOP | SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK,
.baseclk_div = 2,
.errata = SDHCI_FSL_UNRELIABLE_PULSE_DET |
SDHCI_FSL_HS400_LIMITED_CLK_DIV,
};
static const struct sdhci_fsl_fdt_soc_data sdhci_fsl_fdt_ls1046a_soc_data = {
.quirks = SDHCI_QUIRK_DONT_SET_HISPD_BIT | SDHCI_QUIRK_BROKEN_AUTO_STOP,
.baseclk_div = 2,
.errata = SDHCI_FSL_MISSING_VCCQ_REG | SDHCI_FSL_TUNING_ERRATUM_TYPE2,
.syscon_compat = "fsl,ls1046a-scfg",
};
static const struct sdhci_fsl_fdt_soc_data sdhci_fsl_fdt_lx2160a_soc_data = {
.quirks = 0,
.baseclk_div = 2,
.errata = SDHCI_FSL_UNRELIABLE_PULSE_DET |
SDHCI_FSL_HS400_LIMITED_CLK_DIV,
};
static const struct sdhci_fsl_fdt_soc_data sdhci_fsl_fdt_gen_data = {
.quirks = 0,
.baseclk_div = 1,
};
static const struct ofw_compat_data sdhci_fsl_fdt_compat_data[] = {
{"fsl,ls1012a-esdhc", (uintptr_t)&sdhci_fsl_fdt_ls1012a_soc_data},
{"fsl,ls1028a-esdhc", (uintptr_t)&sdhci_fsl_fdt_ls1028a_soc_data},
{"fsl,ls1046a-esdhc", (uintptr_t)&sdhci_fsl_fdt_ls1046a_soc_data},
{"fsl,esdhc", (uintptr_t)&sdhci_fsl_fdt_gen_data},
{NULL, 0}
};
static uint32_t
read_be(struct sdhci_fsl_fdt_softc *sc, bus_size_t off)
{
return (be32toh(bus_read_4(sc->mem_res, off)));
}
static void
write_be(struct sdhci_fsl_fdt_softc *sc, bus_size_t off, uint32_t val)
{
bus_write_4(sc->mem_res, off, htobe32(val));
}
static uint32_t
read_le(struct sdhci_fsl_fdt_softc *sc, bus_size_t off)
{
return (bus_read_4(sc->mem_res, off));
}
static void
write_le(struct sdhci_fsl_fdt_softc *sc, bus_size_t off, uint32_t val)
{
bus_write_4(sc->mem_res, off, val);
}
static uint16_t
sdhci_fsl_fdt_get_clock(struct sdhci_fsl_fdt_softc *sc)
{
uint16_t val;
val = sc->sdclk_bits | SDHCI_CLOCK_INT_EN;
if (RD4(sc, SDHCI_FSL_PRES_STATE) & SDHCI_FSL_PRES_SDSTB)
val |= SDHCI_CLOCK_INT_STABLE;
if (RD4(sc, SDHCI_FSL_SYS_CTRL) & SDHCI_FSL_CLK_SDCLKEN)
val |= SDHCI_CLOCK_CARD_EN;
return (val);
}
/*
* Calculate clock prescaler and divisor values based on the following formula:
* `frequency = base clock / (prescaler * divisor)`.
*/
#define SDHCI_FSL_FDT_CLK_DIV(sc, base, freq, pre, div) \
do { \
(pre) = (sc)->vendor_ver < SDHCI_FSL_VENDOR_V23 ? 2 : 1;\
while ((freq) < (base) / ((pre) * 16) && (pre) < 256) \
(pre) <<= 1; \
/* div/pre can't both be set to 1, according to PM. */ \
(div) = ((pre) == 1 ? 2 : 1); \
while ((freq) < (base) / ((pre) * (div)) && (div) < 16) \
++(div); \
} while (0)
static void
fsl_sdhc_fdt_set_clock(struct sdhci_fsl_fdt_softc *sc, struct sdhci_slot *slot,
uint16_t val)
{
uint32_t prescale, div, val32, div_ratio;
sc->sdclk_bits = val & SDHCI_DIVIDERS_MASK;
val32 = RD4(sc, SDHCI_CLOCK_CONTROL);
if ((val & SDHCI_CLOCK_CARD_EN) == 0) {
WR4(sc, SDHCI_CLOCK_CONTROL, val32 & ~SDHCI_FSL_CLK_SDCLKEN);
return;
}
/*
* Ignore dividers provided by core in `sdhci_set_clock` and calculate
* them anew with higher accuracy.
*/
SDHCI_FSL_FDT_CLK_DIV(sc, sc->baseclk_hz, slot->clock, prescale, div);
div_ratio = prescale * div;
/*
* According to limited clock division erratum, clock dividers in hs400
* can be only 4, 8 or 12
*/
if ((sc->soc_data->errata & SDHCI_FSL_HS400_LIMITED_CLK_DIV) &&
(sc->slot.host.ios.timing == bus_timing_mmc_hs400 ||
(sc->flags & SDHCI_FSL_HS400_FLAG))) {
if (div_ratio <= 4) {
prescale = 4;
div = 1;
} else if (div_ratio <= 8) {
prescale = 4;
div = 2;
} else if (div_ratio <= 12) {
prescale = 4;
div = 3;
} else {
device_printf(sc->dev, "Unsupported clock divider.\n");
}
}
sc->div_ratio = prescale * div;
if (bootverbose)
device_printf(sc->dev,
"Desired SD/MMC freq: %d, actual: %d; base %d prescale %d divisor %d\n",
slot->clock, sc->baseclk_hz / (prescale * div),
sc->baseclk_hz, prescale, div);
prescale >>= 1;
div -= 1;
val32 &= ~(SDHCI_FSL_CLK_DIVIDER_MASK | SDHCI_FSL_CLK_PRESCALE_MASK);
val32 |= div << SDHCI_FSL_CLK_DIVIDER_SHIFT;
val32 |= prescale << SDHCI_FSL_CLK_PRESCALE_SHIFT;
val32 |= SDHCI_FSL_CLK_IPGEN | SDHCI_FSL_CLK_SDCLKEN;
WR4(sc, SDHCI_CLOCK_CONTROL, val32);
}
static uint8_t
sdhci_fsl_fdt_read_1(device_t dev, struct sdhci_slot *slot, bus_size_t off)
{
struct sdhci_fsl_fdt_softc *sc;
uint32_t wrk32, val32;
sc = device_get_softc(dev);
switch (off) {
case SDHCI_HOST_CONTROL:
wrk32 = RD4(sc, SDHCI_FSL_PROT_CTRL);
val32 = wrk32 & (SDHCI_CTRL_LED | SDHCI_CTRL_CARD_DET |
SDHCI_CTRL_FORCE_CARD);
if (wrk32 & SDHCI_FSL_PROT_CTRL_WIDTH_4BIT)
val32 |= SDHCI_CTRL_4BITBUS;
else if (wrk32 & SDHCI_FSL_PROT_CTRL_WIDTH_8BIT)
val32 |= SDHCI_CTRL_8BITBUS;
return (val32);
case SDHCI_POWER_CONTROL:
return (SDHCI_POWER_ON | SDHCI_POWER_300);
default:
break;
}
return ((RD4(sc, off & ~3) >> (off & 3) * 8) & UINT8_MAX);
}
static uint16_t
sdhci_fsl_fdt_read_2(device_t dev, struct sdhci_slot *slot, bus_size_t off)
{
struct sdhci_fsl_fdt_softc *sc;
uint32_t val32;
sc = device_get_softc(dev);
switch (off) {
case SDHCI_CLOCK_CONTROL:
return (sdhci_fsl_fdt_get_clock(sc));
case SDHCI_HOST_VERSION:
return (RD4(sc, SDHCI_FSL_HOST_VERSION) & UINT16_MAX);
case SDHCI_TRANSFER_MODE:
return (sc->cmd_and_mode & UINT16_MAX);
case SDHCI_COMMAND_FLAGS:
return (sc->cmd_and_mode >> 16);
case SDHCI_SLOT_INT_STATUS:
/*
* eSDHC hardware manages only a single slot.
