freebsd-dev/sys/dev/iicbus/ds3231.c
Warner Losh 685dc743dc sys: Remove $FreeBSD$: one-line .c pattern
Remove /^[\s*]*__FBSDID\("\$FreeBSD\$"\);?\s*\n/
2023-08-16 11:54:36 -06:00

621 lines
15 KiB
C

/*-
* Copyright (c) 2014-2015 Luiz Otavio O Souza <loos@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
/*
* Driver for Maxim DS3231[N] real-time clock/calendar.
*/
#include "opt_platform.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/clock.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/sysctl.h>
#include <dev/iicbus/iicbus.h>
#include <dev/iicbus/iiconf.h>
#ifdef FDT
#include <dev/ofw/openfirm.h>
#include <dev/ofw/ofw_bus.h>
#include <dev/ofw/ofw_bus_subr.h>
#endif
#include <dev/iicbus/ds3231reg.h>
#include "clock_if.h"
#include "iicbus_if.h"
struct ds3231_softc {
device_t sc_dev;
int sc_last_c;
int sc_year0;
struct intr_config_hook enum_hook;
uint16_t sc_addr; /* DS3231 slave address. */
uint8_t sc_ctrl;
uint8_t sc_status;
bool sc_use_ampm;
};
static void ds3231_start(void *);
static int
ds3231_read1(device_t dev, uint8_t reg, uint8_t *data)
{
return (iicdev_readfrom(dev, reg, data, 1, IIC_INTRWAIT));
}
static int
ds3231_write1(device_t dev, uint8_t reg, uint8_t data)
{
return (iicdev_writeto(dev, reg, &data, 1, IIC_INTRWAIT));
}
static int
ds3231_ctrl_read(struct ds3231_softc *sc)
{
int error;
error = ds3231_read1(sc->sc_dev, DS3231_CONTROL, &sc->sc_ctrl);
if (error) {
device_printf(sc->sc_dev, "cannot read from RTC.\n");
return (error);
}
return (0);
}
static int
ds3231_ctrl_write(struct ds3231_softc *sc)
{
int error;
uint8_t data;
/* Always enable the oscillator. Always disable both alarms. */
data = sc->sc_ctrl & ~DS3231_CTRL_MASK;
error = ds3231_write1(sc->sc_dev, DS3231_CONTROL, data);
if (error != 0)
device_printf(sc->sc_dev, "cannot write to RTC.\n");
return (error);
}
static int
ds3231_status_read(struct ds3231_softc *sc)
{
int error;
error = ds3231_read1(sc->sc_dev, DS3231_STATUS, &sc->sc_status);
if (error) {
device_printf(sc->sc_dev, "cannot read from RTC.\n");
return (error);
}
return (0);
}
static int
ds3231_status_write(struct ds3231_softc *sc, int clear_a1, int clear_a2)
{
int error;
uint8_t data;
data = sc->sc_status;
if (clear_a1 == 0)
data |= DS3231_STATUS_A1F;
if (clear_a2 == 0)
data |= DS3231_STATUS_A2F;
error = ds3231_write1(sc->sc_dev, DS3231_STATUS, data);
if (error != 0)
device_printf(sc->sc_dev, "cannot write to RTC.\n");
return (error);
}
static int
ds3231_temp_read(struct ds3231_softc *sc, int *temp)
{
int error, neg, t;
uint8_t buf8[2];
uint16_t buf;
error = iicdev_readfrom(sc->sc_dev, DS3231_TEMP, buf8, sizeof(buf8),
IIC_INTRWAIT);
if (error != 0)
return (error);
buf = (buf8[0] << 8) | (buf8[1] & 0xff);
neg = 0;
if (buf & DS3231_NEG_BIT) {
buf = ~(buf & DS3231_TEMP_MASK) + 1;
neg = 1;
}
*temp = ((int16_t)buf >> 8) * 10;
t = 0;
if (buf & DS3231_0250C)
t += 250;
if (buf & DS3231_0500C)
t += 500;
t /= 100;
*temp += t;
if (neg)
*temp = -(*temp);
*temp += TZ_ZEROC;
return (0);
}
static int
ds3231_temp_sysctl(SYSCTL_HANDLER_ARGS)
{
int error, temp;
struct ds3231_softc *sc;
sc = (struct ds3231_softc *)arg1;
if (ds3231_temp_read(sc, &temp) != 0)
return (EIO);
error = sysctl_handle_int(oidp, &temp, 0, req);
return (error);
}
static int
ds3231_conv_sysctl(SYSCTL_HANDLER_ARGS)
{
int error, conv, newc;
struct ds3231_softc *sc;
sc = (struct ds3231_softc *)arg1;
error = ds3231_ctrl_read(sc);
if (error != 0)
return (error);
newc = conv = (sc->sc_ctrl & DS3231_CTRL_CONV) ? 1 : 0;
error = sysctl_handle_int(oidp, &newc, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
if (conv == 0 && newc != 0) {
error = ds3231_status_read(sc);
if (error != 0)
return (error);
if (sc->sc_status & DS3231_STATUS_BUSY)
return (0);
sc->sc_ctrl |= DS3231_CTRL_CONV;
