freebsd-dev/sys/opencrypto/xform.c
John-Mark Gurney 08fca7a56b Add some new modes to OpenCrypto. These modes are AES-ICM (can be used
for counter mode), and AES-GCM.  Both of these modes have been added to
the aesni module.

Included is a set of tests to validate that the software and aesni
module calculate the correct values.  These use the NIST KAT test
vectors.  To run the test, you will need to install a soon to be
committed port, nist-kat that will install the vectors.  Using a port
is necessary as the test vectors are around 25MB.

All the man pages were updated.  I have added a new man page, crypto.7,
which includes a description of how to use each mode.  All the new modes
and some other AES modes are present.  It would be good for someone
else to go through and document the other modes.

A new ioctl was added to support AEAD modes which AES-GCM is one of them.
Without this ioctl, it is not possible to test AEAD modes from userland.

Add a timing safe bcmp for use to compare MACs.  Previously we were using
bcmp which could leak timing info and result in the ability to forge
messages.

Add a minor optimization to the aesni module so that single segment
mbufs don't get copied and instead are updated in place.  The aesni
module needs to be updated to support blocked IO so segmented mbufs
don't have to be copied.

We require that the IV be specified for all calls for both GCM and ICM.
This is to ensure proper use of these functions.

Obtained from:	p4: //depot/projects/opencrypto
Relnotes:	yes
Sponsored by:	FreeBSD Foundation
Sponsored by:	NetGate
2014-12-12 19:56:36 +00:00

973 lines
22 KiB
C

/* $OpenBSD: xform.c,v 1.16 2001/08/28 12:20:43 ben Exp $ */
/*-
* The authors of this code are John Ioannidis (ji@tla.org),
* Angelos D. Keromytis (kermit@csd.uch.gr),
* Niels Provos (provos@physnet.uni-hamburg.de) and
* Damien Miller (djm@mindrot.org).
*
* This code was written by John Ioannidis for BSD/OS in Athens, Greece,
* in November 1995.
*
* Ported to OpenBSD and NetBSD, with additional transforms, in December 1996,
* by Angelos D. Keromytis.
*
* Additional transforms and features in 1997 and 1998 by Angelos D. Keromytis
* and Niels Provos.
*
* Additional features in 1999 by Angelos D. Keromytis.
*
* AES XTS implementation in 2008 by Damien Miller
*
* Copyright (C) 1995, 1996, 1997, 1998, 1999 by John Ioannidis,
* Angelos D. Keromytis and Niels Provos.
*
* Copyright (C) 2001, Angelos D. Keromytis.
*
* Copyright (C) 2008, Damien Miller
* Copyright (c) 2014 The FreeBSD Foundation
* All rights reserved.
*
* Portions of this software were developed by John-Mark Gurney
* under sponsorship of the FreeBSD Foundation and
* Rubicon Communications, LLC (Netgate).
*
* Permission to use, copy, and modify this software with or without fee
* is hereby granted, provided that this entire notice is included in
* all copies of any software which is or includes a copy or
* modification of this software.
