690 lines
19 KiB
C
690 lines
19 KiB
C
/*-
|
|
* Copyright (c) 2002-2006 Rice University
|
|
* Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
|
|
* All rights reserved.
|
|
*
|
|
* This software was developed for the FreeBSD Project by Alan L. Cox,
|
|
* Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
|
|
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
|
|
* WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__FBSDID("$FreeBSD$");
|
|
|
|
#include "opt_ddb.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/sbuf.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/vmmeter.h>
|
|
|
|
#include <ddb/ddb.h>
|
|
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_param.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_object.h>
|
|
#include <vm/vm_page.h>
|
|
#include <vm/vm_phys.h>
|
|
|
|
struct vm_freelist {
|
|
struct pglist pl;
|
|
int lcnt;
|
|
};
|
|
|
|
struct vm_phys_seg {
|
|
vm_paddr_t start;
|
|
vm_paddr_t end;
|
|
vm_page_t first_page;
|
|
struct vm_freelist (*free_queues)[VM_NFREEPOOL][VM_NFREEORDER];
|
|
};
|
|
|
|
static struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];
|
|
|
|
static int vm_phys_nsegs;
|
|
|
|
static struct vm_freelist
|
|
vm_phys_free_queues[VM_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
|
|
|
|
static int vm_nfreelists = VM_FREELIST_DEFAULT + 1;
|
|
|
|
static int cnt_prezero;
|
|
SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD,
|
|
&cnt_prezero, 0, "The number of physical pages prezeroed at idle time");
|
|
|
|
static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
|
|
SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
|
|
NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");
|
|
|
|
static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
|
|
SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
|
|
NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");
|
|
|
|
static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind);
|
|
static int vm_phys_paddr_to_segind(vm_paddr_t pa);
|
|
static void vm_phys_set_pool(int pool, vm_page_t m, int order);
|
|
static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
|
|
int order);
|
|
|
|
/*
|
|
* Outputs the state of the physical memory allocator, specifically,
|
|
* the amount of physical memory in each free list.
|
|
*/
|
|
static int
|
|
sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct sbuf sbuf;
|
|
struct vm_freelist *fl;
|
|
char *cbuf;
|
|
const int cbufsize = vm_nfreelists*(VM_NFREEORDER + 1)*81;
|
|
int error, flind, oind, pind;
|
|
|
|
cbuf = malloc(cbufsize, M_TEMP, M_WAITOK | M_ZERO);
|
|
sbuf_new(&sbuf, cbuf, cbufsize, SBUF_FIXEDLEN);
|
|
for (flind = 0; flind < vm_nfreelists; flind++) {
|
|
sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
|
|
"\n ORDER (SIZE) | NUMBER"
|
|
"\n ", flind);
|
|
for (pind = 0; pind < VM_NFREEPOOL; pind++)
|
|
sbuf_printf(&sbuf, " | POOL %d", pind);
|
|
sbuf_printf(&sbuf, "\n-- ");
|
|
for (pind = 0; pind < VM_NFREEPOOL; pind++)
|
|
sbuf_printf(&sbuf, "-- -- ");
|
|
sbuf_printf(&sbuf, "--\n");
|
|
for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
|
|
sbuf_printf(&sbuf, " %2.2d (%6.6dK)", oind,
|
|
1 << (PAGE_SHIFT - 10 + oind));
|
|
for (pind = 0; pind < VM_NFREEPOOL; pind++) {
|
|
fl = vm_phys_free_queues[flind][pind];
|
|
sbuf_printf(&sbuf, " | %6.6d", fl[oind].lcnt);
|
|
}
|
|
sbuf_printf(&sbuf, "\n");
|
|
}
|
|
}
|
|
sbuf_finish(&sbuf);
|
|
error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf));
|
|
sbuf_delete(&sbuf);
|
|
free(cbuf, M_TEMP);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Outputs the set of physical memory segments.