error = ds3231_ctrl_write(sc);
if (error != 0)
return (error);
}
return (error);
}
static int
ds3231_bbsqw_sysctl(SYSCTL_HANDLER_ARGS)
{
int bbsqw, error, newb;
struct ds3231_softc *sc;
sc = (struct ds3231_softc *)arg1;
error = ds3231_ctrl_read(sc);
if (error != 0)
return (error);
bbsqw = newb = (sc->sc_ctrl & DS3231_CTRL_BBSQW) ? 1 : 0;
error = sysctl_handle_int(oidp, &newb, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
if (bbsqw != newb) {
sc->sc_ctrl &= ~DS3231_CTRL_BBSQW;
if (newb)
sc->sc_ctrl |= DS3231_CTRL_BBSQW;
error = ds3231_ctrl_write(sc);
if (error != 0)
return (error);
}
return (error);
}
static int
ds3231_sqw_freq_sysctl(SYSCTL_HANDLER_ARGS)
{
int ds3231_sqw_freq[] = { 1, 1024, 4096, 8192 };
int error, freq, i, newf, tmp;
struct ds3231_softc *sc;
sc = (struct ds3231_softc *)arg1;
error = ds3231_ctrl_read(sc);
if (error != 0)
return (error);
tmp = (sc->sc_ctrl & DS3231_CTRL_RS_MASK) >> DS3231_CTRL_RS_SHIFT;
if (tmp >= nitems(ds3231_sqw_freq))
tmp = nitems(ds3231_sqw_freq) - 1;
freq = ds3231_sqw_freq[tmp];
error = sysctl_handle_int(oidp, &freq, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
if (freq != ds3231_sqw_freq[tmp]) {
newf = 0;
for (i = 0; i < nitems(ds3231_sqw_freq); i++)
if (freq >= ds3231_sqw_freq[i])
newf = i;
sc->sc_ctrl &= ~DS3231_CTRL_RS_MASK;
sc->sc_ctrl |= newf << DS3231_CTRL_RS_SHIFT;
error = ds3231_ctrl_write(sc);
if (error != 0)
return (error);
}
return (error);
}
static int
ds3231_str_sqw_mode(char *buf)
{
int len, rtrn;
rtrn = -1;
len = strlen(buf);
if ((len > 2 && strncasecmp("interrupt", buf, len) == 0) ||
(len > 2 && strncasecmp("int", buf, len) == 0)) {
rtrn = 1;
} else if ((len > 2 && strncasecmp("square-wave", buf, len) == 0) ||
(len > 2 && strncasecmp("sqw", buf, len) == 0)) {
rtrn = 0;
}
return (rtrn);
}
static int
ds3231_sqw_mode_sysctl(SYSCTL_HANDLER_ARGS)
{
char buf[16];
int error, mode, newm;
struct ds3231_softc *sc;
sc = (struct ds3231_softc *)arg1;
error = ds3231_ctrl_read(sc);
if (error != 0)
return (error);
if (sc->sc_ctrl & DS3231_CTRL_INTCN) {
mode = 1;
strlcpy(buf, "interrupt", sizeof(buf));
} else {
mode = 0;
strlcpy(buf, "square-wave", sizeof(buf));
}
error = sysctl_handle_string(oidp, buf, sizeof(buf), req);
if (error != 0 || req->newptr == NULL)
return (error);
newm = ds3231_str_sqw_mode(buf);
if (newm != -1 && mode != newm) {
sc->sc_ctrl &= ~DS3231_CTRL_INTCN;
if (newm == 1)
sc->sc_ctrl |= DS3231_CTRL_INTCN;
error = ds3231_ctrl_write(sc);
if (error != 0)
return (error);
}
return (error);
}
static int
ds3231_en32khz_sysctl(SYSCTL_HANDLER_ARGS)
{
int error, en32khz, tmp;
struct ds3231_softc *sc;
sc = (struct ds3231_softc *)arg1;
error = ds3231_status_read(sc);
if (error != 0)
return (error);
tmp = en32khz = (sc->sc_status & DS3231_STATUS_EN32KHZ) ? 1 : 0;
error = sysctl_handle_int(oidp, &en32khz, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
if (en32khz != tmp) {
sc->sc_status &= ~DS3231_STATUS_EN32KHZ;
if (en32khz)
sc->sc_status |= DS3231_STATUS_EN32KHZ;
error = ds3231_status_write(sc, 0, 0);
if (error != 0)
return (error);
}
return (error);
}
static int
ds3231_probe(device_t dev)
{
int rc;
#ifdef FDT
if (!ofw_bus_status_okay(dev))
return (ENXIO);
if (ofw_bus_is_compatible(dev, "maxim,ds3231"))
rc = BUS_PROBE_DEFAULT;
else
#endif
rc = BUS_PROBE_NOWILDCARD;
device_set_desc(dev, "Maxim DS3231 RTC");
return (rc);
}
static int
ds3231_attach(device_t dev)
{
struct ds3231_softc *sc;
sc = device_get_softc(dev);
sc->sc_dev = dev;
sc->sc_addr = iicbus_get_addr(dev);
sc->sc_last_c = -1;
sc->sc_year0 = 0;
sc->enum_hook.ich_func = ds3231_start;
sc->enum_hook.ich_arg = dev;
/*
* We have to wait until interrupts are enabled. Usually I2C read
* and write only works when the interrupts are available.
