freebsd-dev/sys/dev/hid/hkbd.c
Warner Losh 685dc743dc sys: Remove $FreeBSD$: one-line .c pattern
Remove /^[\s*]*__FBSDID\("\$FreeBSD\$"\);?\s*\n/
2023-08-16 11:54:36 -06:00

2029 lines
49 KiB
C

#include <sys/cdefs.h>
/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Lennart Augustsson (lennart@augustsson.net) at
* Carlstedt Research & Technology.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
/*
* HID spec: http://www.usb.org/developers/devclass_docs/HID1_11.pdf
*/
#include "opt_hid.h"
#include "opt_kbd.h"
#include "opt_hkbd.h"
#include "opt_evdev.h"
#include <sys/stdint.h>
#include <sys/stddef.h>
#include <sys/param.h>
#include <sys/queue.h>
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/bus.h>
#include <sys/module.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/condvar.h>
#include <sys/sysctl.h>
#include <sys/sx.h>
#include <sys/unistd.h>
#include <sys/callout.h>
#include <sys/malloc.h>
#include <sys/priv.h>
#include <sys/proc.h>
#include <sys/kdb.h>
#include <sys/epoch.h>
#include <sys/taskqueue.h>
#include <sys/bitstring.h>
#include <machine/atomic.h>
#define HID_DEBUG_VAR hkbd_debug
#include <dev/hid/hid.h>
#include <dev/hid/hidbus.h>
#include <dev/hid/hidquirk.h>
#include <dev/hid/hidrdesc.h>
#ifdef EVDEV_SUPPORT
#include <dev/evdev/input.h>
#include <dev/evdev/evdev.h>
#endif
#include <sys/ioccom.h>
#include <sys/filio.h>
#include <sys/kbio.h>
#include <dev/kbd/kbdreg.h>
/* the initial key map, accent map and fkey strings */
#if defined(HKBD_DFLT_KEYMAP) && !defined(KLD_MODULE)
#define KBD_DFLT_KEYMAP
#include "ukbdmap.h"
#endif
/* the following file must be included after "ukbdmap.h" */
#include <dev/kbd/kbdtables.h>
#ifdef HID_DEBUG
static int hkbd_debug = 0;
static int hkbd_no_leds = 0;
static SYSCTL_NODE(_hw_hid, OID_AUTO, hkbd, CTLFLAG_RW, 0, "USB keyboard");
SYSCTL_INT(_hw_hid_hkbd, OID_AUTO, debug, CTLFLAG_RWTUN,
&hkbd_debug, 0, "Debug level");
SYSCTL_INT(_hw_hid_hkbd, OID_AUTO, no_leds, CTLFLAG_RWTUN,
&hkbd_no_leds, 0, "Disables setting of keyboard leds");
#endif
#define INPUT_EPOCH global_epoch_preempt
#define HKBD_EMULATE_ATSCANCODE 1
#define HKBD_DRIVER_NAME "hkbd"
#define HKBD_NKEYCODE 256 /* units */
#define HKBD_IN_BUF_SIZE (4 * HKBD_NKEYCODE) /* scancodes */
#define HKBD_IN_BUF_FULL ((HKBD_IN_BUF_SIZE / 2) - 1) /* scancodes */
#define HKBD_NFKEY (sizeof(fkey_tab)/sizeof(fkey_tab[0])) /* units */
#define HKBD_BUFFER_SIZE 64 /* bytes */
#define HKBD_KEY_PRESSED(map, key) ({ \
CTASSERT((key) >= 0 && (key) < HKBD_NKEYCODE); \
bit_test(map, key); \
})
#define MOD_EJECT 0x01
#define MOD_FN 0x02
#define MOD_MIN 0xe0
#define MOD_MAX 0xe7
struct hkbd_softc {
device_t sc_dev;
keyboard_t sc_kbd;
keymap_t sc_keymap;
accentmap_t sc_accmap;
fkeytab_t sc_fkeymap[HKBD_NFKEY];
bitstr_t bit_decl(sc_loc_key_valid, HKBD_NKEYCODE);
struct hid_location sc_loc_apple_eject;
struct hid_location sc_loc_apple_fn;
struct hid_location sc_loc_key[HKBD_NKEYCODE];
struct hid_location sc_loc_numlock;
struct hid_location sc_loc_capslock;
struct hid_location sc_loc_scrolllock;
struct mtx sc_mtx;
struct task sc_task;
struct callout sc_callout;
/* All reported keycodes */
bitstr_t bit_decl(sc_ndata, HKBD_NKEYCODE);
bitstr_t bit_decl(sc_odata, HKBD_NKEYCODE);
/* Keycodes reported in array fields only */
bitstr_t bit_decl(sc_ndata0, HKBD_NKEYCODE);
bitstr_t bit_decl(sc_odata0, HKBD_NKEYCODE);
struct thread *sc_poll_thread;
#ifdef EVDEV_SUPPORT
struct evdev_dev *sc_evdev;
#endif
sbintime_t sc_co_basetime;
int sc_delay;
uint32_t sc_repeat_time;
uint32_t sc_input[HKBD_IN_BUF_SIZE]; /* input buffer */
uint32_t sc_time_ms;
uint32_t sc_composed_char; /* composed char code, if non-zero */
#ifdef HKBD_EMULATE_ATSCANCODE
uint32_t sc_buffered_char[2];
#endif
uint32_t sc_flags; /* flags */
#define HKBD_FLAG_COMPOSE 0x00000001
#define HKBD_FLAG_POLLING 0x00000002
#define HKBD_FLAG_ATTACHED 0x00000010
#define HKBD_FLAG_GONE 0x00000020
#define HKBD_FLAG_HID_MASK 0x003fffc0
#define HKBD_FLAG_APPLE_EJECT 0x00000040
#define HKBD_FLAG_APPLE_FN 0x00000080
#define HKBD_FLAG_APPLE_SWAP 0x00000100
#define HKBD_FLAG_NUMLOCK 0x00080000
#define HKBD_FLAG_CAPSLOCK 0x00100000
#define HKBD_FLAG_SCROLLLOCK 0x00200000
int sc_mode; /* input mode (K_XLATE,K_RAW,K_CODE) */
int sc_state; /* shift/lock key state */
int sc_accents; /* accent key index (> 0) */
int sc_polling; /* polling recursion count */
int sc_led_size;
int sc_kbd_size;
uint32_t sc_inputhead;
uint32_t sc_inputtail;
uint8_t sc_iface_index;
uint8_t sc_iface_no;
uint8_t sc_id_apple_eject;
uint8_t sc_id_apple_fn;
uint8_t sc_id_loc_key[HKBD_NKEYCODE];
uint8_t sc_id_leds;
uint8_t sc_kbd_id;
uint8_t sc_repeat_key;
uint8_t sc_buffer[HKBD_BUFFER_SIZE];
};
#define KEY_NONE 0x00
#define KEY_ERROR 0x01
#define KEY_PRESS 0
#define KEY_RELEASE 0x400
#define KEY_INDEX(c) ((c) & 0xFF)
#define SCAN_PRESS 0
#define SCAN_RELEASE 0x80
#define SCAN_PREFIX_E0 0x100
#define SCAN_PREFIX_E1 0x200
#define SCAN_PREFIX_CTL 0x400
#define SCAN_PREFIX_SHIFT 0x800
#define SCAN_PREFIX (SCAN_PREFIX_E0 | SCAN_PREFIX_E1 | \
SCAN_PREFIX_CTL | SCAN_PREFIX_SHIFT)
#define SCAN_CHAR(c) ((c) & 0x7f)
#define HKBD_LOCK(sc) do { \
if (!HID_IN_POLLING_MODE()) \
mtx_lock(&(sc)->sc_mtx); \
} while (0)
#define HKBD_UNLOCK(sc) do { \
if (!HID_IN_POLLING_MODE()) \
mtx_unlock(&(sc)->sc_mtx); \
} while (0)
#define HKBD_LOCK_ASSERT(sc) do { \
if (!HID_IN_POLLING_MODE()) \
mtx_assert(&(sc)->sc_mtx, MA_OWNED); \
} while (0)
#define SYSCONS_LOCK() do { \
if (!HID_IN_POLLING_MODE()) \
mtx_lock(&Giant); \
} while (0)
#define SYSCONS_UNLOCK() do { \
if (!HID_IN_POLLING_MODE()) \
mtx_unlock(&Giant); \
} while (0)
#define SYSCONS_LOCK_ASSERT() do { \
if (!HID_IN_POLLING_MODE()) \
mtx_assert(&Giant, MA_OWNED); \
} while (0)
#define NN 0 /* no translation */
/*
* Translate USB keycodes to AT keyboard scancodes.
