freebsd-dev/sys/dev/xen/blkfront/blkfront.c
Roger Pau Monné 77b6916d2e Revert r269814: blkfront: add support for unmapped IO
Current busdma code for unmapped bios will not properly align the segment
size, causing corruption on blkfront devices. Revert the commit until
busdma code is fixed.

Reported by:	mav
MFC after:	1 day
2014-09-04 14:56:24 +00:00

1587 lines
39 KiB
C

/*
* XenBSD block device driver
*
* Copyright (c) 2010-2013 Spectra Logic Corporation
* Copyright (c) 2009 Scott Long, Yahoo!
* Copyright (c) 2009 Frank Suchomel, Citrix
* Copyright (c) 2009 Doug F. Rabson, Citrix
* Copyright (c) 2005 Kip Macy
* Copyright (c) 2003-2004, Keir Fraser & Steve Hand
* Modifications by Mark A. Williamson are (c) Intel Research Cambridge
*
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <sys/bio.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/module.h>
#include <sys/sysctl.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <machine/resource.h>
#include <machine/intr_machdep.h>
#include <machine/vmparam.h>
#include <sys/bus_dma.h>
#include <xen/xen-os.h>
#include <xen/hypervisor.h>
#include <xen/xen_intr.h>
#include <xen/gnttab.h>
#include <xen/interface/grant_table.h>
#include <xen/interface/io/protocols.h>
#include <xen/xenbus/xenbusvar.h>
#include <machine/_inttypes.h>
#include <machine/xen/xenvar.h>
#include <geom/geom_disk.h>
#include <dev/xen/blkfront/block.h>
#include "xenbus_if.h"
/*--------------------------- Forward Declarations ---------------------------*/
static void xbd_closing(device_t);
static void xbd_startio(struct xbd_softc *sc);
/*---------------------------------- Macros ----------------------------------*/
#if 0
#define DPRINTK(fmt, args...) printf("[XEN] %s:%d: " fmt ".\n", __func__, __LINE__, ##args)
#else
#define DPRINTK(fmt, args...)
#endif
#define XBD_SECTOR_SHFT 9
/*---------------------------- Global Static Data ----------------------------*/
static MALLOC_DEFINE(M_XENBLOCKFRONT, "xbd", "Xen Block Front driver data");
/*---------------------------- Command Processing ----------------------------*/
static void
xbd_freeze(struct xbd_softc *sc, xbd_flag_t xbd_flag)
{
if (xbd_flag != XBDF_NONE && (sc->xbd_flags & xbd_flag) != 0)
return;
sc->xbd_flags |= xbd_flag;
sc->xbd_qfrozen_cnt++;
}
static void
xbd_thaw(struct xbd_softc *sc, xbd_flag_t xbd_flag)
{
if (xbd_flag != XBDF_NONE && (sc->xbd_flags & xbd_flag) == 0)
return;
if (sc->xbd_qfrozen_cnt == 0)
panic("%s: Thaw with flag 0x%x while not frozen.",
__func__, xbd_flag);
sc->xbd_flags &= ~xbd_flag;
sc->xbd_qfrozen_cnt--;
}
static void
xbd_cm_freeze(struct xbd_softc *sc, struct xbd_command *cm, xbdc_flag_t cm_flag)
{
if ((cm->cm_flags & XBDCF_FROZEN) != 0)
return;
cm->cm_flags |= XBDCF_FROZEN|cm_flag;
xbd_freeze(sc, XBDF_NONE);
}
static void
xbd_cm_thaw(struct xbd_softc *sc, struct xbd_command *cm)
{
if ((cm->cm_flags & XBDCF_FROZEN) == 0)
return;
cm->cm_flags &= ~XBDCF_FROZEN;
xbd_thaw(sc, XBDF_NONE);
}
static inline void
xbd_flush_requests(struct xbd_softc *sc)
{
int notify;
RING_PUSH_REQUESTS_AND_CHECK_NOTIFY(&sc->xbd_ring, notify);
if (notify)
xen_intr_signal(sc->xen_intr_handle);
}
static void
xbd_free_command(struct xbd_command *cm)
{
KASSERT((cm->cm_flags & XBDCF_Q_MASK) == XBD_Q_NONE,
("Freeing command that is still on queue %d.",
cm->cm_flags & XBDCF_Q_MASK));
cm->cm_flags = XBDCF_INITIALIZER;
cm->cm_bp = NULL;
cm->cm_complete = NULL;
xbd_enqueue_cm(cm, XBD_Q_FREE);
xbd_thaw(cm->cm_sc, XBDF_CM_SHORTAGE);
}
static void
xbd_queue_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
{
struct xbd_softc *sc;
struct xbd_command *cm;
blkif_request_t *ring_req;
struct blkif_request_segment *sg;
struct blkif_request_segment *last_block_sg;
grant_ref_t *sg_ref;
vm_paddr_t buffer_ma;
uint64_t fsect, lsect;
int ref;
int op;
int block_segs;
cm = arg;
sc = cm->cm_sc;
if (error) {
printf("error %d in xbd_queue_cb\n", error);
cm->cm_bp->bio_error = EIO;
biodone(cm->cm_bp);
xbd_free_command(cm);
return;
}
/* Fill out a communications ring structure. */
ring_req = RING_GET_REQUEST(&sc->xbd_ring, sc->xbd_ring.req_prod_pvt);
sc->xbd_ring.req_prod_pvt++;
ring_req->id = cm->cm_id;
ring_req->operation = cm->cm_operation;
ring_req->sector_number = cm->cm_sector_number;
ring_req->handle = (blkif_vdev_t)(uintptr_t)sc->xbd_disk;
ring_req->nr_segments = nsegs;
cm->cm_nseg = nsegs;
block_segs = MIN(nsegs, BLKIF_MAX_SEGMENTS_PER_HEADER_BLOCK);
sg = ring_req->seg;
last_block_sg = sg + block_segs;
sg_ref = cm->cm_sg_refs;
while (1) {
while (sg < last_block_sg) {
buffer_ma = segs->ds_addr;
fsect = (buffer_ma & PAGE_MASK) >> XBD_SECTOR_SHFT;
lsect = fsect + (segs->ds_len >> XBD_SECTOR_SHFT) - 1;
KASSERT(lsect <= 7, ("XEN disk driver data cannot "
"cross a page boundary"));
/* install a grant reference. */
ref = gnttab_claim_grant_reference(&cm->cm_gref_head);
/*
* GNTTAB_LIST_END == 0xffffffff, but it is private
* to gnttab.c.