* You may use this code under the GNU public license if you so wish. Please
* contribute changes back to the authors under this freer than GPL license
* so that we may further the use of strong encryption without limitations to
* all.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
* MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
* PURPOSE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/sysctl.h>
#include <sys/errno.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <machine/cpu.h>
#include <crypto/blowfish/blowfish.h>
#include <crypto/des/des.h>
#include <crypto/rijndael/rijndael.h>
#include <crypto/camellia/camellia.h>
#include <crypto/sha1.h>
#include <opencrypto/cast.h>
#include <opencrypto/deflate.h>
#include <opencrypto/rmd160.h>
#include <opencrypto/skipjack.h>
#include <sys/md5.h>
#include <opencrypto/cryptodev.h>
#include <opencrypto/xform.h>
static int null_setkey(u_int8_t **, u_int8_t *, int);
static int des1_setkey(u_int8_t **, u_int8_t *, int);
static int des3_setkey(u_int8_t **, u_int8_t *, int);
static int blf_setkey(u_int8_t **, u_int8_t *, int);
static int cast5_setkey(u_int8_t **, u_int8_t *, int);
static int skipjack_setkey(u_int8_t **, u_int8_t *, int);
static int rijndael128_setkey(u_int8_t **, u_int8_t *, int);
static int aes_icm_setkey(u_int8_t **, u_int8_t *, int);
static int aes_xts_setkey(u_int8_t **, u_int8_t *, int);
static int cml_setkey(u_int8_t **, u_int8_t *, int);
static void null_encrypt(caddr_t, u_int8_t *);
static void des1_encrypt(caddr_t, u_int8_t *);
static void des3_encrypt(caddr_t, u_int8_t *);
static void blf_encrypt(caddr_t, u_int8_t *);
static void cast5_encrypt(caddr_t, u_int8_t *);
static void skipjack_encrypt(caddr_t, u_int8_t *);
static void rijndael128_encrypt(caddr_t, u_int8_t *);
static void aes_xts_encrypt(caddr_t, u_int8_t *);
static void cml_encrypt(caddr_t, u_int8_t *);
static void null_decrypt(caddr_t, u_int8_t *);
static void des1_decrypt(caddr_t, u_int8_t *);
static void des3_decrypt(caddr_t, u_int8_t *);
static void blf_decrypt(caddr_t, u_int8_t *);
static void cast5_decrypt(caddr_t, u_int8_t *);
static void skipjack_decrypt(caddr_t, u_int8_t *);
static void rijndael128_decrypt(caddr_t, u_int8_t *);
static void aes_xts_decrypt(caddr_t, u_int8_t *);
static void cml_decrypt(caddr_t, u_int8_t *);
static void aes_icm_crypt(caddr_t, u_int8_t *);
static void null_zerokey(u_int8_t **);
static void des1_zerokey(u_int8_t **);
static void des3_zerokey(u_int8_t **);
static void blf_zerokey(u_int8_t **);
static void cast5_zerokey(u_int8_t **);
static void skipjack_zerokey(u_int8_t **);
static void rijndael128_zerokey(u_int8_t **);
static void aes_icm_zerokey(u_int8_t **);
static void aes_xts_zerokey(u_int8_t **);
static void cml_zerokey(u_int8_t **);
static void aes_icm_reinit(caddr_t, u_int8_t *);
static void aes_xts_reinit(caddr_t, u_int8_t *);
static void aes_gcm_reinit(caddr_t, u_int8_t *);
static void null_init(void *);
static void null_reinit(void *ctx, const u_int8_t *buf, u_int16_t len);
static int null_update(void *, const u_int8_t *, u_int16_t);
static void null_final(u_int8_t *, void *);
static int MD5Update_int(void *, const u_int8_t *, u_int16_t);
static void SHA1Init_int(void *);
static int SHA1Update_int(void *, const u_int8_t *, u_int16_t);