* Synthesize a slot interrupt status register for slot 1 below.
*/
val32 = RD4(sc, SDHCI_INT_STATUS);
val32 &= RD4(sc, SDHCI_SIGNAL_ENABLE);
return (!!val32);
default:
return ((RD4(sc, off & ~3) >> (off & 3) * 8) & UINT16_MAX);
}
}
static uint32_t
sdhci_fsl_fdt_read_4(device_t dev, struct sdhci_slot *slot, bus_size_t off)
{
struct sdhci_fsl_fdt_softc *sc;
uint32_t wrk32, val32;
sc = device_get_softc(dev);
if (off == SDHCI_BUFFER)
return (bus_read_4(sc->mem_res, off));
if (off == SDHCI_CAPABILITIES2)
off = SDHCI_FSL_CAPABILITIES2;
val32 = RD4(sc, off);
if (off == SDHCI_PRESENT_STATE) {
wrk32 = val32;
val32 &= SDHCI_FSL_PRES_COMPAT_MASK;
val32 |= (wrk32 >> 4) & SDHCI_STATE_DAT_MASK;
val32 |= (wrk32 << 1) & SDHCI_STATE_CMD;
}
return (val32);
}
static void
sdhci_fsl_fdt_read_multi_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
uint32_t *data, bus_size_t count)
{
struct sdhci_fsl_fdt_softc *sc;
sc = device_get_softc(dev);
bus_read_multi_4(sc->mem_res, off, data, count);
}
static void
sdhci_fsl_fdt_write_1(device_t dev, struct sdhci_slot *slot, bus_size_t off,
uint8_t val)
{
struct sdhci_fsl_fdt_softc *sc;
uint32_t val32;
sc = device_get_softc(dev);
switch (off) {
case SDHCI_HOST_CONTROL:
val32 = RD4(sc, SDHCI_FSL_PROT_CTRL);
val32 &= ~SDHCI_FSL_PROT_CTRL_WIDTH_MASK;
val32 |= (val & SDHCI_CTRL_LED);
if (val & SDHCI_CTRL_8BITBUS)
val32 |= SDHCI_FSL_PROT_CTRL_WIDTH_8BIT;
else
/* Bus width is 1-bit when this flag is not set. */
val32 |= (val & SDHCI_CTRL_4BITBUS);
/* Enable SDMA by masking out this field. */
val32 &= ~SDHCI_FSL_PROT_CTRL_DMA_MASK;
val32 &= ~(SDHCI_CTRL_CARD_DET | SDHCI_CTRL_FORCE_CARD);
val32 |= (val & (SDHCI_CTRL_CARD_DET |
SDHCI_CTRL_FORCE_CARD));
WR4(sc, SDHCI_FSL_PROT_CTRL, val32);
return;
case SDHCI_POWER_CONTROL:
return;
default:
val32 = RD4(sc, off & ~3);
val32 &= ~(UINT8_MAX << (off & 3) * 8);
val32 |= (val << (off & 3) * 8);
WR4(sc, off & ~3, val32);
return;
}
}
static void
sdhci_fsl_fdt_write_2(device_t dev, struct sdhci_slot *slot, bus_size_t off,
uint16_t val)
{
struct sdhci_fsl_fdt_softc *sc;
uint32_t val32;
sc = device_get_softc(dev);
switch (off) {
case SDHCI_CLOCK_CONTROL:
fsl_sdhc_fdt_set_clock(sc, slot, val);
return;
/*
* eSDHC hardware combines command and mode into a single
* register. Cache it here, so that command isn't written
* until after mode.
*/
case SDHCI_TRANSFER_MODE:
sc->cmd_and_mode = val;
return;
case SDHCI_COMMAND_FLAGS:
sc->cmd_and_mode =
(sc->cmd_and_mode & UINT16_MAX) | (val << 16);
WR4(sc, SDHCI_TRANSFER_MODE, sc->cmd_and_mode);
sc->cmd_and_mode = 0;
return;
case SDHCI_HOST_CONTROL2:
/*
* Switching to HS400 requires a special procedure,
* which is done in sdhci_fsl_fdt_set_uhs_timing.
*/
if ((val & SDHCI_CTRL2_UHS_MASK) == SDHCI_CTRL2_MMC_HS400)
val &= ~SDHCI_CTRL2_MMC_HS400;
default:
val32 = RD4(sc, off & ~3);
val32 &= ~(UINT16_MAX << (off & 3) * 8);
val32 |= ((val & UINT16_MAX) << (off & 3) * 8);
WR4(sc, off & ~3, val32);
return;
}
}
static void
sdhci_fsl_fdt_write_4(device_t dev, struct sdhci_slot *slot, bus_size_t off,
uint32_t val)
{
struct sdhci_fsl_fdt_softc *sc;
sc = device_get_softc(dev);
switch (off) {
case SDHCI_BUFFER:
bus_write_4(sc->mem_res, off, val);
return;
/*
* eSDHC hardware lacks support for the SDMA buffer boundary
* feature and instead generates SDHCI_INT_DMA_END interrupts
* after each completed DMA data transfer.