*/
/*
* FIXME: Mac USB keyboard generates:
* 0x53: keypad NumLock/Clear
* 0x66: Power
* 0x67: keypad =
* 0x68: F13
* 0x69: F14
* 0x6a: F15
*
* USB Apple Keyboard JIS generates:
* 0x90: Kana
* 0x91: Eisu
*/
static const uint8_t hkbd_trtab[256] = {
0, 0, 0, 0, 30, 48, 46, 32, /* 00 - 07 */
18, 33, 34, 35, 23, 36, 37, 38, /* 08 - 0F */
50, 49, 24, 25, 16, 19, 31, 20, /* 10 - 17 */
22, 47, 17, 45, 21, 44, 2, 3, /* 18 - 1F */
4, 5, 6, 7, 8, 9, 10, 11, /* 20 - 27 */
28, 1, 14, 15, 57, 12, 13, 26, /* 28 - 2F */
27, 43, 43, 39, 40, 41, 51, 52, /* 30 - 37 */
53, 58, 59, 60, 61, 62, 63, 64, /* 38 - 3F */
65, 66, 67, 68, 87, 88, 92, 70, /* 40 - 47 */
104, 102, 94, 96, 103, 99, 101, 98, /* 48 - 4F */
97, 100, 95, 69, 91, 55, 74, 78,/* 50 - 57 */
89, 79, 80, 81, 75, 76, 77, 71, /* 58 - 5F */
72, 73, 82, 83, 86, 107, 122, NN, /* 60 - 67 */
NN, NN, NN, NN, NN, NN, NN, NN, /* 68 - 6F */
NN, NN, NN, NN, 115, 108, 111, 113, /* 70 - 77 */
109, 110, 112, 118, 114, 116, 117, 119, /* 78 - 7F */
121, 120, NN, NN, NN, NN, NN, 123, /* 80 - 87 */
124, 125, 126, 127, 128, NN, NN, NN, /* 88 - 8F */
129, 130, NN, NN, NN, NN, NN, NN, /* 90 - 97 */
NN, NN, NN, NN, NN, NN, NN, NN, /* 98 - 9F */
NN, NN, NN, NN, NN, NN, NN, NN, /* A0 - A7 */
NN, NN, NN, NN, NN, NN, NN, NN, /* A8 - AF */
NN, NN, NN, NN, NN, NN, NN, NN, /* B0 - B7 */
NN, NN, NN, NN, NN, NN, NN, NN, /* B8 - BF */
NN, NN, NN, NN, NN, NN, NN, NN, /* C0 - C7 */
NN, NN, NN, NN, NN, NN, NN, NN, /* C8 - CF */
NN, NN, NN, NN, NN, NN, NN, NN, /* D0 - D7 */
NN, NN, NN, NN, NN, NN, NN, NN, /* D8 - DF */
29, 42, 56, 105, 90, 54, 93, 106, /* E0 - E7 */
NN, NN, NN, NN, NN, NN, NN, NN, /* E8 - EF */
NN, NN, NN, NN, NN, NN, NN, NN, /* F0 - F7 */
NN, NN, NN, NN, NN, NN, NN, NN, /* F8 - FF */
};
static const uint8_t hkbd_boot_desc[] = { HID_KBD_BOOTPROTO_DESCR() };
/* prototypes */
static void hkbd_timeout(void *);
static int hkbd_set_leds(struct hkbd_softc *, uint8_t);
static int hkbd_set_typematic(keyboard_t *, int);
#ifdef HKBD_EMULATE_ATSCANCODE
static uint32_t hkbd_atkeycode(int, const bitstr_t *);
static int hkbd_key2scan(struct hkbd_softc *, int, const bitstr_t *, int);
#endif
static uint32_t hkbd_read_char(keyboard_t *, int);
static void hkbd_clear_state(keyboard_t *);
static int hkbd_ioctl(keyboard_t *, u_long, caddr_t);
static int hkbd_enable(keyboard_t *);
static int hkbd_disable(keyboard_t *);
static void hkbd_interrupt(struct hkbd_softc *);
static task_fn_t hkbd_event_keyinput;
static device_probe_t hkbd_probe;
static device_attach_t hkbd_attach;
static device_detach_t hkbd_detach;
static device_resume_t hkbd_resume;
#ifdef EVDEV_SUPPORT
static evdev_event_t hkbd_ev_event;
static const struct evdev_methods hkbd_evdev_methods = {
.ev_event = hkbd_ev_event,
};
#endif
static bool
hkbd_any_key_pressed(struct hkbd_softc *sc)
{
int result;
bit_ffs(sc->sc_odata, HKBD_NKEYCODE, &result);
return (result != -1);
}
static bool
hkbd_any_key_valid(struct hkbd_softc *sc)
{
int result;
bit_ffs(sc->sc_loc_key_valid, HKBD_NKEYCODE, &result);
return (result != -1);
}
static bool
hkbd_is_modifier_key(uint32_t key)
{
return (key >= MOD_MIN && key <= MOD_MAX);
}
static void
hkbd_start_timer(struct hkbd_softc *sc)
{
sbintime_t delay, now, prec;
now = sbinuptime();
/* check if initial delay passed and fallback to key repeat delay */
if (sc->sc_delay == 0)
sc->sc_delay = sc->sc_kbd.kb_delay2;
/* compute timeout */
delay = SBT_1MS * sc->sc_delay;
sc->sc_co_basetime += delay;
/* check if we are running behind */
if (sc->sc_co_basetime < now)
sc->sc_co_basetime = now;
/* This is rarely called, so prefer precision to efficiency. */
prec = qmin(delay >> 7, SBT_1MS * 10);
if (!HID_IN_POLLING_MODE())
callout_reset_sbt(&sc->sc_callout, sc->sc_co_basetime, prec,
hkbd_timeout, sc, C_ABSOLUTE);
}
static void
hkbd_put_key(struct hkbd_softc *sc, uint32_t key)
{
uint32_t tail;
HKBD_LOCK_ASSERT(sc);
DPRINTF("0x%02x (%d) %s\n", key, key,
(key & KEY_RELEASE) ? "released" : "pressed");
#ifdef EVDEV_SUPPORT
if (evdev_rcpt_mask & EVDEV_RCPT_HW_KBD && sc->sc_evdev != NULL)
evdev_push_event(sc->sc_evdev, EV_KEY,
evdev_hid2key(KEY_INDEX(key)), !(key & KEY_RELEASE));
if (sc->sc_evdev != NULL && evdev_is_grabbed(sc->sc_evdev))
return;
#endif
tail = (sc->sc_inputtail + 1) % HKBD_IN_BUF_SIZE;
if (tail != atomic_load_acq_32(&sc->sc_inputhead)) {
sc->sc_input[sc->sc_inputtail] = key;
atomic_store_rel_32(&sc->sc_inputtail, tail);
} else {
DPRINTF("input buffer is full\n");
}
}
static void
hkbd_do_poll(struct hkbd_softc *sc, uint8_t wait)
{
SYSCONS_LOCK_ASSERT();
KASSERT((sc->sc_flags & HKBD_FLAG_POLLING) != 0,
("hkbd_do_poll called when not polling\n"));
DPRINTFN(2, "polling\n");
if (!HID_IN_POLLING_MODE()) {
/*
* In this context the kernel is polling for input,
* but the USB subsystem works in normal interrupt-driven
* mode, so we just wait on the USB threads to do the job.
* Note that we currently hold the Giant, but it's also used
* as the transfer mtx, so we must release it while waiting.
*/
while (sc->sc_inputhead ==
atomic_load_acq_32(&sc->sc_inputtail)) {
/*
* Give USB threads a chance to run. Note that
* kern_yield performs DROP_GIANT + PICKUP_GIANT.