static void SHA1Final_int(u_int8_t *, void *);
static int RMD160Update_int(void *, const u_int8_t *, u_int16_t);
static int SHA256Update_int(void *, const u_int8_t *, u_int16_t);
static int SHA384Update_int(void *, const u_int8_t *, u_int16_t);
static int SHA512Update_int(void *, const u_int8_t *, u_int16_t);
static u_int32_t deflate_compress(u_int8_t *, u_int32_t, u_int8_t **);
static u_int32_t deflate_decompress(u_int8_t *, u_int32_t, u_int8_t **);
#define AESICM_BLOCKSIZE 16
struct aes_icm_ctx {
u_int32_t ac_ek[4*(RIJNDAEL_MAXNR + 1)];
/* ac_block is initalized to IV */
u_int8_t ac_block[AESICM_BLOCKSIZE];
int ac_nr;
};
MALLOC_DEFINE(M_XDATA, "xform", "xform data buffers");
/* Encryption instances */
struct enc_xform enc_xform_null = {
CRYPTO_NULL_CBC, "NULL",
/* NB: blocksize of 4 is to generate a properly aligned ESP header */
NULL_BLOCK_LEN, NULL_BLOCK_LEN, 0, 256, /* 2048 bits, max key */
null_encrypt,
null_decrypt,
null_setkey,
null_zerokey,
NULL,
};
struct enc_xform enc_xform_des = {
CRYPTO_DES_CBC, "DES",
DES_BLOCK_LEN, DES_BLOCK_LEN, 8, 8,
des1_encrypt,
des1_decrypt,
des1_setkey,
des1_zerokey,
NULL,
};
struct enc_xform enc_xform_3des = {
CRYPTO_3DES_CBC, "3DES",
DES3_BLOCK_LEN, DES3_BLOCK_LEN, 24, 24,
des3_encrypt,
des3_decrypt,
des3_setkey,
des3_zerokey,
NULL,
};
struct enc_xform enc_xform_blf = {
CRYPTO_BLF_CBC, "Blowfish",
BLOWFISH_BLOCK_LEN, BLOWFISH_BLOCK_LEN, 5, 56 /* 448 bits, max key */,
blf_encrypt,
blf_decrypt,
blf_setkey,
blf_zerokey,
NULL,
};
struct enc_xform enc_xform_cast5 = {
CRYPTO_CAST_CBC, "CAST-128",
CAST128_BLOCK_LEN, CAST128_BLOCK_LEN, 5, 16,
cast5_encrypt,
cast5_decrypt,
cast5_setkey,
cast5_zerokey,
NULL,
};
struct enc_xform enc_xform_skipjack = {
CRYPTO_SKIPJACK_CBC, "Skipjack",
SKIPJACK_BLOCK_LEN, SKIPJACK_BLOCK_LEN, 10, 10,
skipjack_encrypt,
skipjack_decrypt, skipjack_setkey,
skipjack_zerokey,
NULL,
};
struct enc_xform enc_xform_rijndael128 = {
CRYPTO_RIJNDAEL128_CBC, "Rijndael-128/AES",
RIJNDAEL128_BLOCK_LEN, RIJNDAEL128_BLOCK_LEN, 16, 32,
rijndael128_encrypt,
rijndael128_decrypt,
rijndael128_setkey,
rijndael128_zerokey,
NULL,
};
struct enc_xform enc_xform_aes_icm = {
CRYPTO_AES_ICM, "AES-ICM",
RIJNDAEL128_BLOCK_LEN, RIJNDAEL128_BLOCK_LEN, 16, 32,
aes_icm_crypt,
aes_icm_crypt,
aes_icm_setkey,
rijndael128_zerokey,
aes_icm_reinit,
};
struct enc_xform enc_xform_aes_nist_gcm = {
CRYPTO_AES_NIST_GCM_16, "AES-GCM",
1, 12, 16, 32,
aes_icm_crypt,
aes_icm_crypt,
aes_icm_setkey,
aes_icm_zerokey,
aes_gcm_reinit,
};
struct enc_xform enc_xform_aes_nist_gmac = {
CRYPTO_AES_NIST_GMAC, "AES-GMAC",
1, 12, 16, 32,
NULL,
NULL,
NULL,
NULL,
NULL,
};
struct enc_xform enc_xform_aes_xts = {
CRYPTO_AES_XTS, "AES-XTS",
RIJNDAEL128_BLOCK_LEN, 8, 32, 64,
aes_xts_encrypt,
aes_xts_decrypt,
aes_xts_setkey,
aes_xts_zerokey,
aes_xts_reinit
};
struct enc_xform enc_xform_arc4 = {
CRYPTO_ARC4, "ARC4",
1, 1, 1, 32,
NULL,
NULL,
NULL,
NULL,
NULL,
};
struct enc_xform enc_xform_camellia = {
CRYPTO_CAMELLIA_CBC, "Camellia",
CAMELLIA_BLOCK_LEN, CAMELLIA_BLOCK_LEN, 8, 32,
cml_encrypt,
cml_decrypt,
cml_setkey,
cml_zerokey,
NULL,
};
/* Authentication instances */
struct auth_hash auth_hash_null = { /* NB: context isn't used */
CRYPTO_NULL_HMAC, "NULL-HMAC",
0, NULL_HASH_LEN, sizeof(int), NULL_HMAC_BLOCK_LEN,
null_init, null_reinit, null_reinit, null_update, null_final
};
