freebsd-dev/sys/dev/cas/if_cas.c
Warner Losh 685dc743dc sys: Remove $FreeBSD$: one-line .c pattern
Remove /^[\s*]*__FBSDID\("\$FreeBSD\$"\);?\s*\n/
2023-08-16 11:54:36 -06:00

2916 lines
79 KiB
C

/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (C) 2001 Eduardo Horvath.
* Copyright (c) 2001-2003 Thomas Moestl
* Copyright (c) 2007-2009 Marius Strobl <marius@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: NetBSD: gem.c,v 1.21 2002/06/01 23:50:58 lukem Exp
* from: FreeBSD: if_gem.c 182060 2008-08-23 15:03:26Z marius
*/
#include <sys/cdefs.h>
/*
* driver for Sun Cassini/Cassini+ and National Semiconductor DP83065
* Saturn Gigabit Ethernet controllers
*/
#if 0
#define CAS_DEBUG
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/callout.h>
#include <sys/endian.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/refcount.h>
#include <sys/resource.h>
#include <sys/rman.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/taskqueue.h>
#include <net/bpf.h>
#include <net/ethernet.h>
#include <net/if.h>
#include <net/if_var.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net/if_vlan_var.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#include <machine/bus.h>
#if defined(__powerpc__)
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/openfirm.h>
#include <machine/ofw_machdep.h>
#endif
#include <machine/resource.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/cas/if_casreg.h>
#include <dev/cas/if_casvar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include "miibus_if.h"
#define RINGASSERT(n , min, max) \
CTASSERT(powerof2(n) && (n) >= (min) && (n) <= (max))
RINGASSERT(CAS_NRXCOMP, 128, 32768);
RINGASSERT(CAS_NRXDESC, 32, 8192);
RINGASSERT(CAS_NRXDESC2, 32, 8192);
RINGASSERT(CAS_NTXDESC, 32, 8192);
#undef RINGASSERT
#define CCDASSERT(m, a) \
CTASSERT((offsetof(struct cas_control_data, m) & ((a) - 1)) == 0)
CCDASSERT(ccd_rxcomps, CAS_RX_COMP_ALIGN);
CCDASSERT(ccd_rxdescs, CAS_RX_DESC_ALIGN);
CCDASSERT(ccd_rxdescs2, CAS_RX_DESC_ALIGN);
#undef CCDASSERT
#define CAS_TRIES 10000
/*
* According to documentation, the hardware has support for basic TCP
* checksum offloading only, in practice this can be also used for UDP
* however (i.e. the problem of previous Sun NICs that a checksum of 0x0
* is not converted to 0xffff no longer exists).
*/
#define CAS_CSUM_FEATURES (CSUM_TCP | CSUM_UDP)
static inline void cas_add_rxdesc(struct cas_softc *sc, u_int idx);
static int cas_attach(struct cas_softc *sc);
static int cas_bitwait(struct cas_softc *sc, bus_addr_t r, uint32_t clr,
uint32_t set);
static void cas_cddma_callback(void *xsc, bus_dma_segment_t *segs,
int nsegs, int error);
static void cas_detach(struct cas_softc *sc);
static int cas_disable_rx(struct cas_softc *sc);
static int cas_disable_tx(struct cas_softc *sc);
static void cas_eint(struct cas_softc *sc, u_int status);
static void cas_free(struct mbuf *m);
static void cas_init(void *xsc);
static void cas_init_locked(struct cas_softc *sc);
static void cas_init_regs(struct cas_softc *sc);
static int cas_intr(void *v);
static void cas_intr_task(void *arg, int pending __unused);
static int cas_ioctl(if_t ifp, u_long cmd, caddr_t data);
static int cas_load_txmbuf(struct cas_softc *sc, struct mbuf **m_head);
static int cas_mediachange(if_t ifp);
static void cas_mediastatus(if_t ifp, struct ifmediareq *ifmr);
static void cas_meminit(struct cas_softc *sc);
static void cas_mifinit(struct cas_softc *sc);
static int cas_mii_readreg(device_t dev, int phy, int reg);
static void cas_mii_statchg(device_t dev);
static int cas_mii_writereg(device_t dev, int phy, int reg, int val);
static void cas_reset(struct cas_softc *sc);
static int cas_reset_rx(struct cas_softc *sc);
static int cas_reset_tx(struct cas_softc *sc);
static void cas_resume(struct cas_softc *sc);
static u_int cas_descsize(u_int sz);
static void cas_rint(struct cas_softc *sc);
static void cas_rint_timeout(void *arg);
static inline void cas_rxcksum(struct mbuf *m, uint16_t cksum);
static inline void cas_rxcompinit(struct cas_rx_comp *rxcomp);
static u_int cas_rxcompsize(u_int sz);
static void cas_rxdma_callback(void *xsc, bus_dma_segment_t *segs,
int nsegs, int error);
static void cas_setladrf(struct cas_softc *sc);
static void cas_start(if_t ifp);
static void cas_stop(if_t ifp);
static void cas_suspend(struct cas_softc *sc);
static void cas_tick(void *arg);
static void cas_tint(struct cas_softc *sc);
static void cas_tx_task(void *arg, int pending __unused);
static inline void cas_txkick(struct cas_softc *sc);
static void cas_watchdog(struct cas_softc *sc);
MODULE_DEPEND(cas, ether, 1, 1, 1);
MODULE_DEPEND(cas, miibus, 1, 1, 1);
#ifdef CAS_DEBUG
#include <sys/ktr.h>
#define KTR_CAS KTR_SPARE2
#endif
static int
cas_attach(struct cas_softc *sc)
{
struct cas_txsoft *txs;
if_t ifp;
int error, i;
uint32_t v;
/* Set up ifnet structure. */
ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
if (ifp == NULL)
return (ENOSPC);
if_setsoftc(ifp, sc);
if_initname(ifp, device_get_name(sc->sc_dev),
device_get_unit(sc->sc_dev));
if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
if_setstartfn(ifp, cas_start);
if_setioctlfn(ifp, cas_ioctl);
if_setinitfn(ifp, cas_init);
if_setsendqlen(ifp, CAS_TXQUEUELEN);
if_setsendqready(ifp);
callout_init_mtx(&sc->sc_tick_ch, &sc->sc_mtx, 0);
callout_init_mtx(&sc->sc_rx_ch, &sc->sc_mtx, 0);
/* Create local taskq. */
NET_TASK_INIT(&sc->sc_intr_task, 0, cas_intr_task, sc);
TASK_INIT(&sc->sc_tx_task, 1, cas_tx_task, ifp);
sc->sc_tq = taskqueue_create_fast("cas_taskq", M_WAITOK,
taskqueue_thread_enqueue, &sc->sc_tq);
if (sc->sc_tq == NULL) {
device_printf(sc->sc_dev, "could not create taskqueue\n");
error = ENXIO;
goto fail_ifnet;
}
error = taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
device_get_nameunit(sc->sc_dev));
if (error != 0) {
device_printf(sc->sc_dev, "could not start threads\n");
goto fail_taskq;
}
/* Make sure the chip is stopped. */
cas_reset(sc);
error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev), 1, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
BUS_SPACE_MAXSIZE, 0, BUS_SPACE_MAXSIZE, 0, NULL, NULL,
&sc->sc_pdmatag);
if (error != 0)
goto fail_taskq;
error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
CAS_PAGE_SIZE, 1, CAS_PAGE_SIZE, 0, NULL, NULL, &sc->sc_rdmatag);
if (error != 0)
goto fail_ptag;
error = bus_dma_tag_create(sc->sc_pdmatag, 1, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
MCLBYTES * CAS_NTXSEGS, CAS_NTXSEGS, MCLBYTES,
BUS_DMA_ALLOCNOW, NULL, NULL, &sc->sc_tdmatag);
if (error != 0)
goto fail_rtag;
error = bus_dma_tag_create(sc->sc_pdmatag, CAS_TX_DESC_ALIGN, 0,
BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
sizeof(struct cas_control_data), 1,
sizeof(struct cas_control_data), 0,
NULL, NULL, &sc->sc_cdmatag);
if (error != 0)
goto fail_ttag;
/*
* Allocate the control data structures, create and load the
* DMA map for it.
*/
if ((error = bus_dmamem_alloc(sc->sc_cdmatag,
(void **)&sc->sc_control_data,
BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO,
&sc->sc_cddmamap)) != 0) {
device_printf(sc->sc_dev,
"unable to allocate control data, error = %d\n", error);
goto fail_ctag;
}
sc->sc_cddma = 0;
if ((error = bus_dmamap_load(sc->sc_cdmatag, sc->sc_cddmamap,
sc->sc_control_data, sizeof(struct cas_control_data),
cas_cddma_callback, sc, 0)) != 0 || sc->sc_cddma == 0) {
device_printf(sc->sc_dev,
"unable to load control data DMA map, error = %d\n",
error);
goto fail_cmem;
}
/*
* Initialize the transmit job descriptors.
*/
STAILQ_INIT(&sc->sc_txfreeq);
STAILQ_INIT(&sc->sc_txdirtyq);
/*
* Create the transmit buffer DMA maps.
*/
error = ENOMEM;
for (i = 0; i < CAS_TXQUEUELEN; i++) {
txs = &sc->sc_txsoft[i];
txs->txs_mbuf = NULL;
txs->txs_ndescs = 0;
if ((error = bus_dmamap_create(sc->sc_tdmatag, 0,
&txs->txs_dmamap)) != 0) {
device_printf(sc->sc_dev,
"unable to create TX DMA map %d, error = %d\n",
i, error);
goto fail_txd;
}
STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
}
/*
* Allocate the receive buffers, create and load the DMA maps
* for them.
*/
for (i = 0; i < CAS_NRXDESC; i++) {
if ((error = bus_dmamem_alloc(sc->sc_rdmatag,
&sc->sc_rxdsoft[i].rxds_buf, BUS_DMA_WAITOK,
&sc->sc_rxdsoft[i].rxds_dmamap)) != 0) {
device_printf(sc->sc_dev,
"unable to allocate RX buffer %d, error = %d\n",
i, error);
goto fail_rxmem;
}
sc->sc_rxdptr = i;
sc->sc_rxdsoft[i].rxds_paddr = 0;
if ((error = bus_dmamap_load(sc->sc_rdmatag,
sc->sc_rxdsoft[i].rxds_dmamap, sc->sc_rxdsoft[i].rxds_buf,
CAS_PAGE_SIZE, cas_rxdma_callback, sc, 0)) != 0 ||
sc->sc_rxdsoft[i].rxds_paddr == 0) {
device_printf(sc->sc_dev,
"unable to load RX DMA map %d, error = %d\n",
i, error);
goto fail_rxmap;
}
}
if ((sc->sc_flags & CAS_SERDES) == 0) {
CAS_WRITE_4(sc, CAS_PCS_DATAPATH, CAS_PCS_DATAPATH_MII);
CAS_BARRIER(sc, CAS_PCS_DATAPATH, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
cas_mifinit(sc);
/*
* Look for an external PHY.
*/
error = ENXIO;
v = CAS_READ_4(sc, CAS_MIF_CONF);
if ((v & CAS_MIF_CONF_MDI1) != 0) {
v |= CAS_MIF_CONF_PHY_SELECT;
CAS_WRITE_4(sc, CAS_MIF_CONF, v);
CAS_BARRIER(sc, CAS_MIF_CONF, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
/* Enable/unfreeze the GMII pins of Saturn. */
if (sc->sc_variant == CAS_SATURN) {
CAS_WRITE_4(sc, CAS_SATURN_PCFG,
CAS_READ_4(sc, CAS_SATURN_PCFG) &
~CAS_SATURN_PCFG_FSI);
CAS_BARRIER(sc, CAS_SATURN_PCFG, 4,
BUS_SPACE_BARRIER_READ |
BUS_SPACE_BARRIER_WRITE);
DELAY(10000);
}
error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp,
cas_mediachange, cas_mediastatus, BMSR_DEFCAPMASK,
MII_PHY_ANY, MII_OFFSET_ANY, MIIF_DOPAUSE);
}
/*
* Fall back on an internal PHY if no external PHY was found.
*/
if (error != 0 && (v & CAS_MIF_CONF_MDI0) != 0) {
v &= ~CAS_MIF_CONF_PHY_SELECT;
CAS_WRITE_4(sc, CAS_MIF_CONF, v);
CAS_BARRIER(sc, CAS_MIF_CONF, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
/* Freeze the GMII pins of Saturn for saving power. */
if (sc->sc_variant == CAS_SATURN) {
CAS_WRITE_4(sc, CAS_SATURN_PCFG,
CAS_READ_4(sc, CAS_SATURN_PCFG) |
CAS_SATURN_PCFG_FSI);
CAS_BARRIER(sc, CAS_SATURN_PCFG, 4,
BUS_SPACE_BARRIER_READ |
BUS_SPACE_BARRIER_WRITE);
DELAY(10000);
}
error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp,
cas_mediachange, cas_mediastatus, BMSR_DEFCAPMASK,
MII_PHY_ANY, MII_OFFSET_ANY, MIIF_DOPAUSE);
}
} else {
/*
* Use the external PCS SERDES.