*/
kern_yield(PRI_UNCHANGED);
if (!wait)
break;
}
return;
}
while (sc->sc_inputhead == sc->sc_inputtail) {
hid_intr_poll(sc->sc_dev);
/* Delay-optimised support for repetition of keys */
if (hkbd_any_key_pressed(sc)) {
/* a key is pressed - need timekeeping */
DELAY(1000);
/* 1 millisecond has passed */
sc->sc_time_ms += 1;
}
hkbd_interrupt(sc);
if (!wait)
break;
}
}
static int32_t
hkbd_get_key(struct hkbd_softc *sc, uint8_t wait)
{
uint32_t head;
int32_t c;
SYSCONS_LOCK_ASSERT();
KASSERT(!HID_IN_POLLING_MODE() ||
(sc->sc_flags & HKBD_FLAG_POLLING) != 0,
("not polling in kdb or panic\n"));
if (sc->sc_flags & HKBD_FLAG_POLLING)
hkbd_do_poll(sc, wait);
head = sc->sc_inputhead;
if (head == atomic_load_acq_32(&sc->sc_inputtail)) {
c = -1;
} else {
c = sc->sc_input[head];
head = (head + 1) % HKBD_IN_BUF_SIZE;
atomic_store_rel_32(&sc->sc_inputhead, head);
}
return (c);
}
static void
hkbd_interrupt(struct hkbd_softc *sc)
{
const uint32_t now = sc->sc_time_ms;
unsigned key;
HKBD_LOCK_ASSERT(sc);
/*
* Check for key changes, the order is:
* 1. Regular keys up
* 2. Modifier keys up
* 3. Modifier keys down
* 4. Regular keys down
*
* This allows devices which send events changing the state of
* both a modifier key and a regular key, to be correctly
* translated. */
bit_foreach(sc->sc_odata, HKBD_NKEYCODE, key) {
if (hkbd_is_modifier_key(key) || bit_test(sc->sc_ndata, key))
continue;
hkbd_put_key(sc, key | KEY_RELEASE);
/* clear repeating key, if any */
if (sc->sc_repeat_key == key)
sc->sc_repeat_key = 0;
}
bit_foreach_at(sc->sc_odata, MOD_MIN, MOD_MAX + 1, key)
if (!bit_test(sc->sc_ndata, key))
hkbd_put_key(sc, key | KEY_RELEASE);
bit_foreach_at(sc->sc_ndata, MOD_MIN, MOD_MAX + 1, key)
if (!bit_test(sc->sc_odata, key))
hkbd_put_key(sc, key | KEY_PRESS);
bit_foreach(sc->sc_ndata, HKBD_NKEYCODE, key) {
if (hkbd_is_modifier_key(key) || bit_test(sc->sc_odata, key))
continue;
hkbd_put_key(sc, key | KEY_PRESS);
sc->sc_co_basetime = sbinuptime();
sc->sc_delay = sc->sc_kbd.kb_delay1;
hkbd_start_timer(sc);
/* set repeat time for last key */
sc->sc_repeat_time = now + sc->sc_kbd.kb_delay1;
sc->sc_repeat_key = key;
}
/* synchronize old data with new data */
memcpy(sc->sc_odata0, sc->sc_ndata0, bitstr_size(HKBD_NKEYCODE));
memcpy(sc->sc_odata, sc->sc_ndata, bitstr_size(HKBD_NKEYCODE));
/* check if last key is still pressed */
if (sc->sc_repeat_key != 0) {
const int32_t dtime = (sc->sc_repeat_time - now);
/* check if time has elapsed */
if (dtime <= 0) {
hkbd_put_key(sc, sc->sc_repeat_key | KEY_PRESS);
sc->sc_repeat_time = now + sc->sc_kbd.kb_delay2;
}
}
#ifdef EVDEV_SUPPORT
if (evdev_rcpt_mask & EVDEV_RCPT_HW_KBD && sc->sc_evdev != NULL)
evdev_sync(sc->sc_evdev);
if (sc->sc_evdev != NULL && evdev_is_grabbed(sc->sc_evdev))
return;
#endif
/* wakeup keyboard system */
if (!HID_IN_POLLING_MODE())
taskqueue_enqueue(taskqueue_swi_giant, &sc->sc_task);
}
static void
hkbd_event_keyinput(void *context, int pending)
{
struct hkbd_softc *sc = context;
int c;
SYSCONS_LOCK_ASSERT();
if ((sc->sc_flags & HKBD_FLAG_POLLING) != 0)
return;
if (sc->sc_inputhead == atomic_load_acq_32(&sc->sc_inputtail))
return;
if (KBD_IS_ACTIVE(&sc->sc_kbd) &&
KBD_IS_BUSY(&sc->sc_kbd)) {
/* let the callback function process the input */
(sc->sc_kbd.kb_callback.kc_func) (&sc->sc_kbd, KBDIO_KEYINPUT,
sc->sc_kbd.kb_callback.kc_arg);
} else {
/* read and discard the input, no one is waiting for it */
do {
c = hkbd_read_char(&sc->sc_kbd, 0);
} while (c != NOKEY);
}
}
static void
hkbd_timeout(void *arg)
{
struct hkbd_softc *sc = arg;
#ifdef EVDEV_SUPPORT
struct epoch_tracker et;
#endif
HKBD_LOCK_ASSERT(sc);
sc->sc_time_ms += sc->sc_delay;
sc->sc_delay = 0;
#ifdef EVDEV_SUPPORT
epoch_enter_preempt(INPUT_EPOCH, &et);
#endif
hkbd_interrupt(sc);
#ifdef EVDEV_SUPPORT
epoch_exit_preempt(INPUT_EPOCH, &et);
#endif
/* Make sure any leftover key events gets read out */
taskqueue_enqueue(taskqueue_swi_giant, &sc->sc_task);
if (hkbd_any_key_pressed(sc) ||
atomic_load_acq_32(&sc->sc_inputhead) != sc->sc_inputtail) {
hkbd_start_timer(sc);
}
}
static uint32_t
hkbd_apple_fn(uint32_t keycode)
{
switch (keycode) {
case 0x28: return 0x49; /* RETURN -> INSERT */
case 0x2a: return 0x4c; /* BACKSPACE -> DEL */
case 0x50: return 0x4a; /* LEFT ARROW -> HOME */
case 0x4f: return 0x4d; /* RIGHT ARROW -> END */
case 0x52: return 0x4b; /* UP ARROW -> PGUP */
case 0x51: return 0x4e; /* DOWN ARROW -> PGDN */
default: return keycode;
}
}
static uint32_t
hkbd_apple_swap(uint32_t keycode)
{
switch (keycode) {
case 0x35: return 0x64;
case 0x64: return 0x35;
default: return keycode;
}
}
static void
hkbd_intr_callback(void *context, void *data, hid_size_t len)
{
struct hkbd_softc *sc = context;
uint8_t *buf = data;
uint32_t i;
uint8_t id = 0;
uint8_t modifiers;
HKBD_LOCK_ASSERT(sc);
DPRINTF("actlen=%d bytes\n", len);
if (len == 0) {
DPRINTF("zero length data\n");
return;
}
if (sc->sc_kbd_id != 0) {
/* check and remove HID ID byte */
id = buf[0];
buf++;
len--;
if (len == 0) {
DPRINTF("zero length data\n");
return;
}
}
/* clear temporary storage */
if (bit_test(sc->sc_loc_key_valid, 0) && id == sc->sc_id_loc_key[0]) {
bit_foreach(sc->sc_ndata0, HKBD_NKEYCODE, i)
bit_clear(sc->sc_ndata, i);
memset(&sc->sc_ndata0, 0, bitstr_size(HKBD_NKEYCODE));
}
bit_foreach(sc->sc_ndata, HKBD_NKEYCODE, i)
if (id == sc->sc_id_loc_key[i])
bit_clear(sc->sc_ndata, i);
/* clear modifiers */
modifiers = 0;
/* scan through HID data */
if ((sc->sc_flags & HKBD_FLAG_APPLE_EJECT) &&
(id == sc->sc_id_apple_eject)) {
if (hid_get_data(buf, len, &sc->sc_loc_apple_eject))
modifiers |= MOD_EJECT;
}
if ((sc->sc_flags & HKBD_FLAG_APPLE_FN) &&
(id == sc->sc_id_apple_fn)) {
if (hid_get_data(buf, len, &sc->sc_loc_apple_fn))
modifiers |= MOD_FN;
}
bit_foreach(sc->sc_loc_key_valid, HKBD_NKEYCODE, i) {
if (id != sc->sc_id_loc_key[i]) {
continue; /* invalid HID ID */