|
|
*/
|
|
static int
|
|
sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
|
|
{
|
|
struct sbuf sbuf;
|
|
struct vm_phys_seg *seg;
|
|
char *cbuf;
|
|
const int cbufsize = VM_PHYSSEG_MAX*(VM_NFREEORDER + 1)*81;
|
|
int error, segind;
|
|
|
|
cbuf = malloc(cbufsize, M_TEMP, M_WAITOK | M_ZERO);
|
|
sbuf_new(&sbuf, cbuf, cbufsize, SBUF_FIXEDLEN);
|
|
for (segind = 0; segind < vm_phys_nsegs; segind++) {
|
|
sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
|
|
seg = &vm_phys_segs[segind];
|
|
sbuf_printf(&sbuf, "start: %#jx\n",
|
|
(uintmax_t)seg->start);
|
|
sbuf_printf(&sbuf, "end: %#jx\n",
|
|
(uintmax_t)seg->end);
|
|
sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
|
|
}
|
|
sbuf_finish(&sbuf);
|
|
error = SYSCTL_OUT(req, sbuf_data(&sbuf), sbuf_len(&sbuf));
|
|
sbuf_delete(&sbuf);
|
|
free(cbuf, M_TEMP);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Create a physical memory segment.
|
|
*/
|
|
static void
|
|
vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind)
|
|
{
|
|
struct vm_phys_seg *seg;
|
|
#ifdef VM_PHYSSEG_SPARSE
|
|
long pages;
|
|
int segind;
|
|
|
|
pages = 0;
|
|
for (segind = 0; segind < vm_phys_nsegs; segind++) {
|
|
seg = &vm_phys_segs[segind];
|
|
pages += atop(seg->end - seg->start);
|
|
}
|
|
#endif
|
|
KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
|
|
("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
|
|
seg = &vm_phys_segs[vm_phys_nsegs++];
|
|
seg->start = start;
|
|
seg->end = end;
|
|
#ifdef VM_PHYSSEG_SPARSE
|
|
seg->first_page = &vm_page_array[pages];
|
|
#else
|
|
seg->first_page = PHYS_TO_VM_PAGE(start);
|
|
#endif
|
|
seg->free_queues = &vm_phys_free_queues[flind];
|
|
}
|
|
|
|
/*
|
|
* Initialize the physical memory allocator.
|
|
*/
|
|
void
|
|
vm_phys_init(void)
|
|
{
|
|
struct vm_freelist *fl;
|
|
int flind, i, oind, pind;
|
|
|
|
for (i = 0; phys_avail[i + 1] != 0; i += 2) {
|
|
#ifdef VM_FREELIST_ISADMA
|
|
if (phys_avail[i] < 16777216) {
|
|
if (phys_avail[i + 1] > 16777216) {
|
|
vm_phys_create_seg(phys_avail[i], 16777216,
|
|
VM_FREELIST_ISADMA);
|
|
vm_phys_create_seg(16777216, phys_avail[i + 1],
|
|
VM_FREELIST_DEFAULT);
|
|
} else {
|
|
vm_phys_create_seg(phys_avail[i],
|
|
phys_avail[i + 1], VM_FREELIST_ISADMA);
|
|
}
|
|
if (VM_FREELIST_ISADMA >= vm_nfreelists)
|
|
vm_nfreelists = VM_FREELIST_ISADMA + 1;
|
|
} else
|
|
#endif
|
|
#ifdef VM_FREELIST_HIGHMEM
|
|
if (phys_avail[i + 1] > VM_HIGHMEM_ADDRESS) {
|
|
if (phys_avail[i] < VM_HIGHMEM_ADDRESS) {
|
|
vm_phys_create_seg(phys_avail[i],
|
|
VM_HIGHMEM_ADDRESS, VM_FREELIST_DEFAULT);
|
|
vm_phys_create_seg(VM_HIGHMEM_ADDRESS,
|
|
phys_avail[i + 1], VM_FREELIST_HIGHMEM);
|
|
} else {
|
|
vm_phys_create_seg(phys_avail[i],
|
|
phys_avail[i + 1], VM_FREELIST_HIGHMEM);
|
|
}
|
|
if (VM_FREELIST_HIGHMEM >= vm_nfreelists)
|
|
vm_nfreelists = VM_FREELIST_HIGHMEM + 1;
|
|
} else
|
|
#endif
|
|
vm_phys_create_seg(phys_avail[i], phys_avail[i + 1],
|
|
VM_FREELIST_DEFAULT);
|
|
}
|
|
for (flind = 0; flind < vm_nfreelists; flind++) {
|
|
for (pind = 0; pind < VM_NFREEPOOL; pind++) {
|
|
fl = vm_phys_free_queues[flind][pind];
|
|
for (oind = 0; oind < VM_NFREEORDER; oind++)
|
|
TAILQ_INIT(&fl[oind].pl);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Split a contiguous, power of two-sized set of physical pages.