*/
KASSERT(ref != ~0, ("grant_reference failed"));
gnttab_grant_foreign_access_ref(
ref,
xenbus_get_otherend_id(sc->xbd_dev),
buffer_ma >> PAGE_SHIFT,
ring_req->operation == BLKIF_OP_WRITE);
*sg_ref = ref;
*sg = (struct blkif_request_segment) {
.gref = ref,
.first_sect = fsect,
.last_sect = lsect
};
sg++;
sg_ref++;
segs++;
nsegs--;
}
block_segs = MIN(nsegs, BLKIF_MAX_SEGMENTS_PER_SEGMENT_BLOCK);
if (block_segs == 0)
break;
sg = BLKRING_GET_SEG_BLOCK(&sc->xbd_ring,
sc->xbd_ring.req_prod_pvt);
sc->xbd_ring.req_prod_pvt++;
last_block_sg = sg + block_segs;
}
if (cm->cm_operation == BLKIF_OP_READ)
op = BUS_DMASYNC_PREREAD;
else if (cm->cm_operation == BLKIF_OP_WRITE)
op = BUS_DMASYNC_PREWRITE;
else
op = 0;
bus_dmamap_sync(sc->xbd_io_dmat, cm->cm_map, op);
gnttab_free_grant_references(cm->cm_gref_head);
xbd_enqueue_cm(cm, XBD_Q_BUSY);
/*
* If bus dma had to asynchronously call us back to dispatch
* this command, we are no longer executing in the context of
* xbd_startio(). Thus we cannot rely on xbd_startio()'s call to
* xbd_flush_requests() to publish this command to the backend
* along with any other commands that it could batch.
*/
if ((cm->cm_flags & XBDCF_ASYNC_MAPPING) != 0)
xbd_flush_requests(sc);
return;
}
static int
xbd_queue_request(struct xbd_softc *sc, struct xbd_command *cm)
{
int error;
error = bus_dmamap_load(sc->xbd_io_dmat, cm->cm_map, cm->cm_data,
cm->cm_datalen, xbd_queue_cb, cm, 0);
if (error == EINPROGRESS) {
/*
* Maintain queuing order by freezing the queue. The next
* command may not require as many resources as the command
* we just attempted to map, so we can't rely on bus dma
* blocking for it too.
*/
xbd_cm_freeze(sc, cm, XBDCF_ASYNC_MAPPING);
return (0);
}
return (error);
}
static void
xbd_restart_queue_callback(void *arg)
{
struct xbd_softc *sc = arg;
mtx_lock(&sc->xbd_io_lock);
xbd_thaw(sc, XBDF_GNT_SHORTAGE);
xbd_startio(sc);
mtx_unlock(&sc->xbd_io_lock);
}
static struct xbd_command *
xbd_bio_command(struct xbd_softc *sc)
{
struct xbd_command *cm;
struct bio *bp;
if (__predict_false(sc->xbd_state != XBD_STATE_CONNECTED))
return (NULL);
bp = xbd_dequeue_bio(sc);
if (bp == NULL)
return (NULL);
if ((cm = xbd_dequeue_cm(sc, XBD_Q_FREE)) == NULL) {
xbd_freeze(sc, XBDF_CM_SHORTAGE);
xbd_requeue_bio(sc, bp);
return (NULL);
}
if (gnttab_alloc_grant_references(sc->xbd_max_request_segments,
&cm->cm_gref_head) != 0) {
gnttab_request_free_callback(&sc->xbd_callback,
xbd_restart_queue_callback, sc,
sc->xbd_max_request_segments);
xbd_freeze(sc, XBDF_GNT_SHORTAGE);
xbd_requeue_bio(sc, bp);
xbd_enqueue_cm(cm, XBD_Q_FREE);
return (NULL);
}
cm->cm_bp = bp;
cm->cm_data = bp->bio_data;
cm->cm_datalen = bp->bio_bcount;
cm->cm_sector_number = (blkif_sector_t)bp->bio_pblkno;
switch (bp->bio_cmd) {
case BIO_READ:
cm->cm_operation = BLKIF_OP_READ;
break;
case BIO_WRITE:
cm->cm_operation = BLKIF_OP_WRITE;
if ((bp->bio_flags & BIO_ORDERED) != 0) {
if ((sc->xbd_flags & XBDF_BARRIER) != 0) {
cm->cm_operation = BLKIF_OP_WRITE_BARRIER;
} else {
/*
* Single step this command.
*/
cm->cm_flags |= XBDCF_Q_FREEZE;
if (xbd_queue_length(sc, XBD_Q_BUSY) != 0) {
/*
* Wait for in-flight requests to
* finish.
*/
xbd_freeze(sc, XBDF_WAIT_IDLE);
xbd_requeue_cm(cm, XBD_Q_READY);
return (NULL);
}
}
}
break;
case BIO_FLUSH:
if ((sc->xbd_flags & XBDF_FLUSH) != 0)
cm->cm_operation = BLKIF_OP_FLUSH_DISKCACHE;
else if ((sc->xbd_flags & XBDF_BARRIER) != 0)
cm->cm_operation = BLKIF_OP_WRITE_BARRIER;
else
panic("flush request, but no flush support available");
break;
default:
panic("unknown bio command %d", bp->bio_cmd);
}
return (cm);
}
/*
* Dequeue buffers and place them in the shared communication ring.
* Return when no more requests can be accepted or all buffers have
* been queued.
*
* Signal XEN once the ring has been filled out.
*/
static void
xbd_startio(struct xbd_softc *sc)
{
struct xbd_command *cm;
int error, queued = 0;
mtx_assert(&sc->xbd_io_lock, MA_OWNED);
if (sc->xbd_state != XBD_STATE_CONNECTED)
return;
while (RING_FREE_REQUESTS(&sc->xbd_ring) >=
sc->xbd_max_request_blocks) {
if (sc->xbd_qfrozen_cnt != 0)
break;
cm = xbd_dequeue_cm(sc, XBD_Q_READY);
if (cm == NULL)
cm = xbd_bio_command(sc);
if (cm == NULL)
break;
if ((cm->cm_flags & XBDCF_Q_FREEZE) != 0) {
/*
* Single step command. Future work is
* held off until this command completes.