* Since this duplicates the SDHCI_INT_DATA_END functionality,
* mask out the unneeded SDHCI_INT_DMA_END interrupt.
*/
case SDHCI_INT_ENABLE:
case SDHCI_SIGNAL_ENABLE:
val &= ~SDHCI_INT_DMA_END;
/* FALLTHROUGH. */
default:
WR4(sc, off, val);
return;
}
}
static void
sdhci_fsl_fdt_write_multi_4(device_t dev, struct sdhci_slot *slot,
bus_size_t off, uint32_t *data, bus_size_t count)
{
struct sdhci_fsl_fdt_softc *sc;
sc = device_get_softc(dev);
bus_write_multi_4(sc->mem_res, off, data, count);
}
static void
sdhci_fsl_fdt_irq(void *arg)
{
struct sdhci_fsl_fdt_softc *sc;
sc = arg;
sdhci_generic_intr(&sc->slot);
return;
}
static int
sdhci_fsl_fdt_update_ios(device_t brdev, device_t reqdev)
{
int err;
struct sdhci_fsl_fdt_softc *sc;
struct mmc_ios *ios;
struct sdhci_slot *slot;
err = sdhci_generic_update_ios(brdev, reqdev);
if (err != 0)
return (err);
sc = device_get_softc(brdev);
slot = device_get_ivars(reqdev);
ios = &slot->host.ios;
switch (ios->power_mode) {
case power_on:
break;
case power_off:
if (bootverbose)
device_printf(sc->dev, "Powering down sd/mmc\n");
if (sc->fdt_helper.vmmc_supply)
regulator_disable(sc->fdt_helper.vmmc_supply);
if (sc->fdt_helper.vqmmc_supply)
regulator_disable(sc->fdt_helper.vqmmc_supply);
break;
case power_up:
if (bootverbose)
device_printf(sc->dev, "Powering up sd/mmc\n");
if (sc->fdt_helper.vmmc_supply)
regulator_enable(sc->fdt_helper.vmmc_supply);
if (sc->fdt_helper.vqmmc_supply)
regulator_enable(sc->fdt_helper.vqmmc_supply);
break;
};
return (0);
}
static int
sdhci_fsl_fdt_switch_syscon_voltage(device_t dev,
struct sdhci_fsl_fdt_softc *sc, enum mmc_vccq vccq)
{
struct syscon *syscon;
phandle_t syscon_node;
uint32_t reg;
if (sc->soc_data->syscon_compat == NULL) {
device_printf(dev, "Empty syscon compat string.\n");
return (ENXIO);
}
syscon_node = ofw_bus_find_compatible(OF_finddevice("/"),
sc->soc_data->syscon_compat);
if (syscon_get_by_ofw_node(dev, syscon_node, &syscon) != 0) {
device_printf(dev, "Could not find syscon node.\n");
return (ENXIO);
}
reg = SYSCON_READ_4(syscon, SCFG_SDHCIOVSELCR);
reg &= ~SCFG_SDHCIOVSELCR_VSELVAL_MASK;
reg |= SCFG_SDHCIOVSELCR_TGLEN;
switch (vccq) {
case vccq_180:
reg |= SCFG_SDHCIOVSELCR_VSELVAL_1_8;
SYSCON_WRITE_4(syscon, SCFG_SDHCIOVSELCR, reg);
DELAY(5000);
reg = SYSCON_READ_4(syscon, SCFG_SDHCIOVSELCR);
reg |= SCFG_SDHCIOVSELCR_VS;
break;
case vccq_330:
reg |= SCFG_SDHCIOVSELCR_VSELVAL_3_3;
SYSCON_WRITE_4(syscon, SCFG_SDHCIOVSELCR, reg);
DELAY(5000);
reg = SYSCON_READ_4(syscon, SCFG_SDHCIOVSELCR);
reg &= ~SCFG_SDHCIOVSELCR_VS;
break;
default:
device_printf(dev, "Unsupported voltage requested.\n");
return (ENXIO);
}
SYSCON_WRITE_4(syscon, SCFG_SDHCIOVSELCR, reg);
return (0);
}
static int
sdhci_fsl_fdt_switch_vccq(device_t brdev, device_t reqdev)
{
struct sdhci_fsl_fdt_softc *sc;
struct sdhci_slot *slot;
regulator_t vqmmc_supply;
uint32_t val_old, val;
int uvolt, err = 0;
sc = device_get_softc(brdev);
slot = device_get_ivars(reqdev);
val_old = val = RD4(sc, SDHCI_FSL_PROT_CTRL);
switch (slot->host.ios.vccq) {
case vccq_180:
if (sc->soc_data->errata & SDHCI_FSL_UNSUPP_1_8V)
return (EOPNOTSUPP);
val |= SDHCI_FSL_PROT_CTRL_VOLT_SEL;
uvolt = 1800000;
break;
case vccq_330:
val &= ~SDHCI_FSL_PROT_CTRL_VOLT_SEL;
uvolt = 3300000;
break;
default:
return (EOPNOTSUPP);
}
WR4(sc, SDHCI_FSL_PROT_CTRL, val);
if (sc->soc_data->errata & SDHCI_FSL_MISSING_VCCQ_REG) {
err = sdhci_fsl_fdt_switch_syscon_voltage(brdev, sc,
slot->host.ios.vccq);
if (err != 0)
goto vccq_fail;
}
vqmmc_supply = sc->fdt_helper.vqmmc_supply;
/*
* Even though we expect to find a fixed regulator in this controller
* family, let's play safe.