struct auth_hash auth_hash_hmac_md5 = {
CRYPTO_MD5_HMAC, "HMAC-MD5",
16, MD5_HASH_LEN, sizeof(MD5_CTX), MD5_HMAC_BLOCK_LEN,
(void (*) (void *)) MD5Init, NULL, NULL, MD5Update_int,
(void (*) (u_int8_t *, void *)) MD5Final
};
struct auth_hash auth_hash_hmac_sha1 = {
CRYPTO_SHA1_HMAC, "HMAC-SHA1",
20, SHA1_HASH_LEN, sizeof(SHA1_CTX), SHA1_HMAC_BLOCK_LEN,
SHA1Init_int, NULL, NULL, SHA1Update_int, SHA1Final_int
};
struct auth_hash auth_hash_hmac_ripemd_160 = {
CRYPTO_RIPEMD160_HMAC, "HMAC-RIPEMD-160",
20, RIPEMD160_HASH_LEN, sizeof(RMD160_CTX), RIPEMD160_HMAC_BLOCK_LEN,
(void (*)(void *)) RMD160Init, NULL, NULL, RMD160Update_int,
(void (*)(u_int8_t *, void *)) RMD160Final
};
struct auth_hash auth_hash_key_md5 = {
CRYPTO_MD5_KPDK, "Keyed MD5",
0, MD5_KPDK_HASH_LEN, sizeof(MD5_CTX), 0,
(void (*)(void *)) MD5Init, NULL, NULL, MD5Update_int,
(void (*)(u_int8_t *, void *)) MD5Final
};
struct auth_hash auth_hash_key_sha1 = {
CRYPTO_SHA1_KPDK, "Keyed SHA1",
0, SHA1_KPDK_HASH_LEN, sizeof(SHA1_CTX), 0,
SHA1Init_int, NULL, NULL, SHA1Update_int, SHA1Final_int
};
struct auth_hash auth_hash_hmac_sha2_256 = {
CRYPTO_SHA2_256_HMAC, "HMAC-SHA2-256",
32, SHA2_256_HASH_LEN, sizeof(SHA256_CTX), SHA2_256_HMAC_BLOCK_LEN,
(void (*)(void *)) SHA256_Init, NULL, NULL, SHA256Update_int,
(void (*)(u_int8_t *, void *)) SHA256_Final
};
struct auth_hash auth_hash_hmac_sha2_384 = {
CRYPTO_SHA2_384_HMAC, "HMAC-SHA2-384",
48, SHA2_384_HASH_LEN, sizeof(SHA384_CTX), SHA2_384_HMAC_BLOCK_LEN,
(void (*)(void *)) SHA384_Init, NULL, NULL, SHA384Update_int,
(void (*)(u_int8_t *, void *)) SHA384_Final
};
struct auth_hash auth_hash_hmac_sha2_512 = {
CRYPTO_SHA2_512_HMAC, "HMAC-SHA2-512",
64, SHA2_512_HASH_LEN, sizeof(SHA512_CTX), SHA2_512_HMAC_BLOCK_LEN,
(void (*)(void *)) SHA512_Init, NULL, NULL, SHA512Update_int,
(void (*)(u_int8_t *, void *)) SHA512_Final
};
struct auth_hash auth_hash_nist_gmac_aes_128 = {
CRYPTO_AES_128_NIST_GMAC, "GMAC-AES-128",
16, 16, sizeof(struct aes_gmac_ctx), GMAC_BLOCK_LEN,
(void (*)(void *)) AES_GMAC_Init,
(void (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Setkey,
(void (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Reinit,
(int (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Update,
(void (*)(u_int8_t *, void *)) AES_GMAC_Final
};
struct auth_hash auth_hash_nist_gmac_aes_192 = {
CRYPTO_AES_192_NIST_GMAC, "GMAC-AES-192",
24, 16, sizeof(struct aes_gmac_ctx), GMAC_BLOCK_LEN,
(void (*)(void *)) AES_GMAC_Init,
(void (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Setkey,
(void (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Reinit,
(int (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Update,
(void (*)(u_int8_t *, void *)) AES_GMAC_Final
};
struct auth_hash auth_hash_nist_gmac_aes_256 = {
CRYPTO_AES_256_NIST_GMAC, "GMAC-AES-256",
32, 16, sizeof(struct aes_gmac_ctx), GMAC_BLOCK_LEN,
(void (*)(void *)) AES_GMAC_Init,
(void (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Setkey,
(void (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Reinit,
(int (*)(void *, const u_int8_t *, u_int16_t)) AES_GMAC_Update,
(void (*)(u_int8_t *, void *)) AES_GMAC_Final
};
/* Compression instance */
struct comp_algo comp_algo_deflate = {
CRYPTO_DEFLATE_COMP, "Deflate",
90, deflate_compress,
deflate_decompress
};
/*
* Encryption wrapper routines.