} else if (i == 0) {
struct hid_location tmp_loc = sc->sc_loc_key[0];
/* range check array size */
if (tmp_loc.count > HKBD_NKEYCODE)
tmp_loc.count = HKBD_NKEYCODE;
while (tmp_loc.count--) {
uint32_t key =
hid_get_udata(buf, len, &tmp_loc);
/* advance to next location */
tmp_loc.pos += tmp_loc.size;
if (key == KEY_ERROR) {
DPRINTF("KEY_ERROR\n");
memcpy(sc->sc_ndata0, sc->sc_odata0,
bitstr_size(HKBD_NKEYCODE));
memcpy(sc->sc_ndata, sc->sc_odata,
bitstr_size(HKBD_NKEYCODE));
return; /* ignore */
}
if (modifiers & MOD_FN)
key = hkbd_apple_fn(key);
if (sc->sc_flags & HKBD_FLAG_APPLE_SWAP)
key = hkbd_apple_swap(key);
if (key == KEY_NONE || key >= HKBD_NKEYCODE)
continue;
/* set key in bitmap */
bit_set(sc->sc_ndata, key);
bit_set(sc->sc_ndata0, key);
}
} else if (hid_get_data(buf, len, &sc->sc_loc_key[i])) {
uint32_t key = i;
if (modifiers & MOD_FN)
key = hkbd_apple_fn(key);
if (sc->sc_flags & HKBD_FLAG_APPLE_SWAP)
key = hkbd_apple_swap(key);
if (key == KEY_NONE || key == KEY_ERROR || key >= HKBD_NKEYCODE)
continue;
/* set key in bitmap */
bit_set(sc->sc_ndata, key);
}
}
#ifdef HID_DEBUG
DPRINTF("modifiers = 0x%04x\n", modifiers);
bit_foreach(sc->sc_ndata, HKBD_NKEYCODE, i)
DPRINTF("Key 0x%02x pressed\n", i);
#endif
hkbd_interrupt(sc);
}
/* A match on these entries will load ukbd */
static const struct hid_device_id __used hkbd_devs[] = {
{ HID_TLC(HUP_GENERIC_DESKTOP, HUG_KEYBOARD) },
};
static int
hkbd_probe(device_t dev)
{
keyboard_switch_t *sw = kbd_get_switch(HKBD_DRIVER_NAME);
int error;
DPRINTFN(11, "\n");
if (sw == NULL) {
return (ENXIO);
}
error = HIDBUS_LOOKUP_DRIVER_INFO(dev, hkbd_devs);
if (error != 0)
return (error);
hidbus_set_desc(dev, "Keyboard");
return (BUS_PROBE_DEFAULT);
}
static void
hkbd_parse_hid(struct hkbd_softc *sc, const uint8_t *ptr, uint32_t len,
uint8_t tlc_index)
{
uint32_t flags;
uint32_t key;
uint8_t id;
/* reset detected bits */
sc->sc_flags &= ~HKBD_FLAG_HID_MASK;
/* reset detected keys */
memset(sc->sc_loc_key_valid, 0, bitstr_size(HKBD_NKEYCODE));
/* check if there is an ID byte */
sc->sc_kbd_size = hid_report_size_max(ptr, len,
hid_input, &sc->sc_kbd_id);
/* investigate if this is an Apple Keyboard */
if (hidbus_locate(ptr, len,
HID_USAGE2(HUP_CONSUMER, HUG_APPLE_EJECT),
hid_input, tlc_index, 0, &sc->sc_loc_apple_eject, &flags,
&sc->sc_id_apple_eject, NULL)) {
if (flags & HIO_VARIABLE)
sc->sc_flags |= HKBD_FLAG_APPLE_EJECT |
HKBD_FLAG_APPLE_SWAP;
DPRINTFN(1, "Found Apple eject-key\n");
}
if (hidbus_locate(ptr, len,
HID_USAGE2(0xFFFF, 0x0003),
hid_input, tlc_index, 0, &sc->sc_loc_apple_fn, &flags,
&sc->sc_id_apple_fn, NULL)) {
if (flags & HIO_VARIABLE)
sc->sc_flags |= HKBD_FLAG_APPLE_FN;
DPRINTFN(1, "Found Apple FN-key\n");
}
/* figure out event buffer */
if (hidbus_locate(ptr, len,
HID_USAGE2(HUP_KEYBOARD, 0x00),
hid_input, tlc_index, 0, &sc->sc_loc_key[0], &flags,
&sc->sc_id_loc_key[0], NULL)) {
if (flags & HIO_VARIABLE) {
DPRINTFN(1, "Ignoring keyboard event control\n");
} else {
bit_set(sc->sc_loc_key_valid, 0);
DPRINTFN(1, "Found keyboard event array\n");
}
}
/* figure out the keys */
for (key = 1; key != HKBD_NKEYCODE; key++) {
if (hidbus_locate(ptr, len,
HID_USAGE2(HUP_KEYBOARD, key),
hid_input, tlc_index, 0, &sc->sc_loc_key[key], &flags,
&sc->sc_id_loc_key[key], NULL)) {
if (flags & HIO_VARIABLE) {
bit_set(sc->sc_loc_key_valid, key);
DPRINTFN(1, "Found key 0x%02x\n", key);
}
}
}
/* figure out leds on keyboard */
if (hidbus_locate(ptr, len,
HID_USAGE2(HUP_LEDS, 0x01),
hid_output, tlc_index, 0, &sc->sc_loc_numlock, &flags,
&sc->sc_id_leds, NULL)) {
if (flags & HIO_VARIABLE)
sc->sc_flags |= HKBD_FLAG_NUMLOCK;
DPRINTFN(1, "Found keyboard numlock\n");
}
if (hidbus_locate(ptr, len,
HID_USAGE2(HUP_LEDS, 0x02),
hid_output, tlc_index, 0, &sc->sc_loc_capslock, &flags,
&id, NULL)) {
if ((sc->sc_flags & HKBD_FLAG_NUMLOCK) == 0)
sc->sc_id_leds = id;
if (flags & HIO_VARIABLE && sc->sc_id_leds == id)
sc->sc_flags |= HKBD_FLAG_CAPSLOCK;
DPRINTFN(1, "Found keyboard capslock\n");
}
if (hidbus_locate(ptr, len,
HID_USAGE2(HUP_LEDS, 0x03),
hid_output, tlc_index, 0, &sc->sc_loc_scrolllock, &flags,
&id, NULL)) {
if ((sc->sc_flags & (HKBD_FLAG_NUMLOCK | HKBD_FLAG_CAPSLOCK))
== 0)
sc->sc_id_leds = id;
if (flags & HIO_VARIABLE && sc->sc_id_leds == id)
sc->sc_flags |= HKBD_FLAG_SCROLLLOCK;
DPRINTFN(1, "Found keyboard scrolllock\n");
}
if ((sc->sc_flags & (HKBD_FLAG_NUMLOCK | HKBD_FLAG_CAPSLOCK |
HKBD_FLAG_SCROLLLOCK)) != 0)
sc->sc_led_size = hid_report_size(ptr, len,
hid_output, sc->sc_id_leds);
}
static int
hkbd_attach(device_t dev)
{
struct hkbd_softc *sc = device_get_softc(dev);
const struct hid_device_info *hw = hid_get_device_info(dev);
int unit = device_get_unit(dev);
keyboard_t *kbd = &sc->sc_kbd;
void *hid_ptr = NULL;
int err;
uint16_t n;
hid_size_t hid_len;
uint8_t tlc_index = hidbus_get_index(dev);
#ifdef EVDEV_SUPPORT
struct evdev_dev *evdev;
int i;
#endif
sc->sc_dev = dev;
SYSCONS_LOCK_ASSERT();
kbd_init_struct(kbd, HKBD_DRIVER_NAME, KB_OTHER, unit, 0, 0, 0);
kbd->kb_data = (void *)sc;
sc->sc_mode = K_XLATE;
mtx_init(&sc->sc_mtx, "hkbd lock", NULL, MTX_DEF);
TASK_INIT(&sc->sc_task, 0, hkbd_event_keyinput, sc);
callout_init_mtx(&sc->sc_callout, &sc->sc_mtx, 0);
hidbus_set_intr(dev, hkbd_intr_callback, sc);
/* interrupt handler will be called with hkbd mutex taken */
hidbus_set_lock(dev, &sc->sc_mtx);
/* interrupt handler can be called during panic */
hidbus_set_flags(dev, hidbus_get_flags(dev) | HIDBUS_FLAG_CAN_POLL);
/* setup default keyboard maps */
sc->sc_keymap = key_map;
sc->sc_accmap = accent_map;
for (n = 0; n < HKBD_NFKEY; n++) {
sc->sc_fkeymap[n] = fkey_tab[n];
}
kbd_set_maps(kbd, &sc->sc_keymap, &sc->sc_accmap,
sc->sc_fkeymap, HKBD_NFKEY);
KBD_FOUND_DEVICE(kbd);
hkbd_clear_state(kbd);
/*
* FIXME: set the initial value for lock keys in "sc_state"
* according to the BIOS data?