*/
CAS_WRITE_4(sc, CAS_PCS_DATAPATH, CAS_PCS_DATAPATH_SERDES);
CAS_BARRIER(sc, CAS_PCS_DATAPATH, 4, BUS_SPACE_BARRIER_WRITE);
/* Enable/unfreeze the SERDES pins of Saturn. */
if (sc->sc_variant == CAS_SATURN) {
CAS_WRITE_4(sc, CAS_SATURN_PCFG, 0);
CAS_BARRIER(sc, CAS_SATURN_PCFG, 4,
BUS_SPACE_BARRIER_WRITE);
}
CAS_WRITE_4(sc, CAS_PCS_SERDES_CTRL, CAS_PCS_SERDES_CTRL_ESD);
CAS_BARRIER(sc, CAS_PCS_SERDES_CTRL, 4,
BUS_SPACE_BARRIER_WRITE);
CAS_WRITE_4(sc, CAS_PCS_CONF, CAS_PCS_CONF_EN);
CAS_BARRIER(sc, CAS_PCS_CONF, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
error = mii_attach(sc->sc_dev, &sc->sc_miibus, ifp,
cas_mediachange, cas_mediastatus, BMSR_DEFCAPMASK,
CAS_PHYAD_EXTERNAL, MII_OFFSET_ANY, MIIF_DOPAUSE);
}
if (error != 0) {
device_printf(sc->sc_dev, "attaching PHYs failed\n");
goto fail_rxmap;
}
sc->sc_mii = device_get_softc(sc->sc_miibus);
/*
* From this point forward, the attachment cannot fail. A failure
* before this point releases all resources that may have been
* allocated.
*/
/* Announce FIFO sizes. */
v = CAS_READ_4(sc, CAS_TX_FIFO_SIZE);
device_printf(sc->sc_dev, "%ukB RX FIFO, %ukB TX FIFO\n",
CAS_RX_FIFO_SIZE / 1024, v / 16);
/* Attach the interface. */
ether_ifattach(ifp, sc->sc_enaddr);
/*
* Tell the upper layer(s) we support long frames/checksum offloads.
*/
if_setifheaderlen(ifp, sizeof(struct ether_vlan_header));
if_setcapabilities(ifp, IFCAP_VLAN_MTU);
if ((sc->sc_flags & CAS_NO_CSUM) == 0) {
if_setcapabilitiesbit(ifp, IFCAP_HWCSUM, 0);
if_sethwassist(ifp, CAS_CSUM_FEATURES);
}
if_setcapenable(ifp, if_getcapabilities(ifp));
return (0);
/*
* Free any resources we've allocated during the failed attach
* attempt. Do this in reverse order and fall through.
*/
fail_rxmap:
for (i = 0; i < CAS_NRXDESC; i++)
if (sc->sc_rxdsoft[i].rxds_paddr != 0)
bus_dmamap_unload(sc->sc_rdmatag,
sc->sc_rxdsoft[i].rxds_dmamap);
fail_rxmem:
for (i = 0; i < CAS_NRXDESC; i++)
if (sc->sc_rxdsoft[i].rxds_buf != NULL)
bus_dmamem_free(sc->sc_rdmatag,
sc->sc_rxdsoft[i].rxds_buf,
sc->sc_rxdsoft[i].rxds_dmamap);
fail_txd:
for (i = 0; i < CAS_TXQUEUELEN; i++)
if (sc->sc_txsoft[i].txs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_tdmatag,
sc->sc_txsoft[i].txs_dmamap);
bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap);
fail_cmem:
bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data,
sc->sc_cddmamap);
fail_ctag:
bus_dma_tag_destroy(sc->sc_cdmatag);
fail_ttag:
bus_dma_tag_destroy(sc->sc_tdmatag);
fail_rtag:
bus_dma_tag_destroy(sc->sc_rdmatag);
fail_ptag:
bus_dma_tag_destroy(sc->sc_pdmatag);
fail_taskq:
taskqueue_free(sc->sc_tq);
fail_ifnet:
if_free(ifp);
return (error);
}
static void
cas_detach(struct cas_softc *sc)
{
if_t ifp = sc->sc_ifp;
int i;
ether_ifdetach(ifp);
CAS_LOCK(sc);
cas_stop(ifp);
CAS_UNLOCK(sc);
callout_drain(&sc->sc_tick_ch);
callout_drain(&sc->sc_rx_ch);
taskqueue_drain(sc->sc_tq, &sc->sc_intr_task);
taskqueue_drain(sc->sc_tq, &sc->sc_tx_task);
if_free(ifp);
taskqueue_free(sc->sc_tq);
device_delete_child(sc->sc_dev, sc->sc_miibus);
for (i = 0; i < CAS_NRXDESC; i++)
if (sc->sc_rxdsoft[i].rxds_dmamap != NULL)
bus_dmamap_sync(sc->sc_rdmatag,
sc->sc_rxdsoft[i].rxds_dmamap,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
for (i = 0; i < CAS_NRXDESC; i++)
if (sc->sc_rxdsoft[i].rxds_paddr != 0)
bus_dmamap_unload(sc->sc_rdmatag,
sc->sc_rxdsoft[i].rxds_dmamap);
for (i = 0; i < CAS_NRXDESC; i++)
if (sc->sc_rxdsoft[i].rxds_buf != NULL)
bus_dmamem_free(sc->sc_rdmatag,
sc->sc_rxdsoft[i].rxds_buf,
sc->sc_rxdsoft[i].rxds_dmamap);
for (i = 0; i < CAS_TXQUEUELEN; i++)
if (sc->sc_txsoft[i].txs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_tdmatag,
sc->sc_txsoft[i].txs_dmamap);
CAS_CDSYNC(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_cdmatag, sc->sc_cddmamap);
bus_dmamem_free(sc->sc_cdmatag, sc->sc_control_data,
sc->sc_cddmamap);
bus_dma_tag_destroy(sc->sc_cdmatag);
bus_dma_tag_destroy(sc->sc_tdmatag);
bus_dma_tag_destroy(sc->sc_rdmatag);
bus_dma_tag_destroy(sc->sc_pdmatag);
}
static void
cas_suspend(struct cas_softc *sc)
{
if_t ifp = sc->sc_ifp;
CAS_LOCK(sc);
cas_stop(ifp);
CAS_UNLOCK(sc);
}
static void
cas_resume(struct cas_softc *sc)
{
if_t ifp = sc->sc_ifp;
CAS_LOCK(sc);
/*
* On resume all registers have to be initialized again like
* after power-on.
*/
sc->sc_flags &= ~CAS_INITED;
if (if_getflags(ifp) & IFF_UP)
cas_init_locked(sc);
CAS_UNLOCK(sc);
}
static inline void
cas_rxcksum(struct mbuf *m, uint16_t cksum)
{
struct ether_header *eh;
struct ip *ip;
struct udphdr *uh;
uint16_t *opts;
int32_t hlen, len, pktlen;
uint32_t temp32;
pktlen = m->m_pkthdr.len;
if (pktlen < sizeof(struct ether_header) + sizeof(struct ip))
return;
eh = mtod(m, struct ether_header *);
if (eh->ether_type != htons(ETHERTYPE_IP))
return;
ip = (struct ip *)(eh + 1);
if (ip->ip_v != IPVERSION)
return;
hlen = ip->ip_hl << 2;
pktlen -= sizeof(struct ether_header);
if (hlen < sizeof(struct ip))
return;
if (ntohs(ip->ip_len) < hlen)
return;
if (ntohs(ip->ip_len) != pktlen)
return;
if (ip->ip_off & htons(IP_MF | IP_OFFMASK))
return; /* Cannot handle fragmented packet. */
switch (ip->ip_p) {
case IPPROTO_TCP:
if (pktlen < (hlen + sizeof(struct tcphdr)))
return;
break;
case IPPROTO_UDP:
if (pktlen < (hlen + sizeof(struct udphdr)))
return;
uh = (struct udphdr *)((uint8_t *)ip + hlen);
if (uh->uh_sum == 0)
return; /* no checksum */
break;
default:
return;
}
cksum = ~cksum;
/* checksum fixup for IP options */
len = hlen - sizeof(struct ip);
if (len > 0) {
opts = (uint16_t *)(ip + 1);
for (; len > 0; len -= sizeof(uint16_t), opts++) {
temp32 = cksum - *opts;
temp32 = (temp32 >> 16) + (temp32 & 65535);
cksum = temp32 & 65535;
}
}
m->m_pkthdr.csum_flags |= CSUM_DATA_VALID;
m->m_pkthdr.csum_data = cksum;
}
static void
cas_cddma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
{
struct cas_softc *sc = xsc;
if (error != 0)
return;
if (nsegs != 1)
panic("%s: bad control buffer segment count", __func__);
sc->sc_cddma = segs[0].ds_addr;
}
static void
cas_rxdma_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
{
struct cas_softc *sc = xsc;
if (error != 0)
return;
if (nsegs != 1)
panic("%s: bad RX buffer segment count", __func__);
sc->sc_rxdsoft[sc->sc_rxdptr].rxds_paddr = segs[0].ds_addr;
}
static void
cas_tick(void *arg)
{
struct cas_softc *sc = arg;
if_t ifp = sc->sc_ifp;
uint32_t v;
CAS_LOCK_ASSERT(sc, MA_OWNED);
/*
* Unload collision and error counters.
*/
if_inc_counter(ifp, IFCOUNTER_COLLISIONS,
CAS_READ_4(sc, CAS_MAC_NORM_COLL_CNT) +
CAS_READ_4(sc, CAS_MAC_FIRST_COLL_CNT));
v = CAS_READ_4(sc, CAS_MAC_EXCESS_COLL_CNT) +
CAS_READ_4(sc, CAS_MAC_LATE_COLL_CNT);
if_inc_counter(ifp, IFCOUNTER_COLLISIONS, v);
if_inc_counter(ifp, IFCOUNTER_OERRORS, v);
if_inc_counter(ifp, IFCOUNTER_IERRORS,
CAS_READ_4(sc, CAS_MAC_RX_LEN_ERR_CNT) +
CAS_READ_4(sc, CAS_MAC_RX_ALIGN_ERR) +
CAS_READ_4(sc, CAS_MAC_RX_CRC_ERR_CNT) +
CAS_READ_4(sc, CAS_MAC_RX_CODE_VIOL));
/*
* Then clear the hardware counters.
*/
CAS_WRITE_4(sc, CAS_MAC_NORM_COLL_CNT, 0);
CAS_WRITE_4(sc, CAS_MAC_FIRST_COLL_CNT, 0);
CAS_WRITE_4(sc, CAS_MAC_EXCESS_COLL_CNT, 0);
CAS_WRITE_4(sc, CAS_MAC_LATE_COLL_CNT, 0);
CAS_WRITE_4(sc, CAS_MAC_RX_LEN_ERR_CNT, 0);
CAS_WRITE_4(sc, CAS_MAC_RX_ALIGN_ERR, 0);
CAS_WRITE_4(sc, CAS_MAC_RX_CRC_ERR_CNT, 0);
CAS_WRITE_4(sc, CAS_MAC_RX_CODE_VIOL, 0);
mii_tick(sc->sc_mii);
if (sc->sc_txfree != CAS_MAXTXFREE)
cas_tint(sc);
cas_watchdog(sc);
callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
}
static int
cas_bitwait(struct cas_softc *sc, bus_addr_t r, uint32_t clr, uint32_t set)
{
int i;
uint32_t reg;
for (i = CAS_TRIES; i--; DELAY(100)) {
reg = CAS_READ_4(sc, r);
if ((reg & clr) == 0 && (reg & set) == set)
return (1);
}
return (0);
}
static void
cas_reset(struct cas_softc *sc)
{
#ifdef CAS_DEBUG
CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__);
#endif
/* Disable all interrupts in order to avoid spurious ones. */
CAS_WRITE_4(sc, CAS_INTMASK, 0xffffffff);
cas_reset_rx(sc);
cas_reset_tx(sc);
/*
* Do a full reset modulo the result of the last auto-negotiation
* when using the SERDES.
*/
CAS_WRITE_4(sc, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX |
((sc->sc_flags & CAS_SERDES) != 0 ? CAS_RESET_PCS_DIS : 0));
CAS_BARRIER(sc, CAS_RESET, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
DELAY(3000);
if (!cas_bitwait(sc, CAS_RESET, CAS_RESET_RX | CAS_RESET_TX, 0))
device_printf(sc->sc_dev, "cannot reset device\n");
}
static void
cas_stop(if_t ifp)
{
struct cas_softc *sc = if_getsoftc(ifp);
struct cas_txsoft *txs;
#ifdef CAS_DEBUG
CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__);
#endif
callout_stop(&sc->sc_tick_ch);
callout_stop(&sc->sc_rx_ch);
/* Disable all interrupts in order to avoid spurious ones. */
CAS_WRITE_4(sc, CAS_INTMASK, 0xffffffff);
cas_reset_tx(sc);
cas_reset_rx(sc);
/*
* Release any queued transmit buffers.
*/
while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
if (txs->txs_ndescs != 0) {
bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
if (txs->txs_mbuf != NULL) {
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
}
}
STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
}
/*
* Mark the interface down and cancel the watchdog timer.
*/
if_setdrvflagbits(ifp, 0, (IFF_DRV_RUNNING | IFF_DRV_OACTIVE));
sc->sc_flags &= ~CAS_LINK;
sc->sc_wdog_timer = 0;
}
static int
cas_reset_rx(struct cas_softc *sc)
{
/*
* Resetting while DMA is in progress can cause a bus hang, so we
* disable DMA first.
*/
(void)cas_disable_rx(sc);
CAS_WRITE_4(sc, CAS_RX_CONF, 0);
CAS_BARRIER(sc, CAS_RX_CONF, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
if (!cas_bitwait(sc, CAS_RX_CONF, CAS_RX_CONF_RXDMA_EN, 0))
device_printf(sc->sc_dev, "cannot disable RX DMA\n");
/* Finally, reset the ERX. */
CAS_WRITE_4(sc, CAS_RESET, CAS_RESET_RX |
((sc->sc_flags & CAS_SERDES) != 0 ? CAS_RESET_PCS_DIS : 0));
CAS_BARRIER(sc, CAS_RESET, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
if (!cas_bitwait(sc, CAS_RESET, CAS_RESET_RX, 0)) {
device_printf(sc->sc_dev, "cannot reset receiver\n");
return (1);
}
return (0);
}
static int
cas_reset_tx(struct cas_softc *sc)
{
/*
* Resetting while DMA is in progress can cause a bus hang, so we
* disable DMA first.