*/
static void
null_encrypt(caddr_t key, u_int8_t *blk)
{
}
static void
null_decrypt(caddr_t key, u_int8_t *blk)
{
}
static int
null_setkey(u_int8_t **sched, u_int8_t *key, int len)
{
*sched = NULL;
return 0;
}
static void
null_zerokey(u_int8_t **sched)
{
*sched = NULL;
}
static void
des1_encrypt(caddr_t key, u_int8_t *blk)
{
des_cblock *cb = (des_cblock *) blk;
des_key_schedule *p = (des_key_schedule *) key;
des_ecb_encrypt(cb, cb, p[0], DES_ENCRYPT);
}
static void
des1_decrypt(caddr_t key, u_int8_t *blk)
{
des_cblock *cb = (des_cblock *) blk;
des_key_schedule *p = (des_key_schedule *) key;
des_ecb_encrypt(cb, cb, p[0], DES_DECRYPT);
}
static int
des1_setkey(u_int8_t **sched, u_int8_t *key, int len)
{
des_key_schedule *p;
int err;
p = malloc(sizeof (des_key_schedule),
M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
if (p != NULL) {
des_set_key((des_cblock *) key, p[0]);
err = 0;
} else
err = ENOMEM;
*sched = (u_int8_t *) p;
return err;
}
static void
des1_zerokey(u_int8_t **sched)
{
bzero(*sched, sizeof (des_key_schedule));
free(*sched, M_CRYPTO_DATA);
*sched = NULL;
}
static void
des3_encrypt(caddr_t key, u_int8_t *blk)
{
des_cblock *cb = (des_cblock *) blk;
des_key_schedule *p = (des_key_schedule *) key;
des_ecb3_encrypt(cb, cb, p[0], p[1], p[2], DES_ENCRYPT);
}
static void
des3_decrypt(caddr_t key, u_int8_t *blk)
{
des_cblock *cb = (des_cblock *) blk;
des_key_schedule *p = (des_key_schedule *) key;
des_ecb3_encrypt(cb, cb, p[0], p[1], p[2], DES_DECRYPT);
}
static int
des3_setkey(u_int8_t **sched, u_int8_t *key, int len)
{
des_key_schedule *p;
int err;
p = malloc(3*sizeof (des_key_schedule),
M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
if (p != NULL) {
des_set_key((des_cblock *)(key + 0), p[0]);
des_set_key((des_cblock *)(key + 8), p[1]);
des_set_key((des_cblock *)(key + 16), p[2]);
err = 0;
} else
err = ENOMEM;
*sched = (u_int8_t *) p;
return err;
}
static void
des3_zerokey(u_int8_t **sched)
{
bzero(*sched, 3*sizeof (des_key_schedule));
free(*sched, M_CRYPTO_DATA);
*sched = NULL;
}
static void
blf_encrypt(caddr_t key, u_int8_t *blk)
{
BF_LONG t[2];
memcpy(t, blk, sizeof (t));
t[0] = ntohl(t[0]);
t[1] = ntohl(t[1]);
/* NB: BF_encrypt expects the block in host order! */
BF_encrypt(t, (BF_KEY *) key);
t[0] = htonl(t[0]);
t[1] = htonl(t[1]);
memcpy(blk, t, sizeof (t));
}
static void
blf_decrypt(caddr_t key, u_int8_t *blk)
{
BF_LONG t[2];
memcpy(t, blk, sizeof (t));
t[0] = ntohl(t[0]);
t[1] = ntohl(t[1]);
/* NB: BF_decrypt expects the block in host order! */
BF_decrypt(t, (BF_KEY *) key);
t[0] = htonl(t[0]);
t[1] = htonl(t[1]);
memcpy(blk, t, sizeof (t));
}
static int
blf_setkey(u_int8_t **sched, u_int8_t *key, int len)
{
int err;
*sched = malloc(sizeof(BF_KEY),