*/
xbd_cm_freeze(sc, cm, XBDCF_Q_FREEZE);
}
if ((error = xbd_queue_request(sc, cm)) != 0) {
printf("xbd_queue_request returned %d\n", error);
break;
}
queued++;
}
if (queued != 0)
xbd_flush_requests(sc);
}
static void
xbd_bio_complete(struct xbd_softc *sc, struct xbd_command *cm)
{
struct bio *bp;
bp = cm->cm_bp;
if (__predict_false(cm->cm_status != BLKIF_RSP_OKAY)) {
disk_err(bp, "disk error" , -1, 0);
printf(" status: %x\n", cm->cm_status);
bp->bio_flags |= BIO_ERROR;
}
if (bp->bio_flags & BIO_ERROR)
bp->bio_error = EIO;
else
bp->bio_resid = 0;
xbd_free_command(cm);
biodone(bp);
}
static int
xbd_completion(struct xbd_command *cm)
{
gnttab_end_foreign_access_references(cm->cm_nseg, cm->cm_sg_refs);
return (BLKIF_SEGS_TO_BLOCKS(cm->cm_nseg));
}
static void
xbd_int(void *xsc)
{
struct xbd_softc *sc = xsc;
struct xbd_command *cm;
blkif_response_t *bret;
RING_IDX i, rp;
int op;
mtx_lock(&sc->xbd_io_lock);
if (__predict_false(sc->xbd_state == XBD_STATE_DISCONNECTED)) {
mtx_unlock(&sc->xbd_io_lock);
return;
}
again:
rp = sc->xbd_ring.sring->rsp_prod;
rmb(); /* Ensure we see queued responses up to 'rp'. */
for (i = sc->xbd_ring.rsp_cons; i != rp;) {
bret = RING_GET_RESPONSE(&sc->xbd_ring, i);
cm = &sc->xbd_shadow[bret->id];
xbd_remove_cm(cm, XBD_Q_BUSY);
i += xbd_completion(cm);
if (cm->cm_operation == BLKIF_OP_READ)
op = BUS_DMASYNC_POSTREAD;
else if (cm->cm_operation == BLKIF_OP_WRITE ||
cm->cm_operation == BLKIF_OP_WRITE_BARRIER)
op = BUS_DMASYNC_POSTWRITE;
else
op = 0;
bus_dmamap_sync(sc->xbd_io_dmat, cm->cm_map, op);
bus_dmamap_unload(sc->xbd_io_dmat, cm->cm_map);
/*
* Release any hold this command has on future command
* dispatch.
*/
xbd_cm_thaw(sc, cm);
/*
* Directly call the i/o complete routine to save an
* an indirection in the common case.
*/
cm->cm_status = bret->status;
if (cm->cm_bp)
xbd_bio_complete(sc, cm);
else if (cm->cm_complete != NULL)
cm->cm_complete(cm);
else
xbd_free_command(cm);
}
sc->xbd_ring.rsp_cons = i;
if (i != sc->xbd_ring.req_prod_pvt) {
int more_to_do;
RING_FINAL_CHECK_FOR_RESPONSES(&sc->xbd_ring, more_to_do);
if (more_to_do)
goto again;
} else {
sc->xbd_ring.sring->rsp_event = i + 1;
}
if (xbd_queue_length(sc, XBD_Q_BUSY) == 0)
xbd_thaw(sc, XBDF_WAIT_IDLE);
xbd_startio(sc);
if (__predict_false(sc->xbd_state == XBD_STATE_SUSPENDED))
wakeup(&sc->xbd_cm_q[XBD_Q_BUSY]);
mtx_unlock(&sc->xbd_io_lock);
}
/*------------------------------- Dump Support -------------------------------*/
/**
* Quiesce the disk writes for a dump file before allowing the next buffer.
*/
static void
xbd_quiesce(struct xbd_softc *sc)
{
int mtd;
// While there are outstanding requests
while (xbd_queue_length(sc, XBD_Q_BUSY) != 0) {
RING_FINAL_CHECK_FOR_RESPONSES(&sc->xbd_ring, mtd);
if (mtd) {
/* Recieved request completions, update queue. */
xbd_int(sc);
}
if (xbd_queue_length(sc, XBD_Q_BUSY) != 0) {
/*
* Still pending requests, wait for the disk i/o
* to complete.
*/
HYPERVISOR_yield();
}
}
}
/* Kernel dump function for a paravirtualized disk device */
static void
xbd_dump_complete(struct xbd_command *cm)
{
xbd_enqueue_cm(cm, XBD_Q_COMPLETE);
}
static int
xbd_dump(void *arg, void *virtual, vm_offset_t physical, off_t offset,
size_t length)
{
struct disk *dp = arg;
struct xbd_softc *sc = dp->d_drv1;
struct xbd_command *cm;
size_t chunk;
int sbp;
int rc = 0;
if (length <= 0)
return (rc);
xbd_quiesce(sc); /* All quiet on the western front. */
/*
* If this lock is held, then this module is failing, and a
* successful kernel dump is highly unlikely anyway.
*/
mtx_lock(&sc->xbd_io_lock);
/* Split the 64KB block as needed */
for (sbp=0; length > 0; sbp++) {
cm = xbd_dequeue_cm(sc, XBD_Q_FREE);
if (cm == NULL) {
mtx_unlock(&sc->xbd_io_lock);
device_printf(sc->xbd_dev, "dump: no more commands?\n");
return (EBUSY);
}
if (gnttab_alloc_grant_references(sc->xbd_max_request_segments,
&cm->cm_gref_head) != 0) {
xbd_free_command(cm);
mtx_unlock(&sc->xbd_io_lock);
device_printf(sc->xbd_dev, "no more grant allocs?\n");
return (EBUSY);
}
chunk = length > sc->xbd_max_request_size ?