*/
(void)cas_disable_tx(sc);
CAS_WRITE_4(sc, CAS_TX_CONF, 0);
CAS_BARRIER(sc, CAS_TX_CONF, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
if (!cas_bitwait(sc, CAS_TX_CONF, CAS_TX_CONF_TXDMA_EN, 0))
device_printf(sc->sc_dev, "cannot disable TX DMA\n");
/* Finally, reset the ETX. */
CAS_WRITE_4(sc, CAS_RESET, CAS_RESET_TX |
((sc->sc_flags & CAS_SERDES) != 0 ? CAS_RESET_PCS_DIS : 0));
CAS_BARRIER(sc, CAS_RESET, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
if (!cas_bitwait(sc, CAS_RESET, CAS_RESET_TX, 0)) {
device_printf(sc->sc_dev, "cannot reset transmitter\n");
return (1);
}
return (0);
}
static int
cas_disable_rx(struct cas_softc *sc)
{
CAS_WRITE_4(sc, CAS_MAC_RX_CONF,
CAS_READ_4(sc, CAS_MAC_RX_CONF) & ~CAS_MAC_RX_CONF_EN);
CAS_BARRIER(sc, CAS_MAC_RX_CONF, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
if (cas_bitwait(sc, CAS_MAC_RX_CONF, CAS_MAC_RX_CONF_EN, 0))
return (1);
if (bootverbose)
device_printf(sc->sc_dev, "cannot disable RX MAC\n");
return (0);
}
static int
cas_disable_tx(struct cas_softc *sc)
{
CAS_WRITE_4(sc, CAS_MAC_TX_CONF,
CAS_READ_4(sc, CAS_MAC_TX_CONF) & ~CAS_MAC_TX_CONF_EN);
CAS_BARRIER(sc, CAS_MAC_TX_CONF, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
if (cas_bitwait(sc, CAS_MAC_TX_CONF, CAS_MAC_TX_CONF_EN, 0))
return (1);
if (bootverbose)
device_printf(sc->sc_dev, "cannot disable TX MAC\n");
return (0);
}
static inline void
cas_rxcompinit(struct cas_rx_comp *rxcomp)
{
rxcomp->crc_word1 = 0;
rxcomp->crc_word2 = 0;
rxcomp->crc_word3 =
htole64(CAS_SET(ETHER_HDR_LEN + sizeof(struct ip), CAS_RC3_CSO));
rxcomp->crc_word4 = htole64(CAS_RC4_ZERO);
}
static void
cas_meminit(struct cas_softc *sc)
{
int i;
CAS_LOCK_ASSERT(sc, MA_OWNED);
/*
* Initialize the transmit descriptor ring.
*/
for (i = 0; i < CAS_NTXDESC; i++) {
sc->sc_txdescs[i].cd_flags = 0;
sc->sc_txdescs[i].cd_buf_ptr = 0;
}
sc->sc_txfree = CAS_MAXTXFREE;
sc->sc_txnext = 0;
sc->sc_txwin = 0;
/*
* Initialize the receive completion ring.
*/
for (i = 0; i < CAS_NRXCOMP; i++)
cas_rxcompinit(&sc->sc_rxcomps[i]);
sc->sc_rxcptr = 0;
/*
* Initialize the first receive descriptor ring. We leave
* the second one zeroed as we don't actually use it.
*/
for (i = 0; i < CAS_NRXDESC; i++)
CAS_INIT_RXDESC(sc, i, i);
sc->sc_rxdptr = 0;
CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static u_int
cas_descsize(u_int sz)
{
switch (sz) {
case 32:
return (CAS_DESC_32);
case 64:
return (CAS_DESC_64);
case 128:
return (CAS_DESC_128);
case 256:
return (CAS_DESC_256);
case 512:
return (CAS_DESC_512);
case 1024:
return (CAS_DESC_1K);
case 2048:
return (CAS_DESC_2K);
case 4096:
return (CAS_DESC_4K);
case 8192:
return (CAS_DESC_8K);
default:
printf("%s: invalid descriptor ring size %d\n", __func__, sz);
return (CAS_DESC_32);
}
}
static u_int
cas_rxcompsize(u_int sz)
{
switch (sz) {
case 128:
return (CAS_RX_CONF_COMP_128);
case 256:
return (CAS_RX_CONF_COMP_256);
case 512:
return (CAS_RX_CONF_COMP_512);
case 1024:
return (CAS_RX_CONF_COMP_1K);
case 2048:
return (CAS_RX_CONF_COMP_2K);
case 4096:
return (CAS_RX_CONF_COMP_4K);
case 8192:
return (CAS_RX_CONF_COMP_8K);
case 16384:
return (CAS_RX_CONF_COMP_16K);
case 32768:
return (CAS_RX_CONF_COMP_32K);
default:
printf("%s: invalid dcompletion ring size %d\n", __func__, sz);
return (CAS_RX_CONF_COMP_128);
}
}
static void
cas_init(void *xsc)
{
struct cas_softc *sc = xsc;
CAS_LOCK(sc);
cas_init_locked(sc);
CAS_UNLOCK(sc);
}
/*
* Initialization of interface; set up initialization block
* and transmit/receive descriptor rings.
*/
static void
cas_init_locked(struct cas_softc *sc)
{
if_t ifp = sc->sc_ifp;
uint32_t v;
CAS_LOCK_ASSERT(sc, MA_OWNED);
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
return;
#ifdef CAS_DEBUG
CTR2(KTR_CAS, "%s: %s: calling stop", device_get_name(sc->sc_dev),
__func__);
#endif
/*
* Initialization sequence. The numbered steps below correspond
* to the sequence outlined in section 6.3.5.1 in the Ethernet
* Channel Engine manual (part of the PCIO manual).
* See also the STP2002-STQ document from Sun Microsystems.
*/
/* step 1 & 2. Reset the Ethernet Channel. */
cas_stop(ifp);
cas_reset(sc);
#ifdef CAS_DEBUG
CTR2(KTR_CAS, "%s: %s: restarting", device_get_name(sc->sc_dev),
__func__);
#endif
if ((sc->sc_flags & CAS_SERDES) == 0)
/* Re-initialize the MIF. */
cas_mifinit(sc);
/* step 3. Setup data structures in host memory. */
cas_meminit(sc);
/* step 4. TX MAC registers & counters */
cas_init_regs(sc);
/* step 5. RX MAC registers & counters */
/* step 6 & 7. Program Ring Base Addresses. */
CAS_WRITE_4(sc, CAS_TX_DESC3_BASE_HI,
(((uint64_t)CAS_CDTXDADDR(sc, 0)) >> 32));
CAS_WRITE_4(sc, CAS_TX_DESC3_BASE_LO,
CAS_CDTXDADDR(sc, 0) & 0xffffffff);
CAS_WRITE_4(sc, CAS_RX_COMP_BASE_HI,
(((uint64_t)CAS_CDRXCADDR(sc, 0)) >> 32));
CAS_WRITE_4(sc, CAS_RX_COMP_BASE_LO,
CAS_CDRXCADDR(sc, 0) & 0xffffffff);
CAS_WRITE_4(sc, CAS_RX_DESC_BASE_HI,
(((uint64_t)CAS_CDRXDADDR(sc, 0)) >> 32));
CAS_WRITE_4(sc, CAS_RX_DESC_BASE_LO,
CAS_CDRXDADDR(sc, 0) & 0xffffffff);
if ((sc->sc_flags & CAS_REG_PLUS) != 0) {
CAS_WRITE_4(sc, CAS_RX_DESC2_BASE_HI,
(((uint64_t)CAS_CDRXD2ADDR(sc, 0)) >> 32));
CAS_WRITE_4(sc, CAS_RX_DESC2_BASE_LO,
CAS_CDRXD2ADDR(sc, 0) & 0xffffffff);
}
#ifdef CAS_DEBUG
CTR5(KTR_CAS,
"loading TXDR %lx, RXCR %lx, RXDR %lx, RXD2R %lx, cddma %lx",
CAS_CDTXDADDR(sc, 0), CAS_CDRXCADDR(sc, 0), CAS_CDRXDADDR(sc, 0),
CAS_CDRXD2ADDR(sc, 0), sc->sc_cddma);
#endif
/* step 8. Global Configuration & Interrupt Masks */
/* Disable weighted round robin. */
CAS_WRITE_4(sc, CAS_CAW, CAS_CAW_RR_DIS);
/*
* Enable infinite bursts for revisions without PCI issues if
* applicable. Doing so greatly improves the TX performance.
*/
CAS_WRITE_4(sc, CAS_INF_BURST,
(sc->sc_flags & CAS_TABORT) == 0 ? CAS_INF_BURST_EN :
0);
/* Set up interrupts. */
CAS_WRITE_4(sc, CAS_INTMASK,
~(CAS_INTR_TX_INT_ME | CAS_INTR_TX_TAG_ERR |
CAS_INTR_RX_DONE | CAS_INTR_RX_BUF_NA | CAS_INTR_RX_TAG_ERR |
CAS_INTR_RX_COMP_FULL | CAS_INTR_RX_BUF_AEMPTY |
CAS_INTR_RX_COMP_AFULL | CAS_INTR_RX_LEN_MMATCH |
CAS_INTR_PCI_ERROR_INT
#ifdef CAS_DEBUG
| CAS_INTR_PCS_INT | CAS_INTR_MIF
#endif
));
/* Don't clear top level interrupts when CAS_STATUS_ALIAS is read. */
CAS_WRITE_4(sc, CAS_CLEAR_ALIAS, 0);
CAS_WRITE_4(sc, CAS_MAC_RX_MASK, ~CAS_MAC_RX_OVERFLOW);
CAS_WRITE_4(sc, CAS_MAC_TX_MASK,
~(CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_MAX_PKT_ERR));
#ifdef CAS_DEBUG
CAS_WRITE_4(sc, CAS_MAC_CTRL_MASK,
~(CAS_MAC_CTRL_PAUSE_RCVD | CAS_MAC_CTRL_PAUSE |
CAS_MAC_CTRL_NON_PAUSE));
#else
CAS_WRITE_4(sc, CAS_MAC_CTRL_MASK,
CAS_MAC_CTRL_PAUSE_RCVD | CAS_MAC_CTRL_PAUSE |
CAS_MAC_CTRL_NON_PAUSE);
#endif
/* Enable PCI error interrupts. */
CAS_WRITE_4(sc, CAS_ERROR_MASK,
~(CAS_ERROR_DTRTO | CAS_ERROR_OTHER | CAS_ERROR_DMAW_ZERO |
CAS_ERROR_DMAR_ZERO | CAS_ERROR_RTRTO));
/* Enable PCI error interrupts in BIM configuration. */
CAS_WRITE_4(sc, CAS_BIM_CONF,
CAS_BIM_CONF_DPAR_EN | CAS_BIM_CONF_RMA_EN | CAS_BIM_CONF_RTA_EN);
/*
* step 9. ETX Configuration: encode receive descriptor ring size,
* enable DMA and disable pre-interrupt writeback completion.
*/
v = cas_descsize(CAS_NTXDESC) << CAS_TX_CONF_DESC3_SHFT;
CAS_WRITE_4(sc, CAS_TX_CONF, v | CAS_TX_CONF_TXDMA_EN |
CAS_TX_CONF_RDPP_DIS | CAS_TX_CONF_PICWB_DIS);
/* step 10. ERX Configuration */
/*
* Encode receive completion and descriptor ring sizes, set the
* swivel offset.
*/
v = cas_rxcompsize(CAS_NRXCOMP) << CAS_RX_CONF_COMP_SHFT;
v |= cas_descsize(CAS_NRXDESC) << CAS_RX_CONF_DESC_SHFT;
if ((sc->sc_flags & CAS_REG_PLUS) != 0)
v |= cas_descsize(CAS_NRXDESC2) << CAS_RX_CONF_DESC2_SHFT;
CAS_WRITE_4(sc, CAS_RX_CONF,
v | (ETHER_ALIGN << CAS_RX_CONF_SOFF_SHFT));
/* Set the PAUSE thresholds. We use the maximum OFF threshold. */
CAS_WRITE_4(sc, CAS_RX_PTHRS,
(111 << CAS_RX_PTHRS_XOFF_SHFT) | (15 << CAS_RX_PTHRS_XON_SHFT));
/* RX blanking */
CAS_WRITE_4(sc, CAS_RX_BLANK,
(15 << CAS_RX_BLANK_TIME_SHFT) | (5 << CAS_RX_BLANK_PKTS_SHFT));
/* Set RX_COMP_AFULL threshold to half of the RX completions. */
CAS_WRITE_4(sc, CAS_RX_AEMPTY_THRS,
(CAS_NRXCOMP / 2) << CAS_RX_AEMPTY_COMP_SHFT);
/* Initialize the RX page size register as appropriate for 8k. */
CAS_WRITE_4(sc, CAS_RX_PSZ,
(CAS_RX_PSZ_8K << CAS_RX_PSZ_SHFT) |
(4 << CAS_RX_PSZ_MB_CNT_SHFT) |
(CAS_RX_PSZ_MB_STRD_2K << CAS_RX_PSZ_MB_STRD_SHFT) |
(CAS_RX_PSZ_MB_OFF_64 << CAS_RX_PSZ_MB_OFF_SHFT));
/* Disable RX random early detection. */
CAS_WRITE_4(sc, CAS_RX_RED, 0);
/* Zero the RX reassembly DMA table. */
for (v = 0; v <= CAS_RX_REAS_DMA_ADDR_LC; v++) {
CAS_WRITE_4(sc, CAS_RX_REAS_DMA_ADDR, v);
CAS_WRITE_4(sc, CAS_RX_REAS_DMA_DATA_LO, 0);
CAS_WRITE_4(sc, CAS_RX_REAS_DMA_DATA_MD, 0);
CAS_WRITE_4(sc, CAS_RX_REAS_DMA_DATA_HI, 0);
}
/* Ensure the RX control FIFO and RX IPP FIFO addresses are zero. */
CAS_WRITE_4(sc, CAS_RX_CTRL_FIFO, 0);
CAS_WRITE_4(sc, CAS_RX_IPP_ADDR, 0);
/* Finally, enable RX DMA. */
CAS_WRITE_4(sc, CAS_RX_CONF,
CAS_READ_4(sc, CAS_RX_CONF) | CAS_RX_CONF_RXDMA_EN);
/* step 11. Configure Media. */
/* step 12. RX_MAC Configuration Register */
v = CAS_READ_4(sc, CAS_MAC_RX_CONF);
v &= ~(CAS_MAC_RX_CONF_STRPPAD | CAS_MAC_RX_CONF_EN);
v |= CAS_MAC_RX_CONF_STRPFCS;
sc->sc_mac_rxcfg = v;
/*
* Clear the RX filter and reprogram it. This will also set the
* current RX MAC configuration and enable it.