M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
if (*sched != NULL) {
BF_set_key((BF_KEY *) *sched, len, key);
err = 0;
} else
err = ENOMEM;
return err;
}
static void
blf_zerokey(u_int8_t **sched)
{
bzero(*sched, sizeof(BF_KEY));
free(*sched, M_CRYPTO_DATA);
*sched = NULL;
}
static void
cast5_encrypt(caddr_t key, u_int8_t *blk)
{
cast_encrypt((cast_key *) key, blk, blk);
}
static void
cast5_decrypt(caddr_t key, u_int8_t *blk)
{
cast_decrypt((cast_key *) key, blk, blk);
}
static int
cast5_setkey(u_int8_t **sched, u_int8_t *key, int len)
{
int err;
*sched = malloc(sizeof(cast_key), M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
if (*sched != NULL) {
cast_setkey((cast_key *)*sched, key, len);
err = 0;
} else
err = ENOMEM;
return err;
}
static void
cast5_zerokey(u_int8_t **sched)
{
bzero(*sched, sizeof(cast_key));
free(*sched, M_CRYPTO_DATA);
*sched = NULL;
}
static void
skipjack_encrypt(caddr_t key, u_int8_t *blk)
{
skipjack_forwards(blk, blk, (u_int8_t **) key);
}
static void
skipjack_decrypt(caddr_t key, u_int8_t *blk)
{
skipjack_backwards(blk, blk, (u_int8_t **) key);
}
static int
skipjack_setkey(u_int8_t **sched, u_int8_t *key, int len)
{
int err;
/* NB: allocate all the memory that's needed at once */
*sched = malloc(10 * (sizeof(u_int8_t *) + 0x100),
M_CRYPTO_DATA, M_NOWAIT|M_ZERO);
if (*sched != NULL) {
u_int8_t** key_tables = (u_int8_t**) *sched;
u_int8_t* table = (u_int8_t*) &key_tables[10];
int k;
for (k = 0; k < 10; k++) {
key_tables[k] = table;
table += 0x100;
}
subkey_table_gen(key, (u_int8_t **) *sched);
err = 0;
} else
err = ENOMEM;
return err;
}
static void
skipjack_zerokey(u_int8_t **sched)
{
bzero(*sched, 10 * (sizeof(u_int8_t *) + 0x100));
free(*sched, M_CRYPTO_DATA);
*sched = NULL;
}
static void
rijndael128_encrypt(caddr_t key, u_int8_t *blk)
{
rijndael_encrypt((rijndael_ctx *) key, (u_char *) blk, (u_char *) blk);
}
static void
rijndael128_decrypt(caddr_t key, u_int8_t *blk)
{
rijndael_decrypt(((rijndael_ctx *) key), (u_char *) blk,
(u_char *) blk);
}
static int
rijndael128_setkey(u_int8_t **sched, u_int8_t *key, int len)
{
int err;
if (len != 16 && len != 24 && len != 32)
return (EINVAL);
*sched = malloc(sizeof(rijndael_ctx), M_CRYPTO_DATA,
M_NOWAIT|M_ZERO);
if (*sched != NULL) {
rijndael_set_key((rijndael_ctx *) *sched, (u_char *) key,
len * 8);
err = 0;
} else
err = ENOMEM;
return err;
}
static void
rijndael128_zerokey(u_int8_t **sched)
{
bzero(*sched, sizeof(rijndael_ctx));
free(*sched, M_CRYPTO_DATA);
*sched = NULL;
}
void
aes_icm_reinit(caddr_t key, u_int8_t *iv)
{
struct aes_icm_ctx *ctx;
ctx = (struct aes_icm_ctx *)key;
bcopy(iv, ctx->ac_block, AESICM_BLOCKSIZE);
}
void
aes_gcm_reinit(caddr_t key, u_int8_t *iv)
{
struct aes_icm_ctx *ctx;
aes_icm_reinit(key, iv);