sc->xbd_max_request_size : length;
cm->cm_data = virtual;
cm->cm_datalen = chunk;
cm->cm_operation = BLKIF_OP_WRITE;
cm->cm_sector_number = offset / dp->d_sectorsize;
cm->cm_complete = xbd_dump_complete;
xbd_enqueue_cm(cm, XBD_Q_READY);
length -= chunk;
offset += chunk;
virtual = (char *) virtual + chunk;
}
/* Tell DOM0 to do the I/O */
xbd_startio(sc);
mtx_unlock(&sc->xbd_io_lock);
/* Poll for the completion. */
xbd_quiesce(sc); /* All quite on the eastern front */
/* If there were any errors, bail out... */
while ((cm = xbd_dequeue_cm(sc, XBD_Q_COMPLETE)) != NULL) {
if (cm->cm_status != BLKIF_RSP_OKAY) {
device_printf(sc->xbd_dev,
"Dump I/O failed at sector %jd\n",
cm->cm_sector_number);
rc = EIO;
}
xbd_free_command(cm);
}
return (rc);
}
/*----------------------------- Disk Entrypoints -----------------------------*/
static int
xbd_open(struct disk *dp)
{
struct xbd_softc *sc = dp->d_drv1;
if (sc == NULL) {
printf("xb%d: not found", sc->xbd_unit);
return (ENXIO);
}
sc->xbd_flags |= XBDF_OPEN;
sc->xbd_users++;
return (0);
}
static int
xbd_close(struct disk *dp)
{
struct xbd_softc *sc = dp->d_drv1;
if (sc == NULL)
return (ENXIO);
sc->xbd_flags &= ~XBDF_OPEN;
if (--(sc->xbd_users) == 0) {
/*
* Check whether we have been instructed to close. We will
* have ignored this request initially, as the device was
* still mounted.
*/
if (xenbus_get_otherend_state(sc->xbd_dev) ==
XenbusStateClosing)
xbd_closing(sc->xbd_dev);
}
return (0);
}
static int
xbd_ioctl(struct disk *dp, u_long cmd, void *addr, int flag, struct thread *td)
{
struct xbd_softc *sc = dp->d_drv1;
if (sc == NULL)
return (ENXIO);
return (ENOTTY);
}
/*
* Read/write routine for a buffer. Finds the proper unit, place it on
* the sortq and kick the controller.
*/
static void
xbd_strategy(struct bio *bp)
{
struct xbd_softc *sc = bp->bio_disk->d_drv1;
/* bogus disk? */
if (sc == NULL) {
bp->bio_error = EINVAL;
bp->bio_flags |= BIO_ERROR;
bp->bio_resid = bp->bio_bcount;
biodone(bp);
return;
}
/*
* Place it in the queue of disk activities for this disk
*/
mtx_lock(&sc->xbd_io_lock);
xbd_enqueue_bio(sc, bp);
xbd_startio(sc);
mtx_unlock(&sc->xbd_io_lock);
return;
}
/*------------------------------ Ring Management -----------------------------*/
static int
xbd_alloc_ring(struct xbd_softc *sc)
{
blkif_sring_t *sring;
uintptr_t sring_page_addr;
int error;
int i;
sring = malloc(sc->xbd_ring_pages * PAGE_SIZE, M_XENBLOCKFRONT,
M_NOWAIT|M_ZERO);
if (sring == NULL) {
xenbus_dev_fatal(sc->xbd_dev, ENOMEM, "allocating shared ring");
return (ENOMEM);
}
SHARED_RING_INIT(sring);
FRONT_RING_INIT(&sc->xbd_ring, sring, sc->xbd_ring_pages * PAGE_SIZE);
for (i = 0, sring_page_addr = (uintptr_t)sring;
i < sc->xbd_ring_pages;
i++, sring_page_addr += PAGE_SIZE) {
error = xenbus_grant_ring(sc->xbd_dev,
(vtomach(sring_page_addr) >> PAGE_SHIFT),
&sc->xbd_ring_ref[i]);
if (error) {
xenbus_dev_fatal(sc->xbd_dev, error,
"granting ring_ref(%d)", i);
return (error);
}
}
if (sc->xbd_ring_pages == 1) {
error = xs_printf(XST_NIL, xenbus_get_node(sc->xbd_dev),
"ring-ref", "%u", sc->xbd_ring_ref[0]);
if (error) {
xenbus_dev_fatal(sc->xbd_dev, error,
"writing %s/ring-ref",
xenbus_get_node(sc->xbd_dev));
return (error);
}
} else {
for (i = 0; i < sc->xbd_ring_pages; i++) {
char ring_ref_name[]= "ring_refXX";
snprintf(ring_ref_name, sizeof(ring_ref_name),
"ring-ref%u", i);
error = xs_printf(XST_NIL, xenbus_get_node(sc->xbd_dev),
ring_ref_name, "%u", sc->xbd_ring_ref[i]);
if (error) {
xenbus_dev_fatal(sc->xbd_dev, error,
"writing %s/%s",
xenbus_get_node(sc->xbd_dev),
ring_ref_name);
return (error);
}
}
}
error = xen_intr_alloc_and_bind_local_port(sc->xbd_dev,
xenbus_get_otherend_id(sc->xbd_dev), NULL, xbd_int, sc,
INTR_TYPE_BIO | INTR_MPSAFE, &sc->xen_intr_handle);
if (error) {
xenbus_dev_fatal(sc->xbd_dev, error,
"xen_intr_alloc_and_bind_local_port failed");
return (error);
}
return (0);
}
static void
xbd_free_ring(struct xbd_softc *sc)
{
int i;
if (sc->xbd_ring.sring == NULL)
return;
for (i = 0; i < sc->xbd_ring_pages; i++) {
if (sc->xbd_ring_ref[i] != GRANT_REF_INVALID) {
gnttab_end_foreign_access_ref(sc->xbd_ring_ref[i]);
sc->xbd_ring_ref[i] = GRANT_REF_INVALID;
}
}
free(sc->xbd_ring.sring, M_XENBLOCKFRONT);
sc->xbd_ring.sring = NULL;
}
/*-------------------------- Initialization/Teardown -------------------------*/
static int
xbd_feature_string(struct xbd_softc *sc, char *features, size_t len)
{
struct sbuf sb;
int feature_cnt;
sbuf_new(&sb, features, len, SBUF_FIXEDLEN);
feature_cnt = 0;
if ((sc->xbd_flags & XBDF_FLUSH) != 0) {
sbuf_printf(&sb, "flush");
feature_cnt++;
}
if ((sc->xbd_flags & XBDF_BARRIER) != 0) {
if (feature_cnt != 0)
sbuf_printf(&sb, ", ");
sbuf_printf(&sb, "write_barrier");
feature_cnt++;
}
(void) sbuf_finish(&sb);
return (sbuf_len(&sb));
}
static int
xbd_sysctl_features(SYSCTL_HANDLER_ARGS)
{
char features[80];
struct xbd_softc *sc = arg1;
int error;
int len;
error = sysctl_wire_old_buffer(req, 0);
if (error != 0)
return (error);
len = xbd_feature_string(sc, features, sizeof(features));
/* len is -1 on error, which will make the SYSCTL_OUT a no-op. */
return (SYSCTL_OUT(req, features, len + 1/*NUL*/));
}
static void
xbd_setup_sysctl(struct xbd_softc *xbd)