*/
cas_setladrf(sc);
/* step 13. TX_MAC Configuration Register */
v = CAS_READ_4(sc, CAS_MAC_TX_CONF);
v |= CAS_MAC_TX_CONF_EN;
(void)cas_disable_tx(sc);
CAS_WRITE_4(sc, CAS_MAC_TX_CONF, v);
/* step 14. Issue Transmit Pending command. */
/* step 15. Give the receiver a swift kick. */
CAS_WRITE_4(sc, CAS_RX_KICK, CAS_NRXDESC - 4);
CAS_WRITE_4(sc, CAS_RX_COMP_TAIL, 0);
if ((sc->sc_flags & CAS_REG_PLUS) != 0)
CAS_WRITE_4(sc, CAS_RX_KICK2, CAS_NRXDESC2 - 4);
if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
mii_mediachg(sc->sc_mii);
/* Start the one second timer. */
sc->sc_wdog_timer = 0;
callout_reset(&sc->sc_tick_ch, hz, cas_tick, sc);
}
static int
cas_load_txmbuf(struct cas_softc *sc, struct mbuf **m_head)
{
bus_dma_segment_t txsegs[CAS_NTXSEGS];
struct cas_txsoft *txs;
struct ip *ip;
struct mbuf *m;
uint64_t cflags;
int error, nexttx, nsegs, offset, seg;
CAS_LOCK_ASSERT(sc, MA_OWNED);
/* Get a work queue entry. */
if ((txs = STAILQ_FIRST(&sc->sc_txfreeq)) == NULL) {
/* Ran out of descriptors. */
return (ENOBUFS);
}
cflags = 0;
if (((*m_head)->m_pkthdr.csum_flags & CAS_CSUM_FEATURES) != 0) {
if (M_WRITABLE(*m_head) == 0) {
m = m_dup(*m_head, M_NOWAIT);
m_freem(*m_head);
*m_head = m;
if (m == NULL)
return (ENOBUFS);
}
offset = sizeof(struct ether_header);
m = m_pullup(*m_head, offset + sizeof(struct ip));
if (m == NULL) {
*m_head = NULL;
return (ENOBUFS);
}
ip = (struct ip *)(mtod(m, caddr_t) + offset);
offset += (ip->ip_hl << 2);
cflags = (offset << CAS_TD_CKSUM_START_SHFT) |
((offset + m->m_pkthdr.csum_data) <<
CAS_TD_CKSUM_STUFF_SHFT) | CAS_TD_CKSUM_EN;
*m_head = m;
}
error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag, txs->txs_dmamap,
*m_head, txsegs, &nsegs, BUS_DMA_NOWAIT);
if (error == EFBIG) {
m = m_collapse(*m_head, M_NOWAIT, CAS_NTXSEGS);
if (m == NULL) {
m_freem(*m_head);
*m_head = NULL;
return (ENOBUFS);
}
*m_head = m;
error = bus_dmamap_load_mbuf_sg(sc->sc_tdmatag,
txs->txs_dmamap, *m_head, txsegs, &nsegs,
BUS_DMA_NOWAIT);
if (error != 0) {
m_freem(*m_head);
*m_head = NULL;
return (error);
}
} else if (error != 0)
return (error);
/* If nsegs is wrong then the stack is corrupt. */
KASSERT(nsegs <= CAS_NTXSEGS,
("%s: too many DMA segments (%d)", __func__, nsegs));
if (nsegs == 0) {
m_freem(*m_head);
*m_head = NULL;
return (EIO);
}
/*
* Ensure we have enough descriptors free to describe
* the packet. Note, we always reserve one descriptor
* at the end of the ring as a termination point, in
* order to prevent wrap-around.
*/
if (nsegs > sc->sc_txfree - 1) {
txs->txs_ndescs = 0;
bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
return (ENOBUFS);
}
txs->txs_ndescs = nsegs;
txs->txs_firstdesc = sc->sc_txnext;
nexttx = txs->txs_firstdesc;
for (seg = 0; seg < nsegs; seg++, nexttx = CAS_NEXTTX(nexttx)) {
#ifdef CAS_DEBUG
CTR6(KTR_CAS,
"%s: mapping seg %d (txd %d), len %lx, addr %#lx (%#lx)",
__func__, seg, nexttx, txsegs[seg].ds_len,
txsegs[seg].ds_addr, htole64(txsegs[seg].ds_addr));
#endif
sc->sc_txdescs[nexttx].cd_buf_ptr =
htole64(txsegs[seg].ds_addr);
KASSERT(txsegs[seg].ds_len <
CAS_TD_BUF_LEN_MASK >> CAS_TD_BUF_LEN_SHFT,
("%s: segment size too large!", __func__));
sc->sc_txdescs[nexttx].cd_flags =
htole64(txsegs[seg].ds_len << CAS_TD_BUF_LEN_SHFT);
txs->txs_lastdesc = nexttx;
}
/* Set EOF on the last descriptor. */
#ifdef CAS_DEBUG
CTR3(KTR_CAS, "%s: end of frame at segment %d, TX %d",
__func__, seg, nexttx);
#endif
sc->sc_txdescs[txs->txs_lastdesc].cd_flags |=
htole64(CAS_TD_END_OF_FRAME);
/* Lastly set SOF on the first descriptor. */
#ifdef CAS_DEBUG
CTR3(KTR_CAS, "%s: start of frame at segment %d, TX %d",
__func__, seg, nexttx);
#endif
if (sc->sc_txwin += nsegs > CAS_MAXTXFREE * 2 / 3) {
sc->sc_txwin = 0;
sc->sc_txdescs[txs->txs_firstdesc].cd_flags |=
htole64(cflags | CAS_TD_START_OF_FRAME | CAS_TD_INT_ME);
} else
sc->sc_txdescs[txs->txs_firstdesc].cd_flags |=
htole64(cflags | CAS_TD_START_OF_FRAME);
/* Sync the DMA map. */
bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
BUS_DMASYNC_PREWRITE);
#ifdef CAS_DEBUG
CTR4(KTR_CAS, "%s: setting firstdesc=%d, lastdesc=%d, ndescs=%d",
__func__, txs->txs_firstdesc, txs->txs_lastdesc,
txs->txs_ndescs);
#endif
STAILQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
STAILQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
txs->txs_mbuf = *m_head;
sc->sc_txnext = CAS_NEXTTX(txs->txs_lastdesc);
sc->sc_txfree -= txs->txs_ndescs;
return (0);
}
static void
cas_init_regs(struct cas_softc *sc)
{
int i;
const u_char *laddr = if_getlladdr(sc->sc_ifp);
CAS_LOCK_ASSERT(sc, MA_OWNED);
/* These registers are not cleared on reset. */
if ((sc->sc_flags & CAS_INITED) == 0) {
/* magic values */
CAS_WRITE_4(sc, CAS_MAC_IPG0, 0);
CAS_WRITE_4(sc, CAS_MAC_IPG1, 8);
CAS_WRITE_4(sc, CAS_MAC_IPG2, 4);
/* min frame length */
CAS_WRITE_4(sc, CAS_MAC_MIN_FRAME, ETHER_MIN_LEN);
/* max frame length and max burst size */
CAS_WRITE_4(sc, CAS_MAC_MAX_BF,
((ETHER_MAX_LEN_JUMBO + ETHER_VLAN_ENCAP_LEN) <<
CAS_MAC_MAX_BF_FRM_SHFT) |
(0x2000 << CAS_MAC_MAX_BF_BST_SHFT));
/* more magic values */
CAS_WRITE_4(sc, CAS_MAC_PREAMBLE_LEN, 0x7);
CAS_WRITE_4(sc, CAS_MAC_JAM_SIZE, 0x4);
CAS_WRITE_4(sc, CAS_MAC_ATTEMPT_LIMIT, 0x10);
CAS_WRITE_4(sc, CAS_MAC_CTRL_TYPE, 0x8808);
/* random number seed */
CAS_WRITE_4(sc, CAS_MAC_RANDOM_SEED,
((laddr[5] << 8) | laddr[4]) & 0x3ff);
/* secondary MAC addresses: 0:0:0:0:0:0 */
for (i = CAS_MAC_ADDR3; i <= CAS_MAC_ADDR41;
i += CAS_MAC_ADDR4 - CAS_MAC_ADDR3)
CAS_WRITE_4(sc, i, 0);
/* MAC control address: 01:80:c2:00:00:01 */
CAS_WRITE_4(sc, CAS_MAC_ADDR42, 0x0001);
CAS_WRITE_4(sc, CAS_MAC_ADDR43, 0xc200);
CAS_WRITE_4(sc, CAS_MAC_ADDR44, 0x0180);
/* MAC filter address: 0:0:0:0:0:0 */
CAS_WRITE_4(sc, CAS_MAC_AFILTER0, 0);
CAS_WRITE_4(sc, CAS_MAC_AFILTER1, 0);
CAS_WRITE_4(sc, CAS_MAC_AFILTER2, 0);
CAS_WRITE_4(sc, CAS_MAC_AFILTER_MASK1_2, 0);
CAS_WRITE_4(sc, CAS_MAC_AFILTER_MASK0, 0);
/* Zero the hash table. */
for (i = CAS_MAC_HASH0; i <= CAS_MAC_HASH15;
i += CAS_MAC_HASH1 - CAS_MAC_HASH0)
CAS_WRITE_4(sc, i, 0);
sc->sc_flags |= CAS_INITED;
}
/* Counters need to be zeroed. */
CAS_WRITE_4(sc, CAS_MAC_NORM_COLL_CNT, 0);
CAS_WRITE_4(sc, CAS_MAC_FIRST_COLL_CNT, 0);
CAS_WRITE_4(sc, CAS_MAC_EXCESS_COLL_CNT, 0);
CAS_WRITE_4(sc, CAS_MAC_LATE_COLL_CNT, 0);
CAS_WRITE_4(sc, CAS_MAC_DEFER_TMR_CNT, 0);
CAS_WRITE_4(sc, CAS_MAC_PEAK_ATTEMPTS, 0);
CAS_WRITE_4(sc, CAS_MAC_RX_FRAME_COUNT, 0);
CAS_WRITE_4(sc, CAS_MAC_RX_LEN_ERR_CNT, 0);
CAS_WRITE_4(sc, CAS_MAC_RX_ALIGN_ERR, 0);
CAS_WRITE_4(sc, CAS_MAC_RX_CRC_ERR_CNT, 0);
CAS_WRITE_4(sc, CAS_MAC_RX_CODE_VIOL, 0);
/* Set XOFF PAUSE time. */
CAS_WRITE_4(sc, CAS_MAC_SPC, 0x1BF0 << CAS_MAC_SPC_TIME_SHFT);
/* Set the station address. */
CAS_WRITE_4(sc, CAS_MAC_ADDR0, (laddr[4] << 8) | laddr[5]);
CAS_WRITE_4(sc, CAS_MAC_ADDR1, (laddr[2] << 8) | laddr[3]);
CAS_WRITE_4(sc, CAS_MAC_ADDR2, (laddr[0] << 8) | laddr[1]);
/* Enable MII outputs. */
CAS_WRITE_4(sc, CAS_MAC_XIF_CONF, CAS_MAC_XIF_CONF_TX_OE);
}
static void
cas_tx_task(void *arg, int pending __unused)
{
if_t ifp;
ifp = (if_t)arg;
cas_start(ifp);
}
static inline void
cas_txkick(struct cas_softc *sc)
{
/*
* Update the TX kick register. This register has to point to the
* descriptor after the last valid one and for optimum performance
* should be incremented in multiples of 4 (the DMA engine fetches/
* updates descriptors in batches of 4).