*/
KBD_PROBE_DONE(kbd);
/* get HID descriptor */
err = hid_get_report_descr(dev, &hid_ptr, &hid_len);
if (err == 0) {
DPRINTF("Parsing HID descriptor of %d bytes\n",
(int)hid_len);
hkbd_parse_hid(sc, hid_ptr, hid_len, tlc_index);
}
/* check if we should use the boot protocol */
if (hid_test_quirk(hw, HQ_KBD_BOOTPROTO) ||
(err != 0) || hkbd_any_key_valid(sc) == false) {
DPRINTF("Forcing boot protocol\n");
err = hid_set_protocol(dev, 0);
if (err != 0) {
DPRINTF("Set protocol error=%d (ignored)\n", err);
}
hkbd_parse_hid(sc, hkbd_boot_desc, sizeof(hkbd_boot_desc), 0);
}
/* ignore if SETIDLE fails, hence it is not crucial */
hid_set_idle(dev, 0, 0);
hkbd_ioctl(kbd, KDSETLED, (caddr_t)&sc->sc_state);
KBD_INIT_DONE(kbd);
if (kbd_register(kbd) < 0) {
goto detach;
}
KBD_CONFIG_DONE(kbd);
hkbd_enable(kbd);
#ifdef KBD_INSTALL_CDEV
if (kbd_attach(kbd)) {
goto detach;
}
#endif
#ifdef EVDEV_SUPPORT
evdev = evdev_alloc();
evdev_set_name(evdev, device_get_desc(dev));
evdev_set_phys(evdev, device_get_nameunit(dev));
evdev_set_id(evdev, hw->idBus, hw->idVendor, hw->idProduct,
hw->idVersion);
evdev_set_serial(evdev, hw->serial);
evdev_set_methods(evdev, kbd, &hkbd_evdev_methods);
evdev_set_flag(evdev, EVDEV_FLAG_EXT_EPOCH); /* hidbus child */
evdev_support_event(evdev, EV_SYN);
evdev_support_event(evdev, EV_KEY);
if (sc->sc_flags & (HKBD_FLAG_NUMLOCK | HKBD_FLAG_CAPSLOCK |
HKBD_FLAG_SCROLLLOCK))
evdev_support_event(evdev, EV_LED);
evdev_support_event(evdev, EV_REP);
for (i = 0x00; i <= 0xFF; i++)
evdev_support_key(evdev, evdev_hid2key(i));
if (sc->sc_flags & HKBD_FLAG_NUMLOCK)
evdev_support_led(evdev, LED_NUML);
if (sc->sc_flags & HKBD_FLAG_CAPSLOCK)
evdev_support_led(evdev, LED_CAPSL);
if (sc->sc_flags & HKBD_FLAG_SCROLLLOCK)
evdev_support_led(evdev, LED_SCROLLL);
if (evdev_register(evdev))
evdev_free(evdev);
else
sc->sc_evdev = evdev;
#endif
sc->sc_flags |= HKBD_FLAG_ATTACHED;
if (bootverbose) {
kbdd_diag(kbd, bootverbose);
}
/* start the keyboard */
hid_intr_start(dev);
return (0); /* success */
detach:
hkbd_detach(dev);
return (ENXIO); /* error */
}
static int
hkbd_detach(device_t dev)
{
struct hkbd_softc *sc = device_get_softc(dev);
#ifdef EVDEV_SUPPORT
struct epoch_tracker et;
#endif
int error;
SYSCONS_LOCK_ASSERT();
DPRINTF("\n");
sc->sc_flags |= HKBD_FLAG_GONE;
HKBD_LOCK(sc);
callout_stop(&sc->sc_callout);
HKBD_UNLOCK(sc);
/* kill any stuck keys */
if (sc->sc_flags & HKBD_FLAG_ATTACHED) {
/* stop receiving events from the USB keyboard */
hid_intr_stop(dev);
/* release all leftover keys, if any */
memset(&sc->sc_ndata, 0, bitstr_size(HKBD_NKEYCODE));
/* process releasing of all keys */
HKBD_LOCK(sc);
#ifdef EVDEV_SUPPORT
epoch_enter_preempt(INPUT_EPOCH, &et);
#endif
hkbd_interrupt(sc);
#ifdef EVDEV_SUPPORT
epoch_exit_preempt(INPUT_EPOCH, &et);
#endif
HKBD_UNLOCK(sc);
taskqueue_drain(taskqueue_swi_giant, &sc->sc_task);
}
mtx_destroy(&sc->sc_mtx);
hkbd_disable(&sc->sc_kbd);
#ifdef KBD_INSTALL_CDEV
if (sc->sc_flags & HKBD_FLAG_ATTACHED) {
error = kbd_detach(&sc->sc_kbd);
if (error) {
/* usb attach cannot return an error */
device_printf(dev, "WARNING: kbd_detach() "
"returned non-zero! (ignored)\n");
}
}
#endif
#ifdef EVDEV_SUPPORT
evdev_free(sc->sc_evdev);
#endif
if (KBD_IS_CONFIGURED(&sc->sc_kbd)) {
error = kbd_unregister(&sc->sc_kbd);
if (error) {
/* usb attach cannot return an error */
device_printf(dev, "WARNING: kbd_unregister() "
"returned non-zero! (ignored)\n");
}
}
sc->sc_kbd.kb_flags = 0;
DPRINTF("%s: disconnected\n",
device_get_nameunit(dev));
return (0);
}
static int
hkbd_resume(device_t dev)
{
struct hkbd_softc *sc = device_get_softc(dev);
SYSCONS_LOCK_ASSERT();
hkbd_clear_state(&sc->sc_kbd);
return (0);
}
#ifdef EVDEV_SUPPORT
static void
hkbd_ev_event(struct evdev_dev *evdev, uint16_t type, uint16_t code,
int32_t value)
{
keyboard_t *kbd = evdev_get_softc(evdev);
if (evdev_rcpt_mask & EVDEV_RCPT_HW_KBD &&
(type == EV_LED || type == EV_REP)) {
mtx_lock(&Giant);
kbd_ev_event(kbd, type, code, value);
mtx_unlock(&Giant);
}
}
#endif
/* early keyboard probe, not supported */
static int
hkbd_configure(int flags)
{
return (0);
}
/* detect a keyboard, not used */
static int
hkbd__probe(int unit, void *arg, int flags)
{
return (ENXIO);
}
/* reset and initialize the device, not used */
static int
hkbd_init(int unit, keyboard_t **kbdp, void *arg, int flags)
{
return (ENXIO);
}
/* test the interface to the device, not used */
static int
hkbd_test_if(keyboard_t *kbd)
{
return (0);
}
/* finish using this keyboard, not used */
static int
hkbd_term(keyboard_t *kbd)
{
return (ENXIO);
}
/* keyboard interrupt routine, not used */
static int
hkbd_intr(keyboard_t *kbd, void *arg)
{
return (0);
}
/* lock the access to the keyboard, not used */
static int
hkbd_lock(keyboard_t *kbd, int lock)
{
return (1);
}
/*
* Enable the access to the device; until this function is called,
* the client cannot read from the keyboard.