{
struct sysctl_ctx_list *sysctl_ctx = NULL;
struct sysctl_oid *sysctl_tree = NULL;
struct sysctl_oid_list *children;
sysctl_ctx = device_get_sysctl_ctx(xbd->xbd_dev);
if (sysctl_ctx == NULL)
return;
sysctl_tree = device_get_sysctl_tree(xbd->xbd_dev);
if (sysctl_tree == NULL)
return;
children = SYSCTL_CHILDREN(sysctl_tree);
SYSCTL_ADD_UINT(sysctl_ctx, children, OID_AUTO,
"max_requests", CTLFLAG_RD, &xbd->xbd_max_requests, -1,
"maximum outstanding requests (negotiated)");
SYSCTL_ADD_UINT(sysctl_ctx, children, OID_AUTO,
"max_request_segments", CTLFLAG_RD,
&xbd->xbd_max_request_segments, 0,
"maximum number of pages per requests (negotiated)");
SYSCTL_ADD_UINT(sysctl_ctx, children, OID_AUTO,
"max_request_size", CTLFLAG_RD, &xbd->xbd_max_request_size, 0,
"maximum size in bytes of a request (negotiated)");
SYSCTL_ADD_UINT(sysctl_ctx, children, OID_AUTO,
"ring_pages", CTLFLAG_RD, &xbd->xbd_ring_pages, 0,
"communication channel pages (negotiated)");
SYSCTL_ADD_PROC(sysctl_ctx, children, OID_AUTO,
"features", CTLTYPE_STRING|CTLFLAG_RD, xbd, 0,
xbd_sysctl_features, "A", "protocol features (negotiated)");
}
/*
* Translate Linux major/minor to an appropriate name and unit
* number. For HVM guests, this allows us to use the same drive names
* with blkfront as the emulated drives, easing transition slightly.
*/
static void
xbd_vdevice_to_unit(uint32_t vdevice, int *unit, const char **name)
{
static struct vdev_info {
int major;
int shift;
int base;
const char *name;
} info[] = {
{3, 6, 0, "ada"}, /* ide0 */
{22, 6, 2, "ada"}, /* ide1 */
{33, 6, 4, "ada"}, /* ide2 */
{34, 6, 6, "ada"}, /* ide3 */
{56, 6, 8, "ada"}, /* ide4 */
{57, 6, 10, "ada"}, /* ide5 */
{88, 6, 12, "ada"}, /* ide6 */
{89, 6, 14, "ada"}, /* ide7 */
{90, 6, 16, "ada"}, /* ide8 */
{91, 6, 18, "ada"}, /* ide9 */
{8, 4, 0, "da"}, /* scsi disk0 */
{65, 4, 16, "da"}, /* scsi disk1 */
{66, 4, 32, "da"}, /* scsi disk2 */
{67, 4, 48, "da"}, /* scsi disk3 */
{68, 4, 64, "da"}, /* scsi disk4 */
{69, 4, 80, "da"}, /* scsi disk5 */
{70, 4, 96, "da"}, /* scsi disk6 */
{71, 4, 112, "da"}, /* scsi disk7 */
{128, 4, 128, "da"}, /* scsi disk8 */
{129, 4, 144, "da"}, /* scsi disk9 */
{130, 4, 160, "da"}, /* scsi disk10 */
{131, 4, 176, "da"}, /* scsi disk11 */
{132, 4, 192, "da"}, /* scsi disk12 */
{133, 4, 208, "da"}, /* scsi disk13 */
{134, 4, 224, "da"}, /* scsi disk14 */
{135, 4, 240, "da"}, /* scsi disk15 */
{202, 4, 0, "xbd"}, /* xbd */
{0, 0, 0, NULL},
};
int major = vdevice >> 8;
int minor = vdevice & 0xff;
int i;
if (vdevice & (1 << 28)) {
*unit = (vdevice & ((1 << 28) - 1)) >> 8;
*name = "xbd";
return;
}
for (i = 0; info[i].major; i++) {
if (info[i].major == major) {
*unit = info[i].base + (minor >> info[i].shift);
*name = info[i].name;
return;
}
}
*unit = minor >> 4;
*name = "xbd";
}
int
xbd_instance_create(struct xbd_softc *sc, blkif_sector_t sectors,
int vdevice, uint16_t vdisk_info, unsigned long sector_size)
{
char features[80];
int unit, error = 0;
const char *name;
xbd_vdevice_to_unit(vdevice, &unit, &name);
sc->xbd_unit = unit;
if (strcmp(name, "xbd") != 0)
device_printf(sc->xbd_dev, "attaching as %s%d\n", name, unit);
if (xbd_feature_string(sc, features, sizeof(features)) > 0) {
device_printf(sc->xbd_dev, "features: %s\n",
features);
}
sc->xbd_disk = disk_alloc();
sc->xbd_disk->d_unit = sc->xbd_unit;
sc->xbd_disk->d_open = xbd_open;
sc->xbd_disk->d_close = xbd_close;
sc->xbd_disk->d_ioctl = xbd_ioctl;
sc->xbd_disk->d_strategy = xbd_strategy;
sc->xbd_disk->d_dump = xbd_dump;
sc->xbd_disk->d_name = name;
sc->xbd_disk->d_drv1 = sc;
sc->xbd_disk->d_sectorsize = sector_size;
sc->xbd_disk->d_mediasize = sectors * sector_size;
sc->xbd_disk->d_maxsize = sc->xbd_max_request_size;
sc->xbd_disk->d_flags = 0;
if ((sc->xbd_flags & (XBDF_FLUSH|XBDF_BARRIER)) != 0) {
sc->xbd_disk->d_flags |= DISKFLAG_CANFLUSHCACHE;
device_printf(sc->xbd_dev,
"synchronize cache commands enabled.\n");
}
disk_create(sc->xbd_disk, DISK_VERSION);
return error;
}
static void
xbd_free(struct xbd_softc *sc)
{
int i;
/* Prevent new requests being issued until we fix things up. */
mtx_lock(&sc->xbd_io_lock);
sc->xbd_state = XBD_STATE_DISCONNECTED;
mtx_unlock(&sc->xbd_io_lock);
/* Free resources associated with old device channel. */
xbd_free_ring(sc);
if (sc->xbd_shadow) {
for (i = 0; i < sc->xbd_max_requests; i++) {
struct xbd_command *cm;
cm = &sc->xbd_shadow[i];
if (cm->cm_sg_refs != NULL) {
free(cm->cm_sg_refs, M_XENBLOCKFRONT);
cm->cm_sg_refs = NULL;
}
bus_dmamap_destroy(sc->xbd_io_dmat, cm->cm_map);
}
free(sc->xbd_shadow, M_XENBLOCKFRONT);
sc->xbd_shadow = NULL;
bus_dma_tag_destroy(sc->xbd_io_dmat);
xbd_initq_cm(sc, XBD_Q_FREE);
xbd_initq_cm(sc, XBD_Q_READY);
xbd_initq_cm(sc, XBD_Q_COMPLETE);
}
xen_intr_unbind(&sc->xen_intr_handle);
}
/*--------------------------- State Change Handlers --------------------------*/
static void
xbd_initialize(struct xbd_softc *sc)
{
const char *otherend_path;
const char *node_path;
uint32_t max_ring_page_order;
int error;
int i;
if (xenbus_get_state(sc->xbd_dev) != XenbusStateInitialising) {
/* Initialization has already been performed. */
return;
}
/*
* Protocol defaults valid even if negotiation for a
* setting fails.