|
|
*/
|
|
static __inline void
|
|
vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
|
|
{
|
|
vm_page_t m_buddy;
|
|
|
|
while (oind > order) {
|
|
oind--;
|
|
m_buddy = &m[1 << oind];
|
|
KASSERT(m_buddy->order == VM_NFREEORDER,
|
|
("vm_phys_split_pages: page %p has unexpected order %d",
|
|
m_buddy, m_buddy->order));
|
|
m_buddy->order = oind;
|
|
TAILQ_INSERT_HEAD(&fl[oind].pl, m_buddy, pageq);
|
|
fl[oind].lcnt++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize a physical page and add it to the free lists.
|
|
*/
|
|
void
|
|
vm_phys_add_page(vm_paddr_t pa)
|
|
{
|
|
vm_page_t m;
|
|
|
|
cnt.v_page_count++;
|
|
m = vm_phys_paddr_to_vm_page(pa);
|
|
m->phys_addr = pa;
|
|
m->segind = vm_phys_paddr_to_segind(pa);
|
|
m->flags = PG_FREE;
|
|
KASSERT(m->order == VM_NFREEORDER,
|
|
("vm_phys_add_page: page %p has unexpected order %d",
|
|
m, m->order));
|
|
m->pool = VM_FREEPOOL_DEFAULT;
|
|
pmap_page_init(m);
|
|
vm_phys_free_pages(m, 0);
|
|
}
|
|
|
|
/*
|
|
* Allocate a contiguous, power of two-sized set of physical pages
|
|
* from the free lists.
|
|
*/
|
|
vm_page_t
|
|
vm_phys_alloc_pages(int pool, int order)
|
|
{
|
|
vm_page_t m;
|
|
|
|
mtx_lock(&vm_page_queue_free_mtx);
|
|
m = vm_phys_alloc_pages_locked(pool, order);
|
|
mtx_unlock(&vm_page_queue_free_mtx);
|
|
return (m);
|
|
}
|
|
|
|
/*
|
|
* Allocate a contiguous, power of two-sized set of physical pages
|
|
* from the free lists.
|
|
*/
|
|
vm_page_t
|
|
vm_phys_alloc_pages_locked(int pool, int order)
|
|
{
|
|
struct vm_freelist *fl;
|
|
struct vm_freelist *alt;
|
|
int flind, oind, pind;
|
|
vm_page_t m;
|
|
|
|
KASSERT(pool < VM_NFREEPOOL,
|
|
("vm_phys_alloc_pages_locked: pool %d is out of range", pool));
|
|
KASSERT(order < VM_NFREEORDER,
|
|
("vm_phys_alloc_pages_locked: order %d is out of range", order));
|
|
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
|
|
for (flind = 0; flind < vm_nfreelists; flind++) {
|
|
fl = vm_phys_free_queues[flind][pool];
|
|
for (oind = order; oind < VM_NFREEORDER; oind++) {
|
|
m = TAILQ_FIRST(&fl[oind].pl);
|
|
if (m != NULL) {
|
|
TAILQ_REMOVE(&fl[oind].pl, m, pageq);
|
|
fl[oind].lcnt--;
|
|
m->order = VM_NFREEORDER;
|
|
vm_phys_split_pages(m, oind, fl, order);
|
|
cnt.v_free_count -= 1 << order;
|
|
return (m);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The given pool was empty. Find the largest
|
|
* contiguous, power-of-two-sized set of pages in any
|
|
* pool. Transfer these pages to the given pool, and
|
|
* use them to satisfy the allocation.
|
|
*/
|
|
for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
|
|
for (pind = 0; pind < VM_NFREEPOOL; pind++) {
|
|
alt = vm_phys_free_queues[flind][pind];
|
|
m = TAILQ_FIRST(&alt[oind].pl);
|
|
if (m != NULL) {
|
|
TAILQ_REMOVE(&alt[oind].pl, m, pageq);
|
|
alt[oind].lcnt--;
|
|
m->order = VM_NFREEORDER;
|
|
vm_phys_set_pool(pool, m, oind);
|
|
vm_phys_split_pages(m, oind, fl, order);
|
|
cnt.v_free_count -= 1 << order;
|
|
return (m);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Allocate physical memory from phys_avail[].
|
|
*/
|
|
vm_paddr_t
|
|
vm_phys_bootstrap_alloc(vm_size_t size, unsigned long alignment)
|
|
{
|
|
vm_paddr_t pa;
|
|
int i;
|
|
|
|
size = round_page(size);
|
|
for (i = 0; phys_avail[i + 1] != 0; i += 2) {
|
|
if (phys_avail[i + 1] - phys_avail[i] < size)
|
|
continue;
|
|
pa = phys_avail[i];
|
|
phys_avail[i] += size;
|
|
return (pa);
|
|
}
|
|
panic("vm_phys_bootstrap_alloc");
|
|
}
|
|
|
|
/*
|
|
* Find the vm_page corresponding to the given physical address.