*/
#ifdef CAS_DEBUG
CTR3(KTR_CAS, "%s: %s: kicking TX %d",
device_get_name(sc->sc_dev), __func__, sc->sc_txnext);
#endif
CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
CAS_WRITE_4(sc, CAS_TX_KICK3, sc->sc_txnext);
}
static void
cas_start(if_t ifp)
{
struct cas_softc *sc = if_getsoftc(ifp);
struct mbuf *m;
int kicked, ntx;
CAS_LOCK(sc);
if ((if_getdrvflags(ifp) & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
IFF_DRV_RUNNING || (sc->sc_flags & CAS_LINK) == 0) {
CAS_UNLOCK(sc);
return;
}
if (sc->sc_txfree < CAS_MAXTXFREE / 4)
cas_tint(sc);
#ifdef CAS_DEBUG
CTR4(KTR_CAS, "%s: %s: txfree %d, txnext %d",
device_get_name(sc->sc_dev), __func__, sc->sc_txfree,
sc->sc_txnext);
#endif
ntx = 0;
kicked = 0;
for (; !if_sendq_empty(ifp) && sc->sc_txfree > 1;) {
m = if_dequeue(ifp);
if (m == NULL)
break;
if (cas_load_txmbuf(sc, &m) != 0) {
if (m == NULL)
break;
if_setdrvflagbits(ifp, IFF_DRV_OACTIVE, 0);
if_sendq_prepend(ifp, m);
break;
}
if ((sc->sc_txnext % 4) == 0) {
cas_txkick(sc);
kicked = 1;
} else
kicked = 0;
ntx++;
BPF_MTAP(ifp, m);
}
if (ntx > 0) {
if (kicked == 0)
cas_txkick(sc);
#ifdef CAS_DEBUG
CTR2(KTR_CAS, "%s: packets enqueued, OWN on %d",
device_get_name(sc->sc_dev), sc->sc_txnext);
#endif
/* Set a watchdog timer in case the chip flakes out. */
sc->sc_wdog_timer = 5;
#ifdef CAS_DEBUG
CTR3(KTR_CAS, "%s: %s: watchdog %d",
device_get_name(sc->sc_dev), __func__,
sc->sc_wdog_timer);
#endif
}
CAS_UNLOCK(sc);
}
static void
cas_tint(struct cas_softc *sc)
{
if_t ifp = sc->sc_ifp;
struct cas_txsoft *txs;
int progress;
uint32_t txlast;
#ifdef CAS_DEBUG
int i;
CAS_LOCK_ASSERT(sc, MA_OWNED);
CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__);
#endif
/*
* Go through our TX list and free mbufs for those
* frames that have been transmitted.
*/
progress = 0;
CAS_CDSYNC(sc, BUS_DMASYNC_POSTREAD);
while ((txs = STAILQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
#ifdef CAS_DEBUG
if ((if_getflags(ifp) & IFF_DEBUG) != 0) {
printf(" txsoft %p transmit chain:\n", txs);
for (i = txs->txs_firstdesc;; i = CAS_NEXTTX(i)) {
printf("descriptor %d: ", i);
printf("cd_flags: 0x%016llx\t",
(long long)le64toh(
sc->sc_txdescs[i].cd_flags));
printf("cd_buf_ptr: 0x%016llx\n",
(long long)le64toh(
sc->sc_txdescs[i].cd_buf_ptr));
if (i == txs->txs_lastdesc)
break;
}
}
#endif
/*
* In theory, we could harvest some descriptors before
* the ring is empty, but that's a bit complicated.
*
* CAS_TX_COMPn points to the last descriptor
* processed + 1.
*/
txlast = CAS_READ_4(sc, CAS_TX_COMP3);
#ifdef CAS_DEBUG
CTR4(KTR_CAS, "%s: txs->txs_firstdesc = %d, "
"txs->txs_lastdesc = %d, txlast = %d",
__func__, txs->txs_firstdesc, txs->txs_lastdesc, txlast);
#endif
if (txs->txs_firstdesc <= txs->txs_lastdesc) {
if ((txlast >= txs->txs_firstdesc) &&
(txlast <= txs->txs_lastdesc))
break;
} else {
/* Ick -- this command wraps. */
if ((txlast >= txs->txs_firstdesc) ||
(txlast <= txs->txs_lastdesc))
break;
}
#ifdef CAS_DEBUG
CTR1(KTR_CAS, "%s: releasing a descriptor", __func__);
#endif
STAILQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
sc->sc_txfree += txs->txs_ndescs;
bus_dmamap_sync(sc->sc_tdmatag, txs->txs_dmamap,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_tdmatag, txs->txs_dmamap);
if (txs->txs_mbuf != NULL) {
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
}
STAILQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
progress = 1;
}
#ifdef CAS_DEBUG
CTR5(KTR_CAS, "%s: CAS_TX_SM1 %x CAS_TX_SM2 %x CAS_TX_DESC_BASE %llx "
"CAS_TX_COMP3 %x",
__func__, CAS_READ_4(sc, CAS_TX_SM1), CAS_READ_4(sc, CAS_TX_SM2),
((long long)CAS_READ_4(sc, CAS_TX_DESC3_BASE_HI) << 32) |
CAS_READ_4(sc, CAS_TX_DESC3_BASE_LO),
CAS_READ_4(sc, CAS_TX_COMP3));
#endif
if (progress) {
/* We freed some descriptors, so reset IFF_DRV_OACTIVE. */
if_setdrvflagbits(ifp, 0, IFF_DRV_OACTIVE);
if (STAILQ_EMPTY(&sc->sc_txdirtyq))
sc->sc_wdog_timer = 0;
}
#ifdef CAS_DEBUG
CTR3(KTR_CAS, "%s: %s: watchdog %d",
device_get_name(sc->sc_dev), __func__, sc->sc_wdog_timer);
#endif
}
static void
cas_rint_timeout(void *arg)
{
struct epoch_tracker et;
struct cas_softc *sc = arg;
CAS_LOCK_ASSERT(sc, MA_OWNED);
NET_EPOCH_ENTER(et);
cas_rint(sc);
NET_EPOCH_EXIT(et);
}
static void
cas_rint(struct cas_softc *sc)
{
struct cas_rxdsoft *rxds, *rxds2;
if_t ifp = sc->sc_ifp;
struct mbuf *m, *m2;
uint64_t word1, word2, word3 __unused, word4;
uint32_t rxhead;
u_int idx, idx2, len, off, skip;
CAS_LOCK_ASSERT(sc, MA_OWNED);
callout_stop(&sc->sc_rx_ch);
#ifdef CAS_DEBUG
CTR2(KTR_CAS, "%s: %s", device_get_name(sc->sc_dev), __func__);
#endif
#define PRINTWORD(n, delimiter) \
printf("word ## n: 0x%016llx%c", (long long)word ## n, delimiter)
#define SKIPASSERT(n) \
KASSERT(sc->sc_rxcomps[sc->sc_rxcptr].crc_word ## n == 0, \
("%s: word ## n not 0", __func__))
#define WORDTOH(n) \
word ## n = le64toh(sc->sc_rxcomps[sc->sc_rxcptr].crc_word ## n)
/*
* Read the completion head register once. This limits
* how long the following loop can execute.
*/
rxhead = CAS_READ_4(sc, CAS_RX_COMP_HEAD);
#ifdef CAS_DEBUG
CTR4(KTR_CAS, "%s: sc->sc_rxcptr %d, sc->sc_rxdptr %d, head %d",
__func__, sc->sc_rxcptr, sc->sc_rxdptr, rxhead);
#endif
skip = 0;
CAS_CDSYNC(sc, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
for (; sc->sc_rxcptr != rxhead;
sc->sc_rxcptr = CAS_NEXTRXCOMP(sc->sc_rxcptr)) {
if (skip != 0) {
SKIPASSERT(1);
SKIPASSERT(2);
SKIPASSERT(3);
--skip;
goto skip;
}
WORDTOH(1);
WORDTOH(2);
WORDTOH(3);
WORDTOH(4);
#ifdef CAS_DEBUG
if ((if_getflags(ifp) & IFF_DEBUG) != 0) {
printf(" completion %d: ", sc->sc_rxcptr);
PRINTWORD(1, '\t');
PRINTWORD(2, '\t');
PRINTWORD(3, '\t');
PRINTWORD(4, '\n');
}
#endif
if (__predict_false(
(word1 & CAS_RC1_TYPE_MASK) == CAS_RC1_TYPE_HW ||
(word4 & CAS_RC4_ZERO) != 0)) {
/*
* The descriptor is still marked as owned, although
* it is supposed to have completed. This has been
* observed on some machines. Just exiting here
* might leave the packet sitting around until another
* one arrives to trigger a new interrupt, which is
* generally undesirable, so set up a timeout.
*/
callout_reset(&sc->sc_rx_ch, CAS_RXOWN_TICKS,
cas_rint_timeout, sc);
break;
}
if (__predict_false(
(word4 & (CAS_RC4_BAD | CAS_RC4_LEN_MMATCH)) != 0)) {
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
device_printf(sc->sc_dev,
"receive error: CRC error\n");
continue;
}
KASSERT(CAS_GET(word1, CAS_RC1_DATA_SIZE) == 0 ||
CAS_GET(word2, CAS_RC2_HDR_SIZE) == 0,
("%s: data and header present", __func__));
KASSERT((word1 & CAS_RC1_SPLIT_PKT) == 0 ||
CAS_GET(word2, CAS_RC2_HDR_SIZE) == 0,
("%s: split and header present", __func__));
KASSERT(CAS_GET(word1, CAS_RC1_DATA_SIZE) == 0 ||
(word1 & CAS_RC1_RELEASE_HDR) == 0,
("%s: data present but header release", __func__));
KASSERT(CAS_GET(word2, CAS_RC2_HDR_SIZE) == 0 ||
(word1 & CAS_RC1_RELEASE_DATA) == 0,
("%s: header present but data release", __func__));
if ((len = CAS_GET(word2, CAS_RC2_HDR_SIZE)) != 0) {
idx = CAS_GET(word2, CAS_RC2_HDR_INDEX);
off = CAS_GET(word2, CAS_RC2_HDR_OFF);
#ifdef CAS_DEBUG
CTR4(KTR_CAS, "%s: hdr at idx %d, off %d, len %d",
__func__, idx, off, len);
#endif
rxds = &sc->sc_rxdsoft[idx];
MGETHDR(m, M_NOWAIT, MT_DATA);
if (m != NULL) {
refcount_acquire(&rxds->rxds_refcount);
bus_dmamap_sync(sc->sc_rdmatag,
rxds->rxds_dmamap, BUS_DMASYNC_POSTREAD);
m_extadd(m, (char *)rxds->rxds_buf +
off * 256 + ETHER_ALIGN, len, cas_free,
sc, (void *)(uintptr_t)idx,
M_RDONLY, EXT_NET_DRV);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
m = NULL;
}
}
if (m != NULL) {
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = len;
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
cas_rxcksum(m, CAS_GET(word4,
CAS_RC4_TCP_CSUM));
/* Pass it on. */
CAS_UNLOCK(sc);
if_input(ifp, m);
CAS_LOCK(sc);
} else
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
if ((word1 & CAS_RC1_RELEASE_HDR) != 0 &&
refcount_release(&rxds->rxds_refcount) != 0)
cas_add_rxdesc(sc, idx);
} else if ((len = CAS_GET(word1, CAS_RC1_DATA_SIZE)) != 0) {
idx = CAS_GET(word1, CAS_RC1_DATA_INDEX);
off = CAS_GET(word1, CAS_RC1_DATA_OFF);
#ifdef CAS_DEBUG
CTR4(KTR_CAS, "%s: data at idx %d, off %d, len %d",
__func__, idx, off, len);
#endif
rxds = &sc->sc_rxdsoft[idx];
MGETHDR(m, M_NOWAIT, MT_DATA);
if (m != NULL) {
refcount_acquire(&rxds->rxds_refcount);
off += ETHER_ALIGN;
m->m_len = min(CAS_PAGE_SIZE - off, len);
bus_dmamap_sync(sc->sc_rdmatag,
rxds->rxds_dmamap, BUS_DMASYNC_POSTREAD);
m_extadd(m, (char *)rxds->rxds_buf + off,
m->m_len, cas_free, sc,
(void *)(uintptr_t)idx, M_RDONLY,
EXT_NET_DRV);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
m = NULL;
}
}
idx2 = 0;
m2 = NULL;
rxds2 = NULL;
if ((word1 & CAS_RC1_SPLIT_PKT) != 0) {
KASSERT((word1 & CAS_RC1_RELEASE_NEXT) != 0,
("%s: split but no release next",
__func__));
idx2 = CAS_GET(word2, CAS_RC2_NEXT_INDEX);
#ifdef CAS_DEBUG
CTR2(KTR_CAS, "%s: split at idx %d",
__func__, idx2);
#endif
rxds2 = &sc->sc_rxdsoft[idx2];
if (m != NULL) {
MGET(m2, M_NOWAIT, MT_DATA);
if (m2 != NULL) {
refcount_acquire(
&rxds2->rxds_refcount);
m2->m_len = len - m->m_len;
bus_dmamap_sync(
sc->sc_rdmatag,
rxds2->rxds_dmamap,
BUS_DMASYNC_POSTREAD);
m_extadd(m2,
(char *)rxds2->rxds_buf,
m2->m_len, cas_free, sc,
(void *)(uintptr_t)idx2,
M_RDONLY, EXT_NET_DRV);
if ((m2->m_flags & M_EXT) ==
0) {
m_freem(m2);
m2 = NULL;
}
}
}
if (m2 != NULL)
m->m_next = m2;
else if (m != NULL) {
m_freem(m);
m = NULL;
}
}
if (m != NULL) {
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = len;
if_inc_counter(ifp, IFCOUNTER_IPACKETS, 1);
if ((if_getcapenable(ifp) & IFCAP_RXCSUM) != 0)
cas_rxcksum(m, CAS_GET(word4,
CAS_RC4_TCP_CSUM));
/* Pass it on. */
CAS_UNLOCK(sc);
if_input(ifp, m);
CAS_LOCK(sc);
} else
if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
if ((word1 & CAS_RC1_RELEASE_DATA) != 0 &&
refcount_release(&rxds->rxds_refcount) != 0)
cas_add_rxdesc(sc, idx);
if ((word1 & CAS_RC1_SPLIT_PKT) != 0 &&
refcount_release(&rxds2->rxds_refcount) != 0)
cas_add_rxdesc(sc, idx2);
}
skip = CAS_GET(word1, CAS_RC1_SKIP);
skip:
cas_rxcompinit(&sc->sc_rxcomps[sc->sc_rxcptr]);
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
break;
}
CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
CAS_WRITE_4(sc, CAS_RX_COMP_TAIL, sc->sc_rxcptr);
#undef PRINTWORD
#undef SKIPASSERT
#undef WORDTOH
#ifdef CAS_DEBUG
CTR4(KTR_CAS, "%s: done sc->sc_rxcptr %d, sc->sc_rxdptr %d, head %d",
__func__, sc->sc_rxcptr, sc->sc_rxdptr,
CAS_READ_4(sc, CAS_RX_COMP_HEAD));
#endif
}
static void
cas_free(struct mbuf *m)
{
struct cas_rxdsoft *rxds;
struct cas_softc *sc;
u_int idx, locked;
sc = m->m_ext.ext_arg1;
idx = (uintptr_t)m->m_ext.ext_arg2;
rxds = &sc->sc_rxdsoft[idx];
if (refcount_release(&rxds->rxds_refcount) == 0)
return;
/*
* NB: this function can be called via m_freem(9) within
* this driver!