*/
static int
hkbd_enable(keyboard_t *kbd)
{
SYSCONS_LOCK();
KBD_ACTIVATE(kbd);
SYSCONS_UNLOCK();
return (0);
}
/* disallow the access to the device */
static int
hkbd_disable(keyboard_t *kbd)
{
SYSCONS_LOCK();
KBD_DEACTIVATE(kbd);
SYSCONS_UNLOCK();
return (0);
}
/* check if data is waiting */
/* Currently unused. */
static int
hkbd_check(keyboard_t *kbd)
{
struct hkbd_softc *sc = kbd->kb_data;
SYSCONS_LOCK_ASSERT();
if (!KBD_IS_ACTIVE(kbd))
return (0);
if (sc->sc_flags & HKBD_FLAG_POLLING)
hkbd_do_poll(sc, 0);
#ifdef HKBD_EMULATE_ATSCANCODE
if (sc->sc_buffered_char[0]) {
return (1);
}
#endif
if (sc->sc_inputhead != atomic_load_acq_32(&sc->sc_inputtail)) {
return (1);
}
return (0);
}
/* check if char is waiting */
static int
hkbd_check_char_locked(keyboard_t *kbd)
{
struct hkbd_softc *sc = kbd->kb_data;
SYSCONS_LOCK_ASSERT();
if (!KBD_IS_ACTIVE(kbd))
return (0);
if ((sc->sc_composed_char > 0) &&
(!(sc->sc_flags & HKBD_FLAG_COMPOSE))) {
return (1);
}
return (hkbd_check(kbd));
}
static int
hkbd_check_char(keyboard_t *kbd)
{
int result;
SYSCONS_LOCK();
result = hkbd_check_char_locked(kbd);
SYSCONS_UNLOCK();
return (result);
}
/* read one byte from the keyboard if it's allowed */
/* Currently unused. */
static int
hkbd_read(keyboard_t *kbd, int wait)
{
struct hkbd_softc *sc = kbd->kb_data;
int32_t usbcode;
#ifdef HKBD_EMULATE_ATSCANCODE
uint32_t keycode;
uint32_t scancode;
#endif
SYSCONS_LOCK_ASSERT();
if (!KBD_IS_ACTIVE(kbd))
return (-1);
#ifdef HKBD_EMULATE_ATSCANCODE
if (sc->sc_buffered_char[0]) {
scancode = sc->sc_buffered_char[0];
if (scancode & SCAN_PREFIX) {
sc->sc_buffered_char[0] &= ~SCAN_PREFIX;
return ((scancode & SCAN_PREFIX_E0) ? 0xe0 : 0xe1);
}
sc->sc_buffered_char[0] = sc->sc_buffered_char[1];
sc->sc_buffered_char[1] = 0;
return (scancode);
}
#endif /* HKBD_EMULATE_ATSCANCODE */
/* XXX */
usbcode = hkbd_get_key(sc, (wait == FALSE) ? 0 : 1);
if (!KBD_IS_ACTIVE(kbd) || (usbcode == -1))
return (-1);
++(kbd->kb_count);
#ifdef HKBD_EMULATE_ATSCANCODE
keycode = hkbd_atkeycode(usbcode, sc->sc_ndata);
if (keycode == NN) {
return -1;
}
return (hkbd_key2scan(sc, keycode, sc->sc_ndata,
(usbcode & KEY_RELEASE)));
#else /* !HKBD_EMULATE_ATSCANCODE */
return (usbcode);
#endif /* HKBD_EMULATE_ATSCANCODE */
}
/* read char from the keyboard */
static uint32_t
hkbd_read_char_locked(keyboard_t *kbd, int wait)
{
struct hkbd_softc *sc = kbd->kb_data;
uint32_t action;
uint32_t keycode;
int32_t usbcode;
#ifdef HKBD_EMULATE_ATSCANCODE
uint32_t scancode;
#endif
SYSCONS_LOCK_ASSERT();
if (!KBD_IS_ACTIVE(kbd))
return (NOKEY);
next_code:
/* do we have a composed char to return ? */
if ((sc->sc_composed_char > 0) &&
(!(sc->sc_flags & HKBD_FLAG_COMPOSE))) {
action = sc->sc_composed_char;
sc->sc_composed_char = 0;
if (action > 0xFF) {
goto errkey;
}
goto done;
}
#ifdef HKBD_EMULATE_ATSCANCODE
/* do we have a pending raw scan code? */
if (sc->sc_mode == K_RAW) {
scancode = sc->sc_buffered_char[0];
if (scancode) {
if (scancode & SCAN_PREFIX) {
sc->sc_buffered_char[0] = (scancode & ~SCAN_PREFIX);
return ((scancode & SCAN_PREFIX_E0) ? 0xe0 : 0xe1);
}
sc->sc_buffered_char[0] = sc->sc_buffered_char[1];
sc->sc_buffered_char[1] = 0;
return (scancode);
}
}
#endif /* HKBD_EMULATE_ATSCANCODE */
/* see if there is something in the keyboard port */
/* XXX */
usbcode = hkbd_get_key(sc, (wait == FALSE) ? 0 : 1);
if (usbcode == -1) {
return (NOKEY);
}
++kbd->kb_count;
#ifdef HKBD_EMULATE_ATSCANCODE
/* USB key index -> key code -> AT scan code */
keycode = hkbd_atkeycode(usbcode, sc->sc_ndata);
if (keycode == NN) {
return (NOKEY);
}
/* return an AT scan code for the K_RAW mode */
if (sc->sc_mode == K_RAW) {
return (hkbd_key2scan(sc, keycode, sc->sc_ndata,
(usbcode & KEY_RELEASE)));
}
#else /* !HKBD_EMULATE_ATSCANCODE */
/* return the byte as is for the K_RAW mode */
if (sc->sc_mode == K_RAW) {
return (usbcode);
}
/* USB key index -> key code */
keycode = hkbd_trtab[KEY_INDEX(usbcode)];
if (keycode == NN) {
return (NOKEY);
}
#endif /* HKBD_EMULATE_ATSCANCODE */
switch (keycode) {
case 0x38: /* left alt (compose key) */
if (usbcode & KEY_RELEASE) {
if (sc->sc_flags & HKBD_FLAG_COMPOSE) {
sc->sc_flags &= ~HKBD_FLAG_COMPOSE;
if (sc->sc_composed_char > 0xFF) {
sc->sc_composed_char = 0;
}
}
} else {
if (!(sc->sc_flags & HKBD_FLAG_COMPOSE)) {
sc->sc_flags |= HKBD_FLAG_COMPOSE;
sc->sc_composed_char = 0;
}
}
break;
}
/* return the key code in the K_CODE mode */
if (usbcode & KEY_RELEASE) {
keycode |= SCAN_RELEASE;
}
if (sc->sc_mode == K_CODE) {
return (keycode);
}
/* compose a character code */
if (sc->sc_flags & HKBD_FLAG_COMPOSE) {
switch (keycode) {
/* key pressed, process it */
case 0x47:
case 0x48:
case 0x49: /* keypad 7,8,9 */
sc->sc_composed_char *= 10;
sc->sc_composed_char += keycode - 0x40;
goto check_composed;
case 0x4B:
case 0x4C:
case 0x4D: /* keypad 4,5,6 */
sc->sc_composed_char *= 10;
sc->sc_composed_char += keycode - 0x47;
goto check_composed;
case 0x4F:
case 0x50:
case 0x51: /* keypad 1,2,3 */
sc->sc_composed_char *= 10;
sc->sc_composed_char += keycode - 0x4E;
goto check_composed;
case 0x52: /* keypad 0 */
sc->sc_composed_char *= 10;
goto check_composed;
/* key released, no interest here */
case SCAN_RELEASE | 0x47:
case SCAN_RELEASE | 0x48:
case SCAN_RELEASE | 0x49: /* keypad 7,8,9 */
case SCAN_RELEASE | 0x4B:
case SCAN_RELEASE | 0x4C:
case SCAN_RELEASE | 0x4D: /* keypad 4,5,6 */
case SCAN_RELEASE | 0x4F:
case SCAN_RELEASE | 0x50:
case SCAN_RELEASE | 0x51: /* keypad 1,2,3 */
case SCAN_RELEASE | 0x52: /* keypad 0 */
goto next_code;
case 0x38: /* left alt key */
break;
default:
if (sc->sc_composed_char > 0) {
sc->sc_flags &= ~HKBD_FLAG_COMPOSE;
sc->sc_composed_char = 0;
goto errkey;
}
break;
}
}
/* keycode to key action */
action = genkbd_keyaction(kbd, SCAN_CHAR(keycode),
(keycode & SCAN_RELEASE),
&sc->sc_state, &sc->sc_accents);
if (action == NOKEY) {
goto next_code;
}
done:
return (action);
check_composed:
if (sc->sc_composed_char <= 0xFF) {
goto next_code;
}
errkey:
return (ERRKEY);
}
/* Currently wait is always false. */
static uint32_t
hkbd_read_char(keyboard_t *kbd, int wait)
{
uint32_t keycode;
SYSCONS_LOCK();
keycode = hkbd_read_char_locked(kbd, wait);
SYSCONS_UNLOCK();
return (keycode);
}
/* some useful control functions */
static int
hkbd_ioctl_locked(keyboard_t *kbd, u_long cmd, caddr_t arg)
{
struct hkbd_softc *sc = kbd->kb_data;
#ifdef EVDEV_SUPPORT
struct epoch_tracker et;
#endif
int error;
int i;
#if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \
defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
int ival;
#endif
SYSCONS_LOCK_ASSERT();
switch (cmd) {
case KDGKBMODE: /* get keyboard mode */
*(int *)arg = sc->sc_mode;
break;
#if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \
defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
case _IO('K', 7):
ival = IOCPARM_IVAL(arg);
arg = (caddr_t)&ival;
/* FALLTHROUGH */
#endif
case KDSKBMODE: /* set keyboard mode */
switch (*(int *)arg) {
case K_XLATE:
if (sc->sc_mode != K_XLATE) {
/* make lock key state and LED state match */
sc->sc_state &= ~LOCK_MASK;
sc->sc_state |= KBD_LED_VAL(kbd);
}
/* FALLTHROUGH */
case K_RAW:
case K_CODE:
if (sc->sc_mode != *(int *)arg) {
if ((sc->sc_flags & HKBD_FLAG_POLLING) == 0)
hkbd_clear_state(kbd);
sc->sc_mode = *(int *)arg;
}
break;
default:
return (EINVAL);
}
break;
case KDGETLED: /* get keyboard LED */
*(int *)arg = KBD_LED_VAL(kbd);
break;
#if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \
defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
case _IO('K', 66):
ival = IOCPARM_IVAL(arg);
arg = (caddr_t)&ival;
/* FALLTHROUGH */
#endif
case KDSETLED: /* set keyboard LED */
/* NOTE: lock key state in "sc_state" won't be changed */
if (*(int *)arg & ~LOCK_MASK)
return (EINVAL);
i = *(int *)arg;
/* replace CAPS LED with ALTGR LED for ALTGR keyboards */
if (sc->sc_mode == K_XLATE &&
kbd->kb_keymap->n_keys > ALTGR_OFFSET) {
if (i & ALKED)
i |= CLKED;
else
i &= ~CLKED;
}
if (KBD_HAS_DEVICE(kbd)) {
error = hkbd_set_leds(sc, i);
if (error)
return (error);
}
#ifdef EVDEV_SUPPORT
if (sc->sc_evdev != NULL && !HID_IN_POLLING_MODE()) {
epoch_enter_preempt(INPUT_EPOCH, &et);
evdev_push_leds(sc->sc_evdev, i);
epoch_exit_preempt(INPUT_EPOCH, &et);
}
#endif
KBD_LED_VAL(kbd) = *(int *)arg;
break;
case KDGKBSTATE: /* get lock key state */
*(int *)arg = sc->sc_state & LOCK_MASK;
break;
#if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \
defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
case _IO('K', 20):
ival = IOCPARM_IVAL(arg);
arg = (caddr_t)&ival;
/* FALLTHROUGH */
#endif
case KDSKBSTATE: /* set lock key state */
if (*(int *)arg & ~LOCK_MASK) {
return (EINVAL);
}
sc->sc_state &= ~LOCK_MASK;
sc->sc_state |= *(int *)arg;
/* set LEDs and quit */
return (hkbd_ioctl_locked(kbd, KDSETLED, arg));
case KDSETREPEAT: /* set keyboard repeat rate (new
* interface) */
if (!KBD_HAS_DEVICE(kbd)) {
return (0);
}
/*
* Convert negative, zero and tiny args to the same limits
* as atkbd. We could support delays of 1 msec, but
* anything much shorter than the shortest atkbd value
* of 250.34 is almost unusable as well as incompatible.