*/
if (config_intrhook_establish(&sc->enum_hook) != 0)
return (ENOMEM);
return (0);
}
static int
ds3231_detach(device_t dev)
{
clock_unregister(dev);
return (0);
}
static void
ds3231_start(void *xdev)
{
device_t dev;
struct ds3231_softc *sc;
struct sysctl_ctx_list *ctx;
struct sysctl_oid *tree_node;
struct sysctl_oid_list *tree;
dev = (device_t)xdev;
sc = device_get_softc(dev);
ctx = device_get_sysctl_ctx(dev);
tree_node = device_get_sysctl_tree(dev);
tree = SYSCTL_CHILDREN(tree_node);
config_intrhook_disestablish(&sc->enum_hook);
if (ds3231_ctrl_read(sc) != 0)
return;
if (ds3231_status_read(sc) != 0)
return;
/*
* Warn if the clock stopped, but don't restart it until the first
* clock_settime() call.
*/
if (sc->sc_status & DS3231_STATUS_OSF) {
device_printf(sc->sc_dev,
"WARNING: RTC clock stopped, check the battery.\n");
}
/*
* Ack any pending alarm interrupts and clear the EOSC bit to ensure the
* clock runs even when on battery power. Do not give up if these
* writes fail, because a factory-fresh chip is in a special mode that
* disables much of the chip to save battery power, and the only thing
* that gets it out of that mode is writing to the time registers. In
* these pristine chips, the EOSC and alarm bits are zero already, so
* the first valid write of time will get everything running properly.
*/
ds3231_status_write(sc, 1, 1);
ds3231_ctrl_write(sc);
/* Temperature. */
SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "temperature",
CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
ds3231_temp_sysctl, "IK", "Current temperature");
/* Configuration parameters. */
SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "temp_conv",
CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_MPSAFE, sc, 0,
ds3231_conv_sysctl, "IU",
"DS3231 start a new temperature converstion");
SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "bbsqw",
CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_MPSAFE, sc, 0,
ds3231_bbsqw_sysctl, "IU",
"DS3231 battery-backed square-wave output enable");
SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "sqw_freq",
CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_MPSAFE, sc, 0,
ds3231_sqw_freq_sysctl, "IU",
"DS3231 square-wave output frequency");
SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "sqw_mode",
CTLFLAG_RW | CTLTYPE_STRING | CTLFLAG_MPSAFE, sc, 0,
ds3231_sqw_mode_sysctl, "A", "DS3231 SQW output mode control");
SYSCTL_ADD_PROC(ctx, tree, OID_AUTO, "32khz_enable",
CTLFLAG_RW | CTLTYPE_UINT | CTLFLAG_MPSAFE, sc, 0,
ds3231_en32khz_sysctl, "IU", "DS3231 enable the 32kHz output");
/*
* Register as a clock with 1 second resolution. Schedule the
* clock_settime() method to be called just after top-of-second;
* resetting the time resets top-of-second in the hardware.