|
|
*/
|
|
vm_page_t
|
|
vm_phys_paddr_to_vm_page(vm_paddr_t pa)
|
|
{
|
|
struct vm_phys_seg *seg;
|
|
int segind;
|
|
|
|
for (segind = 0; segind < vm_phys_nsegs; segind++) {
|
|
seg = &vm_phys_segs[segind];
|
|
if (pa >= seg->start && pa < seg->end)
|
|
return (&seg->first_page[atop(pa - seg->start)]);
|
|
}
|
|
panic("vm_phys_paddr_to_vm_page: paddr %#jx is not in any segment",
|
|
(uintmax_t)pa);
|
|
}
|
|
|
|
/*
|
|
* Find the segment containing the given physical address.
|
|
*/
|
|
static int
|
|
vm_phys_paddr_to_segind(vm_paddr_t pa)
|
|
{
|
|
struct vm_phys_seg *seg;
|
|
int segind;
|
|
|
|
for (segind = 0; segind < vm_phys_nsegs; segind++) {
|
|
seg = &vm_phys_segs[segind];
|
|
if (pa >= seg->start && pa < seg->end)
|
|
return (segind);
|
|
}
|
|
panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
|
|
(uintmax_t)pa);
|
|
}
|
|
|
|
/*
|
|
* Free a contiguous, power of two-sized set of physical pages.
|
|
*/
|
|
void
|
|
vm_phys_free_pages(vm_page_t m, int order)
|
|
{
|
|
|
|
mtx_lock(&vm_page_queue_free_mtx);
|
|
vm_phys_free_pages_locked(m, order);
|
|
mtx_unlock(&vm_page_queue_free_mtx);
|
|
}
|
|
|
|
/*
|
|
* Free a contiguous, power of two-sized set of physical pages.
|
|
*/
|
|
void
|
|
vm_phys_free_pages_locked(vm_page_t m, int order)
|
|
{
|
|
struct vm_freelist *fl;
|
|
struct vm_phys_seg *seg;
|
|
vm_paddr_t pa, pa_buddy;
|
|
vm_page_t m_buddy;
|
|
|
|
KASSERT(m->order == VM_NFREEORDER,
|
|
("vm_phys_free_pages_locked: page %p has unexpected order %d",
|
|
m, m->order));
|
|
KASSERT(m->pool < VM_NFREEPOOL,
|
|
("vm_phys_free_pages_locked: page %p has unexpected pool %d",
|
|
m, m->pool));
|
|
KASSERT(order < VM_NFREEORDER,
|
|
("vm_phys_free_pages_locked: order %d is out of range", order));
|
|
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
|
|
pa = VM_PAGE_TO_PHYS(m);
|
|
seg = &vm_phys_segs[m->segind];
|
|
cnt.v_free_count += 1 << order;
|
|
while (order < VM_NFREEORDER - 1) {
|
|
pa_buddy = pa ^ (1 << (PAGE_SHIFT + order));
|
|
if (pa_buddy < seg->start ||
|
|
pa_buddy >= seg->end)
|
|
break;
|
|
m_buddy = &seg->first_page[atop(pa_buddy - seg->start)];
|
|
if (m_buddy->order != order)
|
|
break;
|
|
fl = (*seg->free_queues)[m_buddy->pool];
|
|
TAILQ_REMOVE(&fl[m_buddy->order].pl, m_buddy, pageq);
|
|
fl[m_buddy->order].lcnt--;
|
|
m_buddy->order = VM_NFREEORDER;
|
|
if (m_buddy->pool != m->pool)
|
|
vm_phys_set_pool(m->pool, m_buddy, order);
|
|
order++;
|
|
pa &= ~((1 << (PAGE_SHIFT + order)) - 1);
|
|
m = &seg->first_page[atop(pa - seg->start)];
|
|
}
|
|
m->order = order;
|
|
fl = (*seg->free_queues)[m->pool];
|
|
TAILQ_INSERT_TAIL(&fl[order].pl, m, pageq);
|
|
fl[order].lcnt++;
|
|
}
|
|
|
|
/*
|
|
* Set the pool for a contiguous, power of two-sized set of physical pages.