*/
kbd->kb_delay1 = imax(((int *)arg)[0], 250);
kbd->kb_delay2 = imax(((int *)arg)[1], 34);
#ifdef EVDEV_SUPPORT
if (sc->sc_evdev != NULL && !HID_IN_POLLING_MODE()) {
epoch_enter_preempt(INPUT_EPOCH, &et);
evdev_push_repeats(sc->sc_evdev, kbd);
epoch_exit_preempt(INPUT_EPOCH, &et);
}
#endif
return (0);
#if defined(COMPAT_FREEBSD6) || defined(COMPAT_FREEBSD5) || \
defined(COMPAT_FREEBSD4) || defined(COMPAT_43)
case _IO('K', 67):
ival = IOCPARM_IVAL(arg);
arg = (caddr_t)&ival;
/* FALLTHROUGH */
#endif
case KDSETRAD: /* set keyboard repeat rate (old
* interface) */
return (hkbd_set_typematic(kbd, *(int *)arg));
case PIO_KEYMAP: /* set keyboard translation table */
case PIO_KEYMAPENT: /* set keyboard translation table
* entry */
case PIO_DEADKEYMAP: /* set accent key translation table */
#ifdef COMPAT_FREEBSD13
case OPIO_KEYMAP: /* set keyboard translation table
* (compat) */
case OPIO_DEADKEYMAP: /* set accent key translation table
* (compat) */
#endif /* COMPAT_FREEBSD13 */
sc->sc_accents = 0;
/* FALLTHROUGH */
default:
return (genkbd_commonioctl(kbd, cmd, arg));
}
return (0);
}
static int
hkbd_ioctl(keyboard_t *kbd, u_long cmd, caddr_t arg)
{
int result;
/*
* XXX Check if someone is calling us from a critical section:
*/
if (curthread->td_critnest != 0)
return (EDEADLK);
/*
* XXX KDGKBSTATE, KDSKBSTATE and KDSETLED can be called from any
* context where printf(9) can be called, which among other things
* includes interrupt filters and threads with any kinds of locks
* already held. For this reason it would be dangerous to acquire
* the Giant here unconditionally. On the other hand we have to
* have it to handle the ioctl.
* So we make our best effort to auto-detect whether we can grab
* the Giant or not. Blame syscons(4) for this.
*/
switch (cmd) {
case KDGKBSTATE:
case KDSKBSTATE:
case KDSETLED:
if (!mtx_owned(&Giant) && !HID_IN_POLLING_MODE())
return (EDEADLK); /* best I could come up with */
/* FALLTHROUGH */
default:
SYSCONS_LOCK();
result = hkbd_ioctl_locked(kbd, cmd, arg);
SYSCONS_UNLOCK();
return (result);
}
}
/* clear the internal state of the keyboard */
static void
hkbd_clear_state(keyboard_t *kbd)
{
struct hkbd_softc *sc = kbd->kb_data;
SYSCONS_LOCK_ASSERT();
sc->sc_flags &= ~(HKBD_FLAG_COMPOSE | HKBD_FLAG_POLLING);
sc->sc_state &= LOCK_MASK; /* preserve locking key state */
sc->sc_accents = 0;
sc->sc_composed_char = 0;
#ifdef HKBD_EMULATE_ATSCANCODE
sc->sc_buffered_char[0] = 0;
sc->sc_buffered_char[1] = 0;
#endif
memset(&sc->sc_ndata, 0, bitstr_size(HKBD_NKEYCODE));
memset(&sc->sc_odata, 0, bitstr_size(HKBD_NKEYCODE));
memset(&sc->sc_ndata0, 0, bitstr_size(HKBD_NKEYCODE));
memset(&sc->sc_odata0, 0, bitstr_size(HKBD_NKEYCODE));
sc->sc_repeat_time = 0;
sc->sc_repeat_key = 0;
}
/* save the internal state, not used */
static int
hkbd_get_state(keyboard_t *kbd, void *buf, size_t len)
{
return (len == 0) ? 1 : -1;
}
/* set the internal state, not used */
static int
hkbd_set_state(keyboard_t *kbd, void *buf, size_t len)
{
return (EINVAL);
}
static int
hkbd_poll(keyboard_t *kbd, int on)
{
struct hkbd_softc *sc = kbd->kb_data;
SYSCONS_LOCK();
/*
* Keep a reference count on polling to allow recursive
* cngrab() during a panic for example.
*/
if (on)
sc->sc_polling++;
else if (sc->sc_polling > 0)
sc->sc_polling--;
if (sc->sc_polling != 0) {
sc->sc_flags |= HKBD_FLAG_POLLING;
sc->sc_poll_thread = curthread;
} else {
sc->sc_flags &= ~HKBD_FLAG_POLLING;
sc->sc_delay = 0;
}
SYSCONS_UNLOCK();
return (0);
}
/* local functions */
static int
hkbd_set_leds(struct hkbd_softc *sc, uint8_t leds)
{
uint8_t id;
uint8_t any;
uint8_t *buf;
int len;
int error;
SYSCONS_LOCK_ASSERT();
DPRINTF("leds=0x%02x\n", leds);
#ifdef HID_DEBUG
if (hkbd_no_leds)
return (0);
#endif
memset(sc->sc_buffer, 0, HKBD_BUFFER_SIZE);
id = sc->sc_id_leds;
any = 0;
/* Assumption: All led bits must be in the same ID. */
if (sc->sc_flags & HKBD_FLAG_NUMLOCK) {
hid_put_udata(sc->sc_buffer + 1, HKBD_BUFFER_SIZE - 1,
&sc->sc_loc_numlock, leds & NLKED ? 1 : 0);
any = 1;
}
if (sc->sc_flags & HKBD_FLAG_SCROLLLOCK) {
hid_put_udata(sc->sc_buffer + 1, HKBD_BUFFER_SIZE - 1,
&sc->sc_loc_scrolllock, leds & SLKED ? 1 : 0);
any = 1;
}
if (sc->sc_flags & HKBD_FLAG_CAPSLOCK) {
hid_put_udata(sc->sc_buffer + 1, HKBD_BUFFER_SIZE - 1,
&sc->sc_loc_capslock, leds & CLKED ? 1 : 0);
any = 1;
}
/* if no leds, nothing to do */
if (!any)
return (0);
/* range check output report length */
len = sc->sc_led_size;
if (len > (HKBD_BUFFER_SIZE - 1))
len = (HKBD_BUFFER_SIZE - 1);
/* check if we need to prefix an ID byte */
if (id != 0) {
sc->sc_buffer[0] = id;
buf = sc->sc_buffer;
} else {
buf = sc->sc_buffer + 1;
}
DPRINTF("len=%d, id=%d\n", len, id);
/* start data transfer */
SYSCONS_UNLOCK();
error = hid_write(sc->sc_dev, buf, len);
SYSCONS_LOCK();
return (error);
}
static int
hkbd_set_typematic(keyboard_t *kbd, int code)
{
#ifdef EVDEV_SUPPORT
struct hkbd_softc *sc = kbd->kb_data;
#endif
if (code & ~0x7f) {
return (EINVAL);
}
kbd->kb_delay1 = kbdelays[(code >> 5) & 3];
kbd->kb_delay2 = kbrates[code & 0x1f];
#ifdef EVDEV_SUPPORT
if (sc->sc_evdev != NULL)
evdev_push_repeats(sc->sc_evdev, kbd);
#endif
return (0);
}
#ifdef HKBD_EMULATE_ATSCANCODE
static uint32_t
hkbd_atkeycode(int usbcode, const bitstr_t *bitmap)
{
uint32_t keycode;
keycode = hkbd_trtab[KEY_INDEX(usbcode)];
/*
* Translate Alt-PrintScreen to SysRq.