*/
clock_register_flags(dev, 1000000, CLOCKF_SETTIME_NO_ADJ);
clock_schedule(dev, 1);
}
static int
ds3231_gettime(device_t dev, struct timespec *ts)
{
int c, error;
struct bcd_clocktime bct;
struct ds3231_softc *sc;
uint8_t data[7], hourmask;
sc = device_get_softc(dev);
/* If the clock halted, we don't have good data. */
if ((error = ds3231_status_read(sc)) != 0) {
device_printf(dev, "cannot read from RTC.\n");
return (error);
}
if (sc->sc_status & DS3231_STATUS_OSF)
return (EINVAL);
error = iicdev_readfrom(sc->sc_dev, DS3231_SECS, data, sizeof(data),
IIC_INTRWAIT);
if (error != 0) {
device_printf(dev, "cannot read from RTC.\n");
return (error);
}
/* If chip is in AM/PM mode remember that. */
if (data[DS3231_HOUR] & DS3231_HOUR_USE_AMPM) {
sc->sc_use_ampm = true;
hourmask = DS3231_HOUR_MASK_12HR;
} else
hourmask = DS3231_HOUR_MASK_24HR;
bct.nsec = 0;
bct.sec = data[DS3231_SECS] & DS3231_SECS_MASK;
bct.min = data[DS3231_MINS] & DS3231_MINS_MASK;
bct.hour = data[DS3231_HOUR] & hourmask;
bct.day = data[DS3231_DATE] & DS3231_DATE_MASK;
bct.mon = data[DS3231_MONTH] & DS3231_MONTH_MASK;
bct.year = data[DS3231_YEAR] & DS3231_YEAR_MASK;
bct.ispm = data[DS3231_HOUR] & DS3231_HOUR_IS_PM;
/*
* If the century flag has toggled since we last saw it, there has been
* a century rollover. If this is the first time we're seeing it,
* remember the state so we can preserve its polarity on writes.
*/
c = (data[DS3231_MONTH] & DS3231_C_MASK) ? 1 : 0;
if (sc->sc_last_c == -1)
sc->sc_last_c = c;
else if (c != sc->sc_last_c) {
sc->sc_year0 += 0x100;
sc->sc_last_c = c;
}
bct.year |= sc->sc_year0;
clock_dbgprint_bcd(sc->sc_dev, CLOCK_DBG_READ, &bct);
return (clock_bcd_to_ts(&bct, ts, sc->sc_use_ampm));
}
static int
ds3231_settime(device_t dev, struct timespec *ts)
{
int error;
struct bcd_clocktime bct;
struct ds3231_softc *sc;
uint8_t data[7];
uint8_t pmflags;
sc = device_get_softc(dev);
/*
* We request a timespec with no resolution-adjustment. That also
* disables utc adjustment, so apply that ourselves.
*/
ts->tv_sec -= utc_offset();
clock_ts_to_bcd(ts, &bct, sc->sc_use_ampm);
clock_dbgprint_bcd(sc->sc_dev, CLOCK_DBG_WRITE, &bct);
/* If the chip is in AM/PM mode, adjust hour and set flags as needed. */
if (sc->sc_use_ampm) {
pmflags = DS3231_HOUR_USE_AMPM;
if (bct.ispm)
pmflags |= DS3231_HOUR_IS_PM;
} else
pmflags = 0;
data[DS3231_SECS] = bct.sec;
data[DS3231_MINS] = bct.min;
data[DS3231_HOUR] = bct.hour | pmflags;
data[DS3231_DATE] = bct.day;
data[DS3231_WEEKDAY] = bct.dow + 1;
data[DS3231_MONTH] = bct.mon;
data[DS3231_YEAR] = bct.year & 0xff;
if (sc->sc_last_c)
data[DS3231_MONTH] |= DS3231_C_MASK;
/* Write the time back to RTC. */
error = iicdev_writeto(dev, DS3231_SECS, data, sizeof(data),
IIC_INTRWAIT);
if (error != 0) {
device_printf(dev, "cannot write to RTC.\n");
return (error);
}
/*
* Unlike most hardware, the osc-was-stopped bit does not clear itself
* after setting the time, it has to be manually written to zero.
*/
if (sc->sc_status & DS3231_STATUS_OSF) {
if ((error = ds3231_status_read(sc)) != 0) {
device_printf(dev, "cannot read from RTC.\n");
return (error);
}
sc->sc_status &= ~DS3231_STATUS_OSF;
if ((error = ds3231_status_write(sc, 0, 0)) != 0) {
device_printf(dev, "cannot write to RTC.\n");
return (error);
}
}
return (error);
}
static device_method_t ds3231_methods[] = {
DEVMETHOD(device_probe, ds3231_probe),
DEVMETHOD(device_attach, ds3231_attach),
DEVMETHOD(device_detach, ds3231_detach),
DEVMETHOD(clock_gettime, ds3231_gettime),
DEVMETHOD(clock_settime, ds3231_settime),
DEVMETHOD_END
};
static driver_t ds3231_driver = {
"ds3231",
ds3231_methods,
sizeof(struct ds3231_softc),
};
DRIVER_MODULE(ds3231, iicbus, ds3231_driver, NULL, NULL);
MODULE_VERSION(ds3231, 1);
MODULE_DEPEND(ds3231, iicbus, 1, 1, 1);