*/
if (vqmmc_supply != NULL) {
err = regulator_set_voltage(vqmmc_supply, uvolt, uvolt);
if (err != 0)
goto vccq_fail;
}
return (0);
vccq_fail:
device_printf(sc->dev, "Cannot set vqmmc to %d<->%d\n", uvolt, uvolt);
WR4(sc, SDHCI_FSL_PROT_CTRL, val_old);
return (err);
}
static int
sdhci_fsl_fdt_get_ro(device_t bus, device_t child)
{
struct sdhci_fsl_fdt_softc *sc;
sc = device_get_softc(bus);
return (sdhci_fdt_gpio_get_readonly(sc->gpio));
}
static bool
sdhci_fsl_fdt_get_card_present(device_t dev, struct sdhci_slot *slot)
{
struct sdhci_fsl_fdt_softc *sc;
sc = device_get_softc(dev);
return (sdhci_fdt_gpio_get_present(sc->gpio));
}
static uint32_t
sdhci_fsl_fdt_vddrange_to_mask(device_t dev, uint32_t *vdd_ranges, int len)
{
uint32_t vdd_min, vdd_max;
uint32_t vdd_mask = 0;
int i;
/* Ranges are organized as pairs of values. */
if ((len % 2) != 0) {
device_printf(dev, "Invalid voltage range\n");
return (0);
}
len = len / 2;
for (i = 0; i < len; i++) {
vdd_min = vdd_ranges[2 * i];
vdd_max = vdd_ranges[2 * i + 1];
if (vdd_min > vdd_max || vdd_min < 1650 || vdd_min > 3600 ||
vdd_max < 1650 || vdd_max > 3600) {
device_printf(dev, "Voltage range %d - %d is out of bounds\n",
vdd_min, vdd_max);
return (0);
}
if (vdd_min <= 1800 && vdd_max >= 1800)
vdd_mask |= SDHCI_CAN_VDD_180;
if (vdd_min <= 3000 && vdd_max >= 3000)
vdd_mask |= SDHCI_CAN_VDD_300;
if (vdd_min <= 3300 && vdd_max >= 3300)
vdd_mask |= SDHCI_CAN_VDD_330;
}
return (vdd_mask);
}
static void
sdhci_fsl_fdt_of_parse(device_t dev)
{
struct sdhci_fsl_fdt_softc *sc;
phandle_t node;
pcell_t *voltage_ranges;
uint32_t vdd_mask = 0;
ssize_t num_ranges;
sc = device_get_softc(dev);
node = ofw_bus_get_node(dev);
/* Call mmc_fdt_parse in order to get mmc related properties. */
mmc_fdt_parse(dev, node, &sc->fdt_helper, &sc->slot.host);
sc->slot.caps = sdhci_fsl_fdt_read_4(dev, &sc->slot,
SDHCI_CAPABILITIES) & ~(SDHCI_CAN_DO_SUSPEND);
sc->slot.caps2 = sdhci_fsl_fdt_read_4(dev, &sc->slot,
SDHCI_CAPABILITIES2);
/* Parse the "voltage-ranges" dts property. */
num_ranges = OF_getencprop_alloc(node, "voltage-ranges",
(void **) &voltage_ranges);
if (num_ranges <= 0)
return;
vdd_mask = sdhci_fsl_fdt_vddrange_to_mask(dev, voltage_ranges,
num_ranges / sizeof(uint32_t));
OF_prop_free(voltage_ranges);
/* Overwrite voltage caps only if we got something from dts. */
if (vdd_mask != 0 &&
(vdd_mask != (sc->slot.caps & SDHCI_FSL_CAN_VDD_MASK))) {
sc->slot.caps &= ~(SDHCI_FSL_CAN_VDD_MASK);
sc->slot.caps |= vdd_mask;
sc->slot.quirks |= SDHCI_QUIRK_MISSING_CAPS;
}
}
static int
sdhci_fsl_poll_register(struct sdhci_fsl_fdt_softc *sc,
uint32_t reg, uint32_t mask, int value)
{
int retries;
retries = SDHCI_FSL_MAX_RETRIES;
while ((RD4(sc, reg) & mask) != value) {
if (!retries--)
return (ENXIO);
DELAY(10);
}
return (0);
}
static int
sdhci_fsl_fdt_attach(device_t dev)
{
struct sdhci_fsl_fdt_softc *sc;
struct mmc_host *host;
uint32_t val, buf_order;
uintptr_t ocd_data;
uint64_t clk_hz;
phandle_t node;
int rid, ret;
clk_t clk;
node = ofw_bus_get_node(dev);
sc = device_get_softc(dev);
ocd_data = ofw_bus_search_compatible(dev,
sdhci_fsl_fdt_compat_data)->ocd_data;
sc->dev = dev;
sc->flags = 0;
host = &sc->slot.host;
rid = 0;
/*
* LX2160A needs its own soc_data in order to apply SoC
* specific quriks. Since the controller is identified
* only with a generic compatible string we need to do this dance here.
*/
if (ofw_bus_node_is_compatible(OF_finddevice("/"), "fsl,lx2160a"))
sc->soc_data = &sdhci_fsl_fdt_lx2160a_soc_data;
else
sc->soc_data = (struct sdhci_fsl_fdt_soc_data *)ocd_data;
sc->slot.quirks = sc->soc_data->quirks;
sc->mem_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &rid,
RF_ACTIVE);
if (sc->mem_res == NULL) {
device_printf(dev,
"Could not allocate resources for controller\n");
return (ENOMEM);
}
rid = 0;
sc->irq_res = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid,
RF_ACTIVE);
if (sc->irq_res == NULL) {
device_printf(dev,
"Could not allocate irq resources for controller\n");
ret = ENOMEM;
goto err_free_mem;
}
ret = bus_setup_intr(dev, sc->irq_res, INTR_TYPE_BIO | INTR_MPSAFE,
NULL, sdhci_fsl_fdt_irq, sc, &sc->irq_cookie);
if (ret != 0) {
device_printf(dev, "Could not setup IRQ handler\n");
goto err_free_irq_res;
}
ret = clk_get_by_ofw_index(dev, node, 0, &clk);
if (ret != 0) {
device_printf(dev, "Parent clock not found\n");
goto err_free_irq;
}
ret = clk_get_freq(clk, &clk_hz);
if (ret != 0) {
device_printf(dev,
"Could not get parent clock frequency\n");
goto err_free_irq;
}
sc->baseclk_hz = clk_hz / sc->soc_data->baseclk_div;
/* Figure out eSDHC block endianness before we touch any HW regs. */
if (OF_hasprop(node, "little-endian")) {
sc->read = read_le;
sc->write = write_le;
buf_order = SDHCI_FSL_PROT_CTRL_BYTE_NATIVE;
} else {
sc->read = read_be;
sc->write = write_be;
buf_order = SDHCI_FSL_PROT_CTRL_BYTE_SWAP;
}
sc->vendor_ver = (RD4(sc, SDHCI_FSL_HOST_VERSION) &
SDHCI_VENDOR_VER_MASK) >> SDHCI_VENDOR_VER_SHIFT;
sdhci_fsl_fdt_of_parse(dev);
sc->maxclk_hz = host->f_max ? host->f_max : sc->baseclk_hz;
/*
* Setting this register affects byte order in SDHCI_BUFFER only.
* If the eSDHC block is connected over a big-endian bus, the data
* read from/written to the buffer will be already byte swapped.