*/
max_ring_page_order = 0;
sc->xbd_ring_pages = 1;
sc->xbd_max_request_segments = BLKIF_MAX_SEGMENTS_PER_HEADER_BLOCK;
sc->xbd_max_request_size =
XBD_SEGS_TO_SIZE(sc->xbd_max_request_segments);
sc->xbd_max_request_blocks =
BLKIF_SEGS_TO_BLOCKS(sc->xbd_max_request_segments);
/*
* Protocol negotiation.
*
* \note xs_gather() returns on the first encountered error, so
* we must use independant calls in order to guarantee
* we don't miss information in a sparsly populated back-end
* tree.
*
* \note xs_scanf() does not update variables for unmatched
* fields.
*/
otherend_path = xenbus_get_otherend_path(sc->xbd_dev);
node_path = xenbus_get_node(sc->xbd_dev);
/* Support both backend schemes for relaying ring page limits. */
(void)xs_scanf(XST_NIL, otherend_path,
"max-ring-page-order", NULL, "%" PRIu32,
&max_ring_page_order);
sc->xbd_ring_pages = 1 << max_ring_page_order;
(void)xs_scanf(XST_NIL, otherend_path,
"max-ring-pages", NULL, "%" PRIu32,
&sc->xbd_ring_pages);
if (sc->xbd_ring_pages < 1)
sc->xbd_ring_pages = 1;
sc->xbd_max_requests =
BLKIF_MAX_RING_REQUESTS(sc->xbd_ring_pages * PAGE_SIZE);
(void)xs_scanf(XST_NIL, otherend_path,
"max-requests", NULL, "%" PRIu32,
&sc->xbd_max_requests);
(void)xs_scanf(XST_NIL, otherend_path,
"max-request-segments", NULL, "%" PRIu32,
&sc->xbd_max_request_segments);
(void)xs_scanf(XST_NIL, otherend_path,
"max-request-size", NULL, "%" PRIu32,
&sc->xbd_max_request_size);
if (sc->xbd_ring_pages > XBD_MAX_RING_PAGES) {
device_printf(sc->xbd_dev,
"Back-end specified ring-pages of %u "
"limited to front-end limit of %zu.\n",
sc->xbd_ring_pages, XBD_MAX_RING_PAGES);
sc->xbd_ring_pages = XBD_MAX_RING_PAGES;
}
if (powerof2(sc->xbd_ring_pages) == 0) {
uint32_t new_page_limit;
new_page_limit = 0x01 << (fls(sc->xbd_ring_pages) - 1);
device_printf(sc->xbd_dev,
"Back-end specified ring-pages of %u "
"is not a power of 2. Limited to %u.\n",
sc->xbd_ring_pages, new_page_limit);
sc->xbd_ring_pages = new_page_limit;
}
if (sc->xbd_max_requests > XBD_MAX_REQUESTS) {
device_printf(sc->xbd_dev,
"Back-end specified max_requests of %u "
"limited to front-end limit of %u.\n",
sc->xbd_max_requests, XBD_MAX_REQUESTS);
sc->xbd_max_requests = XBD_MAX_REQUESTS;
}
if (sc->xbd_max_request_segments > XBD_MAX_SEGMENTS_PER_REQUEST) {
device_printf(sc->xbd_dev,
"Back-end specified max_request_segments of %u "
"limited to front-end limit of %u.\n",
sc->xbd_max_request_segments,
XBD_MAX_SEGMENTS_PER_REQUEST);
sc->xbd_max_request_segments = XBD_MAX_SEGMENTS_PER_REQUEST;
}
if (sc->xbd_max_request_size > XBD_MAX_REQUEST_SIZE) {
device_printf(sc->xbd_dev,
"Back-end specified max_request_size of %u "
"limited to front-end limit of %u.\n",
sc->xbd_max_request_size,
XBD_MAX_REQUEST_SIZE);
sc->xbd_max_request_size = XBD_MAX_REQUEST_SIZE;
}
if (sc->xbd_max_request_size >
XBD_SEGS_TO_SIZE(sc->xbd_max_request_segments)) {
device_printf(sc->xbd_dev,
"Back-end specified max_request_size of %u "
"limited to front-end limit of %u. (Too few segments.)\n",
sc->xbd_max_request_size,
XBD_SEGS_TO_SIZE(sc->xbd_max_request_segments));
sc->xbd_max_request_size =
XBD_SEGS_TO_SIZE(sc->xbd_max_request_segments);
}
sc->xbd_max_request_blocks =
BLKIF_SEGS_TO_BLOCKS(sc->xbd_max_request_segments);
/* Allocate datastructures based on negotiated values. */
error = bus_dma_tag_create(
bus_get_dma_tag(sc->xbd_dev), /* parent */
512, PAGE_SIZE, /* algnmnt, boundary */
BUS_SPACE_MAXADDR, /* lowaddr */
BUS_SPACE_MAXADDR, /* highaddr */
NULL, NULL, /* filter, filterarg */
sc->xbd_max_request_size,
sc->xbd_max_request_segments,
PAGE_SIZE, /* maxsegsize */
BUS_DMA_ALLOCNOW, /* flags */
busdma_lock_mutex, /* lockfunc */
&sc->xbd_io_lock, /* lockarg */
&sc->xbd_io_dmat);
if (error != 0) {
xenbus_dev_fatal(sc->xbd_dev, error,
"Cannot allocate parent DMA tag\n");
return;
}
/* Per-transaction data allocation. */
sc->xbd_shadow = malloc(sizeof(*sc->xbd_shadow) * sc->xbd_max_requests,