ctx = (struct aes_icm_ctx *)key;
/* GCM starts with 2 as counter 1 is used for final xor of tag. */
bzero(&ctx->ac_block[AESICM_BLOCKSIZE - 4], 4);
ctx->ac_block[AESICM_BLOCKSIZE - 1] = 2;
}
void
aes_icm_crypt(caddr_t key, u_int8_t *data)
{
struct aes_icm_ctx *ctx;
u_int8_t keystream[AESICM_BLOCKSIZE];
int i;
ctx = (struct aes_icm_ctx *)key;
rijndaelEncrypt(ctx->ac_ek, ctx->ac_nr, ctx->ac_block, keystream);
for (i = 0; i < AESICM_BLOCKSIZE; i++)
data[i] ^= keystream[i];
explicit_bzero(keystream, sizeof(keystream));
/* increment counter */
for (i = AESICM_BLOCKSIZE - 1;
i >= 0; i--)
if (++ctx->ac_block[i]) /* continue on overflow */
break;
}
int
aes_icm_setkey(u_int8_t **sched, u_int8_t *key, int len)
{
struct aes_icm_ctx *ctx;
*sched = malloc(sizeof(struct aes_icm_ctx), M_CRYPTO_DATA,
M_NOWAIT | M_ZERO);
if (*sched == NULL)
return ENOMEM;
ctx = (struct aes_icm_ctx *)*sched;
ctx->ac_nr = rijndaelKeySetupEnc(ctx->ac_ek, (u_char *)key, len * 8);
if (ctx->ac_nr == 0)
return EINVAL;
return 0;
}
void
aes_icm_zerokey(u_int8_t **sched)
{
bzero(*sched, sizeof(struct aes_icm_ctx));
free(*sched, M_CRYPTO_DATA);
*sched = NULL;
}
#define AES_XTS_BLOCKSIZE 16
#define AES_XTS_IVSIZE 8
#define AES_XTS_ALPHA 0x87 /* GF(2^128) generator polynomial */
struct aes_xts_ctx {
rijndael_ctx key1;
rijndael_ctx key2;
u_int8_t tweak[AES_XTS_BLOCKSIZE];
};
void
aes_xts_reinit(caddr_t key, u_int8_t *iv)
{
struct aes_xts_ctx *ctx = (struct aes_xts_ctx *)key;
u_int64_t blocknum;
u_int i;
/*
* Prepare tweak as E_k2(IV). IV is specified as LE representation
* of a 64-bit block number which we allow to be passed in directly.
*/
bcopy(iv, &blocknum, AES_XTS_IVSIZE);
for (i = 0; i < AES_XTS_IVSIZE; i++) {
ctx->tweak[i] = blocknum & 0xff;
blocknum >>= 8;
}
/* Last 64 bits of IV are always zero */
bzero(ctx->tweak + AES_XTS_IVSIZE, AES_XTS_IVSIZE);
rijndael_encrypt(&ctx->key2, ctx->tweak, ctx->tweak);
}
static void
aes_xts_crypt(struct aes_xts_ctx *ctx, u_int8_t *data, u_int do_encrypt)
{
u_int8_t block[AES_XTS_BLOCKSIZE];
u_int i, carry_in, carry_out;
for (i = 0; i < AES_XTS_BLOCKSIZE; i++)
block[i] = data[i] ^ ctx->tweak[i];
if (do_encrypt)
rijndael_encrypt(&ctx->key1, block, data);
else
rijndael_decrypt(&ctx->key1, block, data);
for (i = 0; i < AES_XTS_BLOCKSIZE; i++)
data[i] ^= ctx->tweak[i];
/* Exponentiate tweak */
carry_in = 0;
for (i = 0; i < AES_XTS_BLOCKSIZE; i++) {
carry_out = ctx->tweak[i] & 0x80;
ctx->tweak[i] = (ctx->tweak[i] << 1) | (carry_in ? 1 : 0);
carry_in = carry_out;
}
if (carry_in)
ctx->tweak[0] ^= AES_XTS_ALPHA;
bzero(block, sizeof(block));
}
void
aes_xts_encrypt(caddr_t key, u_int8_t *data)
{
aes_xts_crypt((struct aes_xts_ctx *)key, data, 1);
}
void
aes_xts_decrypt(caddr_t key, u_int8_t *data)
{