* In such a case, setting SDHCI_FSL_PROT_CTRL_BYTE_SWAP will convert
* the byte order again, resulting in a native byte order.
* The read/write callbacks accommodate for this behavior.
*/
val = RD4(sc, SDHCI_FSL_PROT_CTRL);
val &= ~SDHCI_FSL_PROT_CTRL_BYTE_MASK;
WR4(sc, SDHCI_FSL_PROT_CTRL, val | buf_order);
/*
* Gate the SD clock and set its source to
* peripheral clock / baseclk_div. The frequency in baseclk_hz is set
* to match this.
*/
val = RD4(sc, SDHCI_CLOCK_CONTROL);
WR4(sc, SDHCI_CLOCK_CONTROL, val & ~SDHCI_FSL_CLK_SDCLKEN);
val = RD4(sc, SDHCI_FSL_ESDHC_CTRL);
WR4(sc, SDHCI_FSL_ESDHC_CTRL, val | SDHCI_FSL_ESDHC_CTRL_CLK_DIV2);
sc->slot.max_clk = sc->maxclk_hz;
sc->gpio = sdhci_fdt_gpio_setup(dev, &sc->slot);
/*
* Set the buffer watermark level to 128 words (512 bytes) for both
* read and write. The hardware has a restriction that when the read or
* write ready status is asserted, that means you can read exactly the
* number of words set in the watermark register before you have to
* re-check the status and potentially wait for more data. The main
* sdhci driver provides no hook for doing status checking on less than
* a full block boundary, so we set the watermark level to be a full
* block. Reads and writes where the block size is less than the
* watermark size will work correctly too, no need to change the
* watermark for different size blocks. However, 128 is the maximum
* allowed for the watermark, so PIO is limitted to 512 byte blocks.
*/
WR4(sc, SDHCI_FSL_WTMK_LVL, SDHCI_FSL_WTMK_WR_512B |
SDHCI_FSL_WTMK_RD_512B);
ret = sdhci_init_slot(dev, &sc->slot, 0);
if (ret != 0)
goto err_free_gpio;
sc->slot_init_done = true;
sdhci_start_slot(&sc->slot);
return (bus_generic_attach(dev));
err_free_gpio:
sdhci_fdt_gpio_teardown(sc->gpio);
err_free_irq:
bus_teardown_intr(dev, sc->irq_res, sc->irq_cookie);
err_free_irq_res:
bus_free_resource(dev, SYS_RES_IRQ, sc->irq_res);
err_free_mem:
bus_free_resource(dev, SYS_RES_MEMORY, sc->mem_res);
return (ret);
}
static int
sdhci_fsl_fdt_detach(device_t dev)
{
struct sdhci_fsl_fdt_softc *sc;
sc = device_get_softc(dev);
if (sc->slot_init_done)
sdhci_cleanup_slot(&sc->slot);
if (sc->gpio != NULL)
sdhci_fdt_gpio_teardown(sc->gpio);
if (sc->irq_cookie != NULL)
bus_teardown_intr(dev, sc->irq_res, sc->irq_cookie);
if (sc->irq_res != NULL)
bus_free_resource(dev, SYS_RES_IRQ, sc->irq_res);
if (sc->mem_res != NULL)
bus_free_resource(dev, SYS_RES_MEMORY, sc->mem_res);
return (0);
}
static int
sdhci_fsl_fdt_probe(device_t dev)
{
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (!ofw_bus_search_compatible(dev,
sdhci_fsl_fdt_compat_data)->ocd_data)
return (ENXIO);
device_set_desc(dev, "NXP QorIQ Layerscape eSDHC controller");
return (BUS_PROBE_DEFAULT);
}
static int
sdhci_fsl_fdt_read_ivar(device_t bus, device_t child, int which,
uintptr_t *result)
{
struct sdhci_slot *slot = device_get_ivars(child);
if (which == MMCBR_IVAR_MAX_DATA && (slot->opt & SDHCI_HAVE_DMA)) {
/*
* In the absence of SDMA buffer boundary functionality,
* limit the maximum data length per read/write command
* to bounce buffer size.
*/
*result = howmany(slot->sdma_bbufsz, 512);
return (0);
}
return (sdhci_generic_read_ivar(bus, child, which, result));
}
static int
sdhci_fsl_fdt_write_ivar(device_t bus, device_t child, int which,
uintptr_t value)
{
struct sdhci_fsl_fdt_softc *sc;
struct sdhci_slot *slot = device_get_ivars(child);
uint32_t prescale, div;
/* Don't depend on clock resolution limits from sdhci core. */
if (which == MMCBR_IVAR_CLOCK) {
if (value == 0) {
slot->host.ios.clock = 0;
return (0);
}
sc = device_get_softc(bus);
SDHCI_FSL_FDT_CLK_DIV(sc, sc->baseclk_hz, value, prescale, div);
slot->host.ios.clock = sc->baseclk_hz / (prescale * div);
return (0);
}
return (sdhci_generic_write_ivar(bus, child, which, value));
}
static void
sdhci_fsl_fdt_reset(device_t dev, struct sdhci_slot *slot, uint8_t mask)
{
struct sdhci_fsl_fdt_softc *sc;
uint32_t val;
sdhci_generic_reset(dev, slot, mask);
if (!(mask & SDHCI_RESET_ALL))
return;
sc = device_get_softc(dev);
/* Some registers have to be cleared by hand. */
if (slot->version >= SDHCI_SPEC_300) {
val = RD4(sc, SDHCI_FSL_TBCTL);
val &= ~SDHCI_FSL_TBCTL_TBEN;
WR4(sc, SDHCI_FSL_TBCTL, val);
}
/*
* Pulse width detection is not reliable on some boards. Perform
* workaround by clearing register's bit according to errata.