*/
if ((locked = CAS_LOCK_OWNED(sc)) == 0)
CAS_LOCK(sc);
cas_add_rxdesc(sc, idx);
if (locked == 0)
CAS_UNLOCK(sc);
}
static inline void
cas_add_rxdesc(struct cas_softc *sc, u_int idx)
{
CAS_LOCK_ASSERT(sc, MA_OWNED);
bus_dmamap_sync(sc->sc_rdmatag, sc->sc_rxdsoft[idx].rxds_dmamap,
BUS_DMASYNC_PREREAD);
CAS_UPDATE_RXDESC(sc, sc->sc_rxdptr, idx);
sc->sc_rxdptr = CAS_NEXTRXDESC(sc->sc_rxdptr);
/*
* Update the RX kick register. This register has to point to the
* descriptor after the last valid one (before the current batch)
* and for optimum performance should be incremented in multiples
* of 4 (the DMA engine fetches/updates descriptors in batches of 4).
*/
if ((sc->sc_rxdptr % 4) == 0) {
CAS_CDSYNC(sc, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
CAS_WRITE_4(sc, CAS_RX_KICK,
(sc->sc_rxdptr + CAS_NRXDESC - 4) & CAS_NRXDESC_MASK);
}
}
static void
cas_eint(struct cas_softc *sc, u_int status)
{
if_t ifp = sc->sc_ifp;
CAS_LOCK_ASSERT(sc, MA_OWNED);
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
device_printf(sc->sc_dev, "%s: status 0x%x", __func__, status);
if ((status & CAS_INTR_PCI_ERROR_INT) != 0) {
status = CAS_READ_4(sc, CAS_ERROR_STATUS);
printf(", PCI bus error 0x%x", status);
if ((status & CAS_ERROR_OTHER) != 0) {
status = pci_read_config(sc->sc_dev, PCIR_STATUS, 2);
printf(", PCI status 0x%x", status);
pci_write_config(sc->sc_dev, PCIR_STATUS, status, 2);
}
}
printf("\n");
if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
cas_init_locked(sc);
if (!if_sendq_empty(ifp))
taskqueue_enqueue(sc->sc_tq, &sc->sc_tx_task);
}
static int
cas_intr(void *v)
{
struct cas_softc *sc = v;
if (__predict_false((CAS_READ_4(sc, CAS_STATUS_ALIAS) &
CAS_INTR_SUMMARY) == 0))
return (FILTER_STRAY);
/* Disable interrupts. */
CAS_WRITE_4(sc, CAS_INTMASK, 0xffffffff);
taskqueue_enqueue(sc->sc_tq, &sc->sc_intr_task);
return (FILTER_HANDLED);
}
static void
cas_intr_task(void *arg, int pending __unused)
{
struct cas_softc *sc = arg;
if_t ifp = sc->sc_ifp;
uint32_t status, status2;
CAS_LOCK_ASSERT(sc, MA_NOTOWNED);
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0)
return;
status = CAS_READ_4(sc, CAS_STATUS);
if (__predict_false((status & CAS_INTR_SUMMARY) == 0))
goto done;
CAS_LOCK(sc);
#ifdef CAS_DEBUG
CTR4(KTR_CAS, "%s: %s: cplt %x, status %x",
device_get_name(sc->sc_dev), __func__,
(status >> CAS_STATUS_TX_COMP3_SHFT), (u_int)status);
/*
* PCS interrupts must be cleared, otherwise no traffic is passed!
*/
if ((status & CAS_INTR_PCS_INT) != 0) {
status2 =
CAS_READ_4(sc, CAS_PCS_INTR_STATUS) |
CAS_READ_4(sc, CAS_PCS_INTR_STATUS);
if ((status2 & CAS_PCS_INTR_LINK) != 0)
device_printf(sc->sc_dev,
"%s: PCS link status changed\n", __func__);
}
if ((status & CAS_MAC_CTRL_STATUS) != 0) {
status2 = CAS_READ_4(sc, CAS_MAC_CTRL_STATUS);
if ((status2 & CAS_MAC_CTRL_PAUSE) != 0)
device_printf(sc->sc_dev,
"%s: PAUSE received (PAUSE time %d slots)\n",
__func__,
(status2 & CAS_MAC_CTRL_STATUS_PT_MASK) >>
CAS_MAC_CTRL_STATUS_PT_SHFT);
if ((status2 & CAS_MAC_CTRL_PAUSE) != 0)
device_printf(sc->sc_dev,
"%s: transited to PAUSE state\n", __func__);
if ((status2 & CAS_MAC_CTRL_NON_PAUSE) != 0)
device_printf(sc->sc_dev,
"%s: transited to non-PAUSE state\n", __func__);
}
if ((status & CAS_INTR_MIF) != 0)
device_printf(sc->sc_dev, "%s: MIF interrupt\n", __func__);
#endif
if (__predict_false((status &
(CAS_INTR_TX_TAG_ERR | CAS_INTR_RX_TAG_ERR |
CAS_INTR_RX_LEN_MMATCH | CAS_INTR_PCI_ERROR_INT)) != 0)) {
cas_eint(sc, status);
CAS_UNLOCK(sc);
return;
}
if (__predict_false(status & CAS_INTR_TX_MAC_INT)) {
status2 = CAS_READ_4(sc, CAS_MAC_TX_STATUS);
if ((status2 &
(CAS_MAC_TX_UNDERRUN | CAS_MAC_TX_MAX_PKT_ERR)) != 0)
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
else if ((status2 & ~CAS_MAC_TX_FRAME_XMTD) != 0)
device_printf(sc->sc_dev,
"MAC TX fault, status %x\n", status2);
}
if (__predict_false(status & CAS_INTR_RX_MAC_INT)) {
status2 = CAS_READ_4(sc, CAS_MAC_RX_STATUS);
if ((status2 & CAS_MAC_RX_OVERFLOW) != 0)
if_inc_counter(ifp, IFCOUNTER_IERRORS, 1);
else if ((status2 & ~CAS_MAC_RX_FRAME_RCVD) != 0)
device_printf(sc->sc_dev,
"MAC RX fault, status %x\n", status2);
}
if ((status &
(CAS_INTR_RX_DONE | CAS_INTR_RX_BUF_NA | CAS_INTR_RX_COMP_FULL |
CAS_INTR_RX_BUF_AEMPTY | CAS_INTR_RX_COMP_AFULL)) != 0) {
cas_rint(sc);
#ifdef CAS_DEBUG
if (__predict_false((status &
(CAS_INTR_RX_BUF_NA | CAS_INTR_RX_COMP_FULL |
CAS_INTR_RX_BUF_AEMPTY | CAS_INTR_RX_COMP_AFULL)) != 0))
device_printf(sc->sc_dev,
"RX fault, status %x\n", status);
#endif
}
if ((status &
(CAS_INTR_TX_INT_ME | CAS_INTR_TX_ALL | CAS_INTR_TX_DONE)) != 0)
cas_tint(sc);
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) == 0) {
CAS_UNLOCK(sc);
return;
} else if (!if_sendq_empty(ifp))
taskqueue_enqueue(sc->sc_tq, &sc->sc_tx_task);
CAS_UNLOCK(sc);
status = CAS_READ_4(sc, CAS_STATUS_ALIAS);
if (__predict_false((status & CAS_INTR_SUMMARY) != 0)) {
taskqueue_enqueue(sc->sc_tq, &sc->sc_intr_task);
return;
}
done:
/* Re-enable interrupts. */
CAS_WRITE_4(sc, CAS_INTMASK,
~(CAS_INTR_TX_INT_ME | CAS_INTR_TX_TAG_ERR |
CAS_INTR_RX_DONE | CAS_INTR_RX_BUF_NA | CAS_INTR_RX_TAG_ERR |
CAS_INTR_RX_COMP_FULL | CAS_INTR_RX_BUF_AEMPTY |
CAS_INTR_RX_COMP_AFULL | CAS_INTR_RX_LEN_MMATCH |
CAS_INTR_PCI_ERROR_INT
#ifdef CAS_DEBUG
| CAS_INTR_PCS_INT | CAS_INTR_MIF
#endif
));
}
static void
cas_watchdog(struct cas_softc *sc)
{
if_t ifp = sc->sc_ifp;
CAS_LOCK_ASSERT(sc, MA_OWNED);
#ifdef CAS_DEBUG
CTR4(KTR_CAS,
"%s: CAS_RX_CONF %x CAS_MAC_RX_STATUS %x CAS_MAC_RX_CONF %x",
__func__, CAS_READ_4(sc, CAS_RX_CONF),
CAS_READ_4(sc, CAS_MAC_RX_STATUS),
CAS_READ_4(sc, CAS_MAC_RX_CONF));
CTR4(KTR_CAS,
"%s: CAS_TX_CONF %x CAS_MAC_TX_STATUS %x CAS_MAC_TX_CONF %x",
__func__, CAS_READ_4(sc, CAS_TX_CONF),
CAS_READ_4(sc, CAS_MAC_TX_STATUS),
CAS_READ_4(sc, CAS_MAC_TX_CONF));
#endif
if (sc->sc_wdog_timer == 0 || --sc->sc_wdog_timer != 0)
return;
if ((sc->sc_flags & CAS_LINK) != 0)
device_printf(sc->sc_dev, "device timeout\n");
else if (bootverbose)
device_printf(sc->sc_dev, "device timeout (no link)\n");
if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
/* Try to get more packets going. */
if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
cas_init_locked(sc);
if (!if_sendq_empty(ifp))
taskqueue_enqueue(sc->sc_tq, &sc->sc_tx_task);
}
static void
cas_mifinit(struct cas_softc *sc)
{
/* Configure the MIF in frame mode. */
CAS_WRITE_4(sc, CAS_MIF_CONF,
CAS_READ_4(sc, CAS_MIF_CONF) & ~CAS_MIF_CONF_BB_MODE);
CAS_BARRIER(sc, CAS_MIF_CONF, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
}
/*
* MII interface
*
* The MII interface supports at least three different operating modes:
*
* Bitbang mode is implemented using data, clock and output enable registers.
*
* Frame mode is implemented by loading a complete frame into the frame
* register and polling the valid bit for completion.
*
* Polling mode uses the frame register but completion is indicated by
* an interrupt.