aes_xts_crypt((struct aes_xts_ctx *)key, data, 0);
}
int
aes_xts_setkey(u_int8_t **sched, u_int8_t *key, int len)
{
struct aes_xts_ctx *ctx;
if (len != 32 && len != 64)
return EINVAL;
*sched = malloc(sizeof(struct aes_xts_ctx), M_CRYPTO_DATA,
M_NOWAIT | M_ZERO);
if (*sched == NULL)
return ENOMEM;
ctx = (struct aes_xts_ctx *)*sched;
rijndael_set_key(&ctx->key1, key, len * 4);
rijndael_set_key(&ctx->key2, key + (len / 2), len * 4);
return 0;
}
void
aes_xts_zerokey(u_int8_t **sched)
{
bzero(*sched, sizeof(struct aes_xts_ctx));
free(*sched, M_CRYPTO_DATA);
*sched = NULL;
}
static void
cml_encrypt(caddr_t key, u_int8_t *blk)
{
camellia_encrypt((camellia_ctx *) key, (u_char *) blk, (u_char *) blk);
}
static void
cml_decrypt(caddr_t key, u_int8_t *blk)
{
camellia_decrypt(((camellia_ctx *) key), (u_char *) blk,
(u_char *) blk);
}
static int
cml_setkey(u_int8_t **sched, u_int8_t *key, int len)
{
int err;
if (len != 16 && len != 24 && len != 32)
return (EINVAL);
*sched = malloc(sizeof(camellia_ctx), M_CRYPTO_DATA,
M_NOWAIT|M_ZERO);
if (*sched != NULL) {
camellia_set_key((camellia_ctx *) *sched, (u_char *) key,
len * 8);
err = 0;
} else
err = ENOMEM;
return err;
}
static void
cml_zerokey(u_int8_t **sched)
{
bzero(*sched, sizeof(camellia_ctx));
free(*sched, M_CRYPTO_DATA);
*sched = NULL;
}
/*
* And now for auth.
*/
static void
null_init(void *ctx)
{
}
static void
null_reinit(void *ctx, const u_int8_t *buf, u_int16_t len)
{
}
static int
null_update(void *ctx, const u_int8_t *buf, u_int16_t len)
{
return 0;
}
static void
null_final(u_int8_t *buf, void *ctx)
{
if (buf != (u_int8_t *) 0)
bzero(buf, 12);
}
static int
RMD160Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
{
RMD160Update(ctx, buf, len);
return 0;
}
static int
MD5Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
{
MD5Update(ctx, buf, len);
return 0;
}
static void
SHA1Init_int(void *ctx)
{
SHA1Init(ctx);
}
static int
SHA1Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
{
SHA1Update(ctx, buf, len);
return 0;
}
static void
SHA1Final_int(u_int8_t *blk, void *ctx)
{
SHA1Final(blk, ctx);
}
static int
SHA256Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
{
SHA256_Update(ctx, buf, len);
return 0;
}
static int
SHA384Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
{
SHA384_Update(ctx, buf, len);
return 0;
}
static int
SHA512Update_int(void *ctx, const u_int8_t *buf, u_int16_t len)
{
SHA512_Update(ctx, buf, len);
return 0;
}
/*
* And compression
*/
static u_int32_t
deflate_compress(data, size, out)
u_int8_t *data;
u_int32_t size;
u_int8_t **out;
{
return deflate_global(data, size, 0, out);
}
static u_int32_t
deflate_decompress(data, size, out)
u_int8_t *data;
u_int32_t size;
u_int8_t **out;
{
return deflate_global(data, size, 1, out);
}