|
|
*/
|
|
static void
|
|
vm_phys_set_pool(int pool, vm_page_t m, int order)
|
|
{
|
|
vm_page_t m_tmp;
|
|
|
|
for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
|
|
m_tmp->pool = pool;
|
|
}
|
|
|
|
/*
|
|
* Try to zero one or more physical pages. Used by an idle priority thread.
|
|
*/
|
|
boolean_t
|
|
vm_phys_zero_pages_idle(void)
|
|
{
|
|
struct vm_freelist *fl;
|
|
vm_page_t m, m_tmp;
|
|
int flind, pind, q, zeroed;
|
|
|
|
mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
|
|
for (flind = 0; flind < vm_nfreelists; flind++) {
|
|
pind = VM_FREEPOOL_DEFAULT;
|
|
fl = vm_phys_free_queues[flind][pind];
|
|
for (q = 0; q < VM_NFREEORDER; q++) {
|
|
m = TAILQ_FIRST(&fl[q].pl);
|
|
if (m != NULL && (m->flags & PG_ZERO) == 0) {
|
|
TAILQ_REMOVE(&fl[q].pl, m, pageq);
|
|
fl[q].lcnt--;
|
|
m->order = VM_NFREEORDER;
|
|
cnt.v_free_count -= 1 << q;
|
|
mtx_unlock(&vm_page_queue_free_mtx);
|
|
zeroed = 0;
|
|
for (m_tmp = m; m_tmp < &m[1 << q]; m_tmp++) {
|
|
if ((m_tmp->flags & PG_ZERO) == 0) {
|
|
pmap_zero_page_idle(m_tmp);
|
|
m_tmp->flags |= PG_ZERO;
|
|
zeroed++;
|
|
}
|
|
}
|
|
cnt_prezero += zeroed;
|
|
mtx_lock(&vm_page_queue_free_mtx);
|
|
vm_phys_free_pages_locked(m, q);
|
|
vm_page_zero_count += zeroed;
|
|
return (TRUE);
|
|
}
|
|
}
|
|
}
|
|
return (FALSE);
|
|
}
|
|
|
|
/*
|
|
* Allocate a contiguous set of physical pages of the given size
|
|
* "npages" from the free lists. All of the physical pages must be at
|
|
* or above the given physical address "low" and below the given
|
|
* physical address "high". The given value "alignment" determines the
|
|
* alignment of the first physical page in the set. If the given value
|
|
* "boundary" is non-zero, then the set of physical pages cannot cross
|
|
* any physical address boundary that is a multiple of that value. Both
|
|
* "alignment" and "boundary" must be a power of two.
|
|
*/
|
|
vm_page_t
|
|
vm_phys_alloc_contig(unsigned long npages, vm_paddr_t low, vm_paddr_t high,
|
|
unsigned long alignment, unsigned long boundary)
|
|
{
|
|
struct vm_freelist *fl;
|
|
struct vm_phys_seg *seg;
|
|
vm_paddr_t pa, pa_last, size;
|
|
vm_page_t m, m_ret;
|
|
int flind, i, oind, order, pind;
|
|
|
|
size = npages << PAGE_SHIFT;
|
|
KASSERT(size != 0,
|
|
("vm_phys_alloc_contig: size must not be 0"));
|
|
KASSERT((alignment & (alignment - 1)) == 0,
|
|
("vm_phys_alloc_contig: alignment must be a power of 2"));
|
|
KASSERT((boundary & (boundary - 1)) == 0,
|
|
("vm_phys_alloc_contig: boundary must be a power of 2"));
|
|
/* Compute the queue that is the best fit for npages. */
|
|
for (order = 0; (1 << order) < npages; order++);
|
|
mtx_lock(&vm_page_queue_free_mtx);
|
|
for (flind = 0; flind < vm_nfreelists; flind++) {
|
|
for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) {
|
|
for (pind = 0; pind < VM_NFREEPOOL; pind++) {
|
|
fl = vm_phys_free_queues[flind][pind];
|
|
TAILQ_FOREACH(m_ret, &fl[oind].pl, pageq) {
|
|
/*
|
|
* A free list may contain physical pages
|
|
* from one or more segments.
|
|
*/
|
|
seg = &vm_phys_segs[m_ret->segind];
|
|
if (seg->start > high ||
|
|
low >= seg->end)
|
|
continue;
|
|
|
|
/*
|
|
* Is the size of this allocation request
|
|
* larger than the largest block size?