*
*/
static int
cas_mii_readreg(device_t dev, int phy, int reg)
{
struct cas_softc *sc;
int n;
uint32_t v;
#ifdef CAS_DEBUG_PHY
printf("%s: phy %d reg %d\n", __func__, phy, reg);
#endif
sc = device_get_softc(dev);
if ((sc->sc_flags & CAS_SERDES) != 0) {
switch (reg) {
case MII_BMCR:
reg = CAS_PCS_CTRL;
break;
case MII_BMSR:
reg = CAS_PCS_STATUS;
break;
case MII_PHYIDR1:
case MII_PHYIDR2:
return (0);
case MII_ANAR:
reg = CAS_PCS_ANAR;
break;
case MII_ANLPAR:
reg = CAS_PCS_ANLPAR;
break;
case MII_EXTSR:
return (EXTSR_1000XFDX | EXTSR_1000XHDX);
default:
device_printf(sc->sc_dev,
"%s: unhandled register %d\n", __func__, reg);
return (0);
}
return (CAS_READ_4(sc, reg));
}
/* Construct the frame command. */
v = CAS_MIF_FRAME_READ |
(phy << CAS_MIF_FRAME_PHY_SHFT) |
(reg << CAS_MIF_FRAME_REG_SHFT);
CAS_WRITE_4(sc, CAS_MIF_FRAME, v);
CAS_BARRIER(sc, CAS_MIF_FRAME, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
for (n = 0; n < 100; n++) {
DELAY(1);
v = CAS_READ_4(sc, CAS_MIF_FRAME);
if (v & CAS_MIF_FRAME_TA_LSB)
return (v & CAS_MIF_FRAME_DATA);
}
device_printf(sc->sc_dev, "%s: timed out\n", __func__);
return (0);
}
static int
cas_mii_writereg(device_t dev, int phy, int reg, int val)
{
struct cas_softc *sc;
int n;
uint32_t v;
#ifdef CAS_DEBUG_PHY
printf("%s: phy %d reg %d val %x\n", phy, reg, val, __func__);
#endif
sc = device_get_softc(dev);
if ((sc->sc_flags & CAS_SERDES) != 0) {
switch (reg) {
case MII_BMSR:
reg = CAS_PCS_STATUS;
break;
case MII_BMCR:
reg = CAS_PCS_CTRL;
if ((val & CAS_PCS_CTRL_RESET) == 0)
break;
CAS_WRITE_4(sc, CAS_PCS_CTRL, val);
CAS_BARRIER(sc, CAS_PCS_CTRL, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
if (!cas_bitwait(sc, CAS_PCS_CTRL,
CAS_PCS_CTRL_RESET, 0))
device_printf(sc->sc_dev,
"cannot reset PCS\n");
/* FALLTHROUGH */
case MII_ANAR:
CAS_WRITE_4(sc, CAS_PCS_CONF, 0);
CAS_BARRIER(sc, CAS_PCS_CONF, 4,
BUS_SPACE_BARRIER_WRITE);
CAS_WRITE_4(sc, CAS_PCS_ANAR, val);
CAS_BARRIER(sc, CAS_PCS_ANAR, 4,
BUS_SPACE_BARRIER_WRITE);
CAS_WRITE_4(sc, CAS_PCS_SERDES_CTRL,
CAS_PCS_SERDES_CTRL_ESD);
CAS_BARRIER(sc, CAS_PCS_CONF, 4,
BUS_SPACE_BARRIER_WRITE);
CAS_WRITE_4(sc, CAS_PCS_CONF,
CAS_PCS_CONF_EN);
CAS_BARRIER(sc, CAS_PCS_CONF, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
return (0);
case MII_ANLPAR:
reg = CAS_PCS_ANLPAR;
break;
default:
device_printf(sc->sc_dev,
"%s: unhandled register %d\n", __func__, reg);
return (0);
}
CAS_WRITE_4(sc, reg, val);
CAS_BARRIER(sc, reg, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
return (0);
}
/* Construct the frame command. */
v = CAS_MIF_FRAME_WRITE |
(phy << CAS_MIF_FRAME_PHY_SHFT) |
(reg << CAS_MIF_FRAME_REG_SHFT) |
(val & CAS_MIF_FRAME_DATA);
CAS_WRITE_4(sc, CAS_MIF_FRAME, v);
CAS_BARRIER(sc, CAS_MIF_FRAME, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
for (n = 0; n < 100; n++) {
DELAY(1);
v = CAS_READ_4(sc, CAS_MIF_FRAME);
if (v & CAS_MIF_FRAME_TA_LSB)
return (1);
}
device_printf(sc->sc_dev, "%s: timed out\n", __func__);
return (0);
}
static void
cas_mii_statchg(device_t dev)
{
struct cas_softc *sc;
if_t ifp;
int gigabit;
uint32_t rxcfg, txcfg, v;
sc = device_get_softc(dev);
ifp = sc->sc_ifp;
CAS_LOCK_ASSERT(sc, MA_OWNED);
#ifdef CAS_DEBUG
if ((if_getflags(ifp) & IFF_DEBUG) != 0)
device_printf(sc->sc_dev, "%s: status changen", __func__);
#endif
if ((sc->sc_mii->mii_media_status & IFM_ACTIVE) != 0 &&
IFM_SUBTYPE(sc->sc_mii->mii_media_active) != IFM_NONE)
sc->sc_flags |= CAS_LINK;
else
sc->sc_flags &= ~CAS_LINK;
switch (IFM_SUBTYPE(sc->sc_mii->mii_media_active)) {
case IFM_1000_SX:
case IFM_1000_LX:
case IFM_1000_CX:
case IFM_1000_T:
gigabit = 1;
break;
default:
gigabit = 0;
}
/*
* The configuration done here corresponds to the steps F) and
* G) and as far as enabling of RX and TX MAC goes also step H)
* of the initialization sequence outlined in section 11.2.1 of
* the Cassini+ ASIC Specification.
*/
rxcfg = sc->sc_mac_rxcfg;
rxcfg &= ~CAS_MAC_RX_CONF_CARR;
txcfg = CAS_MAC_TX_CONF_EN_IPG0 | CAS_MAC_TX_CONF_NGU |
CAS_MAC_TX_CONF_NGUL;
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0)
txcfg |= CAS_MAC_TX_CONF_ICARR | CAS_MAC_TX_CONF_ICOLLIS;
else if (gigabit != 0) {
rxcfg |= CAS_MAC_RX_CONF_CARR;
txcfg |= CAS_MAC_TX_CONF_CARR;
}
(void)cas_disable_tx(sc);
CAS_WRITE_4(sc, CAS_MAC_TX_CONF, txcfg);
(void)cas_disable_rx(sc);
CAS_WRITE_4(sc, CAS_MAC_RX_CONF, rxcfg);
v = CAS_READ_4(sc, CAS_MAC_CTRL_CONF) &
~(CAS_MAC_CTRL_CONF_TXP | CAS_MAC_CTRL_CONF_RXP);
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
IFM_ETH_RXPAUSE) != 0)
v |= CAS_MAC_CTRL_CONF_RXP;
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) &
IFM_ETH_TXPAUSE) != 0)
v |= CAS_MAC_CTRL_CONF_TXP;
CAS_WRITE_4(sc, CAS_MAC_CTRL_CONF, v);
/*
* All supported chips have a bug causing incorrect checksum
* to be calculated when letting them strip the FCS in half-
* duplex mode. In theory we could disable FCS stripping and
* manually adjust the checksum accordingly. It seems to make
* more sense to optimze for the common case and just disable
* hardware checksumming in half-duplex mode though.
*/
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0) {
if_setcapenablebit(ifp, 0, IFCAP_HWCSUM);
if_sethwassist(ifp, 0);
} else if ((sc->sc_flags & CAS_NO_CSUM) == 0) {
if_setcapenable(ifp, if_getcapabilities(ifp));
if_sethwassist(ifp, CAS_CSUM_FEATURES);
}
if (sc->sc_variant == CAS_SATURN) {
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0)
/* silicon bug workaround */
CAS_WRITE_4(sc, CAS_MAC_PREAMBLE_LEN, 0x41);
else
CAS_WRITE_4(sc, CAS_MAC_PREAMBLE_LEN, 0x7);
}
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0 &&
gigabit != 0)
CAS_WRITE_4(sc, CAS_MAC_SLOT_TIME,
CAS_MAC_SLOT_TIME_CARR);
else
CAS_WRITE_4(sc, CAS_MAC_SLOT_TIME,
CAS_MAC_SLOT_TIME_NORM);
/* XIF Configuration */
v = CAS_MAC_XIF_CONF_TX_OE | CAS_MAC_XIF_CONF_LNKLED;
if ((sc->sc_flags & CAS_SERDES) == 0) {
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) == 0)
v |= CAS_MAC_XIF_CONF_NOECHO;
v |= CAS_MAC_XIF_CONF_BUF_OE;
}
if (gigabit != 0)
v |= CAS_MAC_XIF_CONF_GMII;
if ((IFM_OPTIONS(sc->sc_mii->mii_media_active) & IFM_FDX) != 0)
v |= CAS_MAC_XIF_CONF_FDXLED;
CAS_WRITE_4(sc, CAS_MAC_XIF_CONF, v);
sc->sc_mac_rxcfg = rxcfg;
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0 &&
(sc->sc_flags & CAS_LINK) != 0) {
CAS_WRITE_4(sc, CAS_MAC_TX_CONF,
txcfg | CAS_MAC_TX_CONF_EN);
CAS_WRITE_4(sc, CAS_MAC_RX_CONF,
rxcfg | CAS_MAC_RX_CONF_EN);
}
}
static int
cas_mediachange(if_t ifp)
{
struct cas_softc *sc = if_getsoftc(ifp);
int error;
/* XXX add support for serial media. */
CAS_LOCK(sc);
error = mii_mediachg(sc->sc_mii);
CAS_UNLOCK(sc);
return (error);
}
static void
cas_mediastatus(if_t ifp, struct ifmediareq *ifmr)
{
struct cas_softc *sc = if_getsoftc(ifp);
CAS_LOCK(sc);
if ((if_getflags(ifp) & IFF_UP) == 0) {
CAS_UNLOCK(sc);
return;
}
mii_pollstat(sc->sc_mii);
ifmr->ifm_active = sc->sc_mii->mii_media_active;
ifmr->ifm_status = sc->sc_mii->mii_media_status;
CAS_UNLOCK(sc);
}
static int
cas_ioctl(if_t ifp, u_long cmd, caddr_t data)
{
struct cas_softc *sc = if_getsoftc(ifp);
struct ifreq *ifr = (struct ifreq *)data;
int error;
error = 0;
switch (cmd) {
case SIOCSIFFLAGS:
CAS_LOCK(sc);
if ((if_getflags(ifp) & IFF_UP) != 0) {
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0 &&
((if_getflags(ifp) ^ sc->sc_ifflags) &
(IFF_ALLMULTI | IFF_PROMISC)) != 0)
cas_setladrf(sc);
else
cas_init_locked(sc);
} else if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
cas_stop(ifp);
sc->sc_ifflags = if_getflags(ifp);
CAS_UNLOCK(sc);
break;
case SIOCSIFCAP:
CAS_LOCK(sc);
if ((sc->sc_flags & CAS_NO_CSUM) != 0) {
error = EINVAL;
CAS_UNLOCK(sc);
break;
}
if_setcapenable(ifp, ifr->ifr_reqcap);
if ((if_getcapenable(ifp) & IFCAP_TXCSUM) != 0)
if_sethwassist(ifp, CAS_CSUM_FEATURES);
else
if_sethwassist(ifp, 0);
CAS_UNLOCK(sc);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
CAS_LOCK(sc);
if ((if_getdrvflags(ifp) & IFF_DRV_RUNNING) != 0)
cas_setladrf(sc);
CAS_UNLOCK(sc);
break;
case SIOCSIFMTU:
if ((ifr->ifr_mtu < ETHERMIN) ||
(ifr->ifr_mtu > ETHERMTU_JUMBO))
error = EINVAL;
else
if_setmtu(ifp, ifr->ifr_mtu);
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii->mii_media, cmd);
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
return (error);
}
static u_int
cas_hash_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
{
uint32_t crc, *hash = arg;
crc = ether_crc32_le(LLADDR(sdl), ETHER_ADDR_LEN);
/* We just want the 8 most significant bits. */
crc >>= 24;
/* Set the corresponding bit in the filter. */
hash[crc >> 4] |= 1 << (15 - (crc & 15));
return (1);
}
static void
cas_setladrf(struct cas_softc *sc)
{
if_t ifp = sc->sc_ifp;
int i;
uint32_t hash[16];
uint32_t v;
CAS_LOCK_ASSERT(sc, MA_OWNED);
/*
* Turn off the RX MAC and the hash filter as required by the Sun
* Cassini programming restrictions.
*/
v = sc->sc_mac_rxcfg & ~(CAS_MAC_RX_CONF_HFILTER |
CAS_MAC_RX_CONF_EN);
CAS_WRITE_4(sc, CAS_MAC_RX_CONF, v);
CAS_BARRIER(sc, CAS_MAC_RX_CONF, 4,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
if (!cas_bitwait(sc, CAS_MAC_RX_CONF, CAS_MAC_RX_CONF_HFILTER |
CAS_MAC_RX_CONF_EN, 0))
device_printf(sc->sc_dev,
"cannot disable RX MAC or hash filter\n");
v &= ~(CAS_MAC_RX_CONF_PROMISC | CAS_MAC_RX_CONF_PGRP);
if ((if_getflags(ifp) & IFF_PROMISC) != 0) {
v |= CAS_MAC_RX_CONF_PROMISC;
goto chipit;
}
if ((if_getflags(ifp) & IFF_ALLMULTI) != 0) {
v |= CAS_MAC_RX_CONF_PGRP;
goto chipit;
}
/*
* Set up multicast address filter by passing all multicast
* addresses through a crc generator, and then using the high
* order 8 bits as an index into the 256 bit logical address
* filter. The high order 4 bits selects the word, while the
* other 4 bits select the bit within the word (where bit 0
* is the MSB).