*/
if (sc->soc_data->errata & SDHCI_FSL_UNRELIABLE_PULSE_DET) {
val = RD4(sc, SDHCI_FSL_DLLCFG1);
val &= ~SDHCI_FSL_DLLCFG1_PULSE_STRETCH;
WR4(sc, SDHCI_FSL_DLLCFG1, val);
}
sc->flags = 0;
}
static void
sdhci_fsl_switch_tuning_block(device_t dev, bool enable)
{
struct sdhci_fsl_fdt_softc *sc;
uint32_t reg;
sc = device_get_softc(dev);
reg = RD4(sc, SDHCI_FSL_TBCTL);
if (enable)
reg |= SDHCI_FSL_TBCTL_TBEN;
else
reg &= ~SDHCI_FSL_TBCTL_TBEN;
WR4(sc, SDHCI_FSL_TBCTL, reg);
}
static int
sdhci_fsl_sw_tuning(struct sdhci_fsl_fdt_softc *sc, device_t bus,
device_t child, bool hs400, uint32_t wnd_start, uint32_t wnd_end)
{
uint32_t reg;
int error;
if (sc->soc_data->errata & SDHCI_FSL_TUNING_ERRATUM_TYPE1 ||
abs(wnd_start - wnd_end) <= (4 * sc->div_ratio + 2)) {
wnd_start = 5 * sc->div_ratio;
wnd_end = 3 * sc->div_ratio;
} else {
wnd_start = 8 * sc->div_ratio;
wnd_end = 4 * sc->div_ratio;
}
reg = RD4(sc, SDHCI_FSL_TBPTR);
reg &= ~SDHCI_FSL_TBPTR_WND_MASK;
reg &= ~(SDHCI_FSL_TBPTR_WND_MASK << SDHCI_FSL_TBPTR_WND_START_SHIFT);
reg |= wnd_start << SDHCI_FSL_TBPTR_WND_START_SHIFT;
reg |= wnd_end;
WR4(sc, SDHCI_FSL_TBPTR, reg);
/*
* Normally those are supposed to be set in sdhci_execute_tuning.
* However in our case we need a small delay between setting the two.
*/
reg = RD4(sc, SDHCI_FSL_AUTOCERR);
reg |= SDHCI_FSL_AUTOCERR_EXTN;
WR4(sc, SDHCI_FSL_AUTOCERR, reg);
DELAY(10);
reg |= SDHCI_FSL_AUTOCERR_SMPCLKSEL;
WR4(sc, SDHCI_FSL_AUTOCERR, reg);
reg = RD4(sc, SDHCI_FSL_TBCTL);
reg &= ~SDHCI_FSL_TBCTL_TB_MODE_MASK;
reg |= SDHCI_FSL_TBCTL_MODE_SW;
WR4(sc, SDHCI_FSL_TBCTL, reg);
error = sdhci_generic_tune(bus, child, hs400);
if (error != 0) {
device_printf(bus,
"Failed to execute generic tune while performing software tuning.\n");
}
return (error);
}
static int
sdhci_fsl_fdt_tune(device_t bus, device_t child, bool hs400)
{
struct sdhci_fsl_fdt_softc *sc;
uint32_t wnd_start, wnd_end;
uint32_t clk_divider, reg;
struct sdhci_slot *slot;
int error;
sc = device_get_softc(bus);
slot = device_get_ivars(child);
error = 0;
clk_divider = sc->baseclk_hz / slot->clock;
switch (sc->slot.host.ios.timing) {
case bus_timing_mmc_hs400:
return (EINVAL);
case bus_timing_mmc_hs200:
case bus_timing_uhs_ddr50:
case bus_timing_uhs_sdr104:
break;
case bus_timing_uhs_sdr50:
if (slot->opt & SDHCI_SDR50_NEEDS_TUNING)
break;
default:
return (0);
}
/*
* For tuning mode SD clock divider must be within 3 to 16.
* We also need to match the frequency to whatever mode is used.
* For that reason we're just bailing if the dividers don't match
* that requirement.
*/
if (clk_divider < 3 || clk_divider > 16)
return (ENXIO);
if (hs400)
sc->flags |= SDHCI_FSL_HS400_FLAG;
/* Disable clock. */
fsl_sdhc_fdt_set_clock(sc, slot, sc->sdclk_bits);
/* Wait for PRSSTAT[SDSTB] to be set by hardware. */
error = sdhci_fsl_poll_register(sc, SDHCI_FSL_PRES_STATE,
SDHCI_FSL_PRES_SDSTB, SDHCI_FSL_PRES_SDSTB);
if (error != 0)
device_printf(bus,
"Timeout while waiting for clock to stabilize.\n");
/* Flush async IO. */
reg = RD4(sc, SDHCI_FSL_ESDHC_CTRL);
reg |= SDHCI_FSL_ESDHC_CTRL_FAF;
WR4(sc, SDHCI_FSL_ESDHC_CTRL, reg);
/* Wait for ESDHC[FAF] to be cleared by hardware. */
error = sdhci_fsl_poll_register(sc, SDHCI_FSL_ESDHC_CTRL,
SDHCI_FSL_ESDHC_CTRL_FAF, 0);
if (error)
device_printf(bus,
"Timeout while waiting for hardware.\n");
/*
* Set TBCTL[TB_EN] register and program valid tuning mode.
* According to RM MODE_3 means that:
* "eSDHC takes care of the re-tuning during data transfer
* (auto re-tuning).".
* Tuning mode can only be changed while the clock is disabled.
*/
reg = RD4(sc, SDHCI_FSL_TBCTL);
reg &= ~SDHCI_FSL_TBCTL_TB_MODE_MASK;
reg |= SDHCI_FSL_TBCTL_TBEN | SDHCI_FSL_TBCTL_MODE_3;
WR4(sc, SDHCI_FSL_TBCTL, reg);
/* Enable clock. */
fsl_sdhc_fdt_set_clock(sc, slot, SDHCI_CLOCK_CARD_EN | sc->sdclk_bits);
/* Wait for clock to stabilize. */
error = sdhci_fsl_poll_register(sc, SDHCI_FSL_PRES_STATE,
SDHCI_FSL_PRES_SDSTB, SDHCI_FSL_PRES_SDSTB);
if (error)
device_printf(bus,
"Timeout while waiting for clock to stabilize.\n");
/* Perform hardware tuning. */
error = sdhci_generic_tune(bus, child, hs400);
reg = RD4(sc, SDHCI_FSL_TBPTR);
wnd_start = reg >> SDHCI_FSL_TBPTR_WND_START_SHIFT;
wnd_start &= SDHCI_FSL_TBPTR_WND_MASK;
wnd_end = reg & SDHCI_FSL_TBPTR_WND_MASK;
/*
* For erratum type2 affected platforms, the controller can erroneously
* declare that the tuning was successful. Verify the tuning window to
* make sure that we're fine.