|
|
*/
|
|
if (order >= VM_NFREEORDER) {
|
|
/*
|
|
* Determine if a sufficient number
|
|
* of subsequent blocks to satisfy
|
|
* the allocation request are free.
|
|
*/
|
|
pa = VM_PAGE_TO_PHYS(m_ret);
|
|
pa_last = pa + size;
|
|
for (;;) {
|
|
pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1);
|
|
if (pa >= pa_last)
|
|
break;
|
|
if (pa < seg->start ||
|
|
pa >= seg->end)
|
|
break;
|
|
m = &seg->first_page[atop(pa - seg->start)];
|
|
if (m->order != VM_NFREEORDER - 1)
|
|
break;
|
|
}
|
|
/* If not, continue to the next block. */
|
|
if (pa < pa_last)
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Determine if the blocks are within the given range,
|
|
* satisfy the given alignment, and do not cross the
|
|
* given boundary.
|
|
*/
|
|
pa = VM_PAGE_TO_PHYS(m_ret);
|
|
if (pa >= low &&
|
|
pa + size <= high &&
|
|
(pa & (alignment - 1)) == 0 &&
|
|
((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0)
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
mtx_unlock(&vm_page_queue_free_mtx);
|
|
return (NULL);
|
|
done:
|
|
for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
|
|
fl = (*seg->free_queues)[m->pool];
|
|
TAILQ_REMOVE(&fl[m->order].pl, m, pageq);
|
|
fl[m->order].lcnt--;
|
|
m->order = VM_NFREEORDER;
|
|
}
|
|
if (m_ret->pool != VM_FREEPOOL_DEFAULT)
|
|
vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
|
|
fl = (*seg->free_queues)[m_ret->pool];
|
|
vm_phys_split_pages(m_ret, oind, fl, order);
|
|
cnt.v_free_count -= roundup2(npages, 1 << imin(oind, order));
|
|
for (i = 0; i < npages; i++) {
|
|
m = &m_ret[i];
|
|
KASSERT(m->queue == PQ_NONE,
|
|
("vm_phys_alloc_contig: page %p has unexpected queue %d",
|
|
m, m->queue));
|
|
m->valid = VM_PAGE_BITS_ALL;
|
|
if (m->flags & PG_ZERO)
|
|
vm_page_zero_count--;
|
|
/* Don't clear the PG_ZERO flag; we'll need it later. */
|
|
m->flags = PG_UNMANAGED | (m->flags & PG_ZERO);
|
|
m->oflags = 0;
|
|
KASSERT(m->dirty == 0,
|
|
("vm_phys_alloc_contig: page %p was dirty", m));
|
|
m->wire_count = 0;
|
|
m->busy = 0;
|
|
}
|
|
for (; i < roundup2(npages, 1 << imin(oind, order)); i++) {
|
|
m = &m_ret[i];
|
|
KASSERT(m->order == VM_NFREEORDER,
|
|
("vm_phys_alloc_contig: page %p has unexpected order %d",
|
|
m, m->order));
|
|
vm_phys_free_pages_locked(m, 0);
|
|
}
|
|
mtx_unlock(&vm_page_queue_free_mtx);
|
|
return (m_ret);
|
|
}
|
|
|
|
#ifdef DDB
|
|
/*
|
|
* Show the number of physical pages in each of the free lists.
|
|
*/
|
|
DB_SHOW_COMMAND(freepages, db_show_freepages)
|
|
{
|
|
struct vm_freelist *fl;
|
|
int flind, oind, pind;
|
|
|
|
for (flind = 0; flind < vm_nfreelists; flind++) {
|
|
db_printf("FREE LIST %d:\n"
|
|
"\n ORDER (SIZE) | NUMBER"
|
|
"\n ", flind);
|
|
for (pind = 0; pind < VM_NFREEPOOL; pind++)
|
|
db_printf(" | POOL %d", pind);
|
|
db_printf("\n-- ");
|
|
for (pind = 0; pind < VM_NFREEPOOL; pind++)
|
|
db_printf("-- -- ");
|
|
db_printf("--\n");
|
|
for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
|
|
db_printf(" %2.2d (%6.6dK)", oind,
|
|
1 << (PAGE_SHIFT - 10 + oind));
|
|
for (pind = 0; pind < VM_NFREEPOOL; pind++) {
|
|
fl = vm_phys_free_queues[flind][pind];
|
|
db_printf(" | %6.6d", fl[oind].lcnt);
|
|
}
|
|
db_printf("\n");
|
|
}
|
|
db_printf("\n");
|
|
}
|
|
}
|
|
#endif
|