M_XENBLOCKFRONT, M_NOWAIT|M_ZERO);
if (sc->xbd_shadow == NULL) {
bus_dma_tag_destroy(sc->xbd_io_dmat);
xenbus_dev_fatal(sc->xbd_dev, error,
"Cannot allocate request structures\n");
return;
}
for (i = 0; i < sc->xbd_max_requests; i++) {
struct xbd_command *cm;
cm = &sc->xbd_shadow[i];
cm->cm_sg_refs = malloc(
sizeof(grant_ref_t) * sc->xbd_max_request_segments,
M_XENBLOCKFRONT, M_NOWAIT);
if (cm->cm_sg_refs == NULL)
break;
cm->cm_id = i;
cm->cm_flags = XBDCF_INITIALIZER;
cm->cm_sc = sc;
if (bus_dmamap_create(sc->xbd_io_dmat, 0, &cm->cm_map) != 0)
break;
xbd_free_command(cm);
}
if (xbd_alloc_ring(sc) != 0)
return;
/* Support both backend schemes for relaying ring page limits. */
if (sc->xbd_ring_pages > 1) {
error = xs_printf(XST_NIL, node_path,
"num-ring-pages","%u",
sc->xbd_ring_pages);
if (error) {
xenbus_dev_fatal(sc->xbd_dev, error,
"writing %s/num-ring-pages",
node_path);
return;
}
error = xs_printf(XST_NIL, node_path,
"ring-page-order", "%u",
fls(sc->xbd_ring_pages) - 1);
if (error) {
xenbus_dev_fatal(sc->xbd_dev, error,
"writing %s/ring-page-order",
node_path);
return;
}
}
error = xs_printf(XST_NIL, node_path,
"max-requests","%u",
sc->xbd_max_requests);
if (error) {
xenbus_dev_fatal(sc->xbd_dev, error,
"writing %s/max-requests",
node_path);
return;
}
error = xs_printf(XST_NIL, node_path,
"max-request-segments","%u",
sc->xbd_max_request_segments);
if (error) {
xenbus_dev_fatal(sc->xbd_dev, error,
"writing %s/max-request-segments",
node_path);
return;
}
error = xs_printf(XST_NIL, node_path,
"max-request-size","%u",
sc->xbd_max_request_size);
if (error) {
xenbus_dev_fatal(sc->xbd_dev, error,
"writing %s/max-request-size",
node_path);
return;
}
error = xs_printf(XST_NIL, node_path, "event-channel",
"%u", xen_intr_port(sc->xen_intr_handle));
if (error) {
xenbus_dev_fatal(sc->xbd_dev, error,
"writing %s/event-channel",
node_path);
return;
}
error = xs_printf(XST_NIL, node_path, "protocol",
"%s", XEN_IO_PROTO_ABI_NATIVE);
if (error) {
xenbus_dev_fatal(sc->xbd_dev, error,
"writing %s/protocol",
node_path);
return;
}
xenbus_set_state(sc->xbd_dev, XenbusStateInitialised);
}
/*
* Invoked when the backend is finally 'ready' (and has published
* the details about the physical device - #sectors, size, etc).
*/
static void
xbd_connect(struct xbd_softc *sc)
{
device_t dev = sc->xbd_dev;
unsigned long sectors, sector_size;
unsigned int binfo;
int err, feature_barrier, feature_flush;
if (sc->xbd_state == XBD_STATE_CONNECTED ||
sc->xbd_state == XBD_STATE_SUSPENDED)
return;
DPRINTK("blkfront.c:connect:%s.\n", xenbus_get_otherend_path(dev));
err = xs_gather(XST_NIL, xenbus_get_otherend_path(dev),
"sectors", "%lu", &sectors,
"info", "%u", &binfo,
"sector-size", "%lu", &sector_size,
NULL);
if (err) {
xenbus_dev_fatal(dev, err,
"reading backend fields at %s",
xenbus_get_otherend_path(dev));
return;
}
err = xs_gather(XST_NIL, xenbus_get_otherend_path(dev),
"feature-barrier", "%lu", &feature_barrier,
NULL);
if (err == 0 && feature_barrier != 0)
sc->xbd_flags |= XBDF_BARRIER;
err = xs_gather(XST_NIL, xenbus_get_otherend_path(dev),
"feature-flush-cache", "%lu", &feature_flush,
NULL);
if (err == 0 && feature_flush != 0)
sc->xbd_flags |= XBDF_FLUSH;
if (sc->xbd_disk == NULL) {
device_printf(dev, "%juMB <%s> at %s",
(uintmax_t) sectors / (1048576 / sector_size),
device_get_desc(dev),
xenbus_get_node(dev));
bus_print_child_footer(device_get_parent(dev), dev);
xbd_instance_create(sc, sectors, sc->xbd_vdevice, binfo,
sector_size);
}
(void)xenbus_set_state(dev, XenbusStateConnected);
/* Kick pending requests. */
mtx_lock(&sc->xbd_io_lock);
sc->xbd_state = XBD_STATE_CONNECTED;
xbd_startio(sc);
sc->xbd_flags |= XBDF_READY;
mtx_unlock(&sc->xbd_io_lock);
}
/**
* Handle the change of state of the backend to Closing. We must delete our
* device-layer structures now, to ensure that writes are flushed through to
* the backend. Once this is done, we can switch to Closed in
* acknowledgement.