*
* Some or all AT keyboards connected through USB have already
* mapped Alted PrintScreens to an unusual usbcode (0x8a).
* hkbd_trtab translates this to 0x7e, and key2scan() would
* translate that to 0x79 (Intl' 4). Assume that if we have
* an Alted 0x7e here then it actually is an Alted PrintScreen.
*
* The usual usbcode for all PrintScreens is 0x46. hkbd_trtab
* translates this to 0x5c, so the Alt check to classify 0x5c
* is routine.
*/
if ((keycode == 0x5c || keycode == 0x7e) &&
(HKBD_KEY_PRESSED(bitmap, 0xe2 /* ALT-L */) ||
HKBD_KEY_PRESSED(bitmap, 0xe6 /* ALT-R */)))
return (0x54);
return (keycode);
}
static int
hkbd_key2scan(struct hkbd_softc *sc, int code, const bitstr_t *bitmap, int up)
{
static const int scan[] = {
/* 89 */
0x11c, /* Enter */
/* 90-99 */
0x11d, /* Ctrl-R */
0x135, /* Divide */
0x137, /* PrintScreen */
0x138, /* Alt-R */
0x147, /* Home */
0x148, /* Up */
0x149, /* PageUp */
0x14b, /* Left */
0x14d, /* Right */
0x14f, /* End */
/* 100-109 */
0x150, /* Down */
0x151, /* PageDown */
0x152, /* Insert */
0x153, /* Delete */
0x146, /* Pause/Break */
0x15b, /* Win_L(Super_L) */
0x15c, /* Win_R(Super_R) */
0x15d, /* Application(Menu) */
/* SUN TYPE 6 USB KEYBOARD */
0x168, /* Sun Type 6 Help */
0x15e, /* Sun Type 6 Stop */
/* 110 - 119 */
0x15f, /* Sun Type 6 Again */
0x160, /* Sun Type 6 Props */
0x161, /* Sun Type 6 Undo */
0x162, /* Sun Type 6 Front */
0x163, /* Sun Type 6 Copy */
0x164, /* Sun Type 6 Open */
0x165, /* Sun Type 6 Paste */
0x166, /* Sun Type 6 Find */
0x167, /* Sun Type 6 Cut */
0x125, /* Sun Type 6 Mute */
/* 120 - 130 */
0x11f, /* Sun Type 6 VolumeDown */
0x11e, /* Sun Type 6 VolumeUp */
0x120, /* Sun Type 6 PowerDown */
/* Japanese 106/109 keyboard */
0x73, /* Keyboard Intl' 1 (backslash / underscore) */
0x70, /* Keyboard Intl' 2 (Katakana / Hiragana) */
0x7d, /* Keyboard Intl' 3 (Yen sign) (Not using in jp106/109) */
0x79, /* Keyboard Intl' 4 (Henkan) */
0x7b, /* Keyboard Intl' 5 (Muhenkan) */
0x5c, /* Keyboard Intl' 6 (Keypad ,) (For PC-9821 layout) */
0x71, /* Apple Keyboard JIS (Kana) */
0x72, /* Apple Keyboard JIS (Eisu) */
};
if ((code >= 89) && (code < (int)(89 + nitems(scan)))) {
code = scan[code - 89];
}
/* PrintScreen */
if (code == 0x137 && (!(
HKBD_KEY_PRESSED(bitmap, 0xe0 /* CTRL-L */) ||
HKBD_KEY_PRESSED(bitmap, 0xe4 /* CTRL-R */) ||
HKBD_KEY_PRESSED(bitmap, 0xe1 /* SHIFT-L */) ||
HKBD_KEY_PRESSED(bitmap, 0xe5 /* SHIFT-R */)))) {
code |= SCAN_PREFIX_SHIFT;
}
/* Pause/Break */
if ((code == 0x146) && (!(
HKBD_KEY_PRESSED(bitmap, 0xe0 /* CTRL-L */) ||
HKBD_KEY_PRESSED(bitmap, 0xe4 /* CTRL-R */)))) {
code = (0x45 | SCAN_PREFIX_E1 | SCAN_PREFIX_CTL);
}
code |= (up ? SCAN_RELEASE : SCAN_PRESS);
if (code & SCAN_PREFIX) {
if (code & SCAN_PREFIX_CTL) {
/* Ctrl */
sc->sc_buffered_char[0] = (0x1d | (code & SCAN_RELEASE));
sc->sc_buffered_char[1] = (code & ~SCAN_PREFIX);
} else if (code & SCAN_PREFIX_SHIFT) {
/* Shift */
sc->sc_buffered_char[0] = (0x2a | (code & SCAN_RELEASE));
sc->sc_buffered_char[1] = (code & ~SCAN_PREFIX_SHIFT);
} else {
sc->sc_buffered_char[0] = (code & ~SCAN_PREFIX);
sc->sc_buffered_char[1] = 0;
}
return ((code & SCAN_PREFIX_E0) ? 0xe0 : 0xe1);
}
return (code);
}
#endif /* HKBD_EMULATE_ATSCANCODE */
static keyboard_switch_t hkbdsw = {
.probe = &hkbd__probe,
.init = &hkbd_init,
.term = &hkbd_term,
.intr = &hkbd_intr,
.test_if = &hkbd_test_if,
.enable = &hkbd_enable,
.disable = &hkbd_disable,
.read = &hkbd_read,
.check = &hkbd_check,
.read_char = &hkbd_read_char,
.check_char = &hkbd_check_char,
.ioctl = &hkbd_ioctl,
.lock = &hkbd_lock,
.clear_state = &hkbd_clear_state,
.get_state = &hkbd_get_state,
.set_state = &hkbd_set_state,
.poll = &hkbd_poll,
};
KEYBOARD_DRIVER(hkbd, hkbdsw, hkbd_configure);
static int
hkbd_driver_load(module_t mod, int what, void *arg)
{
switch (what) {
case MOD_LOAD:
kbd_add_driver(&hkbd_kbd_driver);
break;
case MOD_UNLOAD:
kbd_delete_driver(&hkbd_kbd_driver);
break;
}
return (0);
}
static device_method_t hkbd_methods[] = {
DEVMETHOD(device_probe, hkbd_probe),
DEVMETHOD(device_attach, hkbd_attach),
DEVMETHOD(device_detach, hkbd_detach),
DEVMETHOD(device_resume, hkbd_resume),
DEVMETHOD_END
};
static driver_t hkbd_driver = {
.name = "hkbd",
.methods = hkbd_methods,
.size = sizeof(struct hkbd_softc),
};
DRIVER_MODULE(hkbd, hidbus, hkbd_driver, hkbd_driver_load, NULL);
MODULE_DEPEND(hkbd, hid, 1, 1, 1);
MODULE_DEPEND(hkbd, hidbus, 1, 1, 1);
#ifdef EVDEV_SUPPORT
MODULE_DEPEND(hkbd, evdev, 1, 1, 1);
#endif
MODULE_VERSION(hkbd, 1);
HID_PNP_INFO(hkbd_devs);