*/
if (error == 0 &&
sc->soc_data->errata & SDHCI_FSL_TUNING_ERRATUM_TYPE2 &&
abs(wnd_start - wnd_end) > (4 * sc->div_ratio + 2)) {
error = EIO;
}
/* If hardware tuning failed, try software tuning. */
if (error != 0 &&
(sc->soc_data->errata &
(SDHCI_FSL_TUNING_ERRATUM_TYPE1 |
SDHCI_FSL_TUNING_ERRATUM_TYPE2))) {
error = sdhci_fsl_sw_tuning(sc, bus, child, hs400, wnd_start,
wnd_end);
if (error != 0)
device_printf(bus, "Software tuning failed.\n");
}
if (error != 0) {
sdhci_fsl_switch_tuning_block(bus, false);
return (error);
}
if (hs400) {
reg = RD4(sc, SDHCI_FSL_SDTIMINGCTL);
reg |= SDHCI_FSL_SDTIMINGCTL_FLW_CTL;
WR4(sc, SDHCI_FSL_SDTIMINGCTL, reg);
}
return (0);
}
static int
sdhci_fsl_fdt_retune(device_t bus, device_t child, bool reset)
{
struct sdhci_slot *slot;
struct sdhci_fsl_fdt_softc *sc;
slot = device_get_ivars(child);
sc = device_get_softc(bus);
if (!(slot->opt & SDHCI_TUNING_ENABLED))
return (0);
/* HS400 must be tuned in HS200 mode. */
if (slot->host.ios.timing == bus_timing_mmc_hs400)
return (EINVAL);
/*
* Only re-tuning with full reset is supported.
* The controller is normally put in "mode 3", which means that
* periodic re-tuning is done automatically. See comment in
* sdhci_fsl_fdt_tune for details.
* Because of that re-tuning should only be triggered as a result
* of a CRC error.
*/
if (!reset)
return (ENOTSUP);
return (sdhci_fsl_fdt_tune(bus, child,
sc->flags & SDHCI_FSL_HS400_FLAG));
}
static void
sdhci_fsl_disable_hs400_mode(device_t dev, struct sdhci_fsl_fdt_softc *sc)
{
uint32_t reg;
int error;
/* Check if HS400 is enabled right now. */
reg = RD4(sc, SDHCI_FSL_TBCTL);
if ((reg & SDHCI_FSL_TBCTL_HS400_EN) == 0)
return;
reg = RD4(sc, SDHCI_FSL_SDTIMINGCTL);
reg &= ~SDHCI_FSL_SDTIMINGCTL_FLW_CTL;
WR4(sc, SDHCI_FSL_SDTIMINGCTL, reg);
reg = RD4(sc, SDHCI_FSL_SDCLKCTL);
reg &= ~SDHCI_FSL_SDCLKCTL_CMD_CLK_CTL;
WR4(sc, SDHCI_FSL_SDCLKCTL, reg);
fsl_sdhc_fdt_set_clock(sc, &sc->slot, sc->sdclk_bits);
error = sdhci_fsl_poll_register(sc, SDHCI_FSL_PRES_STATE,
SDHCI_FSL_PRES_SDSTB, SDHCI_FSL_PRES_SDSTB);
if (error != 0)
device_printf(dev,
"Internal clock never stabilized.\n");
reg = RD4(sc, SDHCI_FSL_TBCTL);
reg &= ~SDHCI_FSL_TBCTL_HS400_EN;
WR4(sc, SDHCI_FSL_TBCTL, reg);
fsl_sdhc_fdt_set_clock(sc, &sc->slot, SDHCI_CLOCK_CARD_EN |
sc->sdclk_bits);
error = sdhci_fsl_poll_register(sc, SDHCI_FSL_PRES_STATE,
SDHCI_FSL_PRES_SDSTB, SDHCI_FSL_PRES_SDSTB);
if (error != 0)
device_printf(dev,
"Internal clock never stabilized.\n");
reg = RD4(sc, SDHCI_FSL_DLLCFG0);
reg &= ~(SDHCI_FSL_DLLCFG0_EN |
SDHCI_FSL_DLLCFG0_FREQ_SEL);
WR4(sc, SDHCI_FSL_DLLCFG0, reg);
reg = RD4(sc, SDHCI_FSL_TBCTL);
reg &= ~SDHCI_FSL_TBCTL_HS400_WND_ADJ;
WR4(sc, SDHCI_FSL_TBCTL, reg);
sdhci_fsl_switch_tuning_block(dev, false);
}
static void
sdhci_fsl_enable_hs400_mode(device_t dev, struct sdhci_slot *slot,
struct sdhci_fsl_fdt_softc *sc)
{
uint32_t reg;
int error;
sdhci_fsl_switch_tuning_block(dev, true);
fsl_sdhc_fdt_set_clock(sc, slot, sc->sdclk_bits);
error = sdhci_fsl_poll_register(sc, SDHCI_FSL_PRES_STATE,
SDHCI_FSL_PRES_SDSTB, SDHCI_FSL_PRES_SDSTB);
if (error != 0)
device_printf(dev,
"Timeout while waiting for clock to stabilize.\n");
reg = RD4(sc, SDHCI_FSL_TBCTL);
reg |= SDHCI_FSL_TBCTL_HS400_EN;
WR4(sc, SDHCI_FSL_TBCTL, reg);
reg = RD4(sc, SDHCI_FSL_SDCLKCTL);
reg |= SDHCI_FSL_SDCLKCTL_CMD_CLK_CTL;
WR4(sc, SDHCI_FSL_SDCLKCTL, reg);
fsl_sdhc_fdt_set_clock(sc, slot, SDHCI_CLOCK_CARD_EN |
sc->sdclk_bits);
error = sdhci_fsl_poll_register(sc, SDHCI_FSL_PRES_STATE,
SDHCI_FSL_PRES_SDSTB, SDHCI_FSL_PRES_SDSTB);
if (error != 0)
device_printf(dev,
"Timeout while waiting for clock to stabilize.\n");
reg = RD4(sc, SDHCI_FSL_DLLCFG0);
reg |= SDHCI_FSL_DLLCFG0_EN | SDHCI_FSL_DLLCFG0_RESET |
SDHCI_FSL_DLLCFG0_FREQ_SEL;
WR4(sc, SDHCI_FSL_DLLCFG0, reg);
/*
* The reset bit is not a self clearing one.
* Give it some time and clear it manually.