*/
static void
xbd_closing(device_t dev)
{
struct xbd_softc *sc = device_get_softc(dev);
xenbus_set_state(dev, XenbusStateClosing);
DPRINTK("xbd_closing: %s removed\n", xenbus_get_node(dev));
if (sc->xbd_disk != NULL) {
disk_destroy(sc->xbd_disk);
sc->xbd_disk = NULL;
}
xenbus_set_state(dev, XenbusStateClosed);
}
/*---------------------------- NewBus Entrypoints ----------------------------*/
static int
xbd_probe(device_t dev)
{
if (strcmp(xenbus_get_type(dev), "vbd") != 0)
return (ENXIO);
if (xen_hvm_domain()) {
int error;
char *type;
/*
* When running in an HVM domain, IDE disk emulation is
* disabled early in boot so that native drivers will
* not see emulated hardware. However, CDROM device
* emulation cannot be disabled.
*
* Through use of FreeBSD's vm_guest and xen_hvm_domain()
* APIs, we could modify the native CDROM driver to fail its
* probe when running under Xen. Unfortunatlely, the PV
* CDROM support in XenServer (up through at least version
* 6.2) isn't functional, so we instead rely on the emulated
* CDROM instance, and fail to attach the PV one here in
* the blkfront driver.
*/
error = xs_read(XST_NIL, xenbus_get_node(dev),
"device-type", NULL, (void **) &type);
if (error)
return (ENXIO);
if (strncmp(type, "cdrom", 5) == 0) {
free(type, M_XENSTORE);
return (ENXIO);
}
free(type, M_XENSTORE);
}
device_set_desc(dev, "Virtual Block Device");
device_quiet(dev);
return (0);
}
/*
* Setup supplies the backend dir, virtual device. We place an event
* channel and shared frame entries. We watch backend to wait if it's
* ok.
*/
static int
xbd_attach(device_t dev)
{
struct xbd_softc *sc;
const char *name;
uint32_t vdevice;
int error;
int i;
int unit;
/* FIXME: Use dynamic device id if this is not set. */
error = xs_scanf(XST_NIL, xenbus_get_node(dev),
"virtual-device", NULL, "%" PRIu32, &vdevice);
if (error)
error = xs_scanf(XST_NIL, xenbus_get_node(dev),
"virtual-device-ext", NULL, "%" PRIu32, &vdevice);
if (error) {
xenbus_dev_fatal(dev, error, "reading virtual-device");
device_printf(dev, "Couldn't determine virtual device.\n");
return (error);
}
xbd_vdevice_to_unit(vdevice, &unit, &name);
if (!strcmp(name, "xbd"))
device_set_unit(dev, unit);
sc = device_get_softc(dev);
mtx_init(&sc->xbd_io_lock, "blkfront i/o lock", NULL, MTX_DEF);
xbd_initqs(sc);
for (i = 0; i < XBD_MAX_RING_PAGES; i++)
sc->xbd_ring_ref[i] = GRANT_REF_INVALID;
sc->xbd_dev = dev;
sc->xbd_vdevice = vdevice;
sc->xbd_state = XBD_STATE_DISCONNECTED;
xbd_setup_sysctl(sc);
/* Wait for backend device to publish its protocol capabilities. */
xenbus_set_state(dev, XenbusStateInitialising);
return (0);
}
static int
xbd_detach(device_t dev)
{
struct xbd_softc *sc = device_get_softc(dev);
DPRINTK("%s: %s removed\n", __func__, xenbus_get_node(dev));
xbd_free(sc);
mtx_destroy(&sc->xbd_io_lock);
return 0;
}
static int
xbd_suspend(device_t dev)
{
struct xbd_softc *sc = device_get_softc(dev);
int retval;
int saved_state;
/* Prevent new requests being issued until we fix things up. */
mtx_lock(&sc->xbd_io_lock);
saved_state = sc->xbd_state;
sc->xbd_state = XBD_STATE_SUSPENDED;
/* Wait for outstanding I/O to drain. */
retval = 0;
while (xbd_queue_length(sc, XBD_Q_BUSY) != 0) {
if (msleep(&sc->xbd_cm_q[XBD_Q_BUSY], &sc->xbd_io_lock,
PRIBIO, "blkf_susp", 30 * hz) == EWOULDBLOCK) {
retval = EBUSY;
break;
}
}
mtx_unlock(&sc->xbd_io_lock);
if (retval != 0)
sc->xbd_state = saved_state;
return (retval);
}
static int
xbd_resume(device_t dev)
{
struct xbd_softc *sc = device_get_softc(dev);
DPRINTK("xbd_resume: %s\n", xenbus_get_node(dev));
xbd_free(sc);
xbd_initialize(sc);
return (0);
}
/**
* Callback received when the backend's state changes.
*/
static void
xbd_backend_changed(device_t dev, XenbusState backend_state)
{
struct xbd_softc *sc = device_get_softc(dev);
DPRINTK("backend_state=%d\n", backend_state);
switch (backend_state) {
case XenbusStateUnknown:
case XenbusStateInitialising:
case XenbusStateReconfigured:
case XenbusStateReconfiguring:
case XenbusStateClosed:
break;
case XenbusStateInitWait:
case XenbusStateInitialised:
xbd_initialize(sc);
break;
case XenbusStateConnected:
xbd_initialize(sc);
xbd_connect(sc);
break;
case XenbusStateClosing:
if (sc->xbd_users > 0)
xenbus_dev_error(dev, -EBUSY,
"Device in use; refusing to close");
else
xbd_closing(dev);
break;
}
}
/*---------------------------- NewBus Registration ---------------------------*/
static device_method_t xbd_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, xbd_probe),
DEVMETHOD(device_attach, xbd_attach),
DEVMETHOD(device_detach, xbd_detach),
DEVMETHOD(device_shutdown, bus_generic_shutdown),
DEVMETHOD(device_suspend, xbd_suspend),
DEVMETHOD(device_resume, xbd_resume),
/* Xenbus interface */
DEVMETHOD(xenbus_otherend_changed, xbd_backend_changed),
{ 0, 0 }
};
static driver_t xbd_driver = {
"xbd",
xbd_methods,
sizeof(struct xbd_softc),
};
devclass_t xbd_devclass;
DRIVER_MODULE(xbd, xenbusb_front, xbd_driver, xbd_devclass, 0, 0);