*/
memset(hash, 0, sizeof(hash));
if_foreach_llmaddr(ifp, cas_hash_maddr, &hash);
v |= CAS_MAC_RX_CONF_HFILTER;
/* Now load the hash table into the chip (if we are using it). */
for (i = 0; i < 16; i++)
CAS_WRITE_4(sc,
CAS_MAC_HASH0 + i * (CAS_MAC_HASH1 - CAS_MAC_HASH0),
hash[i]);
chipit:
sc->sc_mac_rxcfg = v;
CAS_WRITE_4(sc, CAS_MAC_RX_CONF, v | CAS_MAC_RX_CONF_EN);
}
static int cas_pci_attach(device_t dev);
static int cas_pci_detach(device_t dev);
static int cas_pci_probe(device_t dev);
static int cas_pci_resume(device_t dev);
static int cas_pci_suspend(device_t dev);
static device_method_t cas_pci_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, cas_pci_probe),
DEVMETHOD(device_attach, cas_pci_attach),
DEVMETHOD(device_detach, cas_pci_detach),
DEVMETHOD(device_suspend, cas_pci_suspend),
DEVMETHOD(device_resume, cas_pci_resume),
/* Use the suspend handler here, it is all that is required. */
DEVMETHOD(device_shutdown, cas_pci_suspend),
/* MII interface */
DEVMETHOD(miibus_readreg, cas_mii_readreg),
DEVMETHOD(miibus_writereg, cas_mii_writereg),
DEVMETHOD(miibus_statchg, cas_mii_statchg),
DEVMETHOD_END
};
static driver_t cas_pci_driver = {
"cas",
cas_pci_methods,
sizeof(struct cas_softc)
};
static const struct cas_pci_dev {
uint32_t cpd_devid;
uint8_t cpd_revid;
int cpd_variant;
const char *cpd_desc;
} cas_pci_devlist[] = {
{ 0x0035100b, 0x0, CAS_SATURN, "NS DP83065 Saturn Gigabit Ethernet" },
{ 0xabba108e, 0x10, CAS_CASPLUS, "Sun Cassini+ Gigabit Ethernet" },
{ 0xabba108e, 0x0, CAS_CAS, "Sun Cassini Gigabit Ethernet" },
{ 0, 0, 0, NULL }
};
DRIVER_MODULE(cas, pci, cas_pci_driver, 0, 0);
MODULE_PNP_INFO("W32:vendor/device", pci, cas, cas_pci_devlist,
nitems(cas_pci_devlist) - 1);
DRIVER_MODULE(miibus, cas, miibus_driver, 0, 0);
MODULE_DEPEND(cas, pci, 1, 1, 1);
static int
cas_pci_probe(device_t dev)
{
int i;
for (i = 0; cas_pci_devlist[i].cpd_desc != NULL; i++) {
if (pci_get_devid(dev) == cas_pci_devlist[i].cpd_devid &&
pci_get_revid(dev) >= cas_pci_devlist[i].cpd_revid) {
device_set_desc(dev, cas_pci_devlist[i].cpd_desc);
return (BUS_PROBE_DEFAULT);
}
}
return (ENXIO);
}
static struct resource_spec cas_pci_res_spec[] = {
{ SYS_RES_IRQ, 0, RF_SHAREABLE | RF_ACTIVE }, /* CAS_RES_INTR */
{ SYS_RES_MEMORY, PCIR_BAR(0), RF_ACTIVE }, /* CAS_RES_MEM */
{ -1, 0 }
};
#define CAS_LOCAL_MAC_ADDRESS "local-mac-address"
#define CAS_PHY_INTERFACE "phy-interface"
#define CAS_PHY_TYPE "phy-type"
#define CAS_PHY_TYPE_PCS "pcs"
static int
cas_pci_attach(device_t dev)
{
char buf[sizeof(CAS_LOCAL_MAC_ADDRESS)];
struct cas_softc *sc;
int i;
#if !defined(__powerpc__)
u_char enaddr[4][ETHER_ADDR_LEN];
u_int j, k, lma, pcs[4], phy;
#endif
sc = device_get_softc(dev);
sc->sc_variant = CAS_UNKNOWN;
for (i = 0; cas_pci_devlist[i].cpd_desc != NULL; i++) {
if (pci_get_devid(dev) == cas_pci_devlist[i].cpd_devid &&
pci_get_revid(dev) >= cas_pci_devlist[i].cpd_revid) {
sc->sc_variant = cas_pci_devlist[i].cpd_variant;
break;
}
}
if (sc->sc_variant == CAS_UNKNOWN) {
device_printf(dev, "unknown adaptor\n");
return (ENXIO);
}
/* PCI configuration */
pci_write_config(dev, PCIR_COMMAND,
pci_read_config(dev, PCIR_COMMAND, 2) | PCIM_CMD_BUSMASTEREN |
PCIM_CMD_MWRICEN | PCIM_CMD_PERRESPEN | PCIM_CMD_SERRESPEN, 2);
sc->sc_dev = dev;
if (sc->sc_variant == CAS_CAS && pci_get_devid(dev) < 0x02)
/* Hardware checksumming may hang TX. */
sc->sc_flags |= CAS_NO_CSUM;
if (sc->sc_variant == CAS_CASPLUS || sc->sc_variant == CAS_SATURN)
sc->sc_flags |= CAS_REG_PLUS;
if (sc->sc_variant == CAS_CAS ||
(sc->sc_variant == CAS_CASPLUS && pci_get_revid(dev) < 0x11))
sc->sc_flags |= CAS_TABORT;
if (bootverbose)
device_printf(dev, "flags=0x%x\n", sc->sc_flags);
if (bus_alloc_resources(dev, cas_pci_res_spec, sc->sc_res)) {
device_printf(dev, "failed to allocate resources\n");
bus_release_resources(dev, cas_pci_res_spec, sc->sc_res);
return (ENXIO);
}
CAS_LOCK_INIT(sc, device_get_nameunit(dev));
#if defined(__powerpc__)
OF_getetheraddr(dev, sc->sc_enaddr);
if (OF_getprop(ofw_bus_get_node(dev), CAS_PHY_INTERFACE, buf,
sizeof(buf)) > 0 || OF_getprop(ofw_bus_get_node(dev),
CAS_PHY_TYPE, buf, sizeof(buf)) > 0) {
buf[sizeof(buf) - 1] = '\0';
if (strcmp(buf, CAS_PHY_TYPE_PCS) == 0)
sc->sc_flags |= CAS_SERDES;
}
#else
/*
* Dig out VPD (vital product data) and read the MAC address as well
* as the PHY type. The VPD resides in the PCI Expansion ROM (PCI
* FCode) and can't be accessed via the PCI capability pointer.
* SUNW,pci-ce and SUNW,pci-qge use the Enhanced VPD format described
* in the free US Patent 7149820.
*/
#define PCI_ROMHDR_SIZE 0x1c
#define PCI_ROMHDR_SIG 0x00
#define PCI_ROMHDR_SIG_MAGIC 0xaa55 /* little endian */
#define PCI_ROMHDR_PTR_DATA 0x18
#define PCI_ROM_SIZE 0x18
#define PCI_ROM_SIG 0x00
#define PCI_ROM_SIG_MAGIC 0x52494350 /* "PCIR", endian */
/* reversed */
#define PCI_ROM_VENDOR 0x04
#define PCI_ROM_DEVICE 0x06
#define PCI_ROM_PTR_VPD 0x08
#define PCI_VPDRES_BYTE0 0x00
#define PCI_VPDRES_ISLARGE(x) ((x) & 0x80)
#define PCI_VPDRES_LARGE_NAME(x) ((x) & 0x7f)
#define PCI_VPDRES_LARGE_LEN_LSB 0x01
#define PCI_VPDRES_LARGE_LEN_MSB 0x02
#define PCI_VPDRES_LARGE_SIZE 0x03
#define PCI_VPDRES_TYPE_ID_STRING 0x02 /* large */
#define PCI_VPDRES_TYPE_VPD 0x10 /* large */
#define PCI_VPD_KEY0 0x00
#define PCI_VPD_KEY1 0x01
#define PCI_VPD_LEN 0x02
#define PCI_VPD_SIZE 0x03
#define CAS_ROM_READ_1(sc, offs) \
CAS_READ_1((sc), CAS_PCI_ROM_OFFSET + (offs))
#define CAS_ROM_READ_2(sc, offs) \
CAS_READ_2((sc), CAS_PCI_ROM_OFFSET + (offs))
#define CAS_ROM_READ_4(sc, offs) \
CAS_READ_4((sc), CAS_PCI_ROM_OFFSET + (offs))
lma = phy = 0;
memset(enaddr, 0, sizeof(enaddr));
memset(pcs, 0, sizeof(pcs));
/* Enable PCI Expansion ROM access. */
CAS_WRITE_4(sc, CAS_BIM_LDEV_OEN,
CAS_BIM_LDEV_OEN_PAD | CAS_BIM_LDEV_OEN_PROM);
/* Read PCI Expansion ROM header. */
if (CAS_ROM_READ_2(sc, PCI_ROMHDR_SIG) != PCI_ROMHDR_SIG_MAGIC ||
(i = CAS_ROM_READ_2(sc, PCI_ROMHDR_PTR_DATA)) <
PCI_ROMHDR_SIZE) {
device_printf(dev, "unexpected PCI Expansion ROM header\n");
goto fail_prom;
}
/* Read PCI Expansion ROM data. */
if (CAS_ROM_READ_4(sc, i + PCI_ROM_SIG) != PCI_ROM_SIG_MAGIC ||
CAS_ROM_READ_2(sc, i + PCI_ROM_VENDOR) != pci_get_vendor(dev) ||
CAS_ROM_READ_2(sc, i + PCI_ROM_DEVICE) != pci_get_device(dev) ||
(j = CAS_ROM_READ_2(sc, i + PCI_ROM_PTR_VPD)) <
i + PCI_ROM_SIZE) {
device_printf(dev, "unexpected PCI Expansion ROM data\n");
goto fail_prom;
}
/* Read PCI VPD. */
next:
if (PCI_VPDRES_ISLARGE(CAS_ROM_READ_1(sc,
j + PCI_VPDRES_BYTE0)) == 0) {
device_printf(dev, "no large PCI VPD\n");
goto fail_prom;
}
i = (CAS_ROM_READ_1(sc, j + PCI_VPDRES_LARGE_LEN_MSB) << 8) |
CAS_ROM_READ_1(sc, j + PCI_VPDRES_LARGE_LEN_LSB);
switch (PCI_VPDRES_LARGE_NAME(CAS_ROM_READ_1(sc,
j + PCI_VPDRES_BYTE0))) {
case PCI_VPDRES_TYPE_ID_STRING:
/* Skip identifier string. */
j += PCI_VPDRES_LARGE_SIZE + i;
goto next;
case PCI_VPDRES_TYPE_VPD:
for (j += PCI_VPDRES_LARGE_SIZE; i > 0;
i -= PCI_VPD_SIZE + CAS_ROM_READ_1(sc, j + PCI_VPD_LEN),
j += PCI_VPD_SIZE + CAS_ROM_READ_1(sc, j + PCI_VPD_LEN)) {
if (CAS_ROM_READ_1(sc, j + PCI_VPD_KEY0) != 'Z')
/* no Enhanced VPD */
continue;
if (CAS_ROM_READ_1(sc, j + PCI_VPD_SIZE) != 'I')
/* no instance property */
continue;
if (CAS_ROM_READ_1(sc, j + PCI_VPD_SIZE + 3) == 'B') {
/* byte array */
if (CAS_ROM_READ_1(sc,
j + PCI_VPD_SIZE + 4) != ETHER_ADDR_LEN)
continue;
bus_read_region_1(sc->sc_res[CAS_RES_MEM],
CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE + 5,
buf, sizeof(buf));
buf[sizeof(buf) - 1] = '\0';
if (strcmp(buf, CAS_LOCAL_MAC_ADDRESS) != 0)
continue;
bus_read_region_1(sc->sc_res[CAS_RES_MEM],
CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE +
5 + sizeof(CAS_LOCAL_MAC_ADDRESS),
enaddr[lma], sizeof(enaddr[lma]));
lma++;
if (lma == 4 && phy == 4)
break;
} else if (CAS_ROM_READ_1(sc, j + PCI_VPD_SIZE + 3) ==
'S') {
/* string */
if (CAS_ROM_READ_1(sc,
j + PCI_VPD_SIZE + 4) !=
sizeof(CAS_PHY_TYPE_PCS))
continue;
bus_read_region_1(sc->sc_res[CAS_RES_MEM],
CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE + 5,
buf, sizeof(buf));
buf[sizeof(buf) - 1] = '\0';
if (strcmp(buf, CAS_PHY_INTERFACE) == 0)
k = sizeof(CAS_PHY_INTERFACE);
else if (strcmp(buf, CAS_PHY_TYPE) == 0)
k = sizeof(CAS_PHY_TYPE);
else
continue;
bus_read_region_1(sc->sc_res[CAS_RES_MEM],
CAS_PCI_ROM_OFFSET + j + PCI_VPD_SIZE +
5 + k, buf, sizeof(buf));
buf[sizeof(buf) - 1] = '\0';
if (strcmp(buf, CAS_PHY_TYPE_PCS) == 0)
pcs[phy] = 1;
phy++;
if (lma == 4 && phy == 4)
break;
}
}
break;
default:
device_printf(dev, "unexpected PCI VPD\n");
goto fail_prom;
}
fail_prom:
CAS_WRITE_4(sc, CAS_BIM_LDEV_OEN, 0);
if (lma == 0) {
device_printf(dev, "could not determine Ethernet address\n");
goto fail;
}
i = 0;
if (lma > 1 && pci_get_slot(dev) < nitems(enaddr))
i = pci_get_slot(dev);
memcpy(sc->sc_enaddr, enaddr[i], ETHER_ADDR_LEN);
if (phy == 0) {
device_printf(dev, "could not determine PHY type\n");
goto fail;
}
i = 0;
if (phy > 1 && pci_get_slot(dev) < nitems(pcs))
i = pci_get_slot(dev);
if (pcs[i] != 0)
sc->sc_flags |= CAS_SERDES;
#endif
if (cas_attach(sc) != 0) {
device_printf(dev, "could not be attached\n");
goto fail;
}
if (bus_setup_intr(dev, sc->sc_res[CAS_RES_INTR], INTR_TYPE_NET |
INTR_MPSAFE, cas_intr, NULL, sc, &sc->sc_ih) != 0) {
device_printf(dev, "failed to set up interrupt\n");
cas_detach(sc);
goto fail;
}
return (0);
fail:
CAS_LOCK_DESTROY(sc);
bus_release_resources(dev, cas_pci_res_spec, sc->sc_res);
return (ENXIO);
}
static int
cas_pci_detach(device_t dev)
{
struct cas_softc *sc;
sc = device_get_softc(dev);
bus_teardown_intr(dev, sc->sc_res[CAS_RES_INTR], sc->sc_ih);
cas_detach(sc);
CAS_LOCK_DESTROY(sc);
bus_release_resources(dev, cas_pci_res_spec, sc->sc_res);
return (0);
}
static int
cas_pci_suspend(device_t dev)
{
cas_suspend(device_get_softc(dev));
return (0);
}
static int
cas_pci_resume(device_t dev)
{
cas_resume(device_get_softc(dev));
return (0);
}