*/
DELAY(100);
reg &= ~SDHCI_FSL_DLLCFG0_RESET;
WR4(sc, SDHCI_FSL_DLLCFG0, reg);
error = sdhci_fsl_poll_register(sc, SDHCI_FSL_DLLSTAT0,
SDHCI_FSL_DLLSTAT0_SLV_STS, SDHCI_FSL_DLLSTAT0_SLV_STS);
if (error != 0)
device_printf(dev,
"Timeout while waiting for DLL0.\n");
reg = RD4(sc, SDHCI_FSL_TBCTL);
reg |= SDHCI_FSL_TBCTL_HS400_WND_ADJ;
WR4(sc, SDHCI_FSL_TBCTL, reg);
fsl_sdhc_fdt_set_clock(sc, slot, sc->sdclk_bits);
error = sdhci_fsl_poll_register(sc, SDHCI_FSL_PRES_STATE,
SDHCI_FSL_PRES_SDSTB, SDHCI_FSL_PRES_SDSTB);
if (error != 0)
device_printf(dev,
"timeout while waiting for clock to stabilize.\n");
reg = RD4(sc, SDHCI_FSL_ESDHC_CTRL);
reg |= SDHCI_FSL_ESDHC_CTRL_FAF;
WR4(sc, SDHCI_FSL_ESDHC_CTRL, reg);
error = sdhci_fsl_poll_register(sc, SDHCI_FSL_ESDHC_CTRL,
SDHCI_FSL_ESDHC_CTRL_FAF, 0);
if (error != 0)
device_printf(dev,
"Timeout while waiting for hardware.\n");
fsl_sdhc_fdt_set_clock(sc, slot, SDHCI_CLOCK_CARD_EN |
sc->sdclk_bits);
error = sdhci_fsl_poll_register(sc, SDHCI_FSL_PRES_STATE,
SDHCI_FSL_PRES_SDSTB, SDHCI_FSL_PRES_SDSTB);
if (error != 0)
device_printf(dev,
"Timeout while waiting for clock to stabilize.\n");
}
static void
sdhci_fsl_fdt_set_uhs_timing(device_t dev, struct sdhci_slot *slot)
{
struct sdhci_fsl_fdt_softc *sc;
const struct mmc_ios *ios;
uint32_t mode, reg;
sc = device_get_softc(dev);
ios = &slot->host.ios;
mode = 0;
/*
* When we switch to HS400 this function is called twice.
* First after the timing is set, and then after the clock
* is changed to the target frequency.
* The controller can be switched to HS400 only after the latter
* is done.
*/
if (slot->host.ios.timing == bus_timing_mmc_hs400 &&
ios->clock > SD_SDR50_MAX)
sdhci_fsl_enable_hs400_mode(dev, slot, sc);
else if (slot->host.ios.timing < bus_timing_mmc_hs400) {
sdhci_fsl_disable_hs400_mode(dev, sc);
/*
* Switching to HS400 requires a custom procedure executed in
* sdhci_fsl_enable_hs400_mode in case above.
* For all other modes we just need to set the corresponding flag.
*/
reg = RD4(sc, SDHCI_FSL_AUTOCERR);
reg &= ~SDHCI_FSL_AUTOCERR_UHMS;
if (ios->clock > SD_SDR50_MAX)
mode = SDHCI_CTRL2_UHS_SDR104;
else if (ios->clock > SD_SDR25_MAX)
mode = SDHCI_CTRL2_UHS_SDR50;
else if (ios->clock > SD_SDR12_MAX) {
if (ios->timing == bus_timing_uhs_ddr50 ||
ios->timing == bus_timing_mmc_ddr52)
mode = SDHCI_CTRL2_UHS_DDR50;
else
mode = SDHCI_CTRL2_UHS_SDR25;
} else if (ios->clock > SD_MMC_CARD_ID_FREQUENCY)
mode = SDHCI_CTRL2_UHS_SDR12;
reg |= mode << SDHCI_FSL_AUTOCERR_UHMS_SHIFT;
WR4(sc, SDHCI_FSL_AUTOCERR, reg);
}
}
static const device_method_t sdhci_fsl_fdt_methods[] = {
/* Device interface. */
DEVMETHOD(device_probe, sdhci_fsl_fdt_probe),
DEVMETHOD(device_attach, sdhci_fsl_fdt_attach),
DEVMETHOD(device_detach, sdhci_fsl_fdt_detach),
/* Bus interface. */
DEVMETHOD(bus_read_ivar, sdhci_fsl_fdt_read_ivar),
DEVMETHOD(bus_write_ivar, sdhci_fsl_fdt_write_ivar),
/* MMC bridge interface. */
DEVMETHOD(mmcbr_request, sdhci_generic_request),
DEVMETHOD(mmcbr_get_ro, sdhci_fsl_fdt_get_ro),
DEVMETHOD(mmcbr_acquire_host, sdhci_generic_acquire_host),
DEVMETHOD(mmcbr_release_host, sdhci_generic_release_host),
DEVMETHOD(mmcbr_switch_vccq, sdhci_fsl_fdt_switch_vccq),
DEVMETHOD(mmcbr_update_ios, sdhci_fsl_fdt_update_ios),
DEVMETHOD(mmcbr_tune, sdhci_fsl_fdt_tune),
DEVMETHOD(mmcbr_retune, sdhci_fsl_fdt_retune),
/* SDHCI accessors. */
DEVMETHOD(sdhci_read_1, sdhci_fsl_fdt_read_1),
DEVMETHOD(sdhci_read_2, sdhci_fsl_fdt_read_2),
DEVMETHOD(sdhci_read_4, sdhci_fsl_fdt_read_4),
DEVMETHOD(sdhci_read_multi_4, sdhci_fsl_fdt_read_multi_4),
DEVMETHOD(sdhci_write_1, sdhci_fsl_fdt_write_1),
DEVMETHOD(sdhci_write_2, sdhci_fsl_fdt_write_2),
DEVMETHOD(sdhci_write_4, sdhci_fsl_fdt_write_4),
DEVMETHOD(sdhci_write_multi_4, sdhci_fsl_fdt_write_multi_4),
DEVMETHOD(sdhci_get_card_present, sdhci_fsl_fdt_get_card_present),
DEVMETHOD(sdhci_reset, sdhci_fsl_fdt_reset),
DEVMETHOD(sdhci_set_uhs_timing, sdhci_fsl_fdt_set_uhs_timing),
DEVMETHOD_END
};
static devclass_t sdhci_fsl_fdt_devclass;
static driver_t sdhci_fsl_fdt_driver = {
"sdhci_fsl_fdt",
sdhci_fsl_fdt_methods,
sizeof(struct sdhci_fsl_fdt_softc),
};
DRIVER_MODULE(sdhci_fsl_fdt, simplebus, sdhci_fsl_fdt_driver,
sdhci_fsl_fdt_devclass, NULL, NULL);
SDHCI_DEPEND(sdhci_fsl_fdt);
#ifndef MMCCAM
MMC_DECLARE_BRIDGE(sdhci_fsl_fdt);
#endif